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Abstract—There is a growing need, for example in machine
learning and analytics, to decompose applications into smaller
schedulable units. Such decomposition can improve perfor-
mance, reduce energy consumption, and increase resource
utilization. Unfortunately, enabling fine-grained parallelism
comes with significant overheads and requires improvements at
all layers of the programming stack. We consider the challenges
of supporting fine-grained parallelism in the increasingly popu-
lar Python-based programming libraries. Specifically, we focus
on Parsl, a Python library that is widely used to parallelize
the execution of fine-grained Python functions. Parsl’s Python-
based runtime supports a maximum throughput of around
1200 tasks per second—insufficient to meet modern application
needs. We perform a comprehensive analysis of Parsl and iden-
tify areas that prohibit it from achieving higher throughput.
We first profile Parsl components and identify that, with fine-
grained tasks workers are often not saturated. We find that
tasks spend a majority of their time in the components between
the scheduler and worker, however, we also learned that the
scheduler is capable of submitting thousands of tasks per
second. We then focused on developing new optimizations and
implementing crucial components in C to improve throughput.
Our new implementation increases Parsl’s throughput 6 fold.

1. Introduction

The past decade has seen the case made for fine-grained
parallelism in HPC [1] and Data centers [2], [3]. Small tasks
enable clusters to make precise scheduling decisions and
rapidly respond to changes in compute load. Increasingly,
we see that scientific programs run many very short tasks
(e.g., for machine learning inference) across large-scale HPC
systems comprised of thousands of nodes and tens of thou-
sands (or more) cores. The demand for these characteristics
in software systems has led to a plethora of frameworks for
both HPC [4], [5], [6] and Data centers [7], [8], [9] that are
optimized for small tasks.

Python has become one of the most pervasive pro-
gramming languages, in part because it is a language that
enables beginners and experts to quickly develop programs.
Python offers a simple interface, clear error messages, and
rapid development time. Given Python’s robust numerical

libraries and extensive ecosystem of scientific frameworks,
many make use of Python for scientific computations. How-
ever, addressing modern workload requirements increas-
ingly relies on the use of parallel and distributed comput-
ing resources; unfortunately, Python’s heavy interpreter and
Global Interpreter Lock (GIL) make it difficult to scale.
While there are plans to remove the GIL, Parsl was con-
structed around the GIL, and thus our improvements are
constructed with the GIL in mind. Various Python-based
libraries have been developed to overcome these limitations
and enable distributed execution in Python (e.g., Dask [10],
Ray [11], and Parsl [12]). We focus on Parsl, a parallel
programming library that maintains Python’s accessible user
interface while dispatching code for concurrent and asyn-
chronous execution on both local and remote computing
resources.

Parsl is used for a diverse range of scientific applica-
tions and is deployed on large supercomputers at enormous
scales (thousands of nodes and hundreds of thousands of
cores [12]). A review of various Parsl applications shows
that tasks can run for short durations, effectively capping
the scale of deployment due to the limited throughput. An
analysis of Globus Compute workloads [13], a Python-based
serverless computing framework for HPC [14] that relies on
Parsl for task execution, found that the median task time was
340ms.

Motivated by these small tasks we seek to understand
the limitations of Parsl’s performance and indirectly the
limitations of using Python for such purposes. We conduct
an extensive empirical evaluation of Parsl and illustrate a
detailed picture of Parsl’s runtime. We identify areas for im-
provement and conduct experiments to evaluate the efficacy
of these changes. Ultimately, we identify shortcomings that
cannot be resolved in Python and implement a C version
of Parsl’s scheduler. We show that our optimizations and
new C implementation can achieve six-fold better perfor-
mance on microbenchmarks. Furthermore, we benchmark
our improvements using a common scientific application and
demonstrate throughput improvements.

In this work we contribute the following.

• In-depth analysis of a modern Python workflow sys-
tem



• Scheduler improvements for fine-grain parallelism
• Comparison of task-based parallel workflow systems

The paper is structured as follows. In section 2 we
describe the Parsl architecture. In section 3 we analyze
Parsl’s performance from two angles. We first understand
Parsl by profiling each component in its execution pipeline.
Second, we place timestamps on each task to understand
in which component do tasks spend most of their time.
Informed by profiling and tagging data in section 4 we
describe the changes we made to Parsl’s components to
improve throughput. section 5 we evaluate the optimizations
described in section 4. We discuss the limitations of our
solutions in section 7. In section 6 we discuss related work
and conclude our findings in section 8.

2. Parsl Architecture

To give a background for our analysis we briefly describe
Parsl’s architecture. The relevant parts of Parsl’s architecture
are shown in Figure 1. We explain each component and
relate them to common elements of parallel programming
frameworks.

Figure 1: Parsl’s Execution Pipeline

2.1. Dataflow Kernel

The DataFlow Kernel (DFK) is Parsl’s scheduler. It is
responsible for selecting an appropriate resource for ex-
ecution and dispatching tasks to that resource. The DFK
maintains a dictionary of Task Records that maps task id to
task record objects. Each task t, with dependencies t0, ..., tn,
is assigned a callback function that attempts to launch all
dependent tasks t0, ..., tn when it (task t) has finished. The
DFK automatically memoizes tasks to decrease redundant
computation. The DFK is written entirely in Python.

2.2. Executor

The executor is an abstraction for computation re-
sources. Parsl maintains several executors that are built
for different types of workloads: HighThroughput Ex-
ecutor, Low Latency Executor, and Extreme-Scale Ex-
ecutor. Several external executors have also been inte-
grated, such as RADICAL-Cybertools [15], Flux [16], and
WorkQueue [17]. The executor is associated with a provider,
which allows Parsl to elastically provision compute re-
sources via different interfaces (e.g., batch scheduler, con-
tainer orchestration system, or cloud API). The DFK, ex-
ecutor, and provider are all started by the same Python
interpreter. The executor manages computation resources
and partitions compute nodes into blocks. The user allocates
a minimum number of blocks, configures the number of
nodes per block, and sets a maximum number of blocks.
Given that information, the executor will dynamically add
blocks and remove blocks. In this work, we focus on Parsl’s
default executor, the High Throughput Executor (HTEX).

2.3. Interchange

The interchange is a critical part of Parsl’s execution
framework. It enables the use of supercomputers, clouds,
and clusters. The interchange is deployed on the same
node as the DFK and executor but lies within a separate
Python interpreter. The interchange receives tasks from the
executor and sends tasks to managers via ZMQ sockets.
The interchange maintains a queue for tasks and results.
It combines tasks into batches and sends the batches to
managers. The interchange chooses the manager based on
its advertised capacity (in terms of number of tasks). The
interchange is responsible for tracking the status of workers,
it does this by occasionally sending messages to workers.
Since the interchange interacts directly with managers it is
responsible for load balancing. The interchange tracks each
manager’s capacity. It sends batches of tasks to a manager
so long as the number of tasks assigned to it is less than its
capacity.

2.4. Manager

Managers are responsible for a subset of workers on
a node. Managers can reside on the same node as DFK,



executor, and interchange, however, they typically are de-
ployed on separate compute nodes. Managers communicate
with the interchange via ZMQ pipes and communicate with
their workers via IPC queues. The same result and task
queues are shared by the manager and all of its workers.
During initialization, the manager creates separate processes
for each worker and begins sending them tasks. Managers
effectively allow for multiplexing of communication from
the interchange to the many workers deployed on a node
and allow Parsl to consume fewer ports on each node.

2.5. Worker

Workers receive tasks from managers, execute tasks,
and return their results back to managers. They are single-
threaded Python processes that always reside on the same
node as their manager.

3. Analysis of Parsl’s Throughput

To build a comprehensive image of Parsl we employ
two methods to measure performance. First, we profile the
Python processes for each component. Some of the compo-
nents are I/O heavy (e.g., interchange) thus they are multi-
threaded processes. For these processes, we profile each
thread. Second, we augment the Parsl codebase to capture
the timestamps when entering and exiting each component.
This approach captures where time is spent from the task’s
perspective. For both methods we used a no-op workload,
so we could isolate system overheads from execution of
the task. It is essential to note that we chose to augment
the code rather than use Parsl’s existing logging mechanism
as our initial profiling data showed that logging consumed
a significant portion of the time in the DFK. When we
disabled all longing Parsl’s throughput increased from 1200
to 4̃000 tasks/second. Our experiments used Python version
3.10. With the exception of the multi-node experiment, all
experiments were executed on a testbed with 192 cores(2
hardware threads per core) and 770GiB of ram.

3.1. Profiling

The following profiling data is obtained from an ex-
periment where we executed 10k no-op tasks on a single
node with 192 workers. We configured Parsl such that each
manager is responsible for eight workers, resulting in 24
managers. Figure 2 shows the results from profiling. The
raw profiling data includes a list of functions called within
Parsl and the time spent in each of those functions. We
categorized each function and divided the time consumed by
each category by total thread time, returning the proportion
of time dedicated to each category. We discuss each thread
in order of task submission.

3.1.1. Dataflow Kernel and Executor. The first bar in
Figure 2 corresponds to DFK and HTEX. The DFK and
HTEX live in the same process and the DFK invokes HTEX

via Python function calls, thus they occupy the same thread.
Our initial observation is that the bulk of time is spent
submitting a task. Communication, composed of categories
Send and Poll are the most expensive. The functions apart of
the categories are responsible for queuing tasks within the
interchange. Parsl operations, consume a fifth of total time
and are concerned with managing Parsl’s task launch state.
Those functions include(in order of invocation) dfk.submit,
dfk.launch if ready, dfk.launch, and htex.submit.

3.1.2. Interchange. The interchange is a multi-threaded
process. Its main thread is responsible for sending results
back to HTEX and sending tasks to available managers. Its
command thread ensures that workers are alive and allows
the user to manually kill workers. Lastly, its Task puller
thread receives work from HTEX. The profiling results of
each thread are represented by separate rows in Figure 2

Task Puller Thread. The task puller thread pops tasks from
a ZMQ socket that connects the interchange and executor.
The tasks it receives are immediately placed in an in-process
queue within the interchange. From this queue, the main
thread pulls tasks. The third row in Figure 2 shows where
time is spent in the task puller thread. The task puller thread
spends upwards of 95% of time receiving tasks. The next
most significant cost is deserializing the Python objects it
receives which consumes ∼1.5% of time. Finally placing
the tasks on the internal queue consumes ∼1% of time.

Main Thread. Similar to the DFK, communication dom-
inates work performed by the interchange’s main thread.
However, in this case, Poll accounts for most of communi-
cation time. The main thread waits for tasks on an in-process
queue between it and the task puller thread. After polling,
Send, which involves sending a batch of tasks to a manager
consumes the next most time.

Command Thread. The command thread has little activity.
The Python interpreter spends the least time on this thread.
Almost all of its time is spent receiving confirmation mes-
sages from workers. Most of the functions called in this
thread are invoked less than 10 times.

3.1.3. Manager. The manager is a dual-threaded process. It
contains a thread that pulls tasks from the interchange and
sends those tasks to workers and a thread that pulls results
from the workers and pushes results to the interchange. Both
the threads within the manager are I/O bound.

Task Puller thread. Polling the ZMQ socket consumes
most (approximately 90%) time in this thread. While the
other operations consume little time.

Result Pusher thread. The result pusher thread’s profiling
information is displayed in the sixth row of Figure 2. Like
the interchange’s main thread, polling accounts for roughly
three-quarters of thread time. Unlike the previous threads,
queue operations are the next most expensive category. This
category is composed of functions that wait for and pop
results from the worker’s results queue. Little time is spent
sending results to the interchange, roughly 2.5%. The fact
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Figure 2: Profiling data showing the time spent in the major components of the Parsl architecture. The figure categorizes
time spent in each function in the Parsl source code among ten categories. Time is normalized for each component.

that the majority of the time is spent polling suggests that
even with 100s of workers computing results, the workers
are unable to saturate the queue.

3.1.4. Worker. Workers are single-threaded Python pro-
cesses that lie at the end of the execution pipeline. Workers
pop tasks off the queue they share with their manager and
place results in a separate queue. They receive tasks as
serialized Python objects, so deserialization is a cost that
workers pay for each task as well as serializing results. The
last row of Figure 2 displays the profiling data from the
worker.

The worker’s profiling data shows two functions con-
sume most of its time. Reading bytes from the task queue
consumes ∼60% of time. The other ∼40% of time is spent
contending over the Semaphore that protects the tasks queue.

3.1.5. Profiling Summary. For all processes, communi-
cation in some form consumed most time. Every pro-
cess/thread downstream of the interchange’s task puller
thread spent most of its time polling. While the interchange’s
task puller thread spent most of its time receiving Python
objects, this suggests that tasks might face a bottleneck
within the interchange. Although receive accounted for most
of the worker’s time, workers spent a substantial amount of
time contending for a semaphore.

3.2. Tagging

Profiling showed where time was spent from the per-
spective of the process. This information yielded insights
that informed our optimizations; however, it does not tell
the complete story. We now explore performance from the
perspective of a task (rather than the processes). We use
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Figure 3: Average time (microseconds) spent in each Parsl
component and communication for each task in a workload
with 10k no-op tasks

a method we call tagging to track where tasks spent their
time during execution. Figure 3 summarizes our results for
a no-op workload with 10k tasks using 192 workers and a
single manager.

Figure 3 is a logarithmic graph that shows the average
number of microseconds tasks spent in each component and
communication channel throughout the entire 10k no-op
workload. Tasks spend an order of magnitude more time
within the interchange than other components. Figure 3
shows that tasks are piling up in the queue between the
interchange’s main and task puller threads. Tasks spend
more time on average within that queue than they do in
all other components combined.

The second most costly component is the ZMQ connec-



tion between HTEX and the interchange. Tasks likely begin
to pile up in this component after the interchange’s internal
queue.

After the HTEX-interchange ZMQ socket, tasks spend
the most time within workers and the manager-worker in-
process queue. Tasks spending significant time within the
worker may be surprising because the workload is a no-
op and the worker code is simple. However, recall that
workers spend upwards of 80% of their time contending
for a Semaphore, and thus tasks stall, waiting within the
worker.

As mentioned previously managers can be deployed on
separate nodes thus the queue between the interchange and
manager is unique to each manager and uses a ZMQ socket.
This communication channel is the least expensive channel
on average.

Tasks spend little time in the DFK, HTEX, and Man-
agers. The DFK determines if a task can be launched. When
HTEX is invoked, it stores some state about the task and
places the task on the pipe. The difference in responsibilities
explains the gap in time cost. Workers place themselves in a
queue when they can receive work, and the manager sends
work to workers in the queue. When a worker receives work
it pops itself off that queue. The simplicity of the manager’s
role explains its low cost.

4. Optimizations

We build upon the detailed analysis performed in pre-
vious sections to motivate several important optimizations.
We both augment Parsl’s architecture as well as modify data
structures used for communication.

4.1. Cut out the Middleman

The tagging data showed us that task spend on average
104µs, which is at least 10x more time than any other
component or communication channel. The interchange is a
component that performs multiple roles (e.g., fault tolerance,
and load balancing). Given its complexity and that tasks
pile up in its internal queue we decided to remove the
interchange altogether. In this exercise, we also removed
the manager because it exists to reduce the number of ports
consumed by Parsl on a singular node. We call this the
DIRect to worker EXecutor (DIREX).

Removal of the interchange restricts Parsl to operate
on a single node. The interchange is core to Parsl’s fault
tolerance, thus removing it exposes our experiments to the
failures of workers. Workers may crash during computation,
if a worker was computing a task that has dependencies
when it crashed then none of its dependencies could be
launched, causing the entire computation to fail. Using no-
ops for our benchmarks temporarily buries that concern,
since there are no dependencies. However, for some work-
loads, the exchange of fault tolerance for performance may
not be possible.

4.2. Worker Queues

Profiling showed that workers spent a large portion of
their time contending over the semaphore that protects the
task queue between them and their manager. Semaphore
contention is expensive even when the worker count is
small. To reduce this cost we assign a task queue to each
of the workers. Though semaphores are still protecting the
queues, decreasing the number of workers contending for
that semaphore to one worker minimizes its cost. Workers
are assigned tasks in a round-robin manner.

4.3. Implementing the DFK in C

The DFK, like any scheduler, is core to the performance
of the entire runtime system. If the DFK cannot process
a million tasks/second then Parsl could never execute a
million tasks/second. Thus it is critical that the DFK is
fast. In Figure 3 we showed that the DFK and HTEX
are inexpensive for each task, however, it is important to
note that the average task submit time was 100µs. To
achieve 10k tasks/second, we would need to have an average
turnaround time for an entire task of 100µs. Of course, many
components can be parallelized, Parsl can have multiple
executors, thus multiple interchanges and multiple managers
supervising many workers, however, in its current form
every task will pay that 100µs toll.

When investigating the causes of the submit cost in the
DFK we found many necessary, but computationally trivial,
operations that collectively are very expensive. Even the
operations that we believed should be inexpensive, such as
creating a Task Record object, took 5µs which is a non-
trivial amount of time if we aim for a total time of 100µs.

Memory footprint is an important consideration when
aiming to support fine-grained parallelism. Python repre-
sents data as objects and uses garbage collection for memory
management. Invoking 10s of thousands of tasks implicitly
creates at least 10s of thousands of objects. Since Parsl rep-
resents tasks as a Task Record object which is a dictionary,
many objects are created for each task.

Implementing a C DFK represents tasks as structs as
shown below, and manages its memory using a wrapper
for system memory allocation and deallocation functions
provided by Python’s C API. Managing its own memory de-
creases the memory footprint within the Python Interpreter,
and thus lightens the burden on the garbage collector when
the workload has many tasks. The task struct consumes 128
bytes plus the size of its Python objects. Using Python’s sys
library one can measure the size of an empty Task Record.
An empty Task Record in Python consumes 232 bytes plus
the size of its Python objects.

4.4. Bringing it all Together

Removing the interchange and giving each worker its
task queue will decrease the cost of sending tasks to
workers. Improving the latency of the execution pipeline
increases throughput, assuming that the DFK can launch



tasks quickly enough. The C implementation of the DFK
can produce many more tasks/second than the Python DFK.

5. Evaluation

We evaluate the performance of our optimizations and
the C implementation of the Parsl DFK. The evaluation was
performed on the Mystic testbed, as discussed previously.

5.1. Removing the Interchange

To remove the interchange we modified DIREX such
that it would spawn its workers. Using a no-op workload
with 10k tasks we compare throughput achieved by HTEX
and DIREX as a function of the number of workers in
Figure 4.

Figure 4 shows that with the interchange removed Parsl
using DIREX can achieve the same throughput with 1
worker as Parsl using HTEX can with hundreds of workers.
This clearly demonstrates that workers are not saturated.
Workers could handle many more tasks if Parsl were able
to produce more of them. While removing the interchange
increases the throughput of Parsl with low worker counts, at
scale, the throughput improvements are minimal at ∼15%.
Moreover, DIREX experiences a slight decrease in through-
put as the worker count increases.
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Figure 4: DIREX vs HTEX throughput compared using 10k
no-op tasks. Left: throughput as we increase the number of
workers. Right: profiling Data from a DIREX worker.

Figure 4 also shows profiling data from a DIREX
worker. Using a single worker resulted in semaphore con-
tention accounting for an immeasurable amount of time.
Like all previous threads, communication dominates, how-
ever, the category Python Std Lib now consumes 10% of
total thread time. Functions in the Python Std Lib category
include time.sleep and exec. Exec is used to execute the
task and time.sleep is the task body itself. Thus removing
the interchange has increased the utilization of the worker.

5.2. Worker Queues

Figure 5 shows the throughput of Parsl when workers
each pop tasks of the same queue and when workers have
their own task queues. As expected, neither scales well,
and both show similar trends in throughput. However, the
multi-queue model has consistently lower throughput. The
difference in throughput is not trivial either, it erases the
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Figure 5: Comparison of throughput when workers share
a single task queue (single) and when they have their task
queue (multi). Results are shown as we increase the number
of workers.

slight throughput gains from removing the interchange and
manager.

Figure 6 show the profiling data collected from the work-
ers. Profiling single-queue workers shows that semaphore
contention becomes even more expensive when the inter-
change is removed, however, as shown in the profiling data
of multi-queue workers all of that cost is shifted back to
reading bytes off the queue.

We conclude that while semaphore contention is ex-
pensive, the use of semaphores does not impede through-
put. This further motivates our optimization to remove this
lock—workers spend 85% of their time acquiring this lock.
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Figure 6: Left: Profiling data from a worker receiving tasks
via a single queue. Right: Profiling data from a worker
receiving tasks with multi-queue.

5.3. Moving the DFK to C

We now explore throughput and memory footprint of the
C DFK. We finally evaluate performance when combining
the C implementation with DIREX.

5.3.1. Throughput. Results from above suggest that
the workers were not saturated. Profiling showed that
Semaphore contention consumed significant time for the
workers, but, we did not achieve a significant throughput
improvement by removing these semaphores. Similarly, the
modest gains to maximum throughput from removing the
interchange combined with the increased utilization of the
workers implies that there are still throughput gains to be
realized from increasing the throughput of Parsl’s scheduler.
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tions of the DFK for a 100k no-op workload with varying
workers.

Figure 7 compares the throughput accomplished during
a 100k no-ops workload with varying amounts of workers.
The C implementation of the DFK achieves a maximum
throughput double that of standard Python implementation.
While the Python DFK scales linearly with a worker count
of up to 128 workers, the C DFK never experiences linear
scaling. Its maximum throughput is reached with 8 work-
ers. Furthermore, its throughput with 1 worker is similar
to the Python DFK’s throughput with many workers. The
benchmark in Figure 7 does not include any of the previous
changes. The current C DFK implementation is integrated
into Parsl without changes to the executor, interchange,
manager, and worker.
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Figure 8: Throughput for the Python and C implementations
of the DFK for a 10k no-op workload with varying workers.

Given that CDFK is functional with HTEX(i.e. it can
communicate with the interchange), we can deploy work
tasks over multiple nodes. Figure 8 shows the throughput
achieved using one node and eight nodes. Each node has
32 cores and 64GB of DRAM. With few workers the single
node outperforms multi-node. As the number of workers
increases the performance of both converge. This demon-
strates that our improvements are applicable to large-scale
Python workflows.

5.3.2. Memory footprint. With small task counts, neces-
sarily the number of Python objects will be small, and
as the task count increases the number of Python objects
increases. A large number of Python objects becomes a
problem for Python’s garbage collector. Figure 9 shows the
throughput difference between the Python DFK with the
garbage collector turned on and turned off.

100 101 102 103 104 105

Number of Tasks

103

104

105

106

Nu
m

be
r o

f P
yt

ho
n 

Ob
je

ct
s

1000 10000 100000
Number of Tasks

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut

GC Enabled
yes
no

Figure 9: Left: number of objects created in the Python and
C DFK as we increase the number of tasks.Right: Through-
put comparison with and without the garbage collector for
the Python DFK as we increase the number of tasks.

Turning off the garbage collector is simple, however, we
do not want our target users, domain scientists, disabling and
enabling the garbage collector for improved performance. It
could also be dangerous with many task workloads. Having
many millions or tens of millions of outstanding Python
objects, many of which are Task Records, and the objects
they store could cause other issues. Figure 9 is a log plot
displaying the difference in object count between standard
Parsl’s DFK and C DFK Parsl. The workload used was no-
op with varying amounts of tasks.

The gap in object count is roughly 10 times the task
count. For example, the final data point shows that C DFK
Parsl had approximately 2.6 million Python objects after
executing 100k no-ops, while Parsl had 3.6 million Python
objects. Careful readers will point out that since the DFK
has been moved to C, Python’s garbage collector should not
impact our performance. However, recall that the executor
and DFK are in the same process. Therefore the executor
and DFK share the garbage collector and C DFK creates
and tracks Python objects for its tasks, so polluting the in-
terpreter with 100s of thousands more objects could slightly
impact throughput.

5.3.3. C DFK + DIREX. We finally integrate the above
optimizations and evaluate performance. Recall, the C DFK,
which increases the number of tasks/second that can be
scheduled, and DIREX, which minimizes the latency of
the execution pipeline complement each other. We com-
pare performance against standard Parsl as well as against
Dask [10] and Ray [11], two of the most widely used Python
parallelism libraries (although more than 70% of Ray is
implemented in C++).

Figure 11 shows a peak throughput of roughy 14k
tasks/second is achieved with C DFK using DIREX with
4 workers. Previous experiments showed that neither C
DFK nor DIREX achieved linear scaling by themselves,
however, Parsl achieves linear scaling. While C DFK +
DIREX achieves a higher maximum throughput it too does
not scale. C DFK with or without DIREX achieves similar
throughput. After reaching a maximum throughput with 4
workers it experiences decreased throughput when worker
count is increased. The throughput of C DFK using HTEX
or DIREX during a no-op workload with 1 worker is around
8k tasks/second. Given this high baseline throughput linear
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Figure 10: Throughput as we change the granularity (run time) of tasks for the Python DFK, Ray, and Dask.
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Figure 11: Left: Throughout for the C DFK, DIREX, and
standard Parsl as we increase the number of workers. Right:
granularity cdfk vs all and granularity

scaling with C DFK would imply ∼500k tasks/second with
hundreds of workers.

Figure 11 also shows the same experiment performed
using Parsl’s Python DFK with HTEX. Throughput for tasks
of granularity 0µs, 1µs, and 10µs have the same trend lines
and are unaffected by task duration. Task duration begins to
affect throughput at 10ms granularity.

While CDFK + DIREX achieves higher maximum
throughput on finer granularity tasks(0µs 10µs) Ray, shown
in Figure 10 achieves better scaling and higher throughput
for coarse grain tasks. Executing 10ms tasks Ray achieves
nearly 8k tasks/second with 128 workers, while CDFK +
DIREX does not scale past 8 workers and peaks at around
7000 tasks/second. Ray scales with 1ms tasks similarly to
how it scales with 10ms tasks.

Figure 10 also shows the performance of Dask. Dask
achieves peak performance with around 16 workers, af-
terwards, it experiences decreased throughput per worker.
In comparison Parsl scales much better, handling up to
128 workers before throughput drops. Important to note is
that Dask’s throughput for millisecond and microsecond no-
ops tasks are the same. Suggesting that the minimum task
granularity for Dask is much higher than for Ray or Parsl.
Similar conclusions were made in Slaughter et al. [18].

5.4. Scientific Application

Finally, we explore performance of our techniques on a
real-world protein docking workflow. Protein docking is a
computational method used in molecular biology to predict

the structure of protein complexes formed when two or
more proteins interact. This technique is vital in understand-
ing biological processes and designing therapeutic drugs.
It involves simulating the process by which proteins fit
together or ’dock’ to form a stable complex. This is akin
to finding the correct way two puzzle pieces fit together
among myriad possibilities. This docking process is driven
by several factors, including shape complementarity, electro-
static attractions, and hydrophobic interactions. As proteins
are highly flexible and complex molecules, the problem of
predicting their interactions is computationally demanding.

A typical docking computation can take over 10 min-
utes on a single core; a typical workload involves multiple
protein receptors with millions of possible ligands to dock,
yielding a total compute complexity for a brute force ap-
proach to be over 21M CPU-hours. This high computational
requirement has motivated researchers to leverage machine
learning methods to expedite screening.

ParslDock [19], a docking simulation coordinated with
Parsl, aims to identify the “best” ligands from a large
dataset of potential molecules by efficiently combining sim-
ulation (aka docking) and machine learning algorithms on
high-performance computing resources. The computational
complexity of brute force docking applications is reduced
through machine learning methods.

Key to this work is the workflow graph generated by
ParslDock. Each task consists of a molecule that is formatted
and passed to a machine-learning module for inference.
This generates a bag-of-tasks graph, such a task graph is
highly parallelizable and has very short-running tasks. We
use this scientific application to demonstrate the improved
performance achieved by our optimizations.

We execute ParslDock on the Mystic testbed mentioned
previously. The docking simulation displayed in Figure 12
shows runtime with varying numbers of workers and batch
size. The simulation was run across 100k total molecules For
serial, standard Parsl with Python DFK, and CDFK. We see
the best runtimes are achieved with the largest batch size.
This suggests that there is still an opportunity to improve
performance for fine-grained tasks.

Figure Figure 12a shows the runtime of the docking
simulation as a function of the batch size using serial
code. Using a batch size of 1000 molecules the serial
code achieves a runtime of around ∼35 seconds. Figure
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Figure 12: ParslDock runtime for Serial, Standard Parsl, and CDFK implementations for different batch sizes as we scale
the number of workers.

Figure 12b displays the runtime achieved by standard Parsl
with the Python DFK. Parsl achieves its lowest runtime
using 8 workers with a batch size of 1000, ∼11s. With
standard Parsl using many workers or few workers returns
a high runtime, ∼100 seconds. Figure Figure 12c shows
the runtime achieved by CDFK Parsl. It scales linearly with
the number of workers used, plateauing with hundreds of
workers. CDFK Parsl with 128 workers and a batch size
of 1000 simulates 100k molecules in ∼1.5 seconds. This
runtime is 10x faster than standard Parsl’s lowest runtime
and 30x faster than serial.

6. Related Work

Rust Dask Scheduler. The most relevant related work was
an investigation of Dask’s throughput when its scheduler
is implemented in Rust [20]. As discussed in their paper
Dask utilizes a work-stealing scheduler. When all of a
task’s dependencies have been resolved the task is given
to a worker such that its time to start is minimized. If
there is a load imbalance, saturated workers will have tasks
stolen from them by unsaturated workers. In their work,
they first compare Dask’s scheduler to a random sched-
uler. In this exercise, they find that the random scheduler
achieves performance near Dask’s work-stealing schedule
for many workloads. The random scheduler achieves up
to 1.4x speedup and at worst its performance is twice as
slow. Second, they compare RuSt Dask Scheduler(RSDS),
a scheduler they implemented in Rust that uses work-
stealing, to Dask’s scheduler. In so doing they find that
RSDS achieves up to 4x speedup and at worst throughput
slightly decreases. In their final experiment, they compare
RSDS with random scheduling to Dask’s scheduler. This
experiment demonstrates the limits of Python as RSDS can
outperform Dask’s scheduler in many cases despite using a
random scheduler. Similar to the previous experiment RSDS
reaches a maximum speedup of 4x while at worst being half
as performant. They conclude that the performance gains of
an intricate scheduler cannot be actualized if the underlying
runtime system is inefficient.

Ray [11] is a distributed computing framework tailored
towards AI applications. Since many AI applications are
written in Python users interact with Ray using a Python
API. Much like Parsl, Ray models computation with a
dynamic task graph. In Ray, a task represents stateless
computation while an actor represents stateful computation.
Ray uses a bottom-up scheduler, each node has a local
scheduler for its workers, who communicate with a global
scheduler when necessary. When a task is created on a node,
its local scheduler will attempt to assign a worker to that
task. When a local scheduler is unable to assign the task to a
local worker it will forward that task to the global scheduler.
Using this scheduling system along with other components
Ray achieves a million tasks/second at scale. Though Ray
is accessed via its Python API, 72% of Ray’s System layer
is written in C++. This shows that Python frameworks can
achieve high throughput when their underlying system code
is written in a performant language.
TaskBench [18] is a framework that measures the perfor-
mance of parallel runtime systems that make use of task par-
allelism. One of the major contributions of TaskBench was
Minimum Effective Task Granularity (METG). METG is a
metric that quantifies the efficiency of a workflow system at
a given task granularity and is parameterized by efficiency.
Slaughter et al. apply this metric to OpenMP, OpenMP +
MPI, Dask, OpenMP task, StarPU, Tensorflow, and more.
They measure METG as a function of task granularity and
find the threshold at which efficiency dips below 50%.
Implicitly our work seeks to decrease METG for Parsl. We
do not integrate Parsl into TaskBench, however, we measure
the throughput of Parsl at different granularities with and
without the optimizations we apply in later sections.

7. Limitations

DIREX imposes the greatest limitations on Parsl. DI-
REX sends tasks to workers using an interprocess queue
between itself and its workers. In contrast, HTEX uses ZMQ
sockets to communicate with managers, who ultimately use
interprocess queues to send tasks and receive results from
workers. The usage of interprocess queues instead of ZMQ



sockets disables DIREX from coordinating workflows across
multiple nodes.

8. Conclusions and Future Work
In this work, we investigated and improved Parsl’s abil-

ity to manage fine-grained tasks. We first rigorously inves-
tigated how processes and task spend their time and then
used the data we collected to motivate changes to Parsl’s
execution pipeline. The profiling data we collected led us
to believe that the semaphores on the manager-worker IPC
were a bottleneck in throughput; however, we did not see
a significant improvement in throughput after removing the
semaphores. The optimizations motivated by tagging data
(i.e., C-DFK and removing interchange) increased through-
put. We conclude that while profiling data can be useful, for
task-based parallel systems, where the journey of the task is
most important for throughput tracking the individual task
throughout a workload returns the most useful data.

This work lead us to conclude that the barrier to high
throughput in Python-based parallel workflow systems is
much closer to the throughput experienced by the system
than first thought. Python is a high-level language that sac-
rifices performance for accessibility. Given that, one should
expect Python frameworks to be less performant than C
frameworks, however, we did not expect the barrier to be
at our doorstep. Through rigorous exploration of Parsl’s
execution pipeline, we found that trivial operations consume
non-trivial amounts of time, leading us to move critical
components of Parsl out of Python.

In the future, we plan to collect more scientific appli-
cations to further validate our findings. Given that machine
learning inference tasks effectively have no dependencies
and do not require I/O inside the worker, we seek applica-
tions that will place a greater strain on our systems.
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