
SCALABLE INDEXING AND SEARCH

IN HIGH-END COMPUTING SYSTEMS

BY

ALEXANDRU IULIAN ORHEAN

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved
Adviser

Chicago, Illinois
August 2023

© Copyright by

ALEXANDRU IULIAN ORHEAN

August 2023

ii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my adviser, my professor and

the chair of my committee Dr. Ioan Raicu for his invaluable patience and feedback

and constant guidance and support, without which this endeavour would not have

been possible. I would also like to express my deepest appreciation to Dr. Lavanya

Ramakrishnan for her support and encouragement and Dr. Kyle Chard for his inspi-

ration and enthusiasm that have been crucial in shaping my PhD, and I cannot thank

them enough. Additionally, I would like to thank my defense committee (Dr. Ioan

Raicu, Dr. Boris Glavic, Dr. Kyle Hale, Dr. Jia Wang, Dr. Lavanya Ramakrishnan

and Dr. Kyle Chard) who generously provided their knowledge and expertise.

Furthermore I would like to thank all of the collaborators and colleagues for

their honest advice and feedback, and for their symphatetic moral support and un-

derstanding. Lastly I would like to thank my mom (Violeta Orhean), my dad (Mircea

Orhean) and my girlfriend (Kristen Efantis) for their persistent support, unyielding

encouragement and enduring belief in me, and God for giving me hope and inspiration

in my work and in my life.

iii

AUTHORSHIP STATEMENT

I, Alexandru Iulian Orhean, attest that the work in this thesis is substantially

my own.

In accordance with the disciplinary norm of Computer Science (see IIT Faculty

Handbook, Appendix S), the following collaborations occurred in the thesis:

My adviser, Dr. Ioan Raicu, contributed to the design of all experiments and

guided the interpretation of the data as is the norm for a PhD supervisor.

Dr. Ioan Raicu, Dr. Kyle Chard, Dr. Boris Glavic and Dr. Lavanya Ramakr-

ishnan contributed to and guided the research and development of the core ideas

behind this thesis. Dr. Ioan Raicu and Dr. Kyle Chard participated in polishing the

research papers behind this work.

Dr. Ioan Raicu, Dr. Kyle Chard, Dr. Dongfang Zhao and Eng. Itua Ijgabone

guided and contributed to the ”Toward scalable indexing and search on distributed

and unstructured data” research paper, that is included in chapter 2 of this thesis. Dr.

Ioan Raicu, Dr. Kyle Chard, Dr. Lavanya Ramakrishnan and Dr. Anna Giannakou

assisted with the development, implementation and evaluation of the ideas behind

the ”SCANNS: Towards Scalable and Concurrent Data Indexing and Searching in

High-End Computing System” research paper, that is incorporated in chapter 3. Dr.

Ioan Raicu, Dr. Lavanya Ramakrishnan, Dr. Anna Giannakou, Dr Katie Antypas

and Eng. Matt Henderson contributed to and guided the ”Evaluation of a Scientific

Data Search Infrastructure” research paper, that is included in chapter 5. Lastly, Dr.

Ioan Raicu, Dr. Boris Glavic, Dr. Kyle Chard, Dr. Lavanya Ramakrishnan and Dr.

Anna Giannakou assisted with the development, implementation and evaluation of

the ideas behind ”SCIPIS: Scalable and Concurrent Persistent Indexing and Search

in High-End Computing”, that is included in chapter 4 of this thesis.

iv

Dr. Poornima Nookala and PhD student Lan Nguyen contributed to this work

through brainstorming sessions and discussions.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

AUTHORSHIP STATEMENT . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

CHAPTER

1. INTRODUCTION . 1

1.1. Indexing and Search Problem Space 3
1.2. Motivation and Use Cases 4
1.3. Indexing and Search Engine Background 9

2. TOWARDS SCALABLE INDEXING AND SEARCH ON DIS-
TRIBUTED AND UNSTRUCTURED DATA 13

2.1. Design Principles . 14
2.2. Architecture . 16
2.3. Evaluation . 21
2.4. Conclusion . 26

3. SCALABLE AND CONCURRENT DATA INDEXING AND SEARCH-
ING IN HIGH-END COMPUTING SYSTEM 28

3.1. Framework Architecture and Design 29
3.2. Performance Evaluation 38
3.3. Conclusion . 52

4. SCALABLE AND CONCURRENT PERSISTENT INDEXING
AND SEARCH IN HIGH-END COMPUTING SYSTEMS . . . 54

4.1. Framework Architecture and Design 55
4.2. Performance Evaluation 64
4.3. Conclusion . 74

5. EVALUATION OF A SCIENTIFIC DATA SEARCH INFRAS-
TRUCTURE . 76

5.1. ScienceSearch . 78
5.2. Evaluation Setup . 85

vi

5.3. Experimental Results 91
5.4. Discussion . 102
5.5. Conclusion . 107

6. RELATED WORK . 109

6.1. Data Indexing and Retrieval 109
6.2. Search Engine Design 110
6.3. Search in Science . 112

7. CONCLUSION AND FUTURE WORK 115

BIBLIOGRAPHY . 117

vii

LIST OF TABLES

Table Page

1.1 Characteristics of large file systems and search/indexing times. . . . 8

3.1 Mystic Cloud machines used for the experimental evaluation and their
specifications. 39

3.2 TFIDF End-to-end search latency (microseconds). 50

4.1 Mystic Cloud machines used for the experimental evaluation and their
specifications. 65

4.2 Evaluation datasets and characteristics. 66

4.3 SCIPIS vs Apache Lucene TFIDF search latency (microseconds). . . 74

5.1 Total number of objects/records found and amount of storage used
by each table, for the evaluation search space. 89

5.2 Example terms of targeted and open-ended queries along with the
number of final results returned to the user. 92

5.3 Memory footprint measured as the minimum, mean and maximum
number of objects processed when executing Query Set 1 queries,
grouped by search phase. 94

5.4 Memory footprint measured as the minimum, mean and maximum
number of objects processed when executing Query Set 2 queries,
grouped by search phase. 94

5.5 Memory footprint measured as the minimum, mean and maximum
size of processed objects when executing Query Set 1 queries, grouped
by search phase. 95

5.6 Memory footprint measured as the minimum, mean and maximum
size of processed objects when executing Query Set 2 queries, grouped
by search phase. 95

5.7 Number of objects processed, filtered or generated at each search
phase for each worker for an query (Frame) from Query Set 2 with 16
parallel workers. 99

viii

LIST OF FIGURES

Figure Page

1.1 Materials Data Facility to discover data. 5

1.2 DataONE single unified search system that spans 44 repositories. . 6

1.3 Two million galaxies and quasars covering 11 billion years of cosmic
time from the eBOSS/SDSS surveys. 7

1.4 NERSC file system data created (green), modified (blue/purple) and
deleted (red) measured in terabytes/day over a 35-day period. . . 9

1.5 General architecture of an information retrieval engine. 10

2.1 An architectural view of FusionDex deployed to a share-nothing clus-
ter. 17

2.2 A scenario in which a user sends a query to a Q Client, that dis-
tributes the operation to all Q Servers. 17

2.3 Protocols of Concurrent Requests on Query Server. 20

2.4 Protocols of Concurrent Requests on Query Client. 21

2.5 Indexing and write throughput on single node 22

2.6 Search latency on single node 23

2.7 Search throughput on single node 24

2.8 Indexing throughput on multiple nodes 25

2.9 Search latency on multiple nodes 26

3.1 SCANNS framework indexing architecture and pipeline. 30

3.2 SCANNS DualQueue design. 32

3.3 SCANNS Standard Tokenizer. 34

3.4 SCANNS Optimized Branchless Tokenizer. 35

3.5 SCANNS Inverted Index Design. 37

3.6 ReaderDriver throughput with increasing number of read threads
on 64cores-1disk. 42

3.7 ReaderDriver throughput with increasing number of read threads
on 32cores-16disks. 43

ix

3.8 ReaderDriver throughput with increasing number of read threads
on 192cores-16disks. 44

3.9 ReaderDriver and Tokenizer throughput with increasing number of
read and tokenize threads on 64cores-1disk. 45

3.10 ReaderDriver and Tokenizer throughput with increasing number of
read and tokenize threads on 32cores-16disks. 45

3.11 ReaderDriver and Tokenizer throughput with increasing number of
read and tokenize threads on 192cores-16disks. 46

3.12 End-to-end TF-IDF indexing throughput with increasing number of
read and index threads on 64cores-1disk. 47

3.13 End-to-end TF-IDF indexing throughput with increasing number of
read and index threads on 32cores-16disks. 48

3.14 End-to-end TF-IDF indexing throughput with increasing number of
read and index threads on 192cores-16disks. 49

3.15 Random Access Memory Benchmark Design. 51

3.16 Random Access Memory Benchmark. 51

4.1 SCIPIS framework indexing architecture and pipeline. 57

4.2 SCIPIS framework indexing architecture and pipeline. 61

4.3 SCIPIS framework indexing architecture and pipeline. 64

4.4 Tuning the index depth on 32cores-16disks. 68

4.5 SCIPIS vs SCANNS indexing throughput the 32cores-16disks ma-
chine. 69

4.6 SCIPIS vs SCANNS indexing throughput the 192cores-16disks ma-
chine. 70

4.7 SCIPIS indexing throughput the 32cores-16disks machine. 72

4.8 SCIPIS indexing throughput the 192cores-16disks machine. 73

5.1 ScienceSearch container-based architecture and interaction with HPC
resources through Spin. Container instances are denoted with light
green and inter-container communication is represented with a dot-
ted red line. HPC resources are in grey (physical nodes) and blue
(remote and local storage). Arrows show where each instance is
physically deployed. 80

x

5.2 Parallel Architecture for Comparison with Stored Metadata step. A
master process slices the database index in W slices and spawns W
workers respectively. Each worker interacts with the database in
order to fetch and rank intermediate results. 81

5.3 Memory consumption of each search worker for object creation dur-
ing search stages. The number of objects significantly increases after
Recreate Metadata Tags. 85

5.4 ScienceSearch deployment. Grey boxes are containers located on
the same physical node to avoid network bottlenecks. White arrows
represent requests between internal components. 86

5.5 Average processing rate, measured in objects per second, with in-
creasing number of parallel worker processes. Comparison between
Query Set 1 and Query Set 2, combining the average processing rate
of all search phase. 93

5.6 Average processing rate, measured in objects per second, with in-
creasing number of parallel workers. (a) Average processing rate of
each search phase for Query Set 1. (b) Average processing rate of
each search phase for Query Set 2. 93

5.7 Reduced query latency for both targeted and open-ended queries
after object size reduction. 96

5.8 (a) Overall average query latency and min-max variation with in-
creasing number of parallel workers (Query Set 1). (b) Overall av-
erage query latency and min-max variation with increasing number
of parallel workers (Query Set 2). 97

5.9 Average query latency grouped by search phase, with increasing
number of parallel workers (Query Set 1). 98

5.10 Average latency of each search phase for each worker for a query
(Frame) from Query Set 2 with 16 parallel workers. 98

5.11 (a) Average query throughput and min-max variation for Query Set
1 with increasing number of concurrent queries. (b) Average query
throughput and min-max variation for Query Set 2 with increasing
number of concurrent queries. 100

5.12 (a) Average query latency for Query Set 1 on Spin and Perth. (b)
Average query latency for Query Set 2 on Spin and Perth. 101

5.13 (a) Average query throughput for Query Set 1 on Spin and Perth.
(b) Average query throughput for Query Set 2 on Spin and Perth . 101

xi

ABSTRACT

Rapid advances in digital sensors, networks, storage, and computation coupled

with decreasing costs is leading to the creation of huge collections of data. Increasing

data volumes, particularly in science and engineering, has resulted in the widespread

adoption of parallel and distributed file systems for storing and accessing data effi-

ciently. However, as file system sizes and the amount of data “owned” by users grows,

it is increasingly difficult to discover and locate data amongst the petabytes of data.

While much research effort has focused on methods to efficiently store and process

data, there has been relatively little focus on methods to efficiently explore, index, and

search data using the same high-performance storage and compute systems. Users

of large file systems either invest significant resources to implement specialized data

catalogs for accessing and searching data, or resort to software tools that were not

designed to exploit modern hardware. While it is now trivial to quickly discover web-

sites from the billions of websites accessible on the Internet, it remains surprisingly

difficult for users to search for data on large-scale storage systems.

We initially explored the prospect of using existing search engine building

blocks (e.g. CLucene) to integrate search in a high-performance distributed file system

(e.g. FusionFS), by proposing and building the FusionDex system, a distributed

indexing and query model for unstructured data. We found indexing performance

to be orders of magnitude slower than theoretical speeds we could achieve in raw

storage input and output, and sought to investigate a new clean-slate design for high-

performance indexing and search.

We proposed the SCANNS indexing framework to address the problem of effi-

ciently indexing data in high-end systems, characterized by many-core architectures,

with multiple NUMA nodes and multiple PCIe NVMe storage devices. We designed

SCANNS as a single-node framework that can be used as a building block for im-

xii

plementing high-performance indexed search engines, where the software architecture

of the framework is scalable by design. The indexing pipeline is exposed and allows

easy modification and tuning, enabling SCANNS to saturate storage, memory and

compute resources on different hardware. The proposed indexing framework uses a

novel tokenizer and inverted index design to achieve high performance improvement

both in terms of indexing and in terms of search latency.

Given the large amounts and the variety of data found in scientific large-scale

file systems, it stands to reason to try to bridge the gap between various data rep-

resentations and to build and provide a more uniform search space. ScienceSearch

is a search infrastructure for scientific data that uses machine learning to automate

the creation of metadata tags from different data sources, such as published papers,

proposals, images and file system structure. ScienceSearch is a production system

that is deployed on a container service platform at NERSC and provides search over

data obtained from NCEM. We conducted a performance evaluation of the Science-

Search infrastructure focusing on scalability trends in order to better understand the

implications of performing search over an index built from the generated tags.

Drawing from the insights gained from SCANNS and the performance evalua-

tion of ScienceSearch, we explored the problems of efficiently building and searching

persistent indexes that do not fit into main memory. The SCIPIS framework builds

on top of SCANNS and further optimizes the inverted index design and indexing

pipeline, by exposing new tuning parameters that allows the user to further adapt

the index to the characteristics of the input data. The proposed framework allows

the user to quickly build a persistent index and to efficiently run TFIDF queries over

the built index. We evaluated SCIPIS over three kinds of datasets (logs, scientific

data, and file system metadata) and showed that it achieves high indexing and search

performance and good scalability across all datasets.

xiii

1

CHAPTER 1

INTRODUCTION

Rapid advances in digital sensors, networks, storage, and computation coupled

with decreasing costs is leading to the creation of huge collections of data—commonly

referred to as “Big Data.” These data have the potential to enable new insights and

discoveries that can change the way business, science, and government deliver services

to their consumers and can impact society as a whole. Increasing data volumes, par-

ticularly in science and engineering, has led to the widespread deployment of parallel

and distributed file systems for storing and accessing data efficiently. However, as

file system sizes and the amount of data “owned” by users grow, it is increasingly

difficult to discover and locate information amongst the petabytes of accessible data,

with exabytes of storage capacity on the horizon. While much research effort has

focused on the methods to efficiently store and process data, there has been relatively

little focus on methods to efficiently explore, index, and search data using the same

high-performance storage and compute systems.

One of the most significant burdens faced by the scientific community is the

lack of efficient tools that enable targeted search and exploration of large file systems.

While it is now trivial to quickly find websites from the approximately 2 billion

websites in existence, it is remarkably difficult for researchers to search across their

scientific data stored on large-scale storage systems. Google has pioneered much of

the information retrieval and search engine research; however, its area of focus is

large-scale distributed search over web data rather than searching over scientific data

stored in high-performance file systems—two areas with significantly different data,

storage, processing, and query models.

In the enterprise search domain there are several tools that are commonly used

to enable search, such as Apache Lucene [1], Apache Solr [2], and ElasticSearch [3].

2

According to surveys from both academia [4] and industry [5], Apache Lucene is the

most popular tool used to implement search engines. These surveys also show that

the top three search tools are either Apache Lucene or services that build on Apache

Lucene (Apache Solr and ElasticSearch), thus, Apache Lucene represents 69–73% of

the enterprise search market. Apache Lucene was originally implemented in 1999

and was designed for commodity hardware that consisted primarily of single-core and

single CPU systems, with a single hard disk, and for full-text indexing and search,

and they are not designed to make use of the advanced features of HPC systems

and modern hardware. Instead, they achieve scalability via distribution and index

sharding and often rely on tight coupling with distributed file system, such as the

Hadoop File System [6], which are not supported on HPC systems. Apache projects

are often implemented in Java, which also has not garnered wide adoption in HPC

systems. Other existing works from HPC have aimed to tackle this problem, however

they typically have focused on indexing and search of metadata [7, 8] as opposed to

the scientific data itself. Oftentimes, solutions are being built that are applications

specific, leading to inefficiencies as the community continuously ”reinvents the wheel.”

In the absence of better options, scientists often fall back to the state of the art

methods for finding data in single, centralized systems. That is, they use traditional

Linux tools: ls and grep, or find. However, these tools are not designed for large

file systems. For example, listing all files (a common operation when searching for

a specific file name) in a production parallel file system commonly found on large

computing clusters could take many weeks to complete (given that it contains billions

of files and metadata performance is typically limited to thousands of operations per

second). Further, this does not consider the time to read the data itself, a task that

could compound the search time by several orders of magnitude. Searching through

a 10 petabyte file system (the size of the persistent storage system on the Theta

supercomputer at Argonne) by reading through the entire data could take over 3

3

years at a modest 100MB/sec read rate, a typical performance level if a user were to

issue a search request from a login node.

Existing tools are not suitable in the context of large-scale storage systems.

We believe that tools which allow data and metadata stored on today’s HPC storage

systems (e.g. Lustre [9], GPFS [10], Ceph [11]), many of which are accessible via

Globus [12], should be index-able and search-able in a transparent effortless way while

not impacting the performance of the storage system for I/O intensive workloads.

Scientific data comes in many flavors, from free-text data (e.g., logs in text

files), to numerical data (e.g., matrices in HDF5, time-series data), to image data

(e.g., medical images in DICOM format), to video data (e.g., videos from biology

studying organisms behavior). Each data type might need specialized indexing and

search methods, further complicating an already difficult problem at scale. Due to the

sheer amount of data found in today’s HPC systems, any solution must be distributed,

be parallel in nature, and exploit recent advancements in non-volatile memory.

1.1 Indexing and Search Problem Space

This work aims at addressing the general problem of efficient and effective

indexing and search in large-scale scientific file systems, and in this thesis we present

and define the challenges and bottlenecks of indexing and searching large amounts of

data on high-end computing systems, and include and describe valuable insights and

novel techniques for designing salable index-based search engines. We first present

and define, in the remainder of this chapter, the problem space and the core concepts

behind search engines and information retrieval. We include motivating uses cases

from science and engineering as well as cyberinfrastructure providers. In Chapter 2

we include the early work, in which we initially explored the prospects of using ex-

isting information retrieval libraries and search engine blocks to enable search in a

4

high-performance distributed file systems and we discovered that indexing has the

potential to become a significant bottleneck. We then propose the SCANNS indexing

framework, in chapter 3, to address the problem of efficiently indexing data in high-

end systems, characterized by many-core architectures, with multiple NUMA nodes

and multiple PCIe NVMe storage devices. Drawing from the lessons learned and

insights gained from SCANNS, we explored the problems of efficiently building and

searching persistent indexes that do not fit into main memory, in Chapter 4. Finally,

in Chapter 5, we conducted a performance evaluation of ScienceSearch, a production

search infrastructure for scientific data that uses machine learning to automate the

creation of metadata tags from different data sources, focusing on scalability trends

in order to better understand the implications of searching over indexes built from

generated metadata tags.

1.2 Motivation and Use Cases

Advances in search technologies over the last several decades have contributed

to the evolution of computing. However, while internet, enterprise, and desktop

search capabilities have changed drastically, relatively little focus has been given

to search requirements in science and engineering domains as well as on large-scale

cyberinfrastructure resources. We describe here motivating use cases from science

and engineering as well as cyberinfrastructure providers.

1.2.1 Science.

Materials Science: The Materials Data Facility (MDF) [13] is a centralized

hub for publishing, sharing, and discovering materials science data. MDF stores over

19 million files (61TB of data), uploaded by close to 1000 users from different research

groups, spanning many disciplines of materials science. The repository contains a

range of different data types from common formats (e.g., text and images) through

5

to materials-specific formats. It includes both large (e.g., datasets gathered via x-ray

scattering and tomography, high-energy diffraction microscopy, and neutron scatter-

ing datasets) as well as smaller datasets (e.g., datasets gathered via atomic force

(AFM), scanning electron (SEM), and transmission electron (TEM) microscopy).

However, the expansive range of materials data held by MDF can make it

difficult for users to find data relevant to their work, so utility is rooted in the quality

of metadata elements to make data findable and accessible. MDF data are primarily

stored at Argonne National Laboratory (ANL) and the National Center for Supercom-

puting Applications (NCSA), and are accessible via Globus (see Figure 1.1). MDF

asks publishers to provide metadata describing uploaded data; however, in practice

this metadata is limited to publication-style data, rather than metadata describing

the specific data. The MDF team have spent considerable effort developing their

own specialized extractors called MatIO; however, they are limited to a small slice

of the data included in MDF. Currently, MDF uses Globus Search, an ElasticSearch-

based service for indexing the available metadata. The index is approximately 1GB

in size—a small fraction of the 61TB of data.

Figure 1.1. Materials Data Facility to discover data.

6

Earth and Environmental Data: Data Observation Network for Earth

(DataONE) [14] is a community-based federated data repository that provides access

to data from a set of 44 member repositories (see Figure 1.2). These repositories span

a range of earth and environmental data sources including the arctic data center, bio-

logical and chemical oceanography data management office, Cornell lab of ornithology

eBird, and National Ecological Observatory Network. DataONE currently manages

more than 800K datasets exceeding 81 TB of data. Over the last decade, DataONE

datasets have been downloaded more than 16M times. Each dataset in DataONE is

associated with a metadata record, these records are primarily completed manually

following community schema.

Figure 1.2. DataONE single unified search system that spans 44 repositories.

Cosmology: The Sloan Digital Sky Survey (SDSS), one of the most ambi-

tious scientific projects of all time that aims to make a high-quality three-dimensional

map of the universe. SDSS has been collecting data since 1998, and has created 17

data releases. The imaging data include preview images (JPGs) and raw data (FITS).

The data also include catalogs of detected objects, with parameters measured from

imaging, including positions and magnitudes. These catalogs are stored in a com-

mercial relational database management system (DBMS), Microsoft’s SQL Server,

7

and are organized in several 2-dimensional tables. The SDSS dataset contains over a

billion objects dispersed over 390 million files (5.5M directories) for a total 652TB of

data [15, 16]. A visual representation of some of this data is captured in Figure 1.3.

Figure 1.3. Two million galaxies and quasars covering 11 billion years of cosmic time
from the eBOSS/SDSS surveys.

Much effort is spent in defining schemas, organizing data, storing metadata in

databases, and building search interfaces for users. Many of the methods used are spe-

cific and tightly coupled to domain-specific data and/or software. The effort required

to implement and maintain a catalog, combined with reduced generality, makes this

an impractical solution for data exploration and search in many applications.

1.2.2 Cyberinfrastructure. Storage available on campuses, supercomputing

centers, and even within individual research groups is growing rapidly. For example,

campus storage routinely exceeds 1PB which is shared among students and faculty,

research computing centers offer 10s of PB of storage to their users, while large

national cyberinfrastructure providers offer 100 PB of usable storage. At these scales,

the estimated resources needed to index data are astronomical. Table 1.1 summarizes

storage sizes and expected costs for indexing. This data shows that even modest

storage systems may have hundreds of millions to billions of files, cumulatively totaling

petabytes to tens of petabytes of data. These file systems are in a constant state of

8

change, with average data modification time measured in hours requiring constant

updates to indexes. When analyzing file system traces, we observed deep directory

hierarchies with an average of 20 to 212 files per directory, which may limit our ability

to optimize the index based on paths. These file system traces offer us a glimpse into

the complex world of distributed storage systems for scientific computing. It should

be clear that Lucene indexing throughput of 383MB/sec or the grep utility’s ability to

find keywords deep in data files at 102MB/sec (the typical performance of these tools

when running on login node accessing these file systems), would take months to years

to completely index and search the storage systems in today’s scientific computing

systems.

Table 1.1. Characteristics of large file systems and search/indexing times.

File System Files Size
ls+grep

search time

Apache Lucene

indexing time

Institution 264M 1.2 PB 146 days 39 days

UChicago RCC - 2.2 PB 267 days 71 days

NCSA Delta - 7PB 850 days 227 days

NERSC 861M 6.3 PB 765 days 204 days

TACC Frontera Scratch - 44PB 5340 days 1425 days

ALCF Eagle - 100PB 12136 days 3238 days

Beyond simply needing to index these large file systems, there are frequent

changes to files as they are added, modified, and removed. Figure 1.4 shows the

number bytes created, modified, and deleted daily in 2018 for 35 consecutive days.

The figure shows that peak days exhibit changes of nearly 80TB/day with over 2.5M

files modified (not shown in the figure), and on average 16TB of data was either

added or removed per day. It should be noted that this file system log was captured

in 2018 and that file system sizes have increased by an order of magnitude since this

time. We therefore expect that millions of file changes per day to be a common use

case even on institution and resource computing center storage. While the number

9

of changes for supercomputing facilities is likely much larger.

Figure 1.4. NERSC file system data created (green), modified (blue/purple) and
deleted (red) measured in terabytes/day over a 35-day period.

1.3 Indexing and Search Engine Background

In this section we include a few general definitions and observations about

information retrieval and search engine characteristics that are relevant to the prob-

lem of designing, building and maintaining indexed-based search engines. The field

of information retrieval identifies and defines itself as the field that aims to “solve

the problem of locating and retrieving materials from a collection of information re-

sources, in order to satisfy the information need” [17]. Having this definition in mind,

in practice an information retrieval solution, also called an “information retrieval (IR)

engine” or colloquially a “search engine,” has two main functionalities: indexing and

search. Indexing refers to the problem of re-organizing the collection of information

resources, in such a way that it makes it easy to locate and retrieve relevant materials

from the collection according to some information need. Search is the second function,

and it refers to the actual process of utilizing the re-organized collection of informa-

tion resources, also knows as an “index” in practice, in order to locate and retrieve

10

materials that are relevant to some information need. In the realm of computers, the

definition of an IR engine, can be adjusted to: solving the problem of locating and

retrieving relevant files from a file system in order to satisfy an information need.

From a structural point of view, a computer search engine can be decomposed

into four main components, as seen in Figure 1.5. The Index Engine is responsible

for extracting the contents of the files in order to re-organize it into an index. This

component can perform myriad different types of operations to increase the quality

of the index, including similarity analysis, stemming, and lemmatization.

Figure 1.5. General architecture of an information retrieval engine.

The second component is the Index itself, which is typically implemented as an

inverted index. The term “inverted index” comes from the inversion between content

and source of the content that happens during indexing. The inverted index is typ-

ically implemented through the use of various search data structures in combination

with container data structures, but it can also be implemented using mathematical

constructs, such as vectors and matrices, and it can be stored persistently on disk or

it can be kept in volatile memory or a combination of both.

11

If the list of files that are returned by the inverted index are not ordered in

any particular way, then the search engine becomes a data retrieval engine, akin to

a relational database that provides only the projection function. In order to be a

truly information retrieval engine, the third, namely Ranking Algorithm component

needs to be part of the overall search engine. The Ranking Algorithm, also sometimes

used as a synonym to the information retrieval model, is responsible for providing a

mechanism to order the returned files from an inverted index by relevance with respect

to an information need. Term Frequency-Inverse Document Frequency (TFIDF) is

a popular model that uses the frequency of words in files (Term Frequency) and

the frequency of files that contain a word (Inverse Document Frequency) to build a

mathematical formula that can be used in conjunction with the terms provided by

the information need to sort the returned files by their relevance. TFIDF attempts to

capture two observations: if a word exists in many files it is likely to be less relevant to

the information need; and if a word occurs many times in a file it is likely to be relevant

to the information need. TFIDF is not the only successful information retrieval model,

but in this work we decide to use it due to its simplicity and effectiveness.

The final component is the Query Engine, that is responsible for processing

the information need. This component typically reads a search query, applies some

of the parsing and analysis techniques present in the Index Engine component, and

filters and sorts the returned results according to the Ranking Algorithm.

Looking closer at the process of re-organizing the collection of information ma-

terials through indexing, certain observations can be made about the characteristics of

this process, observations that can be used to aid the design of a more efficient index

engine. One such observation pertains to the index itself and whether it already exists

or not. Updating the index versus building the index from scratch imply different

assumptions and requirements on how the index engine should work and what kind

12

of structure will the inverted index have, which in turn influences the design and thus

the performance. The dynamic versus static property of the collection of materials

received as input can also dictate the behavior and performance of the index engine,

where a constantly changing collection of materials will require an index that can sup-

port fast updates, while for a static collection of materials the index can be optimized

for throughput. Another important observation related to the inverted index refers to

the uniformity of the placement of the index. Maintaining for example a global index

is harder, because it requires a scalable architecture and efficient synchronization and

communication, but it can yield faster and more complete search results, while a set

of local indexes are easier to build, because they require minimum synchronization

and communication, while paying a higher cost for aggregation search results from

different index sources. All of these characteristics and properties of the indexing

process, index engine and inverted index, if understood and exploited properly can

point to the design of scalable and high-performance search engine solutions.

13

CHAPTER 2

TOWARDS SCALABLE INDEXING AND SEARCH ON DISTRIBUTED AND
UNSTRUCTURED DATA

In the era of Big Data, modern applications make use of parallel and dis-

tributed strategies to store and process data at scale [18, 19, 20]. While extensive

research has focused on the challenges associated with storing and processing large

amounts of data efficiently, little work has focused on efficient data search in dis-

tributed systems. Although various indexing techniques have been studied in the

database community, adapting them to meet the needs of those applications whose

data are primarily distributed and file-based is still in its infancy. And according

to the International Data Company [21], most of the data found in distributed file

systems is unstructured, posing a serious challenge to the development of efficient

models for querying large, unstructured, and distributed data.

We propose an indexing solution that takes into account the unstructured and

distributed nature of Big Data 1. While many Big Data systems use a single coor-

dinator to manage resources and data placement (e.g. Hadoop [23] and Myria [24]),

the proposed indexing strategy envisions a fully distributed architecture, deploying

indexing modules locally on each node of the underlying distributed file system. This

model assumes a relatively common distributed file system model: one in which files

are stored on the nodes as a whole. That is they are not segmented into blocks

or chunks that are spread across multiple nodes. Thus, at the cost of restricting

the model to a file level storage paradigm, the indexing-related computations can be

done locally, which reduces communication between nodes. This scheme removes the

concept of a single point of failure and reduces the potential performance degradation

from inter-node interference, while preserving scalability.

1The content of this chapter is gathered from published research [22]

14

FusionDex is the proposed indexing solution and is implemented in the Fu-

sionFS [25] distributed file system which leverages the ZHT [26] distributed key/value

store, and uses the CLucene [27] framework as the indexing engine. CLucene provides

the libraries for efficiently indexing and querying data. Inter-node communication is

accomplished through FusionFS’s data transfer service. Investigation of FusionDex’s

performance, on a 64 node cluster, showed that the distributed indexing approach

has high performance gains in comparison with state-of-the-art approaches, such as

Hadoop Grep [28] and Cloudera Search [29]. Comparison of the search latency be-

tween Linux grep (52000ms) and FusionDex (23ms), on a single node, shows signifi-

cant speedup, thus highlighting the potential value of such an approach.

2.1 Design Principles

In comparison with well structured data, found for example in relational

database systems, unstructured data does not preserve the same structural char-

acteristics, pre-defined data models, or well-described organization. As such, tradi-

tional models used for indexing relational data cannot be applied to unstructured

data. While there are countless examples of indexing approaches for unstructured

and text-based data, including Lucene and the many relational databases that now

support free-text queries, these cannot be directly applied to large storage systems

due to their distributed nature and extreme data scales. With these properties in

mind, FusionDex aims to eliminate the performance bottlenecks and single point of

failure of distributed indexing of unstructured, file-based data.

The first design principle of FusionDex is that it does not have global coor-

dinators. This approach differs from popular Big Data systems, like Hadoop [23],

Myria [24] and SciDB [30], that rely on a single coordinator or master that is in

charge of managing the entire system. FusionDex is completely distributed, each

node playing the role of both an indexing unit and of a utility interface (e.g., query

15

interface). A user may submit queries to any node, the operation is then distributed

throughout the system (across nodes) automatically and efficiently. The response

is then assembled by each node and sent back to the client via the same interface.

Through caching mechanisms and the balancing of communication, the distributed

search throughput can be significantly increased in contrast to the throughput of a

single search server or coordinator.

Removing the coordinator has, admittedly, its own drawbacks. The reason

why so many systems embrace the idea of single coordinator is obvious: it is easy to

maintain consistency and synchronization between operations. Proper management

of the operations and the internal state of the components found in a peer-to-peer

system, on the other hand, not only requires greater care from the perspective of

design and development but also incurs N-to-N network overhead. For the general

problem of querying distributed data, there is no definitive solution that satisfies all

constraints, but in practice, trade-offs are balanced so that the problem is solved

for a reduced number of cases. In FusionDex’s case, the benefits of efficiently and

easily updating global system consistency and coherence, usually obtained through a

master node or coordinator, are traded for the benefits of increased scalability, thus

providing a means for managing and maintaining Big Data.

The second design principle is that FusionDex aims to minimize data move-

ment, for example during the indexing of files in the distributed file system. This

design decision is somewhat a consequence of the removal of a global coordinator.

Without a global coordinator the network traffic would follow an N-to-N pattern,

which would cause a performance catastrophe if each node exchanges a considerable

amount of data. To overcome this challenge, the proposed model precludes the inter-

node interference at the file level, by only allowing message exchange across nodes.

In other words, the system is designed around a single indexing module deployed

16

on each node, where each index module is responsible only for the local files found

on the respective node. Therefore, FusionDex expects many small-size messages to

build up the global state. The rationale is that modern network hardware is usually

throttled by bandwidth rather than latency, making FusionDex’s small messages an

ideal solution that does not pose much pressure on the systems.

2.2 Architecture

FusionDex is designed with a share-nothing policy in mind. Such systems

do not require coordinators, instead they operate by relying on direct collaboration

between the nodes. FusionDex is designed to work with a share-nothing distributed

file system such as HDFS [23] or FusionFS [25], both of which store information in

the form of files. Importantly, files are stored in their entirety on an individual node,

that is, they are not split into blocks or chunks across nodes.

The general architecture of FusionDex is illustrated in Figure 2.1. Each com-

pute node holds its own local storage comprised of local files and the associated index.

In addition, each node is deployed with a daemon service, namely query server (Q

Server), and a client process (Q Client). The Q Server is responsible for the indexing

of local data and performing local search. Where a search operation is triggered by

any of the clients. The Q Client handles query execution, distributing it to other

nodes and finally assembling a response. Query clients provide an interface through

which users or applications can submit queries to FusionDex.

It should be noted that a query server does not necessarily receive requests

from the local query client: any client can communicate with any server in the cluster

in a N-to-N communication pattern. Figure 2.2 shows the communication pattern of

a scenario in which a user sends a query to a Q Client. The Q Client then distributes

that query operation to all Q Servers. FusionDex implements a custom communica-

17

Figure 2.1. An architectural view of FusionDex deployed to a share-nothing cluster.

tion protocol that leverages the programming interfaces provided by FusionFS. This

flexibility permits FusionDex to attain high performance through the seamless in-

terconnection between the indexing service and the distributed file system, but also

between the client and the server modules.

Figure 2.2. A scenario in which a user sends a query to a Q Client, that distributes
the operation to all Q Servers.

2.2.1 Building Blocks. FusionDex leverages CLucene to enable efficient index-

ing and high performance search performance. It also leverages FusionFS’s highly

optimized communication model to share data between nodes.

18

2.2.1.1 CLucene: local indexing. As we can see in Figure 2.1, from a single

node’s perspective all files are only indexed locally. While many popular indexing

tools exist, we chose an open-source implementation as the local indexing module:

CLucene [27]. CLucene is the C++ port of the popular and open source Apache

Lucene [31]—a high-performance full-text search engine library, implemented in Java.

CLucene is not as mature as Apache Lucene, but offers advantages including increased

performance and implicit compatibility with the FusionFS distributed file system,

that is written in C++.

2.2.1.2 FDT: inter-node communication. In order to satisfy the design goals

of the proposed solution, FusionFS has been extended to enable inter-node queries

over the indexes and efficient communication between indexes. FusionFS has its own

inter-node data transfer service, called Fusion Data Transfer (FDT), that migrates

data chunks in the context of POSIX system calls. The flexibility of the FusionFS

system allowed the easy integration of a new set of operation types to the FDT layer,

such that an N-to-N index query is routed properly throughout the node topology

and such that the results are routed correctly back to the specific index node query

server.

2.2.2 Index Creation, Removal, and Update. Since files are distributed among

the FusionFS nodes, each node maintains the index of the files that reside on it. This

is possible because FusionFS is designed to allow applications to carry out local reads

and writes to files using a scratch location. FusionFS manages a global namespace

for file paths, translating the absolute path of each file into a relative path on that

node. FusionDex’s CLucene index uses the translated paths to crawl local data and

build the index for each file locally.

When a file is modified the index needs to be updated, in order to reflect the

change. FusionDex relies on FusionFS’s APIs to listen for notifications when files are

19

modified. In FusionDex, an index update message is issued only when a file is closed,

after the processing of the file has finished. Thus, opening or reading a file will not

trigger an index update. This is possible as FusionFS tracks whether or not a file is

modified. FusionDex uses the CLucene update function which automatically deletes

the document from the index and re-adds a new version.

File de-indexing, or the process of index removal, occurs in two cases: when

a file is removed from the distributed file system or when a file is moved from one

node to another (usually in the case of remote writing). In either case the following

de-indexing procedure is applied. FusionDex relies on FusionFS’s management of the

removal process. When a file is to be removed, a FusionFS node sends a message to the

node that “owns” that file. FusionDex extends this mechanism to add an additional

message that instructs the node to de-index the file. This message is sent prior to

the original removal message. Therefore, the file is removed from the remote node’s

index first. It is then followed by the removal of the actual file from the distributed

file system. One additional step is needed in the case of file relocation: the file that

would reside in the local node after the relocation process, will be added to the local

node’s index upon the completion of file migration and possibly write operation.

2.2.3 Server Protocols. Figure 2.3 illustrates the architecture of the query

module on the server side. The query server is implemented with a thread pool,

allowing concurrent requests to be satisfied in parallel without blocking. When a

server receives a query request, it immediately queues the request. One of its worker

threads then takes the request from the queue and performs the specific query task.

This task involves a search on the local index. Each worker thread keeps track of the

index location, meaning that worker threads can perform queries in parallel without

interfering with one another. One visible benefit of this approach is that the client

waiting time for the first response is greatly reduced, since the query request is handled

20

in an asynchronous fashion.

Figure 2.3. Protocols of Concurrent Requests on Query Server.

2.2.4 Client Protocols. Figure 2.4 shows the internal organization of the query

module from the client side. The query client provides an interface via which users

(or applications) can submit queries to FusionDex. Each query client maintains a

collection of worker threads. Each query client is aware of the topology and functional

disposition of the members in the cluster, knowing the locations of the nodes where

query servers are deployed. The membership information is initially read from a

configuration file—the same configuration used to define the FusionFS distributed

file system. When a user issues a query via a client, a particular worker thread picks

a server node from the queue, establishes communication with each query server in

the file system, and sends the query to each server. Clients are independent in that

they do not need to concern themselves with the locations of the indexes, thus the

client modules can be deployed to any node as long as the membership information

is available.

21

Figure 2.4. Protocols of Concurrent Requests on Query Client.

2.3 Evaluation

2.3.1 Experiment Setup. The test environment, on which we evaluated Fu-

sionDex, was deployed on Amazon Web Services Elastic Compute Cloud (EC2). In

order to better investigate scalability and performance under realistic scenarios we

configured two clusters with varying hardware. In each experiment we modified the

number of nodes per cluster. The first cluster (C1) was deployed on m3.large in-

stances, each of which was equipped with 2 Intel Xeon E5 vCPUs, 7.5 GB of memory,

and 32 GB SSDs. The second cluster (C2) was deployed on m3.2xlarge instances,

each of which was equipped with 8 Intel Xeon E5 vCPUs, 30 GB of memory, and

160 GB SSDs. The evaluation process included: a performance comparison between

FusionDex, Linux grep and Hadoop grep on the relatively lower-end cluster C1, and a

more in depth analysis, comparing FusionDex and Cloudera Search, on the higher-end

cluster C2.

In the absence of data from a production distributed file system we developed a

test dataset derived from the the Wikipedia dataset [32]. The test dataset was roughly

10 TB in size and it was split into 64 MB files, that were evenly distributed across

the nodes provisioned for each experiment. The evaluation process encompassed the

issuing of 1,000 queries over these files. The queries were expressed as simple searches

of a single keyword picked from a pool of the most popular nouns and verbs found

22

in the test dataset (i.e: surprise, running, conduct, pale, allow, spent, plan, winter,

middle, degree. Experiments were carried out in an incremental manner with respect

to the number of nodes, the upper limit was 64 nodes.

2.3.2 Baseline Performance. Baseline performance evaluation of FusionDex is

conducted on a single node.

2.3.2.1 Index and write throughput. The raw indexing throughput and file

write throughput are shown in Figure 2.5 for increasing data size. The write through-

put is calculated as the size of the file, that can be pushed to FusionFS, per second,

with indexing enabled. The index throughput is computed as the amount of data

that can be indexed in FusionFS, per second. The figure illustrates that FusionDex

can achieve a write throughput of approximately 100 MB/s and an index throughput

of approximately 1 MB/s irrespective of data size.

Figure 2.5. Indexing and write throughput on single node

2.3.2.2 Search latency. The search latency is determined as the time it takes

for the server to respond to a search request sent from a client. Figure 2.6 shows

the search latency, with and without caching. Intuitively, the expectation is that as

the file size increases the search latency also increases. However, these experiments

showed that even with data sizes of 100 MB, search latency barely exceeds 0.3 seconds.

In order to further reduce latency, we enabled caching (this is useful in the cases when

23

data is not frequently updated), and found that the latency could be further improved

by an order of magnitude.

Figure 2.6. Search latency on single node

2.3.2.3 Search throughput. Search throughput is calculated as the number

of concurrent clients that the server can respond to per second. In carrying out

this evaluation the data size was kept constant, at the arbitrary value of 1 GB. The

number of clients that concurrently queried the server was increased by modifying

the client configuration files. In this evaluation the number of worker threads on the

server that handle incoming requests was also varied to match the number of clients.

Figure 2.7 shows that the search throughput is poor when caching is disabled. This

was expected since the search did not cache previous requests. On the other hand,

when caching was enabled the throughput showed substantial improvement, as the

number of clients increased.

2.3.3 Comparison to State-of-the-art Systems. In this section we compare Fu-

sionDex to several systems that provide search capabilities on distributed file systems.

More precisely, we explore the ability of these systems to scale to large distributed

systems: from 4 to 64 nodes. We compared FusionDex with state-of-the-art solutions

for querying distributed systems: Linux grep, Hadoop grep, and Cloudera Search.

Linux grep searches input files line by line, identifying matches to a given

24

Figure 2.7. Search throughput on single node

pattern list. When it finds a match in a line, it copies the line to standard output

(by default), or returns a user-specified format as described by the given parameters.

Hadoop grep [23] works differently from the default Linux grep, in that it

does not display the complete matching line but only the matching string. Hadoop

grep runs two MapReduce jobs in sequence. The first job counts how many times

a matching string occurred in a given file and the second job sorts those matching

strings by their frequency and stores the output in a single output file.

Cloudera Search relies on MapReduce jobs to batch index documents. Cloud-

era Search uses the MapReduceIndexerTool [29], a MapReduce batch job driver that

takes a configuration file and creates a set of Solr index shards from a set of input file.

It then writes the indexes into HDFS in a flexible, scalable, and fault-tolerant manner.

The indexer creates an offline index on HDFS in the output directory. Solr merges

the resulting offline index into a live running service. The MapReduceIndexerTool

does not operate on HDFS blocks as input splits, which means that when indexing

a smaller number of large files, fewer nodes may be involved. Searches in Cloudera

Search are conducted using the Apache Solr REST interface.

25

2.3.3.1 Indexing Throughput. Figure 2.8 shows the indexing throughput of

FusionDex and Cloudera Search with an increasing number of nodes. The figure

shows that FusionDex outperforms Cloudera Search except in a small cluster with

4 nodes. The reason for this behavior is due to FusionDex’s indexing model, as

compared to Cloudera’s indexing batch tool. More precisely, when one file is indexed

in FusionFS, the index is locked such that other files must wait. These locks have

consequences especially when indexing a large number of files under extremely short

time frames as in this case. Cloudera Search also implements index locking, however,

rather than lock for individual files it instead locks once for the entire batch. Of

course, this behavior also means that indexed documents are more quickly queryable

in FusionDex than Cloudera Search. Nevertheless, as we increase the number of nodes

FusionDex performs much better than Cloudera Search by a factor of at least 2.5.

This is due to the decentralized approach employed by FusionDex, as the distributed

indexing process amongst multiple nodes amortizes FusionDex’s overhead. That is

not the case with Cloudera Search, and therefore its indexing throughput does not

increase significantly with the number of nodes.

Figure 2.8. Indexing throughput on multiple nodes

26

2.3.3.2 Search Latency. Figure 2.9 shows the search latency for Hadoop Grep,

FusionFS Search and Cloudera Search on cluster configurations of 4, 16 and 64 nodes.

The figure shows that Hadoop grep has the worst performance of all search applica-

tions considered. This is because Hadoop Grep counts how many times a matching

string occurs and then sorts the matching strings. Cloudera Search and FusionDex

outperform Hadoop Grep by several orders of magnitude. Cloudera Search with and

without caching performs similarly for all cluster sizes with a difference of only 12

ms between all results. FusionDex performs significantly better than all other search

applications, more than twice as fast as Cloudera Search for all configurations when

using caching. Again, the improved performance of FusionDex is due to its ability to

distribute queries and perform operations in parallel.

Figure 2.9. Search latency on multiple nodes

2.4 Conclusion

The advent of Big Data has resulted in a shift in paradigms and new ways

of thinking about managing large quantities of data that are produced at high ve-

locity. There are many solutions and research initiatives for optimizing distributed

storage and data processing. However, in the context of data indexing and querying

27

in distributed systems there remain significant challenges with respect to efficiency,

especially when unstructured data is increasingly common. In this work, we pro-

posed FusionDex [22], a distributed indexing and query scheme for unstructured data

dispersed over distributed file system. FusionDex uses CLucene, which is a C++

port of the popular Apache Lucene, as the building block for the indexing engine,

and FusionFS’s data transfer services for inter-node communication. Investigation of

FusionDex’s performance showed high performance gains in comparison with state-

of-the-art approaches, such as Hadoop grep and Cloudera Search. While FusionDex

achieved significant performance gains in terms of latency, the proposed solution

hinted towards indexing becoming a potential bottleneck for increasing data vol-

umes. Using CLucene, FusionDex achieved an indexing throughput of only 2MB/sec

per node, slower by about 2 orders of magnitude below the theoretical capabilities of

the hardware used. Since we discovered indexing performance to be orders of magni-

tude slower than theoretical speeds we could achieve in raw storage input and output,

we sought to investigate a new clean-slate design for high-performance indexing.

28

CHAPTER 3

SCALABLE AND CONCURRENT DATA INDEXING AND SEARCHING IN
HIGH-END COMPUTING SYSTEM

In the previous chapter we explored the prospect of using CLucene, an existing

information retrieval library and building blocks, to enable and integrate search in

a high-performance distributed file system. We proposed, built and evaluated the

FusionDex system, a distributed indexing and query model for unstructured data,

and we found indexing performance to be orders of magnitude slower than theoretical

speeds we could achieve in raw storage input and output.

In order to address the problem of slow indexing performance, we sought to

investigate a new clean-slate design for high-performance indexing and search and

proposed the SCANNS indexing framework 2. SCANNS is an indexing library that is

designed to be deployed on single-node high-end systems, characterized by many-cores

architectures, multiple NUMA nodes and multiple PCIe NVMe devices. SCANNS is

designed to be used as a building block for building high-performance index-based

search engines. SCANNS redesigns and exposes the indexing pipeline, in such a

way that it can exploit modern hardware capabilities and can allow users to tune

certain aspects of the pipeline, in order to saturate available compute, memory, and/or

storage resources. In this work we present the SCANNS framework and the many

optimizations and techniques we applied to improve the performance of the overall

framework, and of each pipeline component. We also present practical insights related

to constructing indexes and tuning indexing performance that can be overlooked

when building index-based search engines, such as the importance of the design of

additional data structures required for the inverted index even when building on a

fast search data structure. We perform an experimental evaluation of the framework

2The content of this chapter is gathered from published research [33]

29

and it’s components, and we show that it can achieve magnitudes higher indexing and

search performance when compared to Apache Lucene, a state-of-the-art information

retrieval library.

The contributions of this work are as follows:

• Design and implementation of SCANNS, an tune-able indexing framework that

can exploit the properties of modern high-performance computing systems;

• Tune-able modularized architecture that allows the saturation of storage, mem-

ory and compute resources;

• Evaluation on machines with up to 192-cores, 768GiB of RAM, 8 NUMA nodes,

and up to 16 NVMe drives, and delivering 19x higher indexing throughput and

280X lower search latency;

3.1 Framework Architecture and Design

This section presents the SCANNS architecture, covering a general overview

of the framework and its underlying components, and detailed description of the

techniques and optimizations used to improve indexing performance.

3.1.1 SCANNS Goals. The primary goal of SCANNS is to support efficient

indexing of data in high-end computing systems. With that in mind, SCANNS was

designed to efficiently leverage systems that have many cores, multiple NUMA nodes,

and multiple NVMe devices, by exploiting the inherent properties of such systems in

order to saturate their compute, memory and/or storage resources. The secondary

goal of SCANNS is to be versatile enough so that it can accommodate different data

sources and formats, and various information retrieval models, thus the framework

is designed as a search engine library, that can be used to implement specific search

engine applications.

30

3.1.2 SCANNS Overview. In order to satisfy the goals of SCANNS, we studied

the general process of performing indexing on high-end systems, and identified three

key sub-processes. For each of sub-process we designed a component that focuses on a

specific system resource and a precise part of the indexing process. When combined,

these components form a complete indexing engine. A diagram of these components

and how they are connected structurally and functionally can be seen in Figure 3.1.

The three components are: the ReaderDriver, which is responsible for reading raw

data from a storage system and is typically IO-intensive; the Tokenizer, which is

responsible for parsing and tokenizing the raw data into units of data that are useful

for a specific information retrieval model and is usually compute-intensive; and the

Indexer, which is responsible for computing and storing the index from the units of

data. All three components are designed as independent functions, that can be run

by one or more threads, exclusively or shared, giving the the user option to fine tune

the number of threads and the number of components according to the amount of

compute, memory, and storage resources available.

Figure 3.1. SCANNS framework indexing architecture and pipeline.

31

This framework implements a TFIDF search engine over a collection of files

stored on multiple PCIe NVMe devices and is optimized to achieve high indexing

speeds in the scenario where the index does not already exist and it is being built

for the first time. In this work we assume that the input dataset will not change

while the index is being built and the framework is designed to support fixed-term,

extended boolean search.

3.1.3 Indexing Engine Execution. In terms of execution, SCANNS uses mul-

tiple threads to parallelize the execution of the indexing process by data but also by

function. The framework uses two kinds of threads, as seen in Figure 3.1: read threads

and index threads. Read threads are responsible for reading raw blocks of data from

the file system(s) and for passing these blocks to the index threads, and they run

local ReaderDriver instances. Index threads receive raw blocks of data from the read

threads and process the blocks of data in order to build the local index, by running

local pairs of the Tokenizer and Indexer components. Index threads implement the

observer design pattern, where the Tokenzier is the subject and the Indexer is the

observer, and makes use of the internals and interfaces of the Indexer component

to store the local indexes in memory. The number of read and index threads are

manually configured at the beginning of the execution of the indexing framework and

remain static until the index is complete. The number of index threads needs to be a

multiple of read threads and the read threads will communicate to the same specific

group of index threads for the entire of the indexing process.

The read threads communicate and share blocks of data with the index threads

through a set of specialized queues, that we called DualQueues. The DualQueue is a

simple implementation of a thread-safe synchronized queue that follows the memory

pool design pattern to recycle the blocks of data that are being pushed and popped

to and from the queue. Figure 3.2 shows that, in terms of design, the DualQueue is

32

implemented with two synchronized queues, one for the blocks that are empty and

do not have any data, and one for the blocks that are full and have data read into

them. The queues use mutexes and conditional variables to achieve synchronization

and to relieve the system from unnecessary polling when either of the queues is full

or empty. The read and index threads act as producers and consumers, respectively,

and are responsible with popping, pushing and processing blocks of data.

Figure 3.2. SCANNS DualQueue design.

3.1.4 ReaderDriver. The ReaderDriver is the SCANNS component responsible

for ingesting raw data from the storage subsystem to main memory as fast as possible.

In our case the ReaderDriver is designed to read blocks of data from a POSIX file

systems as fast as possible and bring it to main memory so that it can be processed

by the other components of the framework. This component is typically bound by

the capabilities of the storage subsystem, but that is not always the case, especially

in the case of many PCIe NVMe storage devices present in the system. We observed,

in practice, that a standard approach to implementing this functionality, where each

block of data read is allocated dynamically at runtime and deallocated when not

needed, leads to suboptimal performance, in terms of how many blocks can be brought

in main memory per second. Thus the first optimization that we propose avoids

the overhead of allocating and deallocating each block of data through the use of

the memory pool design pattern. Basically, since we know that the blocks will be

discarded after they are processed by the framework, we allocate a certain number of

blocks at the beginning of the program and we reuse them when they get discarded.

33

This optimization is built in tandem with the DualQueue, having the ReaderDriver

generate, manage and push the blocks to the queue at the beginning of the program.

In a setup where a machine has many PCIe NVMe devices we observed that

sometimes the memory subsystem of the OS that manages the file system caches and

buffers can become a performance bottleneck. Since the data that is read from the

input files by the indexing engine is being re-organized, it is not actually required to

be stored in the index. Thus the second optimization that we proposed was to bypass

the OS file system caches and buffers and tell the OS to bring the blocks of data from

the disk directly into ReaderDriver buffer space. This optimization, in conjunction

with enough multi-threading, allows the ReaderDriver to saturate available NVMe

disks in terms of number of blocks read per second.

So far the described ReaderDriver was optimized to read fixed-size blocks of

data from the file system as fast as possible, but in practice this approach can be

problematic. The fixed-size approach can end up breaking tokens in halves, which

need to be addressed and recombined in order to implement a correct indexing engine.

To solve this issue, we proposed the WaveReaderDriver, which uses a small addon

block to read additional data from disk and computes how long the blocks needs to

be so that it does not break tokens in halves. The WaveReaderDriver exposes an

idempotent method for reading blocks of data from a file, that returns a variable-size

block and retains the memory pool design pattern and OS cache and buffer bypass

optimizations. We solved this issue in the ReaderDriver, because we observed that it

is the fastest component and had enough computing resources to spare.

3.1.5 Tokenizer. The second component in the SCANNS indexing pipeline is

the Tokenizer. This component is responsible for reading the raw data passed from a

ReaderDriver and transforming the raw data into smaller units of data that can be

subsequently used by the Indexer. In the context of this work, the Tokenizer pops

34

a variable-size block of data from a DualQueue and extracts tokens from the block,

that are separated by some delimiter. Basically this component implements a split

function, that splits a string into a list of tokens (i.e. substrings that are separated

by a list of characters that act as delimiters). The process behind the Tokenizer

is typically compute-intensive, reading the input string and extracting the tokens

sequentially.

While this component can be implemented in a standard way in C through

the use of the strtok() function, we observed that the performance of the standard

approach is very low when compared to how fast the ReaderDriver can read data

from disk. In order to improve the Tokenizer’s performance, we proposed a re-

implementation of the split function, where we replaced the call to strtok() with

an approach that uses branchless programming. Figures 3.3 and 3.4, show the con-

ceptual difference between the standard and the optimized Tokenizers.

Figure 3.3. SCANNS Standard Tokenizer.

We replaced the for loop and the if-block, that strtok() used to iterate over

the list of delimiters to find out if a byte in the input buffer is a delimiter or not,

with an O(1) lookup in a hash table of delimiters. For each character the delimiter

hash table returns zero if the character is a delimiter and zero negated otherwise.

We then replaced the portion of the code where strtok() runs an if-block to check if

35

Figure 3.4. SCANNS Optimized Branchless Tokenizer.

it has reached the end of a token and returns the token address when true, with C

ternary operations that implement the same functionality. The ternary operations get

in turn generated into conditional assembly instructions that do not cause branches

or jumps. This optimization removes the overhead of branch misses, that are caused

by the CPU branch predictor and the unstructured nature of the input data, allowing

the Tokenizer to catch up the ReaderDriver, in terms of performance.

3.1.6 Indexer. The Indexer is the third and last component of the SCANNS

framework and is responsible with taking the tokens/terms, extracted by the Token-

zier, and with re-organizing them into a TFIDF inverted index, that is stored in main

memory. Figure 3.5 shows the design of the inverted index, which is the core of the

Indexer.

For this work we picked hash tables as the search data structure to be incorpo-

rated in the inverted index, due to their increased performance and their potential to

be distributed across computers. The SCANNS inverted index does not depend on a

specific implementation of a hash table and supports pluggable hash tables, in order

to allow the user to use any hash table with any hash function that is appropriate for

their dataset. In SCANNS we used two hash tables: the C++ unordered map, for

the standard hash table, and the Google Swiss Table [34], for the efficient hash table;

and we show that while the search data structure is important, poor inverted index

36

data structure design can lead to reduced performance.

The design in Figure 3.5 shows the additional data structures used to im-

plement the TFIDF inverted index: IDFIndexEntry and TFIndexEntry. Both data

structures are implemented as linked lists and each instance stores a pointer to the

next element in the list. The hash table stores in each of its buckets a list of IDFIndex-

Entries, and each IDFIndexEntry keeps track of the token associated with the entry,

the number of files that contain the term, a head and a tail to the TFIndexEntry

linked list. The TFIndexEntry stores the index associated with a file, the frequency

of a term in that file and a pointer to the next TFIndexEntry. During indexing, the

Indexer will perform lookups in the hash table and create new IDFIndexEntries or

TFIndexEntries if they don’t exist and will update the frequency information for each

term-file pair. Since SCANNS is aimed at building the index from scratch for the first

time, we instructed the framework to pass the data blocks to the Indexers such that a

block only belongs to the same file that is being processed or a new file, but never to

a previously processed file. This high-level data flow optimization, allows the Indexer

to avoid additional searches over the list of TFIndexEntries, performing either an

update or an append operation on the tail TFIndexEntry of a IDFIndexEntry, and

thus providing a boost in performance.

But even with this minimalist design and the proposed high-level optimization

on how file blocks are passed to the Indexer, the inverted index yielded poor scalability

with increasing number of cores. After further investigations we identified two main

causes: (1) the standard memory allocator wasn’t scaling to the number of small

IDFIndexEntry and TFIndexEntry objects that were being created and (2) there

were still too many CPU cache misses, caused by the hash table lookup and the

indirection from the inverted index data structures.

To address the problem of memory allocation we proposed the implementation

37

Figure 3.5. SCANNS Inverted Index Design.

of a monotonic paged sub-allocator for the index data structures. The sub-allocator

allocates large pages of memory and then creates the required inverted index objects

from those pages in user-space, at faster speeds than when allocating memory and

calling a system call for each object individually.

To deal with the second issue, we introduce an AppendCache to the IDFInd-

exEntry that minimizes the number of memory indirections to the TFIndexEntry list

tail during term frequency updates. The AppendCache is part of the IDFIndexEntry,

thus whenever the IDFIndexEntry is being accessed the AppendCache is brought in

the CPU cache as well, subsequently improving indexing performance. The cache is

flushed when a block from a new file is processed. The last optimization scales well

with datasets where terms appear frequently, and with the page sub-allocator and

enough compute cores, the Indexer can achieve higher performance than state-of-the-

art indexing solutions.

3.1.7 Global optimizations. The SCANNS framework also incorporates in its

design optimizations that are global in nature and do not belong specifically to only

one component. These optimizations deal with reducing the overheads of inter-NUMA

communication, the page-fault subsystem of the OS and the tuning of the file block

38

sizes and sub-allocator page sizes. The first optimization is applied over the ensemble

of DualQueues, read and index threads, making sure that the threads are grouped by

NUMA node and that the memory allocated and accessed by each component also

resides in the same NUMA node. This is achieved through the use of the libnuma

library, that allows users to set NUMA affinities and memory policies to programs.

The second global optimization is the use of huge pages for the monotonic

sub-allocator and for any buffers. With huge pages, the application can relived the

OS from having to handle many page faults, implicitly improving the performance

of any memory-intensive application, including the Indexer component. And the

last set of optimization relate to the tuning of ReaderDriver block sizes and Indexer

sub-allocator page sizes, in order to further improve performance. The SCANNS

framework exposes these parameters to the users, allowing them to better tune the

indexing engine accordingly to the underlying hardware. All of the experimental

results have a certain degree of manual tuning performed.

3.2 Performance Evaluation

In this section, we present the performance evaluation of the SCANNS frame-

work and its constituting components. We include, in the discussion, details about

the experimental setup, the used dataset and the SCANNS components variants.

3.2.1 Experimental Setup. The experimental setup is comprised of three single-

node high-end systems deployed on Mystic, an NSF-funded testbed designed to study

system re-configurability. The three systems differ in many aspects, but for this

work the most important differences are the number of cores and the number of

storage devices available on each machine. The number of cores are a reflection

of computational power, while the storage devices showcase varied IO capabilities.

Table 3.1 presents hardware details for each system. The three systems allow us to

39

evaluate SCANNS under different environments: (a) a machine with many cores, 8

NUMA nodes, but few disks (64cores-1disk), (b) a machine with few cores, 2 NUMA

nodes, but many disks (32cores-16disks), and (c) a machine with many cores, 8

NUMA nodes, and many disks (192cores-16disks).

Table 3.1. Mystic Cloud machines used for the experimental evaluation and their
specifications.

machine name processors cores memory nvme storage

(a) 64cores-1disk 2 x AMD EPYC 7501 64 128GiB 1 x Intel Optane 900P

(b) 32cores-16disks 2 x Intel Xeon Gold 6130 32 192GiB 16 x Samsung 970 EVO

(c) 192cores-16disks 8 x Intel Xeon Platinum 8160 192 768GiB 16 x Intel Optane 900P

We configured the hardware and the OS to use performance governors and

turbo-boost for all CPUs, and all of the storage devices used during experiments

were PCIe NVMe SSDs, that were accessed exclusively, in order to eliminate any

interference caused by other running applications. For systems that have only one

disk we configured XFS directly on the device, while for systems that had more

than one disk, we grouped the disks by NUMA nodes, and configured Linux software

RAID0 arrays with XFS for each group.

In terms of software, 64cores-1disk and 32cores-16disks ran Ubuntu 18.04

LTS with Linux Kernel 4.15 and g++-8.4, while 192cores-16disks ran Ubuntu 20.04

LTS with Linux Kernel 5.4 and g++-10.3. For Google SwissTable we used version

20210324.2 from the abseil library. SCANNS is implemented in C++17 and we use

openjdk-11 to run Apache Lucene.

The datasets used throughout the experimental evaluation were generated

from a file system dump provided by NERSC. The file system dump is a snapshot

of the file system metadata of the NERSC storage system, that was stored in one

single 240GB file with each line of the file containing a full file path and all POSIX

metadata information (size, timestamps, owners, permissions, inode etc) separated

40

by space. We cleaned and split the 240GB file system dump file into smaller files of

approximately and up to 32MiB in size. The ReaderDriver and Tokenizer evalution

was done over a collection of small file system dump files of 6144 files (192GiB), while

the TFIDF End-to-End indexing and search evaluation was conducted on a collection

of 1536 files (48GiB). We picked the file system dump dataset because it represents

a real dataset and it has interesting properties: most of the space or slash separated

terms found in the file system dump are alphanumerical and numerical and only a

few have only letters in their composition. This means that classical free-text stem-

ming techniques cannot work with this dataset, which increases difficulty of building

indexes by having many unique terms.

3.2.2 Component Variants. For each of the SCANNS framework components we

implemented multiple variants to show performance improvements of each optimiza-

tion and technique used. For the ReaderDriver we experimented with the following

variants:

• xs-rd-std - (the baseline) reads fixed-size blocks of data without optimizations;

• xs-rd-nonuma - uses the memory pool design pattern and the OS cache and

buffer bypass optimizations;

• xs-rd-numa - similar to xs-rd-nonuma, plus NUMA-aware thread scheduling and

memory allocation;

• xs-rd-wave - similar to xs-rd-numa, but implements the WaveReaderDriver that

reads variable-size blocks of data;

For the Tokenizer evaluation, the implementation used the WaveReaderDriver

to read and pass blocks of data to the Tokenizer. Instead of index threads, we called

the the threads that ran the Tokenizers tokenize threads. These are the Tokenizer

41

variants that we experimented with:

• xs-rdtokstd-nonuma - implementation using strtok();

• xs-rdtokstd-numa - similar to xs-rdtokstd-nonuma, plus NUMA-aware thread

scheduling and memory allocation;

• xs-rdtok-nonuma - implementation that uses branchless programming and the

delimiter hash table optimizations;

• xs-rdtok-numa - similar to xs-rdtok-nonuma, plus NUMA-aware thread schedul-

ing and memory allocation;

The TFIDF End-to-End indexing and search evaluation is performed on vari-

ants that include both the WaveReaderDriver and the Tokenizer in their runtime.

We compare the SCANNS variants between themselves but also to an indexing and

search application implemented using the Apache Lucene information retrieval li-

brary. We used ClassicSimilarity and the WhiteSpaceAnalyzer to tell the Lucene

variant to perform the same kind of indexing and search that SCANNS implements,

namely TFIDF. We further tuned the Lucene variant by setting the JVM available

and start memory to the maximum available on the system, we enabled server mode

and parallel garbage collector, and we tuned Lucene itself to use 1GiB buffers and

two merge threads per index thread. In the Lucene variant, similar to the SCANNS

variant, each index thread builds a local index and there is no communication be-

tween the index threads. Here all of the variants that we experimented with during

the TFIDF End-to-End indexing and search:

• xs-rdtokidx-std - implementation using C++ unordered map and without any

kind of optimizations;

42

• xs-rdtokidx-swiss - implementation using Google Swiss Table and without any

kind of optimizations;

• apache-lucene - uses Apache Lucene;

• xs-rdtokidx-std-pa - similar to xs-rdtokidx-std, plus monotonic paged sub-allocator,

append cache optimization, NUMA-aware affinity and huge pages;

• xs-rdtokidx-swiss-pa - similar to xs-rdtokidx-swiss, plus monotonic paged sub-

allocator, append cache optimization, NUMA-aware affinity and huge pages;

3.2.3 ReaderDriver. Figure 3.6 shows the performance the ReaderDriver variants,

measured in MiB/sec with increasing number of read threads, when running on a

system that has only one NVMe device installed but many compute cores. Here we

can see that all variants are able to saturate the single Samsung 970 EVO NVMe

device (2.5 GiB/sec) with a sufficient number of read threads.

Figure 3.6. ReaderDriver throughput with increasing number of read threads on
64cores-1disk.

In Figure 3.7 we see a different picture. The baseline ReaderDriver seems to

cap at approximately 7.5 GiB/sec, while the optimized versions reach close to the

43

theoretical limit, which is 56 GiB/sec for 16 Samsung 970 EVO NVMe SSDs (3.5

GiB/sec theoretical throughput per device), assuming linear scalability. The Wa-

veReaderDriver’s throughput caps at 40 GiB/sec, and after investigation we realized

that this is caused by the fact that these SSDs have a 4GiB internal fast cache. The

internal fast cache guarantees the advertised throughput as long as the data does not

exceed the cache size, but in our case the data set size split across 16 devices does

exceed the cache size, which causes the throughput to fluctuate. We consider this to

be acceptable since the Tokenizer and the Indexer typically exhibit lower performance

than the WaveReaderDriver.

Figure 3.7. ReaderDriver throughput with increasing number of read threads on
32cores-16disks.

Figure 3.8 shows the performance of the ReaderDriver variants on a system

with many cores and multiple NVMe devices. The most interesting result in this

configuration is the importance of NUMA-aware configurations. We can see an im-

provement of 20% between the variant that uses NUMA aware thread scheduling and

memory allocation versus the one that does not. The WaveReaderDriver achieves

approximately 35 GiB/sec which is close to the theoretical 40 GiB/sec that 16 Intel

Optane 900P devices can achieve.

44

Figure 3.8. ReaderDriver throughput with increasing number of read threads on
192cores-16disks.

3.2.4 Tokenizer. Figure 3.9 shows the performance, measured in MiB/sec with

increasing number of read and tokenize threads, for all of the 4 variants, running on

the system that has only one NVMe disk. We can see that all of the variants manage

to reach the disk limit in terms of performance after 8 read threads plus 8 tokenize

threads (for a total of 16 threads), but we can see that the optimized version is able

to reach that limit faster than the standard versions, with or without NUMA-aware

affinity. In this setup the NUMA-aware affinity have no affect as there is only one

NVMe device.

Figure 3.10 shows performance on a system that has many NVMe devices but

not many cores. Here we can see a significant difference in performance between the

optimized and standard Tokenizer versions. Throughout all of the number of thread

configurations, we can see that the optimized Tokenizer achieves performance that is

roughly twice as fast as the standard version, reaching approximately 18.8 GiB/sec

throughput with 32 read threads and 32 tokenize threads. In this setup the NUMA-

aware configuration only makes a difference when we saturate the hardware threads of

the machine, but the difference is slight, increasing the performance of the optimized

45

Figure 3.9. ReaderDriver and Tokenizer throughput with increasing number of read
and tokenize threads on 64cores-1disk.

version from 16.9 GiB/sec to 18.8 GiB/sec.

Figure 3.10. ReaderDriver and Tokenizer throughput with increasing number of read
and tokenize threads on 32cores-16disks.

Figure 3.11 shows performance with many cores and multiple NVMe devices

and here we can clearly see the difference between all variants and thus between

all optimizations. Between the versions that do not use any kind of NUMA-aware

affinity, we can see that the optimized Tokenizer achieves better performance than the

46

standard version capping up at around 20 GiB/sec, but both versions seem to start

losing performance when the number of read plus tokenize threads exceeds 96. As for

when the Tokenizer also uses NUMA-aware affinity, we can see that both optimized

and standard Tokenizers reach the disk limit and flatten out at a throughput of

approximately 34 GiB/sec. While both of these versions reach the disk cap, we can

clearly see that the optimized version reaches the cap faster and if the disk wouldn’t

be a limit it would probably still maintain the 2x advantage over the standard variant.

We consider these results satisfactory, since we observed that the slowest component

is the Indexer, that cannot reach the Tokenizer or ReaderDriver in performance.

Figure 3.11. ReaderDriver and Tokenizer throughput with increasing number of read
and tokenize threads on 192cores-16disks.

3.2.5 End-to-end TF-IDF indexing and search. Figure 3.12 shows the per-

formance, measured in MiB/sec of End-to-End indexing with increasing number of

read and index threads, for all variants. Each index thread is paired with a read

thread, with the exception of the Lucene variant that two merge threads with each

index thread instead. We can see that, for a system that has only one NVMe disk,

solutions that do not use any kind of memory optimizations seem to reach a low per-

formance threshold, at about 400 MiB/sec for the Lucene variant, 450 MiB/sec for the

47

Swiss Table implementation and 275 MiB/sec for the standard implementation. When

using all of the memory optimizations, since the Indexer is more memory-intensive

rather than compute-intensive, combined with the NUMA-aware tuning and huge-

pages we can see that both the standard and the Swiss Table implementations can

surpass the low performance threshold. The standard implementation reaches up to

815 MiB/sec with 32 index and 32 read threads, while the Swiss table reaches 2255

MiB/sec. These results show that in order to achieve high indexing performance, the

inverted index needs a fast search data structure but also an efficient inverted index

design.

Figure 3.12. End-to-end TF-IDF indexing throughput with increasing number of read
and index threads on 64cores-1disk.

When looking at a system that has multiple NVMe devices but not that many

cores, as depicted in Figure 3.13, we see a similar trend. The un-optimized solu-

tions, including the Apache Lucene variant, due the fact that they do not exploit the

memory hierarchy properties of these systems, cannot achieve very high performance

and cap out at 366 MiB/sec for Apache Lucene, 628 MiB/sec for the Swiss Table

implementation and 486 MiB/sec for the standard implementation. Only by incorpo-

rating the memory and NUMA-aware affinity can the standard implementation reach

48

1185 MiB/sec and the Swiss Table implementation reach 2431 MiB/sec, both with 32

index threads and 32 read threads. This system achieves better performance overall

because there are more memory channels per NUMA node than on 64cores-1disk.

Figure 3.13. End-to-end TF-IDF indexing throughput with increasing number of read
and index threads on 32cores-16disks.

On the system that has many cores and multiple NVMe devices and the most

memory channels per NUMA node, we can see that the SCANNS framework can

reach very high throughput, when the proper optimizations are used. Figure 3.14

captures this performance, and shows that the un-optimized variants reach a similar

performance limit to the previous setups, where the Apache Lucene implementation

caps at 478 MiB/sec, the standard Indexer caps at 443 MiB/sec and the Swiss Table

Indexer caps at 519 MiB/sec. The plot also shows that when using the memory

optimizations to reduce the cache misses and to reduce the number of page faults

while also using NUMA-aware scheduling of threads and allocation of memory, the

standard Indexer can reach a throughput of 964 MiB/sec, with 24 index threads and

24 read threads, while the Swiss Table Indexer can reach a whopping 9425 MiB/sec,

with 192 index threads and 192 read threads. This last result shows that actually

in order to build a high-performance indexing engine on a single node computer, one

49

needs a fast search data structure, such as the Swiss Table, but one also needs to

design the TFIDF inverted index data structures in such a way that they can benefit

from the memory hierarchy.

Figure 3.14. End-to-end TF-IDF indexing throughput with increasing number of read
and index threads on 192cores-16disks.

Table 3.2 presents the average search latency of the SCANNS TFIDF imple-

mentation that uses the Swiss Table as the search data structure and the efficient

design and optimization of the inverted index and compares it against the Lucene

variant, on the three different systems. The SCANNS variant exhibits magnitudes

lower latency, overall under 500 microseconds, when compared to the Lucene vari-

ant that runs search queries on average with latency over 20,000 microseconds. One

important observation to make is that even though both variants return the same re-

sults with the same TFIDF relevance scores, the lucene variant also sorts the results,

while the SCANNS variant does not sort the results. The sorting of the results could

add additional overhead to the SCANNS search operations, but optimizing the query

engine is the subject of future work.

50

Table 3.2. TFIDF End-to-end search latency (microseconds).

cores
64cores-1disk 32cores-16disks 192cores-16disks

scanns lucene scanns lucene scanns lucene

1 237 26143 134 23224 229 20056

2 210 27811 134 23327 233 21747

4 214 30866 142 27952 237 25160

8 180 47981 153 28831 238 29412

16 189 45232 160 36787 248 33601

24 - - - - 269 39004

32 218 51520 173 39524 - -

48 - - - - 296 53666

64 264 65920 - - - -

96 - - - - 360 64651

192 - - - - 476 134061

3.2.6 Random Access Memory Benchmark. The Indexer seems to be the

only component that requires further exploration, as even with all our optimizations

the throughput does not reach 10 GiB/sec, even with 192 cores, 8 NUMA nodes and

16 NVMe devices, when the IO-intensive ReaderDriver and the compute-intensive

Tokenizer components with optimization can achieve throughput in the 30 to 50

GiB/sec. We argue that the reason for such relatively low performance, even in the

presence of optimizations, is the memory-intensive nature of the component and the

implied random access present when building an inverted index. We ran multiple

random access memory benchmarks, where we copied the elements of an input buffer

to an output buffer. Both buffers were pre-allocated in memory and were split into

multiple blocks, and the benchmark distributed the blocks to multiple NUMA-aware

threads that sequentially read the elements in from each input block and wrote them

randomly in an output blocks (see Figure 3.15).

The results that we got for increasing block sizes and increasing number of

threads, run on the 192cores-16disks machine, are depicted in Figure 3.16. It is inter-

esting how much performance degrades when the block size exceeds a certain value,

51

Figure 3.15. Random Access Memory Benchmark Design.

and in the context of re-organizing data when building and inverted index, we argue

that it points to a practical upper bound in performance. An implementation of an

inverted index does multiple random read and write accesses, and even if there were

an implementation that would do a single random access it would not exceed the

throughput measured in this experiment. We use this result to argue that the per-

formance of SCANNS is good, when compared to the upper bound random memory

access, and excellent when compared to existing or un-optimized solutions.

Figure 3.16. Random Access Memory Benchmark.

52

3.3 Conclusion

We introduced and presented the SCANNS indexing framework to address

the problem of efficiently indexing data in high-end systems, characterized by many-

core architectures, with multiple NUMA nodes and multiple PCIe NVMe storage

devices. We designed SCANNS as a single-node framework that can be used as a

building block for implementing high-performance indexed search engines, where the

software architecture of the framework is scalable by design. The indexing pipeline

is exposed and allows easy modification and tuning, enabling SCANNS to saturate

storage, memory and compute resources on different hardware. SCANNS also pro-

vides a clear separation between platform or input specific components and platform

independent components, achieving good versatility.

We showed that a naive approach to reading data from a modern filesystem,

deployed on multi PCIe NVMe SSD storage devices, will lead to drastic performance

degradation (up to 6x) and we presented several techniques (e.g., memory pool design

pattern and direct IO) that can be used to avoid performance loss. We improved the

speed at which the framework can tokenize blocks of data read from disk, by using a

hashtable to replace delimiters in the block in O(1) and branchless programming to

iterate over the bytes in the block without causing branches or jumps. Since the tokens

from the blocks do not have a fixed length, the CPU branch predictor will not be able

to identify a pattern and will cause branch mispredictions. The removal of branches

from the tokenization process removes the associated cost of branch mispredictions

and allows a better use of the CPU pipelines. The branchless tokenizer outperforms

the standard C strtok() function while maintaining similar semantics.

We showed that the main bottleneck in inverted index solutions is not the

process of reading from disk, or even the process of tokenizing blocks of data read

from disk, but the process of re-organizing the data into the form of an inverted index.

53

Building the inverted index inherently exhibits random access read/write patterns

which stress the memory subsystem and ultimately becomes the main bottleneck.

However, we showed that with careful index data structure design, such as minimizing

pointer indirection inside the inverted index data structure that subsequently reduces

the number of cache misses, search engines can still obtain increased performance

close to the upper bound supported by the memory subsystem. Finally, combining

each of these components (ReaderDriver, Tokenizer and Indexer) with the proposed

set of global optimizations (NUMA affinity and huge pages) we showed that SCANNS

can achieve up to 19x better indexing while delivering up to 280x lower search latency

when compared to Apache Lucene, on configurations with up to 192-cores, 768GiB

of RAM, 8 NUMA nodes and up to 16 NVMe drives.

54

CHAPTER 4

SCALABLE AND CONCURRENT PERSISTENT INDEXING AND SEARCH IN
HIGH-END COMPUTING SYSTEMS

In the previous chapter we explored the problem of building in-memory in-

dexes and searching them on single-node high-end computing systems and proposed

SCANNS, an indexing framework and a solution to the problem, that allows the user

to tune various components of the indexing pipeline and thus saturate compute, mem-

ory and storage resources, achieving orders of magnitude higher indexing and search

performance when compared to the state-of-the-art Apache Lucene. We also showed

that the main bottleneck in building inverted indexes is the memory subsystem and

that the design and implementation of the inverted index plays an important role in

the performance of the indexing engine.

In this chapter we explore the problems of efficiently building persistent indexes

that cannot fit in memory and of efficiently processing TFIDF queries over the built

persistent indexes, where the TFIDF scores are computing during query processing

time and where the results are sorted by relevance. We propose SCIPIS, a single node

framework that can be used as a building block for building high-performance index-

based search engines and that expands on the SCANNS framework by redesigning and

further optimizing the indexing and search pipeline and by improving the inverted

index design. In addition to the existing tuning parameters, that allows the user

to adapt the framework to the characteristics of the computing system on which the

framework runs, SCIPIS exposes new tuning parameters, that allows the user to adapt

the structure of the inverted index and the persistent index to the properties of the

input data, allowing SCIPIS to achieve higher indexing throughput when compared

to SCANNS and lower TFIDF query latency when compared to Apache Lucene.

We evaluated the proposed solution over three types of datasets, log files, scientific

papers and data, and supercomputing center file system metadata, and showed that,

55

while the inherent nature of each dataset can affect indexing and search performance,

SCIPIS still exhibits good scalability trends. This work’s contributions are as follows:

• Extension to the SCANNS framework in order to support efficient persistent

indexing and TFIDF search queries;

• Redesign of the indexing and search pipeline, further improvement of the design

of the inverted and the addition of new tuning parameters, that allows the user

to further adapt the structure of the inverted index to the properties of the

input data, in order to achieve high indexing and search performance;

• Evaluation over three kinds of datasets that are commonly found in science

(logs, scientific papers and data, and file system metadata);

4.1 Framework Architecture and Design

This section describes the general architecture and the particularities of the

SCIPIS framework, including details about the the redesigned inverted index structure

but also about the structure of the persistent index as it is stored to disk.

4.1.1 SCIPIS Framework Overview. The SCIPIS framework extends the

SCANNS framework and follows a similar architecture. It reuses the WaveReader-

Driver and BranchlessTokenizer components, as the default components responsible

with reading data from files and tokenizing them as fast as possible, respectively, and

the DualQueue component for communication between components that reside on

different execution threads. It also replaces the Indexer component with two com-

ponents: FilePathIndexer and TFIDFIndexer, that are responsible with indexing the

file path and the file content, respectively. This separation of components allows the

user to finer tune the two aspects of processing indexes but also allows the framework

to separately persiste file path and file content indexes. And lastly, SCIPIS adopts

56

a new component, called the IndexWriter, that is responsible with reading block of

index data and writing them as fast a possible to a corresponding files in a file system.

In terms of optimizations, the SCIPIS framework adopts all of the SCANNS compo-

nents and system optimizations, including: direct IO, memory pool design pattern,

branchless programming and the delimiter hashtable, the append cache mechanism

and monotonic page allocator, NUMA aware affinity and Linux huge pages; and in-

corporates two new optimizations that pertain to the characteristics of the input

dataset: tunable index depth and split factor.

The SCIPIS framework, similarly to the SCANNS framework, can be used to

implement fully functional TFIDF indexing engines, that are optimized for indexing

data from a static dataset. By static dataset, we mean that the input dataset does

not change while the index is being built (no files are added, remove or modified).

The framework can be used to index a changing dataset, but it might end up building

an incorrect or imprecise index. Since the output of the framework is a set of files

that contain the persistent index, the intention is that, in the future, the SCIPIS

framework will support various merge operations that the users could run offline

on existing built indexes. Indexes could be optimzied, merged and updated using

common set operations, such as: union, intersection and difference. In terms of

searching the persistent index, SCIPIS supports now full TFIDF queries, where the

query engine will access the persistent index files, will collect and compute the TFIDF

scores and will merge and sort the results according to the computed TFIDF score,

which will represent the relevance.

4.1.2 Indexing Engine Execution. Figure 4.1 shows the architecture of the

SCIPIS indexing pipeline and the flow of data throughout the indexing framework.

One distinction from the SCANNS framework, is that SCIPIS takes as an input

a collection of input file, processes partial indexes in-memory, and returns as an

57

output another collection of files that contain the re-organized input data, commonly

known as an inverted index. The input data is consumed and transformed by the

SCIPIS framework by various components that are responsible with a certain task

and that target a specific compute resources, and these components are executed by

worker threads that are spawned at the start of the program. In terms of execution

the framework makes use of three types of worker threads: reader threads, indexer

threads and writer threads.

Figure 4.1. SCIPIS framework indexing architecture and pipeline.

Each reader thread manages a WaveReaderDriver component, which is re-

sponsible for reading variable sized blocks of data from the files stored in a file system

as fast as possible and sending them to the indexer threads components through the

DualQueue. The reader threads are IO-intensive and can be over-provisioned, and in

58

addition to to the blocks of data coming for the content of the input files, the reader

threads will also send an additional block containing the full file path to the indexer

threads in order to index the file path alongside the contents of the files.

The indexer threads are responsible with receiving blocks of data from the

reader threads, indexing the data from the blocks and with sending block of index

data to the writer threads to be stored to disk. To accomplish this, each indexer

thread manages a BranchlessTokenizer, a FilePathIndex and a TFIDFIndex compo-

nent, each of them having different roles and using different system resources. The

BranchlessTokenizer is responsible with breaking down a block of data into a list of to-

kens delimited by one or more delimiter characters and is a CPU-intensive component.

The FilePathIndex component is a memory-intensive component and is responsible

with computing a file index from the full file path and storing the index and the full

file path into the inverted index in order to be retrieved during search operations.

The file content, under the form of the list of extracted tokens, is then indexed by the

TFIDFIndex, that is also a memory-intensive component, and that indexes the tokens

and keeps track of the term frequencies and inverse document frequencies necessary

for compting a relevance score. The FilePathIndex and the TFIDFIndex sizes are

determined at program startup and usually reflect the amount of memory available in

the system per thread, but also the ration between full file path size and file content

size. For example, if the input data contains many small files that only contain a

reduced number of tokens, the FilePathIndex should be allocated more memory than

the TFIDFIndex, and vice versa for the converse. Once either the FilePathIndex or

the TFIDFIndex reached or is over 90% of the index capacity, the index in question

will go over a serialization step, in which the index will be organized into blocks of

data that can then be sent to the writer threads to be written. The current imple-

mentation of the serialization of indexes actually only serializes the full file path and

writes the remainder index information in binary format on disk. This means that the

59

index cannot be simply copied from one architecture to another, since the endianess

of the data might be different. But this problem can be simply overcome by using an

efficient serialization library, such as the Google Protocol Buffer in order to standard-

ize the index format on disk. It’s also worth mentioning that during the serialization

step, the indexer components become CPU-intensive, rather than memory-intensive,

because serializing the index implies reading and writing data sequentially from the

inverted index to the block buffer. Thus this actually allows the framework to also

over-provision the indexer threads to the number of hardware-threads and not just

at the number of physical cores, and still yield good performance.

The last type of thread is the writer thread, which manages an instance of

IndexWriter component, that is responsible with receiving index blocks from the

indexer threads through a DualQueue and writing them to the corresponding file

on the file system. The IndexWriter is a IO-intensive component and can be over-

provisioned without majorly impacting the overall performance of the framework.

In practice we observed that the reader and writer threads are orders of mag-

nitude faster than the indexer threads, that is why there is a one to many mapping

between reader/writer threads and indexer threads. This also allows the user to better

load-balance indexing files with significant varying size at the cost of index size and,

subsequently, of query latency. SCIPIS groups reader, writer and indexer threads

into groups of threads that can be scheduled together on the same NUMA node, thus

minimizing performance degradation due to inter-NUMA communication.

4.1.3 Inverted Index Design. Previously, in SCANNS, we showed that the

inverted index design is crucial to the performance of the indexing process, noting

that an efficient inverted index requires both an efficient search data structure but

also an efficient auxiliary data structure. In that regard, SCANNS showed that when

using the Google Swiss Table and the append cache mechanism, one can reduce the

60

number of memory indirections when create a TFIDF index and significantly improve

the performance of the indexing process. Since SCANNS was designed to index data

as fast as possible in-memory, we permitted ourselves to use pointers to reference to

file paths and other parts of the index and linked lists to store the elements of the

auxiliary inverted index. But this solution would not work if we need to persist the

index on disk, since the pointer values would not easily translate to offsets to disk

and the linked list would yield low serialization performance due to traversing the

memory using pointers to the next element.

In SCIPIS we proposed a new inverted index design that solves all of the is-

sue stated previously and allows the framework to create an index that can easily

be serialized to disk and that exposes a new dimension for adapting the inverted

index to the input data. Figure 4.2 shows the design of the proposed inverted index.

We eliminated all of the pointer references and replaced them with offsets to buffers

and/or with unsigned integer values, as is the case for file and token identification or

index. SCIPIS still uses the Google Swiss Table as the search data structure and the

elements of the hash table are direct references to IDFIndexEntry data structures. By

direct references, we meant that in order to perform a lookup over the hash table, the

element is not a pointer to another region of memory that stores the actual element,

but returns a reference to the element itself. This means that the memory for storing

IDFIndexEntry elements is managed by the data structure itself. We still use the

append cache mechanism to reduce the number of memory indirections, that relies

on the assumption that the dataset is static in order to function properly. SCIPIS

changes the way the TFIndexEntry is allocated and stored in memory. Since the

inverted index is designed from the start to support persistent indexes that are larger

than the main memory of the system, we can relax the requirement to try to fit as

much data as possible inside the in-memory index, which allows us to better orga-

nize the TFIndexEntry elements, which represent the auxiliary inverted index data

61

structure. Instead of creating a linked list of elements that are all chained together,

we allocate small arrays of TFIndexEntry elements that then get assigned to each

IDFIndexEntry element. When either the hash table or any array of TFIndexEntry

element reached capacity, the inverted index signals the parent component that it is

ready to serialize and flush to disk. By keeping the TFIndexEntry elements, which

store the file index and the frequency information for the word that is found in that

particular file, contiguously in memory, we enhance both the serialization and search

performance at the cost of space utilization.

Figure 4.2. SCIPIS framework indexing architecture and pipeline.

In order to overcome the space utilization problem, we expose to the user a

new tuning parameter that we call index depth, that allows the user to specify how

big will the contiguous array of elements will be at program startup. The user only

needs to know how big can the TFIDFIndex be, how big are the input files on average

and what is the mapping between reader threads and indexer threads, to determine

how many files would be able to fit inside the index and thus to how much to set the

index depth. This additional tuning parameter allows the user to further tune SCIPIS

and increase the performance of the indexing process by giving the framework some

information regarding the system and the input dataset.

62

While the index depth parameter can help the user adapt the inverted index

to the input data, the parameter alone does not capture the entire essence of the

problem. If no assumptions regarding the input dataset are made or if no useful

knowledge about the structure and patterns of the input dataset are known, it will be

hard to create a general inverted index that will work well in all scenarios. However,

if the user knows details regarding the number of file, the file sizes, the number of

tokens per file and the total number of unique tokens from the entire dataset, then

the inverted index structure can be additionally optimized, allowing the framework

to use the in-memory index space more efficiently, while minimizing the number of

index flushes to disk and the output index size. That information could be provided

either offline, through an quick analysis of the input dataset, or online through space

stealing or defragmentation techniques. SCIPIS does not implement these techniques

and they are the subject of future work, but this work points towards an aspect of

data indexing and search that is often underlooked and that could lead to a dynamic

inverted index design that can yield even higher indexing and search performance.

4.1.4 Persistent Index Structure. When either the FilePathIndex or the

TFIDFIndex reaches or goes over 90% of its allocated capacity, the index gets se-

rialized and then sent into blocks to be written to disk. Figure 4.3 describes how

the index is being store on disk for a particular index thread. Each index thread

creates its own persistent index, that represents a local or partial index, implying

that when a search query is being launched, the query engine will need to combine

the results from each index thread in order to return a global view of the index.

Each index thread will need to flush both an index for the file paths and an index

for the term frequency and inverse document frequency information. The file paths

index will be stored under the file index <thread id>directory, while the TFIDF in-

dex will be stored under the tfidf index <thread id>. For each flush of any index

type, the framework creates one segment data file and one or more segment metadata

63

files. The segment metadata files will contain the hash table entries for each index

type. For example, for the TFIDF index, the segment metadata files will contain

a list of IDFIndexEntry elements, written down in binary format. Since the size of

IDFIndexEntry data structure is know, there is no need for there to be a delimiter

between the elements, and the end of the list is marked with a special entry that has

a file count of zero. The segment data files will contain the auxiliary data structure

elements. In the case of the file path index, the auxiliary data structure is the actual

full path of the files delimited by new line, and the corresponding element from the

metadata file will store an offset to the position where the full file path can be found

in the data file. For the TFIDF index, the segment data file contains a list of lists of

TFIndexEntry elements of size indexDepth, with the entries from the metadata file

containing and offset to the beginning corresponding list. In order to control the size

of the segment metadata files, SCIPIS exposes the split factor parameter that allows

the user to decide into how many segments to split the hash table key space, and thus

have the ability to improve search or indexing performance at the cost of the other.

Each key will be stored to the corresponding segment metadata file, minimizing the

search space when computing search queries. Each index flush will create a new group

of segment data and segment metadata files, that will be required to be queried when

searching the persistent index.

One benefit for building the persistent index in this way, is that the index

can be searched offline, while SCIPIS is building the persistent index or after the

framework finished executing. Searching the index is trivial, as it only requires the

query engine to search, for a given term, to access a subset of segment metadata and

segment data files. For each query, the query engine will need to search the segment

metadata files for offsets to the term-frequency information. After the offsets are

retrieved the term frequency information is extracted from the segment data file

using the offsets. While the term frequency information is being retrieved, the query

64

Figure 4.3. SCIPIS framework indexing architecture and pipeline.

engine can start sorting the results and filtering the ones that have a low score, thus

reducing the amount of data that needs to be merged. Finally, once the all of the

persistent indexes for each index thread have been searched, the query engine will

combine the results from each index thread, using an n-way merge technique, into

one final list of documents and their scores for a given query.

4.2 Performance Evaluation

This section contains the performance evaluation of the SCIPIS framework,

which includes the end-to-end indexing performance of the proposed framework, the

TFIDF search performance, the tuning experiments, but also descriptions of the

experimental setup and the datasets used for the experiments.

65

4.2.1 Experimental Setup. For the purpose of evaluating SCIPIS experimen-

tally we used two single-node high-end systems deployed on the Mystic Cloud, an

NSF-funded testbed designed to study system re-configurability and to conduct com-

puter systems research. Both of the machines have a high number of PCIe NVMe

storage devices allowing for fast storage access in terms of both read and write, se-

quential and random. The difference between the two chose machines is the number

of cores, memory channels and NUMA nodes present, and they were a selected in

order to showcase the scalability trends of the SCIPIS framerwork both on a small

machine, but also on a big machine. The small machine (32cores-16disks) represents

an accessible machine that any computing facility could enlist, while the big machine

(192cores-16disks) is more akin to what a supercomputer node would look like, in

terms of CPU and memory capability. Table 4.1 shows the hardware details for each

system used in the performance evaluations.

Table 4.1. Mystic Cloud machines used for the experimental evaluation and their
specifications.

machine name processors cores memory nvme storage

32cores-16disks 2 x Intel Xeon Gold 6130 32 192GiB 16 x Samsung 970 EVO

192cores-16disks 8 x Intel Xeon Platinum 8160 192 768GiB 16 x Intel Optane 900P

In order to achieve high execution performance, we configured the scheduling

governors to performance and enabled turbo-boost on all machines. When we ran

experiments we also configured the listed storage devices to be accessed in exclusive

mode, having the OS of these two machines run from different storage devices, all of

this in order to eliminitate performance degradation caused by any interference. Since

the PCIe NVMe drivers are spread evenly across the NUMA nodes, we grouped the

devices by NUMA node and configured Linux software RAID0 with XFS on them.

When running experiments, we distributed the data evenly accross the NUMA nodes

and made sure that threads only accessed data from their own NUMA node.

66

In terms of software, both the machines ran Ubuntu 22.04 LTS with Linux Ker-

nel 5.15 and g++-12. For the Google Swiss Table library we used version 20230125.3

lts from the abseil library. The SCIPIS framework is implemented in C++20.

4.2.2 Evaluation Datasets. For the evaluation of the performance of SCIPIS

we used a total of 5 datasets, that represent 3 different scenarios or dataset types,

and that have different properties. The used datasets, alongside the properties and

characteristics of the datasets, can be seen in Table 4.2. We picked a diverse range

of datasets in order to showcase the scalability and performance of SCIPIS, and to

show that while the performance can change from dataset to dataset, the scalability

trends remain similar.

Table 4.2. Evaluation datasets and characteristics.

dataset name size number of files file sizes dataset type

hdfs 18GB 40 200-800MB logs

thunderbird 31GB 240 100-600MB logs

windows 27GB 738 50-200MB logs

thepile 1.1TB 5500 100-300MB scientific

fsdumps 1.2TB 300000 4MB metadata

The first type of dataset that we chose for the experimental evaluation is log

data. Log data is a type of dataset that can easily be found in any computing systems

and is especially more prevalent in supercomputing centers. A supercomputer can

contain thousands, if not tens of thousands of nodes, that each can generate a consid-

erable amount of log data, that when combined with the log data generated by the

applications that run on supercomputers can easily reach large volumes, that becomes

hard to search through without the help of an index-based search engine. Thus we

decides to evaluate SCIPIS over log datasets, because it is a representative scenario.

We used the hdfs cluster, thunderbird supercomputer, and windows operating system

logs form the Loghub collection [35].

67

For the second type of dataset we decided to evaluate SCIPIS over a collection

of scientific datasets. The Pile [36] collection contains publications, websites and

books, from various fields of science, including: medicine, law, mathematics etc. The

Pile collection is very representative to the kind of data that a scientific search engine

would need to index and provide search over and we chose this dataset because of its

high diversity in terms of topics and vocabulary.

Since many supercomputing centers use parallel and distributed file systems

to organize data, we decided to use include a dataset that is representative to per-

forming search over the metadata of the file system. Scientists and engineers often

use various naming conventions for directories and files in order to make searching

through browsing possible, but the same conventions that they use pose an interest-

ing scenario when it comes to indexing and searching scientific data. Thus we decide

to evaluate SCIPIS over the file system metadata provided from a supercomputing

center, that we will refere to as the fsdumps.

4.2.3 Performance Tuning. Figure 4.4 shows the results of tuning the index

depth parameter over the three log datasets on the 32cores-16disks machine. In this

experiment, SCIPIS was configured to run with 4 reader threads, 4 writer threads

and 64 indexer threads, with a block size of 1MiB, a file path index maximum size of

128MiB and a TFIDF index maximum size of 1GiB.

For the hdfs dataset, it can be seen that the framework achieves the highest

indexing throughput of 4.3 GiB/s, when configured with an index depth of 2, and that

with increasing index depth the performance decreases. This behavior is attributed

to the hdfs dataset having a reduced number of large files, that end up causing the

TFIDF index to flush more often with increasing index depth. Thus, for the hdfs

dataset we used an index depth of 2 for the rest of the experiments.

68

Figure 4.4. Tuning the index depth on 32cores-16disks.

In the case of the thunderbird dataset, the framework achieves the highest

indexing throughput of 4.2 GiB/s, when configured with an index depth of 8, and

that with small index depths the performance degrades. The thunderbird dataset

is composed of a balanced number of files of various sizes, smaller in size than the

files from the hdfs dataset, which when indexed occupy a smaller space in the index.

Thus with a higher value for the index depth, the framework is capable to achieve

a better utilization of the memory space for the index and reduce the number of

index flushes. For the rest of the experiments we used an index depth of 8 for the

thunderbird dataset.

The difference in performance between different index depths can be seen for

the windows dataset, which is comprised of many small files. If the index depth

is small, then SCIPIS will cause many flushes to the disk and will yield degraded

performance, but if the index depth is large, the index memory space will be better

utilized, thus minimizing the number of index flushes. For an index depth of 1, the

SCIPIS framework performs indexing at 3.7 GiB/s, while for an index depth of 16, the

framework achieves an indexing throughput of 6.4 GiB/s, which is a 73% improvement

in performance.

69

4.2.4 Indexing Throughput (SCIPIS vs SCANNS). We compare SCIPIS to

SCANNS, in terms of indexing throughput, on the fsdumps dataset in order to show-

case how the proposed inverted index design and indexing pipeline, along with the

newly introduced optimizations, can yield better performance. Figures 4.5 and 4.6

show the the indexing throughout of both SCIPIS and SCANNS on the 32cores-

16disks machine and the 192cores-16disks machine, respectively. In both plots we

did not include the numbers for SCANNS running with 64 indexer threads, because

SCANNS was exhibiting performance degradation due to CPU core over-provisioning.

SCIPIS did not exhibit the same performance degradation, and actually showed im-

proved performance when using all of the hardware threads available, because the in-

dexer threads switch between memory-intensive computation to CPU-intensive com-

putation when serializing the index.

Figure 4.5. SCIPIS vs SCANNS indexing throughput the 32cores-16disks machine.

From Figure 4.5 we can see that, on the 32cores-16disks machine, the indexing

throughput of SCANNS increased from 200 MiB/s with 2 indexer threads to 2.4 GiB/s

with 32 indexer threads, while for SCIPIS the indexing throughput increased from

340 MiB/s with 2 indexer threads to 3.2 GiB/s with 32 indexer threads and to 4.2

GiB/s with 64 indexer threads. SCIPIS manages to achieve a performance boost of

70

75%, while at the same time building a persistent index and indexing approximately

12 time more data than SCANNS.

Figure 4.6. SCIPIS vs SCANNS indexing throughput the 192cores-16disks machine.

On the 192cores-16disks machine, SCANNS yielded an indexing throughput

of 740 MiB/s with 8 indexer threads, that increased to 9.7 GiB/s with 192 indexer

threads. The indexing throughput of SCIPIS increased from 1.3 GiB/s with 8 indexer

threads to 16.6 GiB/s with 192 indexer threads, all the way to 17.9 GiB/s with 384

indexer threads. SCIPIS outperforms SCANNS by exhibiting a performance increase

of 84%, while building a persistent index and indexing approximately 24 times more

data that SCANNS.

4.2.5 Indexing Throughput (Various Datasets). SCIPIS is not impervious to

performance variation when it comes to indexing throughput, and the characteristics

and structure of the input data does influence the overall performance of the pro-

posed framework. Although indexing throughput is influenced in part by the input

data, what is important is the scalability trend and how the system performs with

increasing computing resources. Figures 4.7 and 4.8 show the results of the scalability

experiment that we ran over three kinds of datasets and on both the 32cores-16disks

machine and the 192cores-16disks machine, respectively. For each dataset we manu-

71

ally tuned the SCIPIS in order to yield the best indexing throughput, accordingly to

the specifications of the computing systems but also to the properties of the datasets.

In Figure 4.7 we can see the indexing performance with increasing number of

indexer threads for all five datasets. Across the log datasets, the windows dataset

exhibits the best performance with an indexing throughput of 7.2 GiB/s with 64

indexer threads, while the thunderbird and hdfs datasets yield only 5.2 GiB/s and

4.6 GiB/s on the same configuration. This is explained by the properties of the

three datasets, where the windows dataset has more and smaller files than the other

datasets, that have a similar total size, which allows for a better utilization of the

index memory space and a reduced number of index flushes, especially when also

tuning the index depth parameter. When looking at the fsdumps dataset, SCIPIS

yielded an indexing throughput of 4.2 GiB/s with 64 index threads. One would

expect an even better performance that the windows dataset, because of how small

the files are, but in this scenario, the difference in performance stems from the diverse

vocabulary that the fsdumps dataset has in comparison to the windows dataset. The

log datasets have many terms that repeat many times, such as time stamps and dates,

but also repeating errors and error names and identifiers, while the fsdumps dataset

has a uniform distribution of term frequencies. That meaning that the number of high

frequency terms is similar to the number of medium and low frequency terms, because

of the hierarchical nature of the file system metadata that is being indexed. And right

now SCIPIS does not know how to adapt to the term frequency and uniqueness that

characterizes a dataset. The thepile dataset is an extreme case of where the number

of unique terms is high and their frequency low, when compared to the total number

of terms. Also for this dataset, we only selected half of the total number of files,

that ended up being the larges files in the dataset. So the thepile dataset exhibits

a decreased indexing throughput of 3.2 GiB/s with 64 indexer threads both because

the data set has a high term variety but also because the files are large.

72

Figure 4.7. SCIPIS indexing throughput the 32cores-16disks machine.

In the case of the 192cores-16disks, Figure 4.8 contains the results of the index-

ing throughput performance evaluation with increasing number of indexer threads.

The hdfs and thunderbird datasets were not included on this machine, because the

number of files in these two datasets is less than 384 hardware threads, which would

create load-balancing issues and would result in incorrect performance numbers. It

can already be seen that in the case of the windows dataset, it looks like the indexing

throughput of SCIPIS stagnates at 15.5 GiB/s when running with 96 indexer threads

and drops to 13.4 GiB/s with 384 indexer threads, and this is caused by the fact that

the files do not have a uniform size and that they cannot be distributed across the

indexer threads uniformly. The thepile and the fsdumps datasets do show continuous

increase in indexing throughut with increasing number of indexer threads, reaching

19.1 GiB/s and 17.9 GiB/s, respectively. In this scenario, SCIPIS computed the index

over the entire thepile dataset and managed to achieve comparable performance to

the fsdumps dataset. This is because, the second half of the thepile dataset contains

a increased number of small files and a smaller vocabulary, when compared to the

first half, allowing the proposed framework to catch up in terms of performance with

the fsdump dataset.

73

Figure 4.8. SCIPIS indexing throughput the 192cores-16disks machine.

4.2.6 Search Latency. Since the SCIPIS framework supports TFIDF queries, that

will compute the TFIDF scores for the returned documents given the query term and

sort and select only the top relevant documents in order to satisfy the information

need, we also conducted experiments where we measured the performance of the query

engine. We compared the SCIPIS search results to the Apache Lucene search results

collected from the SCANNS work. For each experiment we selected 1000 random

terms from the respective dataset and performed 1000 individual queries 5 times.

Table 4.3 contains the average search latency measured in microseconds. We

can see that on both machines, SCIPIS outperforms Apache Lucene in processing

TFIDF queries, and on all datasets of similar size. We decide to run the search eval-

uation on datasets of similar size, because the persistent index size does influence the

query processing latency of SCIPIS, and this way there is a more comparable compar-

ison to Apache Lucene. From this evaluation it can be observed that while a greater

number of indexer threads yields a higher indexing throughput, it also contributes to

a lower search latency. For example, for the windows dataset on the 32cores-16disks

machine, with 2 indexer threads, SCIPIS can run a query in 2.5 milliseconds, while

with 64 indexer threads, the query latency increases to approximately 43 milliseconds.

74

Table 4.3. SCIPIS vs Apache Lucene TFIDF search latency (microseconds).

cores
32cores-16disks 192cores-16disks

hdfs thunderbird windows fsdumps-lucene windows fsdumps-lucene

2 3958 5823 2557 23327 - 21746

4 3782 6707 5033 27952 - 25159

8 4138 10719 9372 28831 2568 29412

16 6309 10684 - 36786 - 33601

24 - - - 3219 39004

32 9168 12526 - 39524 - -

48 - - - - 7135 53666

64 18246 17835 - 42966 - -

96 - - - - 8936 64650

192 - - - - 8980 134061

384 - - - - 14083 117113

On the 192cores-16disks, SCIPIS exhibits a query latency of 2.5 milliseconds with 2

indexer threads, that increases to a query latency of 14 milliseconds with 384 indexer

threads.

4.3 Conclusion

In this work we proposed and presented SCIPIS, a single-node indexing and

search framework that can efficienlty build persistent indexes that cannot fit into

memory and efficiently search persistent indexes on high-end computing systems char-

actersized by many cores, multiple NUMA nodes and multiple PCIe NVMe devices.

SCIPIS extends the SCANNS framework by adding support for writing partial in-

dexes to disk and redesigns the inverted index and the indexing pipeline, obtaining

higher indexing throughput than SCANNS and lower TFIDF search latency when

compared to Apache Lucene. We also evaluated SCIPIS on three kinds of datasets,

namely log files, scientific data and supercomputing file system metadata, and showed

that SCIPIS scales well, achieving 1.8x better indexing performance than SCANNS

75

and 8x better search performance than Apache Lucene.

We showed that the indexing pipeline can be further improved, by delegating

the process of serializing the partial index to the indexer threads. By doing so, the

indexer threads can change its processing pattern from memory-intensive to CPU-

intensive, allowing the framework to safely over-provision the indexer threads and

not exhibit performance degradation. We also showed that the inverted index can be

further optimized by introducing the index depth parameter. The index depth allows

the user to adapt the inverted index to the properties of the input dataset, which

consequently enables the framework to more efficiently use the index memory space

but to also reduce the number of index flushes to disk, and subsequently improves

indexing performance. In this work we also introduced the split factor parameter

that allows the user to control the space and size of the persistent index in order to

improve search performance at the cost of indexing performance.

Lastly, designing SCIPIS and the new optimization, opened up the possibil-

ity of further exposing tuning parameters that are not only system related, but also

pertain to the nature of the input data itself. As future work, it would be worth to ex-

plore capturing the uniqueness of terms and the size of the vocabulary extracted from

the dataset and use that information manually or automatically to further improve

indexing and search performance.

76

CHAPTER 5

EVALUATION OF A SCIENTIFIC DATA SEARCH INFRASTRUCTURE

Given the large amounts and the variety of data found in scientific large-scale

file systems, it stands to reason to try to bridge the gap between various data repre-

sentations and to build and provide a more uniform search space. In this chapter we

present a performance evaluation of ScienceSearch, a production search infrastructure

for scientific data that uses machine learning to automate the creation of metadata

tags from different data sources, such as published papers, proposals, images and

file system structure. The performance evaluation focuses on on scalability trends in

order to better understand the implications of performing search over an index built

from the generated tags.

Scientific instruments and facilities are generating data at a rapid pace. Future

scientific discoveries will rely on insights derived from data, making search capabilities

critical. However, many science users rely on manual browsing or tools such as find or

grep which provide limited capabilities for large scale data and scientific file formats.

ScienceSearch [37, 38] is a scalable search engine that uses a wide range of

machine learning techniques (natural language processing, deep learning etc) to au-

tomate metadata generation from different data sources, such as published papers,

proposals, images and file system structure. The current implementation is deployed

to provide search over data obtained from NCEM (National Center for Electron Mi-

croscopy) that includes around 5TB of data (500K images). Users can interact with

the ScienceSearch infrastructure through a dedicated web interface that accepts a

text query and returns a list of relevant images, papers and proposals within seconds.

The system is deployed on a container service platform, called Spin, at the National

Energy Research Computing (NERSC) Center, a HPC facility. Such container service

platforms have more recently been deployed at HPC facilities to support science gate-

77

ways, workflow managers, databases, and other services. Deploying the ScienceSearch

infrastructure on Spin allows us to leverage the high performance large filesystem at

NERSC while allowing users to query the data through a web interface.

Previous work showed that ScienceSearch is capable of generating relevant

metadata and providing low-latency high quality query results for our initial use case

from NCEM. The ScienceSearch infrastructure allows us to understand and address

key questions related to the scalability of our infrastructure for increasing data sizes

and number of users. The performance of dedicated search infrastructures greatly

depends on the ability to simultaneously serve multiple types of queries while keeping

search latency as low as possible. Previous work found in literature has explored

scalable search in the context of Internet data [39, 40]. However, these results cannot

be directly applied to scientific data in HPC due to the unique characteristics of

the scientific data (i.e. size, formats, volume) and the performance considerations

of HPC environments. The focus of this work is the evaluation of ScienceSearch

towards understanding design implications for current and future scientific search

infrastructures 3. We perform a through evaluation of the current infrastructure and

discuss our experiences and results.

In our evaluation, we consider scientific data search queries that can be roughly

classified as two types: targeted and open-ended. A search query may be targeted

where the query results in few hundreds results. While relatively rare in our infras-

tructure, scientists might also issue open-ended queries as part of data exploration

where a search might return thousands or even millions of results. We evaluate Sci-

enceSearch’s underlying infrastructure performance under distinct search scenarios

that emulate both targeted and general/open-ended queries.

3The content of this chapter is gathered from published research [41]

78

We present a thorough performance evaluation of ScienceSearch’s infrastruc-

ture focusing on scalability trends under different query types. We conduct an in-

depth analysis to identify the contribution of each search phase. For our experiments,

we deploy ScienceSearch both on a shared supercomputer infrastructure and on a ded-

icated testbed. Our evaluation considers latency, processing rate, memory utilization

and query throughput. Our evaluation also provides insights towards building gener-

alized search infrastructure for future systems, including performance considerations

for container platforms, need for load-balancing and parallelism, adaptive resource

scaling, and data representation in memory. Our performance evaluation scenarios

answer the following questions:

• How does the type of query (i.e. targeted or open-ended) affect search latency

and underlying system requirements (such as memory footprint and CPU con-

sumption etc)?

• Is ScienceSearch able to scale and serve parallel search queries independent of

the underlying hardware infrastructure?

• What is the limit in terms of concurrent search queries that ScienceSearch

infrastructure can serve?

5.1 ScienceSearch

ScienceSearch system’s architecture features five components: user interface,

data import, metadata extraction, search engine, and a database. Users can express

their data needs in the form of a text query and receive back a list of relevant images,

papers, and proposals through the user interface. The data import component is

responsible for ingesting and storing scientific data and existing related metadata

(e.g. an image and its location in the file system) in the database. Currently, the

system supports images, papers, proposals, and calendar entries as data sources. The

79

metadata extraction component uses machine learning to automatically generate the

metadata tags. These tags are stored in the database. The search engine uses a model

that connects metadata generated from the metadata extraction component with the

imported images, papers and proposals.

The system utilizes Spin, a container deployment platform designed for HPC

environments, in order to gain access to HPC storage, compute and network resources

and provide users with low-latency search results. The data containing the scientific

images resides on a shared file system hosted on the supercomputer infrastructure

that is accessible from Spin. With Spin users can deploy their own container im-

ages in separate namespaces that can be located across different HPC nodes. The

platform’s orchestration layer facilitates access to local and remote (NFS) storage.

Inter-container communication relies on underlying HPC network resources and the

encapsulation mechanisms provided by Spin’s orchestration layer.

An overview of ScienceSearch’s container-based architecture can be found in

Figure 5.1. ScienceSearch groups all data-related components (i.e. the data import,

metadata extraction and search engine) in a single container instance while the user

interface and database are deployed as separate instances. The backend and database

instances can be deployed separately and independently of the user interface guaran-

teeing portability and execution at different locations adjacent to HPC environments

(e.g. near the scientific instruments where the data is generated). Furthermore, all

data-related components can be executed separately and can be triggered by events

(e.g. creation of new data).

In this section, we describe the search infrastructure in detail. We describe

the search steps from when the user issues a search query until the list of matching

results is returned.

80

Figure 5.1. ScienceSearch container-based architecture and interaction with HPC
resources through Spin. Container instances are denoted with light green and inter-
container communication is represented with a dotted red line. HPC resources are
in grey (physical nodes) and blue (remote and local storage). Arrows show where
each instance is physically deployed.

5.1.1 Search Lifecycle. Search is conducted in three steps: user query processing,

comparison with stored metadata and finally result aggregation. The steps are depicted

in Figure 5.2.

Once a user issues a search query, the user query processing step divides the

query into words (i.e. for queries that contain multiple terms) and the extracted

words are lemmatized (i.e. reduced to root stems). The lemmatized terms are then

passed to the next stage where the comparison with the metadata occurs. During

comparison with stored metadata, the query terms are compared against metadata

that are stored in a database system and the results are ranked. The database lookup,

comparison and the intermediate result ranking is computationally intensive. In order

to optimize performance and reduce latency inducing bottlenecks, we opt for a parallel

environment with multiple workers that are managed by a master process.

81

Figure 5.2. Parallel Architecture for Comparison with Stored Metadata step. A master
process slices the database index in W slices and spawns W workers respectively.
Each worker interacts with the database in order to fetch and rank intermediate
results.

The final step before the results are returned back to the user is result ag-

gregation. In this step, the master process combines each individual worker’s ranked

results in a list and sends that list back to the user through the user interface. Finally,

the master process terminates all worker processes.

5.1.2 Databases. One of the main components of ScienceSearch architecture

is a database which stores information that is matched against the query string.

The information stored in the database includes searchable data entities as well as

automatically generated metadata that have been generated by the machine learning

processes during the metadata extraction phase.

ScienceSearch uses three categories of tables to organize searchable data enti-

ties and associated metadata: data entries tables, metadata entries tables and index

tables. The index tables function as indexes for one of the fields of each metadata

82

entry and were created as an additional optimization to reduce the time spent for

query matching against each metadata entry. Indexing is done based on text tag field

of each metadata entry containing a unique entry per tag. The text tag is a string

that semantically describes a metadata entry (e.g. Graphene).

Data entry tables are created by the data import component during data in-

gestion and contain a unique pointer to the data element itself (e.g. for an image

that is its location on the file system) along with related information (e.g. times-

tamp, dimensions for images, author list for papers etc). There is one data entry

table per searchable category (i.e. Papers, Proposals and Images). In our evaluation,

we use the Data, Metadata and Index tables for Images. Metadata entries tables are

created by the metadata extraction component and contain the metadata in the form

of tuples which are later used by the search engine. ScienceSearch also features three

Metadata entries tables – Paper Metadata, Image Metadata and Proposal Metadata

respectively. These tables are used to store the metadata instances for each search-

able data entity category. Currently, the Images table features around 500K entries

and Metadata and Index tables contain 11M and 1M entries respectively.

5.1.3 Comparison with Stored Metadata. During the comparison with stored

metadata phase, the lemmatized list from the user query processing stage is com-

pared with the metadata entries that are stored in the database. We use a two-level

parallelism since this phase is compute intensive. The first-level parallelism includes

a master process that is responsible for slicing the index table in n pieces, spawning

w workers and assigning one slice per worker. The slicing is performed in order to

ensure adequate load balancing among the workers. We now describe each worker’s

actions as well as the individual interactions with the three database tables. Each

worker performs three steps a) retrieving indexed metadata, b) recreating metadata

objects, and c) ranking metadata objects.

83

Retrieve Indexed Metadata. Each worker queries the Index table. Each

worker retrieves unique from the slice assigned by the master process (see Figure 5.2).

The retrieval is executed as a comparison between the text tag field of each metadata

entity and the lemmatized list’s elements producing a hit score for each entity. The

hit score is calculated based on the lexicographic distance of the two entities. Once

the score is calculated, the worker keeps only the metadata entities that scored higher

(if any) than an empirically set threshold, and discards the rest. The retained results

are considered the hits.

Recreate Metadata Objects. The goal is to recreate the metadata objects

that match the query. Each worker queries the Image Metadata table. Once the

objects are created they are grouped by text tag. Each tag has many associated

objects. The final product of this phase is a list of tuples containing the hit score,

metadata type, relevance score, text tag and pointed image for each metadata object.

Rank Metadata Objects. Each worker retrieves the results by querying

the Image table. An image might have more than one matching tuple of metadata

results. The search score of each image is calculated from the aggregation of the final

score of each tuple. The final search result is the determined from the list of images

that are sorted in descending order based on their computed score.

5.1.4 Parallelism. ScienceSearch uses adaptive two-level parallelism to deal

with open-ended search queries that return thousands or even million of results. At

the first level, ScienceSearch uses parallel workers to handle hits in the Index table.

Based on our experiments the optimal number of first-level workers is 16. However,

in the current version of ScienceSearch data is not shuffled, sometimes leading to an

uneven distribution of hits between workers. In order to address this issue and enable

elasticity for open-ended queries, a second-level of parallelism is enabled in the worker

level (sub-workers 1 to N in Figure 5.2). If the number of metadata objects in the

84

recreate metadata tags step exceeds a certain threshold, a new pool of sub-workers

is created and the objects are distributed among them for ranking (sub-worker box

in Figure 5.2). After each sub-worker has completed the ranking step the results

are sent back to the worker that initiated the extra parallelism step. Currently, the

threshold that triggers additional parallelism is empirically set to 150,000 metadata

objects before ranking.

5.1.5 Understanding the Memory Footprint. In order to identify potential

latency inducing bottlenecks, we take a closer look at the memory consumption of

each search worker due to intermediate object creation during the three search stages.

We use the term memory block to capture the amount of memory consumed by

the objects. At first, a block of memory is acquired by each worker during the

retrieval of unique tags that correspond to each worker’s index slice. The number

of objects is equal to the number of tags that are stored in that particular database

slice. However, during the recreate metadata tags phase, each worker is tasked with

fetching all metadata objects that include a particular tag (one tag can have thousands

of associated objects) consuming a significantly bigger memory block for the recreated

metadata objects. Finally, after ranking each metadata object, a block is acquired for

retrieving all images that correspond to the highest ranking metadata objects, in the

retrieve image data phase. An overview of the memory blocks with the corresponding

worker actions is shown in Figure 5.3.

It is evident that after recreate metadata tags phase, the number of objects

in memory significantly increases, making individual object size a determining factor

in ScienceSearch’s memory footprint as well as its ability to process multiple objects

in parallel. Table 5.7 shows the actual object numbers for a search worker after each

search step. We present our analysis of memory footprint in subsection 5.3.2.

85

Figure 5.3. Memory consumption of each search worker for object creation during
search stages. The number of objects significantly increases after Recreate Meta-
data Tags.

5.2 Evaluation Setup

This section contains a detailed explanation of the evaluation setup, that in-

cludes a description of the ScienceSearch deployment and the software used to au-

tomate the experiments. Furthermore, we outline our performance metrics, and the

characteristics of the dataset that was used during the experiments, alongside the

type of queries identified.

5.2.1 Infrastructure. The experimental setup consists of the deployment of the

ScienceSearch components as dedicated containers in order to ensure portability and

isolation. Four container instances are deployed: a Django backend, a PostgreSQL

database, an Nginx web proxy which also acts as a load balancer and the correspond-

ing frontend that serves a web frontend. Our setup, together with the component’s

interaction during query execution, is depicted in Figure 5.4. The user is connected

to the ScienceSearch infrastructure through a Web-proxy container which serves as a

86

load-balancer. Once a user issues a search query, the query is forwarded to the back-

end container where the three search steps are conducted. The backend container,

which is the only component with access to the database, fetches search results after

issuing one or more database requests. Finally the results are served back to the user

through ScienceSearch’s frontend.

Figure 5.4. ScienceSearch deployment. Grey boxes are containers located on the
same physical node to avoid network bottlenecks. White arrows represent requests
between internal components.

ScienceSearch was deployed on two testbeds for the experimental evaluation.

The first testbed is on Spin, similarly to our production deployment. Our second

testbed is a dedicated single node environment. We use the first testbed to obtain a

high level overview of ScienceSearch’s performance in an context similar to our current

deployment measuring latency and throughput. The dedicated system is used for an

in-depth analysis of identified bottlenecks and for the measurement of performance

without other application interference.

Spin based infrastructure. We deploy ScienceSearch on a container service

platform at the National Energy Research Scientific Computing (NERSC) Center,

called Spin, which provides a Docker container execution environment and auto-

87

mated resource management on top of supercomputer network and storage. In Spin,

containers communicate over an overlay network implemented through IPsec over a

10GB Ethernet. Communication channels between containers that are part of the

same deployment are encrypted. In order to avoid the encryption-imposed network

overhead in inter-container communication we opt for placing the Backend and the

database on the same physical node. ScienceSearch production deployment runs on

a set of dedicated nodes at the HPC center that are reserved for the service. The

node specifications are: 2x 24 core Intel(R) Xeon(R) CPUs E5-2680 v3 @ 2.50GHz

and 256GB of RAM.

Perth. It is a dedicated single node computer system on which ScienceSearch

was deployed exclusively. The single node computer has the following specifications:

2x 3.0 GHz 12-core Intel Xeon Gold 6136, 384 GiB 2666 MHz DDR4 RAM, 2x Intel

SATA SSDs set up as a Linux software RAID1, running CentOS 7.7.1908 with Linux

Kernel version 3.10.

The containers deployed on the dedicated testbed (Perth) communicate through

a simple Docker bridge interface, different from the overlay network in Spin. In terms

of storage, the single node testbed uses locally mounted directories in order to pro-

vide storage capabilities to the containers, while Spin makes use of storage volumes

mounted over NFS provided by the HPC system as a highly available and fault tol-

erant storage service. ScienceSearch is currently deployed as a production service on

Spin, and it is critical to understand the scalability of the presented search platform in

a real HPC context. The Perth testbed was selected as a dedicated system on which

we could run the evaluation without interference from other applications, without

container overheads and because the node resembles a host from Spin.

88

5.2.2 Software. ScienceSearch is deployed on Docker 19.03.5, running Post-

greSQL 10.10 as the database service and Django 2.0.4 with Python 3.6.9 as the

backend. Throughout all of the experiments, the queries were launched from the

backend using two client Python3 scripts that are setup to emulate user queries that

would be submitted through a web interface. The scripts cover a) the query latency,

query processing rate and memory footprint experiments and b) the query through-

put experiments. The client scripts allow us to automate the process of submitting

different queries with varying configuration parameters and to focus our analysis on

the two search-critical services: the backend and the database. They use the Python

requests standard package in order to submit requests, both for authentication token

and for the actual queries, and the multiprocessing package for launching multiple

processes during the query throughput experiments. The client scripts measured the

overall latency of queries, while the backend logged the latency and memory footprint

information of each search phase in a log file.

The backend is deployed with caching disabled for the entire evaluation. This

ensures we showcase the actual performance of ScienceSearch, with a focus on the

search phases and interaction with the database. The number of parallel worker

processes was varied from 1 to 32 in multiples of 4 during the query latency, query

processing rate and memory footprint experiments. The number of parallel worker

processes was fixed to 4 for the query throughput experiments.

5.2.3 NCEM Dataset. The images produced by the microscopes found in the

NCEM’s electron microscopy user facility (i.e. micrographs) are the main type of

data produced. ScienceSearch currently stores three types of inter-correlated data to

the database that are made available through search: images (e.g. micrographs),

proposals and calendar entries.

In our evaluation, we conduct search over the images dataset, which occupies

89

5TB of storage space. During data ingest, ScienceSearch crawls the supercomputer

file system hierarchy that contains the images, extracting file system metadata and

experimental metadata added by scientists. The extracted metadata is stored in the

Image table in the database. Only the file system metadata and the experimental

metadata annotated by scientists are stored in the Image table and not the actual

images. This is the search space over which ScienceSearch executes search queries.

The Django framework transforms the database records to Python 3 objects.

Table 5.1 shows the total number of objects and size (in the database) of the tables.

Table 5.1. Total number of objects/records found and amount of storage used by
each table, for the evaluation search space.

Database table number of records total size

MetadataIndex 1,184,851 115 MB

Metadata 1,1261,844 791 MB

Image 557,195 11 GB

5.2.4 Evaluation Metrics. In order to evaluate the scalability of the ScienceSearch

and identify performance bottlenecks we focus on the following four metrics: query

latency, query processing rate, memory footprint, and query throughput. The main

focus of our evaluation is on ScienceSearch’s infrastructure, hence we do not include

quality of search results in our evaluation metrics set.

Query Latency. We measure overall query latency as the amount of time

spent by the client program to prepare the request and to receive the response, as

well as the amount of time of ScienceSearch to process the query. While, we include

the time it took to perform token-based authentication, we exclude the time it took

to acquire the token. We measure the minimum, average and maximum of average

query latency for each query from a given workload.

In each experiment, we also measure the latency of each phase of the search

90

algorithm (as presented in 5.1.3). For a detailed breakdown analysis, we combine the

time to prepare the request, the time to receive the response and the time to aggregate

the final results (as depicted in Figure 5.2) into other latency, which summed together

with the execution time of each search phase, constitutes the overall search time.

Memory footprint. When evaluating the memory footprint of each search

phase, we calculate the number and the size of all intermediate objects and data

structures as well as the size of the final result objects. In the case of an image, the

final result object consists of the image itself along with associated metadata (e.g.

image location in the filesystem, instrument name and the date on which the image

was acquired, etc 5.1.2).

Latency and memory footprint were measured in separate sets of experiments

in order to separate the overhead of the memory footprint measurements from the

latency of the actual query process.

Query Processing Rate & Throughput. Overall query processing rate

is calculated as the total number of objects divided by the overall latency. For the

query processing breakdown of each search phase we divide the total number of ob-

jects corresponding to a search phase with the maximum latency registered at that

particular phase between all worker processes used. Since each worker process runs

in parallel and the entire search program needs to wait for the last worker to finish in

order to complete the query execution, we select the latency of the slowest worker pro-

cess when calculating the query processing rate. Finally, we measure ScienceSearch’s

throughput in terms of concurrent queries served per minute.

5.2.5 Queries. We have identified two types of terms that when included in a

query exhibit different behavior. For the evaluation of ScienceSearch, we consider two

different query sets that highlight that difference in performance, and suitable terms

91

for each query set were selected as a result of a short examination of the metadata

tags found in the database.

Query Set 1: Our first query set is meant to capture queries that are com-

monly executed in practice over the NCEM dataset. They typically return on average

under 200 results. We refer to these queries as targeted queries, they have a limited

set of matching metadata tags, hence limited number of associated objects are gen-

erated during the recreate metadata tags search step (Figure 5.2). Targeted queries

represent searches from users that have domain specific knowledge and that are famil-

iar with the underlying datasets and look for specific terms. The majority of queries

executed on ScienceSearch are targeted queries.

Query Set 2: For the current data set in consideration, we pick queries

that are more general or open-ended and would return a large number of results.

Specifically, we pick queries that return over one thousand results. General queries

match almost every stored metadata tag and allow us to thoroughly test the limits

of ScienceSearch’s infrastructure by maximizing both the computational load and

memory footprint of each search step. Furthermore, the high number of associated

objects allows us to identify performance bottlenecks.

For targeted queries, we randomly select 76 tags that have less than 200

matches on average in the entire search space of our dataset. For general queries

we select 6 tags that have at least 1,000 matches. Example of both query categories

and the number of results returned are listed in Table 5.2.

5.3 Experimental Results

This section covers the results of the experimental evaluation performed on

ScienceSearch. We exclude measurements from search queries that return zero results

since they exhibit very low latency. The query sets and obtained results depend on the

92

Table 5.2. Example terms of targeted and open-ended queries along with the number
of final results returned to the user.

Query Type Term Number of Returned Results

Targeted lattice 37

Targeted 50images.dm3 159

General vortices 3,008

General Frame 1001

size and number of entries in the dataset and therefore can change if the evaluation

process is conducted on a different dataset.

The experimental evaluation covers the performance of the proposed search

platform from the perspective of: a) the query processing rate metric (Subsection 5.3.1),

b) memory footprint (Subsection 5.3.2), c) query latency metric (Subsection 5.3.3), d)

the breakdown analysis of the search phases (Subsection 5.3.4), e) the query through-

put metric (Subsection 5.3.5), and f) a comparative evaluation of ScienceSearch on

the two testbeds (Subsection 5.3.6).

5.3.1 Query Processing Rate. Query processing rate, (i.e. how many objects

per second or how much data gets processed per second with increasing number

of parallel workers) is very useful when trying to understand the performance of a

system such as ScienceSearch. Figure 5.5 depicts the overall query processing rate

of ScienceSearch for both query sets. In the context of Query Set 1 (i.e. targeted

queries), ScienceSearch shows a good scalability trend and exhibits a processing rate

of approximately 87 kObjects/second and 518 kObjects/second, when increasing the

number of parallel worker processes from 1 to 32, resulting in an almost 6x speedup.

As for Query Set 2 (i.e. open-ended queries) the processing rate increases slightly

from roughly 50 kObjects/second to 99 kObjects/second, when varying the number

of workers from 1 to 32, achieving a speedup of 2x. It can be noted that query

processing rate for Query Set 2 has a slower acceleration than Query Set 1.

93

Figure 5.5. Average processing rate, measured in objects per second, with increasing
number of parallel worker processes. Comparison between Query Set 1 and Query
Set 2, combining the average processing rate of all search phase.

Figures 5.6a and 5.6b show that the metadata index retrieval and metadata

index filter phases exhibit higher data processing rates than the recreate metadata

tags and the image objects ranking phases. The ranking phase seems to cap at 1622

Objects/second for Query Set 1 and at 210 Objects/second for Query Set 2. The

difference in the processing rate can be attributed to differing loads (more analyses

in Section 5.3.2).

(a) Processing rate Query Set 1. (b) Processing rate Query Set 2.

Figure 5.6. Average processing rate, measured in objects per second, with increasing
number of parallel workers. (a) Average processing rate of each search phase for
Query Set 1. (b) Average processing rate of each search phase for Query Set 2.

94

5.3.2 Memory Footprint. This evaluation offers valuable insight on the nature of

two query types, by looking at the total number of objects processed and generated

by each search phase.

Table 5.3. Memory footprint measured as the minimum, mean and maximum number
of objects processed when executing Query Set 1 queries, grouped by search phase.

number of objects min average max

metadata indexes 1,184,850 1,184,850 1,184,850

filtered indexes 1 11 64

metadata tags 19 214 1,589

Image objects 19 190 1,414

Table 5.4. Memory footprint measured as the minimum, mean and maximum number
of objects processed when executing Query Set 2 queries, grouped by search phase.

number of objects min average max

metadata indexes 1,184,850 1,184,850 1,184,850

filtered indexes 1 6 25

metadata tags 265,837 497,031 651,684

Image objects 505 1,586 3,008

Table 5.3 shows the memory footprint at each search phase for Query Set

1. The index retrieval phase looks up approximately 1.2 million objects (number of

unique tags in the index table) from the database, while only 11 objects on average

are filtered after the index filter phase. The objects expand to 214 objects (20x

increase) on average at the metadata recreation stage. Finally, around 190 objects on

average are returned in the end, after performing ranking on them during the ranking

phase. In the case of Query Set 2 (Table 5.4), an average of 6 objects are transferred

after index filtering. In the next stage (recreate metadata), 497K objects on average

match of which 1,586 of get returned as results, which is a significantly larger than

what we see in Query Set 1.

Tables 5.5 and 5.6 contain the amount of data, measured in bytes, at each

95

Table 5.5. Memory footprint measured as the minimum, mean and maximum size of
processed objects when executing Query Set 1 queries, grouped by search phase.

total size (bytes) min average max

metadata indexes (with Python) 661 MB 802 MB 813 MB

filtered indexes (with Python) 2.8 KB 8.6 KB 36 KB

metadata tags (with Python) 15.6 KB 168.5 KB 1.2 MB

Image objects (with Python) 204 KB 6.5 MB 48.7 MB

metadata indexes 74 MB 74 MB 74 MB

filtered indexes 26 B 356 B 2 KB

metadata tags 608 B 7.6 KB 65.5 KB

Image objects 38.8 KB 2.3 MB 17.3 MB

Table 5.6. Memory footprint measured as the minimum, mean and maximum size of
processed objects when executing Query Set 2 queries, grouped by search phase.

total size min average max

metadata indexes (with Python) 661 MB 762 MB 813 MB

filtered indexes (with Python) 2.8 KB 5.8 KB 16 KB

metadata tags (with Python) 209 MB 376 MB 524 MB

Image objects (with Python) 27.4 MB 85.2 MB 163.9 MB

metadata indexes 74 MB 74 MB 74 MB

filtered indexes 20 B 227 B 932 B

metadata tags 9.8 MB 17.9 MB 31.9 MB

Image objects 10.4 MB 32.1 MB 62.1 MB

search phase for targeted and general queries, respectively. The amount of data

measured is proportional with the number of objects recorded at each phase, showing

the size of the data with and without Python 3 overhead. The overhead is a direct

result of the data structures selected by Django for storing the database records

requested during each phase.

Optimization. We have implemented two optimizations that are the result

of the memory footprint analyses. First, the second-level of parallelization of workers

was introduced to alleviate the challenges encountered if a user were to issue an

96

open-ended query (rare in our current use case, but possible).

Figure 5.7. Reduced query latency for both targeted and open-ended queries after
object size reduction.

In addition, we perform an object-level optimization in order to reduce the

amount of data moved from the database to the search workers during the final

image retrieval stage. Specifically, we move each object’s file metadata field (currently

stored in JSON format) from the database to disk. Reducing each object’s size

subsequently reduces the time spent to recreate final search results (retrieve image

data step in interaction with the database 5.1.2) and improves overall search latency.

The optimization effect on search latency for both query sets for 16 parallel workers is

shown in Figure 5.7. For general queries the object-level optimization reduces search

latency by 2.2 seconds while for targeted queries the reduction is 0.2 seconds. The

search latency reduction is between 7 and 12%.

5.3.3 Query Latency. Figures 5.8 and 5.9 contain the measured latency of

ScienceSearch and the average maximum latency of each search phase for Query Set

1. Figure 5.8a shows that on average for targeted queries it takes ScienceSearch

13.72 seconds (1 worker) and 2.44 seconds (24 workers) to execute a query. For

Query Set 2, Figure 5.8b shows a similar trend, but with significantly higher latency

when compared to the Query Set 1. Without query processing parallelism, running a

97

general query takes 34.19 seconds and drops to 18 seconds with 32 parallel workers.

(a) Lantecy Query Set 1. (b) Latency Query Set 2.

Figure 5.8. (a) Overall average query latency and min-max variation with increasing
number of parallel workers (Query Set 1). (b) Overall average query latency and
min-max variation with increasing number of parallel workers (Query Set 2).

Figure 5.9 shows that metadata index filtering is the most demanding search

phase and that query processing parallelism increases the performance of each phase

by reducing the latency significantly for metadata index retrieval and filtering. Sci-

enceSearch scales reasonably well, optimizing the most costly phases of search and

therefore improving the overall search latency. In the case of Query Set 2, the most

demanding phase is not the index filtering anymore and further analysis showed that

there is an emerging load balance issues caused by the way indexes are partitioned

between the workers. This analysis is discussed in the following section.

5.3.4 Analysis of Queries with Large Results. Figure 5.10 shows the latency

of each search phase with 16 parallel worker processes. We can see that the metadata

index retrieval phase takes up to 0.48 seconds and the metadata index filtering phase

takes up to 0.56 seconds for all workers, and that each worker spends a similar amount

of time in these two phases. When we look at the latency of the recreate metadata

tags and the final image object ranking phases, we can see that workers do not spend

the same amount of time. Some worker processes end up spending approximately 7.93

98

Figure 5.9. Average query latency grouped by search phase, with increasing number
of parallel workers (Query Set 1).

seconds, as is with worker 3, while other spend under 0.01 seconds. Worker 3 also

takes 11.8 seconds to perform the ranking on the image objects, while other workers

spend again under 0.01 seconds in the same phase.

Figure 5.10. Average latency of each search phase for each worker for a query (Frame)
from Query Set 2 with 16 parallel workers.

The imbalance in the worker processing time is caused by data that is not

distributed evenly across worker processes. (Table 5.7) This causes the remaining

phases in the query processing pipeline to suffer from a similar imbalance, and for

99

some phases it can be much worse. For example, the recreate metadata phase does

not convert the metadata index objects to metadata tag objects on a one-to-one basis,

but follows a one-to-many structure, generating in the best case scenario 410x more

objects while in the worst case scenario up to 14,000x more objects, as observed in

Tables 5.3 and 5.4).

Table 5.7. Number of objects processed, filtered or generated at each search phase
for each worker for an query (Frame) from Query Set 2 with 16 parallel workers.

worker

ID

metadata

indexes

filtered

indexes

metadata

tags

Image

objects

0-2 74,053 0 0 0

3 74,053 2 549,226 1,000

4 74,053 1 1 0

5-15 74,053 0 0 0

5.3.5 Query Throughput. Figure 5.11a shows the average query throughput

while running concurrent targeted queries. Query throughput increases significantly

with increasing number of concurrent queries being issued during the same experi-

ment. When only one query is issued at one moment of time ScienceSearch achieves a

throughput of roughly 12 queries/minute. When running 8 queries at the same time,

each query using 4 parallel worker processes, there are a total of 32 concurrent pro-

cesses that access the database and process the queries, but the resulting throughput

is approximately 65 queries/minute, which is even faster than using 32 parallel worker

processes while executing only one query at a time, which achieves a throughput of

roughly 25 queries/minute. When we executed 32 queries concurrently, that means

128 concurrent processes in total, the throughput increases to 88 queries/minute, even

though the system was over-provisioned.

For Query Set 2, as depicted in Figure 5.11b, ScienceSearch shows similar

trends in terms of scalability, experiences reduced performance degradation when

running concurrent queries, even when over-provisioned, but achieves a lower query

100

(a) Throughput for Query Set 1. (b) Throughput for Query Set 2.

Figure 5.11. (a) Average query throughput and min-max variation for Query Set 1
with increasing number of concurrent queries. (b) Average query throughput and
min-max variation for Query Set 2 with increasing number of concurrent queries.

throughput when compared to the Query Set 1 performance, which is in concordance

with the difference in latency between the two datasets.

The key takeaway from these results is that ScienceSearch can serve multiple

clients at the same time minimizing the side effects of workload imbalance.

5.3.6 Spin Infrastructure vs Dedicated Testbed. This subsection covers the

latency and throughput experiments that were run on the single node system called

Perth, on which ScienceSearch was deployed exclusively. ScienceSearch performs

better by a small degree on Perth than on Spin, and that could be attributed to

different factors, including hardware specification, infrastructure particularities and

the lack of interference caused by other applications.

Figure 5.12a shows that for Query Set 1, the system can end up achieving a

latency of under 2 seconds, when configured with at least 20 parallel worker processes.

For Query Set 2 (Figure 5.12b), the latency can go as low as approximately 11.5

seconds when using 32 parallel worker processes.

101

(a) Average latency for Query Set 1. (b) Average latency for Query Set 2.

Figure 5.12. (a) Average query latency for Query Set 1 on Spin and Perth. (b)
Average query latency for Query Set 2 on Spin and Perth.

In terms of throughput, the lack of overhead from the storage system and

the lack of interference allows ScienceSearch to reach up to 134 queries/minute while

running 32 concurrent targeted queries and roughly 42 queries/minute while running

32 concurrent Query Set 2 queries. As seen in Figure 5.13, the dip in throughput

while running 20 concurrent Query Set 2 queries is caused by the fact that we ran 96

queries which does not divide exactly to 20.

(a) Query throughput for Query Set 1. (b) Query throughput for Query Set 2.

Figure 5.13. (a) Average query throughput for Query Set 1 on Spin and Perth. (b)
Average query throughput for Query Set 2 on Spin and Perth

102

It can be observed from the latency and throughput experiments, that the

performance of ScienceSearch plateaus halfway through the number of available cores

on all testbeds. From Figures 5.12, we can see that latency does not seem to decrease

at the same speed after 12 cores when running on Spin and Perth. This can be

attributed to the fact that in each experiment, the number of processes created is

in practice double the amount of configured parallel workers processes. The above

results in reaching the limit of available cores for both testbeds, while in fact only half

of them belong to ScienceSearch’s backend. The other half belong to the database,

that spawns a process for each parallel work process. The same effect can be observed

in Figures 5.13 that encompasses the throughput experiments. After 12 cores for Spin

and Perth, throughput does not increase as fast as before the number of cores get

over-provisioned with processes.

5.4 Discussion

In this section, we discuss key insights from our experiences and results. We

focus our analysis on six key elements of ScienceSearch: a) Spin and it’s underlying

mechanisms that export HPC resources to ScienceSearch’s deployment, b) internal

load balancing and c) adaptive resource scaling that are necessary for dealing with

open-ended queries, d) the effect of structures used in data representation and size in

Python3, e) the strengths of ScienceSearch as a solution for performing search over

scientific data and f) finally a discussion about how future hardware could further

improve the performance of ScienceSearch.

5.4.1 Spin. HPC facilities ingest data at increasingly rapid rates (in some cases

exceeding petabytes) increasing the demand for solutions that will enable scientific

search. Supercomputing facilities are providing platforms such as Spin that enable

atypical software stack deployment on HPC resources while benefiting from the re-

sources at the center. Deploying our infrastructure on Spin allows us to access HPC

103

network, storage, and compute resources.

Spin has been critical to enable the ScienceSearch infrastructure at the HPC

facility. ScienceSearch is designed to be deployed as a service that is available all

the time, without the need to re-compute indexes and re-learn metadata tags every

time a user issues a search. This is different from existing search solutions that are

implemented as a library or a program that runs ephemerally either on the logins

nodes or on the actual supercomputer, and that usually requires at least the index to

be reloaded in memory.

We observe from Figures 5.12a and 5.12b that between Spin, a shared multi-

user supercomputer infrastructure, and the single node testbeds, ScienceSearch ex-

hibits similar performance trends, albeit at slightly different latency. The latency

discrepancy can be explained by the underlying hardware, (faster CPU, memory)

but also by the inherent latency of the two different infrastructures. We know that

ScienceSearch is latency-sensitive, thus the remote storage volume that Spin provides

and which the search platform uses, will induce a certain, latency penalty when con-

trasted to local storage (remote storage has the added latency of both network and

storage). On the other hand, ScienceSearch was designed to run on Spin and can

exploit the inherent benefits that come with it: mobility, fault tolerance and scalabil-

ity. The database has its data stored over the network, and can easily be moved to

another compute host, enabling ScienceSearch to achieve mobility.

Fault tolerance and scalability are accomplished through the use of multiple

instances, either for the front-end or the back-end, but as well as for the database, that

can easily be deployed on multiple hosts, while data can be protected against faults

and scaled up independently. Of course upgrading the hardware to faster counterparts

and increasing the number of compute units, while fixing the load balance issue, could

easily lead to better performance. However, the benefits of running ScienceSearch in

104

the current infrastructure far outweigh the cost.

Our extensive performance evaluation has unveiled some key challenges that

will make scalability difficult as data sizes increase. Achieving network performance

across the containers is still hard and impedes our ability to deploy database instances

across multiple nodes and scale. Currently, Spin encrypts communication between

containers that are located in different physical nodes by default. The encryption

significantly reduces available throughput and the ability to transfer data from the

database instance to the back-end container executing search. Meeting security re-

quirements while achieving performance will be critical for future scaling.

5.4.2 Search Engine Internal Load Balancing. Our evaluation results have

demonstrated that the root cause of increased latency for open-ended queries, is

the uneven distribution of results between workers before ranking (see Figure 5.10).

In order to ensure low query latency for large scientific datasets, a scalable search

infrastructure needs to achieve adequate load balancing of query matches between

search workers. In the context of a master-worker search model, load balancing can

be achieved by placing intermediate matches in a common queue and coordinating

redistribution between idle workers. The common queue operations might introduce

some overheads that will need to be considered.

Currently, in-node parallelism reduces query latency (Figure 5.8) by a factor

of 3. However, enabling search over a significantly larger dataset would require across-

node parallelism. To address this issue a master-worker deployment can be utilized

where multiple search and database instances are spawned by a master search process.

5.4.3 Adaptive Resource Scaling. During the initial deployment phase of

ScienceSearch open-ended queries were unable to complete, causing system wide ex-

ceptions and memory leaks. The underlying exceptions were attributed to the high

105

number of metadata instances that workers had to manage after the initial load distri-

bution phase, i.e., the rank metadata tags step. We addressed this issue by introducing

a second level of adaptive parallelism. Adaptive parallelism is necessary for serving

open-ended queries hence enabling scalable exploration of the scientific search space.

In order to be scale dynamically depending on the query, adaptive resource

scaling is necessary. Search architectures need to be able to elastically provision HPC

resources for serving computationally demanding searches and release those resources

when they are no longer needed. While this is a common resource usage model for

cloud computing, is difficult or impossible to do in most current HPC systems. It is

critical for HPC facilities to provide abstractions to enable adaptive resources scaling

while keeping utilization high.

5.4.4 Data Representation & Sizes. During the recreate metadata tags step 5.1.3

the metadata instances are generated from the filtered indexed metadata tags in a

one-to many fashion (one filtered indexed metadata tag can have many associated

metadata instances), which results in a large number of objects that need to be

processed by each worker. Introducing an intermediate ranking step would reduce

the objects number and thus the overall latency for all queries, especially the open-

ended queries.

One of the key findings in our evaluation process is that the total size of each

metadata instance (and subsequent memory footprint of the parallel search worker) is

greatly increased (sometimes by 9x) due to the object representation in Python3 by

Django (Tables 5.5, 5.6). As we use these frameworks in HPC environments, we will

need to investigate appropriate optimizations. One solution that partially mitigates

the memory overhead issue (especially for Python dictionaries) is the use of alternate

data structures such as slots or namedtuples.

106

5.4.5 ScienceSearch Performance. ScienceSearch provides specific advantages

to the the problem of implementing search engines over domain specific scientific data

found in HPC systems. ScienceSearch’s novelty is its mechanism for combining and

correlating information from data with other data sources, such as research papers,

images, proposals, calendar entries. This is accomplished through a set of deep learn-

ing and natural language processing algorithms employed by ScienceSearch, that are

used to generate metadata tags. The majority of classical search engines designs

and architectures [17] assume the input data to be a collection of data sources that

area flat domain of input data where the collection of data sources are homogeneous

in structure and semantics, and ScienceSearch innovates in this area by providing a

mechanism for combining structurally and semantically different data sources.

Vertical scalability is an inherent property of the ScienceSearch design and

architecture, while horizontal scalability is achieved through container platforms that

can make use of HPC hardware, such as Spin. In this work, we emphasize on the

vertical scalability of ScienceSearch and pinpoint techniques used for achieving good

scalability and performance, such as the adaptive two-level parallelism technique. Sci-

enceSearch can also achieve horizontal scalability, due to its decomposition of com-

pute, storage and interface components into containers. ScienceSearch can decide

how many containers of each type can run in a deployment.

For targeted queries ScienceSearch can achieve query latency as low as 2.5 sec-

onds, which is satisfactory, given that the current users had no search engine solution

available and thus no means to search over their data. Existing solutions, such as

Apache Lucene advertise to achieve sub-second query latency, but when comparing

ScienceSearch to existing solutions, we have to keep in mind the different indexing and

query pipelines and the differences in the inverted index structure that ScienceSearch

employs that adds additional overhead but provides a richer and more meaningful

107

user experience for scientific data.

5.4.6 Impact of Future Hardware. While the performance of the Science-

Search platform does not solely depend on a set of hardware properties, as shown

by the experiments across different testbeds, ScienceSearch can still benefit from

the performance improvements of computer hardware (CPU, memory, storage and

network). Some immediate improvements in performance stem from, as mentioned

in subsection 5.4.1, from better inter-container communication through a network

that maintains a certain degree of security and isolation without significantly sacri-

ficing performance. Using hardware solutions such as VLANs could alleviate many

performance bottlenecks either from the network devices, the operating systems or

the container hypervisor, while still retaining the similar security properties to IPsec

without the need for encryption.

Other more system-wide improvements could come from the development and

adoption of exotic hardware. For example NVIDIA’s emerging [42] (DPU) could be

used to improve the performance and scalability of HPC applications by providing the

means to overlap communication with computation [43]. UPMEM have been working

on Processing-in-Memory PIM [44] devices that could be used to accelerate database

query processing [45] by moving computation to where data resides (i.e. memory

DIMMS) and by avoiding bringing the data to where computation is performed (i.e.

the CPU). These are just two examples of future technologies that ScienceSearch

could exploit in order to achieve even higher performance and scalability.

5.5 Conclusion

We present a detailed evaluation of ScienceSearch’s underlying infrastructure.

Our results have shown that ScienceSearch can serve up to 130 queries per minute

while keeping latency around 2.5 seconds for typical user queries (where results are in

108

the hundreds). In order to deal with the increased number of results from open-ended

queries, we have introduced an additional level of parallelism that load balances both

object recreation and ranking.

Our work also provides considerations and insights in the design and support

of search systems on HPC systems. While a container-based infrastructure at an

HPC infrastructure lets us leverage the high-performance filesystem, it provides other

challenges with performance that need to be considered by applications. We also

highlight the need and opportunity for adaptive resource scaling, considerations of

data representation in memory.

109

CHAPTER 6

RELATED WORK

In this chapter, we talk about existing work in the areas of data retrieval and

date indexing. We cover exiting work in information retrieval, inverted index design

and search engine design, including a few domain specific search solutions from various

scientific research projects.

6.1 Data Indexing and Retrieval

Indexing has been long studied in database systems [46]. In such systems

data is organized according to a pre-determined model. Adapting this approach to

the context of unstructured data that is dispersed amongst multiple nodes, suddenly

becomes more challenging. In the following paragraphs, we review different solutions

and research projects that tackle the problem of indexing in distributed systems.

One study follows the implementation of a B+-tree-based indexing scheme [47],

in which a structured overlay is constructed over the nodes. The overlay is kept up

to date by local indexes in accordance with the data on each node. Clients are able

to query the overlay using an adaptive selection algorithm. This solution is based on

previous work on distributed b-trees [48], with modifications to address the needs of

cloud computing environments.

Another study, uses the same model of building an overlay over the nodes

found in a cluster, using R-trees and a custom routing protocol [49]. This approach

leverages a query-conscious cost model, that selects beneficial local R-tree nodes for

publishing to the overlay. This scheme was designed to work well in power-aware

cloud computing environments (e.g., epiC [50]).

A different approach, named GLIMPSE [51], employs partial inverted indexes

that consume smaller disk space than a full-text-inverted index. Geometric partition-

110

ing [52] also manipulates inverted indexes by splitting it according to updating time

so to reduce the update overhead. Similarly, query-based partitioning [53] categorizes

inverted indexes based on access and query frequency.

Recent prior work [54] have also looked at orthogonal issues in optimizing

search performance, by reducing the network load in large-scale distributed systems

in one-to-many and many-to-one communication patterns, commonly found in dis-

tributed search. We found that spanning trees are more efficient than direct one-

to-many communication, allowing search queries to propagate to many distributed

indexes much faster with lower costs.

6.2 Search Engine Design

Other research focuses on the high-level indexing pipeline and the integration

of indexing and search in existing parallel and distributed file systems. TagIt is

one such project [55, 8, 56], that implements a scalable data management service

framework for scientific datasets, that is integrated with the underlying distributed

file systems that house the scientific datasets. The framework relies on a scalable

and distributed metadata indexing framework, that can index file system related

metadata as well as custom metadata created by the users, under the form of tags,

that can aid data discovery. The authors aim at making the indexing framework not

reside on external hardware, the same way catalog solutions do, but tightly integrate

it with the distributed components of the file system and making use of file extended

attributes. But ultimately the proposed indexing framework is implemented as a

collection of distributed databases, making this solution appropriate for structured

and semi-structured data, but more difficult to use for unstructured free-text data,

where inverted indexes are a better choice. TagIt was integrated with and evaluated

on GlusterFS and CephFS, and while the overall service was able to achieve good

performance with minimal overhead, due to optimizations such as data and index

111

co-location and asynchronous processing and communication, we suggest that there

is still room for improvement at the low level design of the indexing framework at

that single-node level, which could accelerate high-level solutions even more beyond

what they can currently achieve. Other existing works from the HPC domain (e.g.

GUFI [7, 57, 58]) has also aimed to tackle the indexing and search problem focusing

on metadata as opposed to the scientific data itself, while other look at providing

indexing and search over persistent memory object storage [59, 60]. We believe both

the metadata and data are both critical components to better accessibility of scientific

data.

One of the more important parts of an information retrieval solution or search

engine, that can directly influence the performance of the index and search processes,

is the design and implementation of the inverted index. The inverted index uses

one or more search data structures as its constituent components in addition to the

other data structures used to store any kind of information related to the entries in

the inverted index. There are researchers who actively look at how to design and

implement the inverted index for a specific dataset or application. MIQS [61] is a

solution that aims to efficiently index self-describing data formats, such as HDF5

and netCDF, through the use of a custom in-memory index implementation. MIQS

provides a portable and schema-free solution that is aligned with the paradigm of

self-describing data, and it uses a combination of search trees to build the index.

Cavast [62] is a another project that aims to improve the performance of

in-memory key-value stores, through a re-design of hash table implementation, in

order to better exploit the CPU caches and memory subsystem. Cavast achieves this

through a combination of methods and techniques: the separation of key and value

placement in memory, laying out the hash table elements in memory so that they

can better benefit from cache locality and exposing the kernel cache coloring scheme,

112

to name a few. Other existing works from HPC look at redesigning search tree data

structures stored on persistent memory in order to make them NUMA aware, and

thus avoid the performance overhead of inter-NUMA communication [63]. While

we acknowledge the importance of the search data structure, we emphasize that the

search data structure alone cannot guarantee high indexing performance and that

the inverted index needs to be designed and implemented as a scalable and tightly

coupled combination of search data structure and inverted index.

Numerous works evaluate the scalability of search infrastructures mainly fo-

cusing on the indexing and query processing parts. ElasticSearch [64] provides a set of

dedicated metrics that measure query processing time, latency and throughput while

indexing performance is measured using indexing and flush latency. Solr [65] features

built in timers for query latency and indexing performance. Apache Lucene [66] has

been used as a core building block for scientific search engines and information re-

trieval tools. The authors in [67] evaluate the scalability of Anserini, a Lucene-based

information retrieval tool, by creating custom benchmarks for indexing and ranking.

The presented solutions are limited in providing only horizontal scaling and do not

comprehensively evaluate all scalability aspects.

6.3 Search in Science

Indexing and search in large high-performance file systems is not a problem

that is solely specific to search engine applications, but other domain specific applica-

tions could also benefit from having an efficient indexing and search service that runs

well on HPC systems. Genomics research is a field that could benefit from efficient

indexing methods, and there is work that looks, for example, at ways to improve the

performance of DNA k-mer sequence counting using indexing techniques [68]. In the

mentioned work, the authors propose two distributed parallel hash table techniques.

These two techniques are optimized to use cache friendly algorithms for hashing,

113

to overlap computation with communication in order to hide latency and to use a

vector-based computation technique to compute the hashes of many k-mer indices.

Their solutions can process 1TB over 4096 cores in 11.8 and 5.8 seconds, demonstrat-

ing high improvements over the state-of-the-art. We argue that an efficient indexing

framework, with an exposed indexing pipeline, should be able to achieve, after tuning

of course, similar if not better performance to the two proposed solutions, while still

maintaining enough generality to be easily used in other scenarios.

Numerous research efforts have tried to address the issue of scientific search

capabilities. The Materials Project [69] enables search over an individual material’s

characteristics, while KBase [70] provides search capabilities over systems biology

data. LODAtlas [71] enables users to discover datasets of interest by facilitating

content and metadata based search. Finally, Thalia [72] is a search infrastructure that

enables semantic search in biomedical literature based on named entity recognition.

However, none of the proposed solutions provide scalable search environments that

can host vastly growing amounts of data and provide low latency search results and

can’t be used to compare our infrastructure.

Data Search [73] provides a scalable solution for metadata management but the

system does not automatically infer or create metadata from the ingested datasets.

The ability to reliably handle parallel job execution led to the adoption of MapRe-

duce/Hadoop [39, 40] for large parallel searches by different projects [74, 75].

Recent research efforts have tried to enable scalable search capabilities for sci-

entific portals. Varsome [76] created a a search engine for human genomics variants

that provides search over 500 million variant records. However, the deployed solution

does not scale since Varsome stores every record in a massive database. In [77] the

authors present a scalable search engine for geospatial data that utilizes indexing

shards in order to provide low-latency search results. CellAtlasSearch [78] enable

114

search over thousands of cell profiles. Their approach relies on specific hardware

(GPUs) to achieve low latency results for queries. The authors of [79] built Visi-

biome, a scalable search architecture for microbiomes. Their solution is a distributed

web application that only scales horizontally when dealing with increased number of

parallel queries.

115

CHAPTER 7

CONCLUSION AND FUTURE WORK

The ubiquitous nature of big data has resulted in the development of highly

scalable parallel and distributed file systems. As such, researchers and engineers can

now efficiently store and manage petabytes of data. However, while much research

effort has focused on the methods to efficiently store and process data, there has

been little focus on data indexing and discovery. Thus, users of large file systems are

increasingly frustrated at their inability to easily locate data. In order to address the

general problem of efficient and effective data exploration and search in large-scale

storage systems, we initially defined the problem space, through an analysis and char-

acterization of several scientific production file systems. The analysis highlighted the

magnitude of the challenge when indexing large quantities of data. We then explored

the prospect of using existing search engine building blocks, such as CLucene, to build

and integrate search capabilities into a distributed file system over unstructured data.

The resulting solution, called FusionDex, achieved better search latency than existing

cloud solutions, but hinted towards data indexing becoming a potential bottleneck

for increasing data volumes.

In order to solve the problem of data indexing, we proposed SCANNS, a index-

ing and search framework that uses a novel tokenization method and a novel inverted

index design, and that exposes the indexing pipeline allowing the user to saturate

compute, memory and storage resources of single-node high-end systems, charac-

terized by many cores, multiple NUMA nodes and multiple NVMe storage devices.

When then switched focus to ScienceSearch, a search platform used in production

at NERSC, that uses machine learning and natural language processing to generate

metadata tags for data provided from various sources, such as published papers, pro-

posals, images and file system structure. We conducted a performance evaluation

116

of the ScienceSearch infrastructure in order to better understand the implications

and performance considerations of searching over an index that is build from learned

metadata tags.

Drawing from the insights gained from SCANNS, we explored the problem of

building persistent indexes and of efficiently searching persistent indexes. We pro-

posed SCIPIS, a single-node indexing and search framework, that builds on top of

SCANNS and extends it by adding support for efficiently building persistent indexes

and processing TFIDF queries over them on high-end computing systems. SCIPIS

also introduced new tuning parameters that open up a new dimension for adapting

the framework and the inverted index to the characteristics of the input data, allow-

ing SCIPIS to better utilize the index memory space and to yield higher indexing

throughput than SCANNS.

In terms of future work we plan to explore methods for distributing indexing

and search to scale to some of the largest HPC storage systems available. We will

be using SCIPIS as the building block and we will study the problems of adding

the network resources to indexing and search, and the problem of organizing the

index across multiple machines. We will also look into the problems of running

and maintaining an indexing and search system in the context of scientific data and

storage systems, but also the problem of how do we interface indexing and search

with existing systems and users. Specifically, we will investigate integration of the

distributed SCIPIS system into parallel and distributed storage systems to enable

automatic metadata and data indexing and search.

117

BIBLIOGRAPHY

[1] A. Bia lecki, R. Muir, G. Ingersoll, and L. Imagination, “Apache lucene 4,” in
SIGIR 2012 workshop on open source information retrieval, p. 17, 2012.

[2] D. Shahi, “Apache solr: an introduction,” in Apache Solr, pp. 1–9, Springer,
2015.

[3] C. Gormley and Z. Tong, Elasticsearch: the definitive guide: a distributed real-
time search and analytics engine. ” O’Reilly Media, Inc.”, 2015.

[4] S. Khalsa, P. Cotroneo, and M. Wu, “A survey of current practices in data search
services,” Research Data Alliance Data (RDA) Discovery Paradigms Interest
Group, 2018.

[5] Datanyze, “Enterprise search software market share.”
https://www.datanyze.com/market-share/enterprise-search–287.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file
system,” in 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pp. 1–10, Ieee, 2010.

[7] D. J. Bonnie, “Gufi overview,” tech. rep., Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2018.

[8] A. K. Paul, B. Wang, N. Rutman, C. Spitz, and A. R. Butt, “Efficient meta-
data indexing for hpc storage systems,” in 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 162–171,
IEEE, 2020.

[9] P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,” in
Proceedings of the 2003 Linux symposium, vol. 2003, pp. 380–386, 2003.

[10] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large computing
clusters,” in Proceedings of the 1st USENIX Conference on File and Storage
Technologies, FAST ’02, (USA), p. 19–es, USENIX Association, 2002.

[11] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph:
A scalable, high-performance distributed file system,” in Proceedings of the 7th
symposium on Operating systems design and implementation, pp. 307–320, 2006.

[12] K. Chard, I. Foster, and S. Tuecke, “Globus: Research data management as
service and platform,” in Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact, pp. 1–5, 2017.

[13] B. Blaiszik, K. Chard, R. Chard, I. Foster, and L. Ward, “Data automation
at light sources,” in AIP Conference Proceedings, vol. 2054, p. 020003, AIP
Publishing, 2019.

[14] R. Cook, W. K. Michener, D. A. Vieglais, A. E. Budden, and R. J. Koskela,
“Dataone: A distributed environmental and earth science data network support-
ing the full data life cycle,” in EGU General Assembly Conference Abstracts
(A. Abbasi and N. Giesen, eds.), EGU General Assembly Conference Abstracts,
2012.

118

[15] “Sdss data release 17: Data volume table”,” 2021.
https://www.sdss.org/dr17/data access/volume/.

[16] R. Ahumada, C. A. Prieto, A. Almeida, F. Anders, S. F. Anderson, B. H. An-
drews, B. Anguiano, R. Arcodia, E. Armengaud, M. Aubert, et al., “The 16th
data release of the sloan digital sky surveys: First release from the apogee-2
southern survey and full release of eboss spectra,” The Astrophysical Journal
Supplement Series, vol. 249, no. 1, p. 3, 2020.

[17] R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information retrieval, vol. 463.
ACM press New York, 1999.

[18] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M. Hategan, S. Kenny,
K. Iskra, P. Beckman, and I. Foster, “Extreme-scale scripting: Opportunities
for large task-parallel applications on petascale computers,” Journal of Physics:
Conference Series, vol. 180, no. 1, 2009.

[19] K. Wang, A. Rajendran, K. Brandstatter, Z. Zhang, and I. Raicu, “Paving the
road to exascale with many-task computing,” 2012.

[20] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C. M. Moretti, A. Chaudhary,
and D. Thain, “Towards data intensive many-task computing,” in Data Intensive
Distributed Computing: Challenges and Solutions for Large-scale Information
Management, pp. 28–73, 2012.

[21] “International data corporation,” 2017. https://www.emc.com/collateral/analyst-
reports/idc-extracting-value-from-chaos-ar.pdf.

[22] A. I. Orhean, I. Ijagbone, I. Raicu, K. Chard, and D. Zhao, “Toward scalable
indexing and search on distributed and unstructured data,” in 2017 IEEE Inter-
national Congress on Big Data (BigData Congress), pp. 31–38, IEEE, 2017.

[23] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed
file system,” MSST ’10 Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), pp. 1–10, 2010.

[24] “Myria,” 2017. http://myria.cs.washington.edu.

[25] D. Zhao, N. Liu, D. Kimpe, R. Ross, X.-H. Sun, and I. Raicu, “Towards explor-
ing data-intensive scientific applications at extreme scales through systems and
simulations,” IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 6, pp. 1824–1837, 2016.

[26] T. Li, X. Zhou, K. Wang, D. Zhao, I. Sadooghi, Z. Zhang, and I. Raicu, “A
convergence of key-value storage systems from clouds to supercomputers,” Con-
currency and Computation: Practice and Experience (CCPE) Journal, vol. 28,
no. 1, pp. 44–69, 2015.

[27] “Clucene,” 2017. http://clucene.sourceforge.net.

[28] “Hadoop grep,” 2017. https://wiki.apache.org/hadoop/Grep.

[29] “Mapreduce index tool,” 2017. http://www.cloudera.com/documentation/archive/
search/1-3-0/Cloudera-Search-User-Guide/fcsug mapreduceindexertool.html.

119

[30] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush,
P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. Dewitt, B. Heath, D. Maier,
S. Madden, M. Stonebraker, and S. Zdonik, “A demonstration of scidb: A
science-oriented dbms,” in VLDB’09: Proceedings of the 2009 VLDB Endow-
ment, VLDB Endowment, 2009.

[31] “Apache lucene,” 2017. https://lucene.apache.org.

[32] “Wikipedia data download,” 2017. https://en.wikipedia.org/wiki/Wikipedia:
Database download.

[33] A. I. Orhean, A. Giannakou, L. Ramakrishnan, K. Chard, and I. Raicu, “Scanns:
Towards scalable and concurrent data indexing and searching in high-end com-
puting system,” in 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), pp. 51–60, IEEE, 2022.

[34] S. Benzaquen, A. Evlogimenos, M. Kulukundis, and R. Perepelitsa, “Abseil,”
2021. https://abseil.io/about/design/swisstables.

[35] S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: a large collection of system log
datasets towards automated log analytics,” arXiv preprint arXiv:2008.06448,
2020.

[36] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,
A. Thite, N. Nabeshima, et al., “The pile: An 800gb dataset of diverse text for
language modeling,” arXiv preprint arXiv:2101.00027, 2020.

[37] G. P. Rodrigo, M. Henderson, G. H. Weber, C. Ophus, K. Antypas, and L. Ra-
makrishnan, “Sciencesearch: Enabling search through automatic metadata gen-
eration,” in 2018 IEEE 14th International Conference on e-Science (e-Science),
pp. 93–104, IEEE, 2018.

[38] L. Ramakrishnan, A. I. Orhean, M. Henderson, G. Rodgrigo Alvarez, A. Gi-
annakou, G. Weber, and K. Antypas, “Sciencesearch metadata infrastructure
(sciencesearch-mi) v1. 2,” tech. rep., Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States), 2020.

[39] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51, p. 107–113, Jan. 2008.
https://doi.org/10.1145/1327452.1327492.

[40] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 4th ed., 2015.

[41] A. I. Orhean, A. Giannakou, K. Antypas, I. Raicu, and L. Ramakrishnan, “Eval-
uation of a scientific data search infrastructure,” in Concurrency and Computa-
tion: Practice and Experience, 2022.

[42] I. Burstein, “Nvidia data center processing unit (dpu) architecture,” in 2021
IEEE Hot Chips 33 Symposium (HCS), pp. 1–20, IEEE, 2021.

[43] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Maqbool Hashmi, and D. K.
Panda, “Bluesmpi: Efficient mpi non-blocking alltoall offloading designs on mod-
ern bluefield smart nics,” in International Conference on High Performance Com-
puting, pp. 18–37, Springer, 2021.

120

[44] V. Zois, D. Gupta, V. J. Tsotras, W. A. Najjar, and J.-F. Roy, “Massively paral-
lel skyline computation for processing-in-memory architectures,” in Proceedings
of the 27th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’18, (New York, NY, USA), Association for Computing Ma-
chinery, 2018. https://doi.org/10.1145/3243176.3243187.

[45] T. R. Kepe, E. C. de Almeida, and M. A. Z. Alves, “Database processing-
in-memory: An experimental study,” Proc. VLDB Endow., vol. 13, no. 3,
p. 334–347, 2019. https://doi.org/10.14778/3368289.3368298.

[46] E. Bertino, B. C. Ooi, R. Sacks-Davis, K.-L. Tan, J. Zobel, B. Shidlovsky, and
D. Andronico, Indexing techniques for advanced database systems. Kluwer Aca-
demic Publishers, 2012.

[47] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient b-tree based indexing for
cloud data processing,” Proc. VLDB Endow., vol. 3, Sept. 2010.

[48] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable distributed
b-tree,” Proc. VLDB Endow., vol. 1, no. 1, pp. 598–609, 2008.

[49] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-dimensional data
in a cloud system,” in Proceedings of ACM SIGMOD International Conference
on Management of Data, pp. 591–602, 2010.

[50] “Elastic power-aware data-intensive cloud,” 2017.
http://www.comp.nus.edu.sg/ epic.

[51] U. Manber and S. Wu, “Glimpse: A tool to search through entire file systems,”
in USENIX Winter Technical Conference, pp. 4–4, 1994.

[52] N. Lester, A. Moffat, and J. Zobel, “Fast on-line index construction by geometric
partitioning,” in Proceedings of ACM International Conference on Information
and Knowledge Management, pp. 776–783, 2005.

[53] S. Mitra, M. Winslett, and W. W. Hsu, “Query-based partitioning of documents
and indexes for information lifecycle management,” in Proceedings of ACM In-
ternational Conference on Management of Data, pp. 623–636, 2008.

[54] J. Wu, S. Chafle, and I. Raicu, “Optimizing search in un-sharded large-scale
distributed systems,” IEEE/ACM SuperComputing/SC, 2016.

[55] H. Sim, Y. Kim, S. S. Vazhkudai, G. R. Vallée, S.-H. Lim, and A. R. Butt, “Tagit:
an integrated indexing and search service for file systems,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–12, 2017.

[56] H. Sim, A. Khan, S. S. Vazhkudai, S.-H. Lim, A. R. Butt, and Y. Kim, “An
integrated indexing and search service for distributed file systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 31, no. 10, pp. 2375–2391, 2020.

[57] G. A. Grider, D. A. Manno, W. K. Poole, D. J. Bonnie, and J. T. Inman, “Grand
unified file indexing,” tech. rep., Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2021.

121

[58] D. Manno, J. Lee, P. Challa, Q. Zheng, D. Bonnie, G. Grider, and B. Settle-
myer, “Gufi: fast, secure file system metadata search for both privileged and
unprivileged users,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–14, IEEE, 2022.

[59] A. Khan, H. Sim, S. S. Vazhkudai, J. Ma, M.-H. Oh, and Y. Kim, “Per-
sistent memory object storage and indexing for scientific computing,” in
2020 IEEE/ACM Workshop on Memory Centric High Performance Comput-
ing (MCHPC), pp. 1–9, IEEE, 2020.

[60] A. Khan, H. Sim, S. S. Vazhkudai, and Y. Kim, “Mosiqs: Persistent memory
object storage with metadata indexing and querying for scientific computing,”
IEEE Access, vol. 9, pp. 85217–85231, 2021.

[61] W. Zhang, S. Byna, H. Tang, B. Williams, and Y. Chen, “Miqs: Metadata
indexing and querying service for self-describing file formats,” in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–24, 2019.

[62] K. Wang, J. Liu, and F. Chen, “Put an elephant into a fridge: optimizing cache
efficiency for in-memory key-value stores,” Proceedings of the VLDB Endowment,
vol. 13, no. 9, 2020.

[63] S. Jamil, A. Salam, A. Khan, B. Burgstaller, S.-S. Park, and Y. Kim, “Scalable
numa-aware persistent b+-tree for non-volatile memory devices,” Cluster Com-
puting, pp. 1–17, 2022.

[64] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide. O’Reilly Media,
Inc., 1st ed., 2015.

[65] Apache Solr, 2020 (accessed January 22, 2020). https://lucene.apache.org/solr/.

[66] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Second
Edition: Covers Apache Lucene 3.0. Greenwich, CT, USA: Manning Publications
Co., 2010.

[67] P. Yang, H. Fang, and J. Lin, “Anserini: Enabling the use of lucene
for information retrieval research,” in Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR ’17, (New York, NY, USA), pp. 1253–1256, ACM, 2017.
http://doi.acm.org/10.1145/3077136.3080721.

[68] T. C. Pan, S. Misra, and S. Aluru, “Optimizing high performance distributed
memory parallel hash tables for dna k-mer counting,” in SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 135–147, IEEE, 2018.

[69] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia,
D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The materi-
als project: A materials genome approach to accelerating materials innovation,”
APL Materials, vol. 1, no. 1, p. 011002, 2013. https://doi.org/10.1063/1.4812323.

[70] R. W. Cottingham, “The doe systems biology knowledgebase (kbase): Progress
towards a system for collaborative and reproducible inference and modeling of
biological function,” in Proceedings of the 6th ACM Conference on Bioinformat-
ics, Computational Biology and Health Informatics, BCB ’15, (New York, NY,
USA), pp. 510–510, ACM, 2015. http://doi.acm.org/10.1145/2808719.2811433.

122

[71] E. Pietriga, H. Gözükan, C. Appert, M. Destandau, Š. Čebirić, F. Goasdoué,
and I. Manolescu, “Browsing linked data catalogs with lodatlas,” in The Se-
mantic Web – ISWC 2018 (D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa,
V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, and E. Simperl, eds.), (Cham),
pp. 137–153, Springer International Publishing, 2018.

[72] P. Przybyla, A. J. Soto, and S. Ananiadou, “Identifying personalised treatments
and clinical trials for precision medicine using semantic search with thalia,” in
TREC, 2018.

[73] D. Brickley, M. Burgess, and N. Noy, “Google dataset search: Building a
search engine for datasets in an open web ecosystem,” in The World Wide Web
Conference, WWW ’19, (New York, NY, USA), pp. 1365–1375, ACM, 2019.
http://doi.acm.org/10.1145/3308558.3313685.

[74] B. Pratt, J. J. Howbert, N. I. Tasman, and E. J. Nilsson, “MR-Tandem: parallel
X!Tandem using Hadoop MapReduce on Amazon Web Services,” Bioinformatics,
vol. 28, no. 1, pp. 136–137, 2011. https://doi.org/10.1093/bioinformatics/btr615.

[75] S. Lewis, A. Csordas, S. Killcoyne, H. Hermjakob, M. R. Hoopmann, R. L.
Moritz, E. W. Deutsch, and J. Boyle, “Hydra: a scalable proteomic search engine
which utilizes the hadoop distributed computing framework,” BMC bioinformat-
ics, vol. 13, no. 1, pp. 1–6, 2012.

[76] C. Kopanos, V. Tsiolkas, A. Kouris, C. E. Chapple, M. Albarca Aguil-
era, R. Meyer, and A. Massouras, “VarSome: the human genomic vari-
ant search engine,” Bioinformatics, vol. 35, no. 11, pp. 1978–1980, 2018.
https://doi.org/10.1093/bioinformatics/bty897.

[77] P. Corti, A. T. Kralidis, and B. Lewis, “Enhancing discovery in spatial data
infrastructures using a search engine,” PeerJ Computer Science, vol. 4, p. e152,
2018.

[78] D. Srivastava, A. Iyer, V. Kumar, and D. Sengupta, “CellAtlasSearch: a scal-
able search engine for single cells,” Nucleic Acids Research, vol. 46, no. W1,
pp. W141–W147, 2018. https://doi.org/10.1093/nar/gky421.

[79] S. K. Azman, M. Z. Anwar, and A. Henschel, “Visibiome: an efficient microbiome
search engine based on a scalable, distributed architecture,” BMC Bioinformat-
ics, vol. 18, p. 353, July 2017. https://doi.org/10.1186/s12859-017-1763-0.

