
SCANNS: Towards Scalable and Concurrent Data Indexing
and Searching in High-End Computing System

Alexandru Iulian Orhean
College of Computing

Illinois Institute of Technology
aorhean@hawk.iit.edu

Anna Giannakou
Scientific Data Division

Lawrence Berkeley National Lab
agiannakou@lbl.gov

Lavanya Ramakrishnan
Scientific Data Division

Lawrence Berkeley National Lab
lramakrishnan@lbl.gov

Kyle Chard
Department of Computer Science

University of Chicago
chard@uchicago.edu

Ioan Raicu
College of Computing

Illinois Institute of Technology
iraicu@cs.iit.edu

Abstract—Increasing data volumes, particularly in science and
engineering, has resulted in the widespread adoption of parallel
and distributed file systems for data storage and access. However,
as file system sizes and the amount of data “owned” by users
has grown, it is increasingly difficult to discover and locate data
amongst the terabytes or petabytes of accessible data. While it
is now routine to search for data on a personal computer or
discover data online at the click of a button, there is no such
equivalent method for discovering data on large parallel and
distributed file systems in high-performance computing systems.
Popular search solutions, such as Apache Lucene, were designed
and implemented to run on commodity hardware thus posing
significant limitations in achieving good efficiency on large-scale
storage systems with many-core architectures, multiple NUMA
nodes, and multiple NVMe storage devices. In this work we revisit
and propose methods and techniques to support efficient indexing
of data in order to enable search. We propose SCANNS, an
indexing framework that can exploit the properties of modern
high-performance computing systems delivering an order of
magnitude better performance. SCANNS supports out-of-the-
box Term Frequency-Inverse Document Frequency information
retrieval model. We evaluate SCANNS on the Mystic system
with configurations up to 192-cores, 768GiB of RAM, 8 NUMA
nodes, and up to 16 NVMe drives, and achieved performance
improvements up to 19x better indexing while delivering up to
280X lower search latency when compared to Apache Lucene.

Index Terms—search engine architecture, high-performance
indexing, high-performance storage, scientific data

I. INTRODUCTION

Rapid advances in digital sensors, networks, storage, and
computation coupled with decreasing costs is leading to the
creation of huge collections of data—commonly referred to as
“Big Data.” Increasing data volumes, particularly in science
and engineering, has resulted in the widespread adoption of
parallel and distributed filesystems for storing and accessing
data efficiently. However, as filesystem sizes and the amount
of data “owned” by users grows, it is increasingly difficult to
discover and locate data amongst the petabytes of accessible
data. While much research effort has focused on the methods
to efficiently store and process data, there has been relatively
little focus on methods to efficiently explore, index, and search
data using the same high-performance storage and compute
systems. Users of large file systems either invest significant

resources to implement specialized data catalogs for accessing
and searching data, or resort to software tools that were
not designed to exploit modern hardware with many-cores,
multiple NUMA nodes, and multiple PCIe NVMe SSDs.

While it is now trivial to quickly discover websites from
the billions of websites accessible on the Internet, it remains
surprisingly difficult for researchers to search for data on
large-scale storage systems. Google has pioneered much of
the information retrieval and search engine research; however,
its area of focus is large-scale distributed search over web
data rather than searching over scientific data stored in high-
performance file systems—two areas with significantly differ-
ent data, storage, processing, and query models.

In the enterprise search domain there are several tools
that are commonly used to enable search, such as Apache
Lucene [1], Apache Solr [2], and ElasticSearch [3]. According
to surveys from both academia [4] and industry [5], Apache
Lucene is the most popular tool used to implement search
engines. These surveys also show that the top three search
tools are either Apache Lucene or services that build on
Apache Lucene (Apache Solr and ElasticSearch), thus, Apache
Lucene represents 69–73% of the enterprise search market.
Apache Lucene was originally implemented in 1999 and was
designed for commodity hardware that consisted primarily of
single-core and single CPU systems, with a single hard disk,
and for full-text indexing and search, and they are not designed
to make use of the advanced features of HPC systems and
modern hardware. Instead, they achieve scalability via distri-
bution and index sharding and often rely on tight coupling with
distributed file system, such as the Hadoop File System [6],
which are not supported on HPC systems. Thus, there is a
need to revisit indexing and search methods and the building
blocks of search engines as new hardware emerges.

In order to address the general problem of efficient data
exploration and search in large file systems, we present the
SCANNS indexing framework. SCANNS is an indexing li-
brary that is designed to be deployed on single-node high-end
systems, characterized by many-cores architectures, multiple
NUMA nodes and multiple PCIe NVMe devices. SCANNS
is designed to be used as a building block for building high-



performance index-based search engines. SCANNS redesigns
and exposes the indexing pipeline, in such a way that it can ex-
ploit modern hardware capabilities and can allow users to tune
certain aspects of the pipeline, in order to saturate available
compute, memory, and/or storage resources. In this work we
present the SCANNS framework and the many optimizations
and techniques we applied to improve the performance of the
overall framework, and of each pipeline component. We also
present practical insights related to constructing indexes and
tuning indexing performance that can be overlooked when
building index-based search engines, such as the importance
of the design of additional data structures required for the in-
verted index even when building on a fast search data structure.
We perform an experimental evaluation of the framework and
it’s components, and we show that it can achieve magnitudes
higher indexing and search performance when compared to
Apache Lucene, a state-of-the-art information retrieval library.

The contributions of this paper are as follows:
• Design and implementation of SCANNS, an tune-able

indexing framework that can exploit the properties of
modern high-performance computing systems;

• Tune-able modularized architecture that allows the satu-
ration of storage, memory and compute resources;

• Evaluation up to 192-cores, 768GiB of RAM, 8 NUMA
nodes, and up to 16 NVMe drives delivering 19x higher
indexing throughput and 280X lower search latency;

The rest of the paper is organized as follows. Section II
presents related work. In Section III we present the general
architecture of the SCANNS framework and explain various
optimizations and techniques that we used in its design. In
Section IV we present an experimental evaluation of the
SCANNS framework and conclude in Section V.

II. RELATED WORK

Some research focuses on the high-level indexing pipeline
and the integration of indexing and search in existing parallel
and distributed file systems. TagIt is one such project [7]–
[9], that implements a scalable data management service
framework for scientific datasets, that is integrated with the
underlying distributed file systems that house the scientific
datasets, such as GlusterFS and CephFS. The framework relies
on a scalable and distributed metadata indexing framework,
that can index file system related metadata as well as custom
metadata created by the users, under the form of tags, that can
aid data discovery. Other existing works from the HPC domain
(e.g. GUFI [10], [11]) has also aimed to tackle the indexing
and search problem focusing on metadata as opposed to the
scientific data itself. We believe both the metadata and data are
critical components to better accessibility of scientific data.

ScienceSearch [12] is a project that proposes a novel
solution for the problem of performing effective search over
scientific data, that builds an indexing framework that uses
natural language processing and machine learning to generate
metadata tags from collections of scientific data and to build
relations between different data sources that cover the same
topic. ScienceSearch uses traditional databases to store and

manage the learned metadata tags and the indexes, which has
its own advantages and disadvantages, but we argue that an
efficient low level indexing framework would be a suitable
replacement for the databases used in search applications.

There are researchers who actively look at how to design
and implement the inverted index for a specific dataset or
application. MIQS [13] is a solution that aims to efficiently
index self-describing data formats, such as HDF5 and netCDF,
through the use of a custom in-memory index implementation.
MIQS provides a portable and schema-free solution that is
aligned with the paradigm of self-describing data, and it uses
a combination of search trees to build the index. Cavast [14]
is a another project that aims to improve the performance of
in-memory key-value stores, through a re-design of hash table
implementation, in order to better exploit the CPU caches and
memory subsystem. Cavast achieves this through a combina-
tion of methods and techniques: the separation of key and
value placement in memory, laying out the hash table elements
in memory so that they can better benefit from cache locality
and exposing the kernel cache coloring scheme, to name a
few. While we acknowledge the importance of the search
data structure, we emphasize that the search data structure
alone cannot guarantee high indexing performance and that
the inverted index needs to be designed and implemented as
a scalable and tightly coupled combination of search data
structure and inverted index data structures.

III. FRAMEWORK ARCHITECTURE AND DESIGN

This section presents the SCANNS architecture, covering
a general overview of the framework and its underlying
components, and detailed description of the techniques and
optimizations used to improve indexing performance.

The problem that search engines solve in the realm of
computers can be defined as the “problem of locating and
retrieving relevant files from a file system in order to satisfy
an information need” [15]. Figure 1 shows a structural decom-
position of the four main components of a search engine.

Fig. 1: General architecture of a search engine.

The Index Engine is responsible for extracting the contents
of the files in order to re-organize it into an index. Similarity
analysis and stemming are example of operations that this
component can run to increase the quality of the index.



The second component is the Index itself, which is typically
implemented as an inverted index. The term “inverted index”
comes from the inversion between content and the source of
the content that happens during indexing. The inverted index is
typically implemented through the use of various search data
structures in combination with container data structures, but it
can also be implemented using mathematical constructs, such
as vectors and matrices, and it can be stored persistently on
disk or it can be kept in volatile memory or a combination of
both. If the list of files that are returned by the inverted index
are not ordered in any particular way, then the search engine
becomes a data retrieval engine, akin to a relational database
that provides only the projection function.

In order to be a truly information retrieval engine, the
third, namely Ranking Algorithm component needs to be part
of the overall search engine. The Ranking Algorithm, also
sometimes used as a synonym to the information retrieval
model, is responsible for providing a mechanism to order the
returned files from an inverted index by relevance with respect
to an information need. Term Frequency-Inverse Document
Frequency (TFIDF) is a popular model that uses the frequency
of words in files (Term Frequency) and the frequency of files
that contain a word (Inverse Document Frequency) to build a
mathematical formula that can use the indexed frequencies to
sort the returned files by their relevance.

TFIDF attempts to capture two observations: if a word exists
in many files it is likely to be less relevant to the information
need; and if a word occurs many times in a file it is likely
to be relevant to the information need. TFIDF is not the only
successful information retrieval model, but in this work we
decide to use this model due to its simplicity and effectiveness.

The final component is the Query Engine, that is responsible
for processing the information need. This component typically
reads a search query, applies some of the parsing and analysis
present in the Index Engine component, and filters and sorts
the returned results according to the Ranking Algorithm.

A. SCANNS Goals

The primary goal of SCANNS is to support efficient in-
dexing of data in high-end computing systems. With that in
mind, SCANNS was designed to efficiently leverage systems
that have many cores, multiple NUMA nodes, and multiple
NVMe storage devices, by exploiting the inherent properties
of such systems in order to saturate their compute, memory
and/or storage resources. The secondary goal of SCANNS is to
be versatile enough so that it can accommodate different data
sources and formats, and various information retrieval models,
thus the framework is designed as a search engine library, that
can be used to implement specific search engine applications.

B. SCANNS Overview

In order to satisfy the goals of SCANNS, we studied the
general process of performing indexing on high-end systems,
and identified three key sub-processes. For each of sub-process
we designed a component that focuses on a specific system
resource and a precise part of the indexing process. When

combined, these components form a complete indexing engine.
A diagram of these components and how they are connected
structurally and functionally can be seen in Figure 2. The
three components are: the ReaderDriver, which is responsible
for reading raw data from a storage system and is typically
IO-intensive; the Tokenizer, which is responsible for parsing
and tokenizing the raw data into units of data that are useful
for a specific information retrieval model and is usually
compute-intensive; and the Indexer, which is responsible for
computing and storing the index from the units of data. All
three components are designed as independent functions, that
can be run by one or more threads, exclusively or shared,
giving the the user option to fine tune the number of threads
and the number of components according to the amount of
compute, memory, and storage resources available.

This framework implements a TFIDF search engine over a
collection of files stored on multiple PCIe NVMe devices and
is optimized to achieve high indexing speeds in the scenario
where the index does not already exist and it is being built for
the first time. In this work we assume that the input dataset will
not change while the index is being built and the framework
is designed to support fixed-term, extended boolean search.

C. Indexing Engine Execution

In terms of execution, SCANNS uses multiple threads to
parallelize the execution of the indexing process by data and
also by function. The framework uses two kinds of threads, as
seen in Figure 2: read threads and index threads. Read threads
are responsible for reading raw blocks of data from the file
system(s) and for passing these blocks to the index threads, and
they run local ReaderDriver instances. Index threads receive
raw blocks of data from the read threads and process the data
in order to build the local index, by running local pairs of the
Tokenizer and Indexer components. Index threads follow the
observer design pattern, where the Tokenzier is the subject
and the Indexer is the observer is the Indexer, and use the
internals of the Indexer component to store the local indexes in
memory. The number of read and index threads are configured
at the beginning of the execution of the indexing framework
and remain static until the index is complete. The number of
index threads needs to be a multiple of read threads.

The read threads communicate and share blocks of data with
the index threads through a set of specialized queues, that we
called DualQueues. The DualQueue is a simple implemen-
tation of a thread-safe synchronized queue that follows the
memory pool design pattern to recycle the blocks of data that
are being pushed and popped to and from the queue. Figure 3
shows that, in terms of design, the DualQueue is implemented
with two synchronized queues, one for the blocks that are
empty and do not have any data, and one for the blocks that
are full and have data read into them. The queues use mutexes
and conditional variables to achieve synchronization and to
relieve the system from unnecessary polling when either of
the queues is full or empty. The read and index threads act
as producers and consumers, respectively, and are responsible
with popping, pushing and processing blocks of data.



Fig. 2: SCANNS framework indexing architecture and pipeline.

Fig. 3: SCANNS DualQueue design.

D. ReaderDriver

The ReaderDriver is the SCANNS component responsible
for ingesting raw data from the storage subsystem to main
memory as fast as possible. In our case the ReaderDriver is
designed to read blocks of data from a POSIX file systems
as fast as possible and bring it to main memory so that it
can be processed by the other components of the framework.
This component is typically bound by the capabilities of the
storage subsystem, but that is not always the case, especially
in the case of many PCIe NVMe storage devices present in
the system. We observed, in practice, that a standard approach
to implementing this functionality, where each block of data
read is allocated dynamically at runtime and deallocated when
not needed, leads to suboptimal performance, in terms of how
many blocks can be brought in main memory per second. Thus
the first optimization that we propose avoids the overhead of
allocating and deallocating each block of data through the
use of the memory pool design pattern. Basically, since we
know that the blocks will be discarded after they are processed
by the framework, we allocate a certain number of blocks at
the beginning of the program and we reuse them when they
get discarded. This optimization is built in tandem with the
DualQueue, having the ReaderDriver generate, manage and
push the blocks to the queue at the beginning of the program.

In a setup where a machine has many PCIe NVMe devices
we observed that sometimes the memory subsystem of the OS
that manages the file system caches and buffers can become
a performance bottleneck. Since the data that is read from
the input files by the indexing engine is being re-organized,
it is not actually required to be stored in the index. Thus the

second optimization that we proposed was to bypass the OS
file system caches and buffers and tell the OS to bring the
blocks of data from the disk directly into ReaderDriver buffer
space. This optimization, in conjunction with enough multi-
threading, allows the ReaderDriver to saturate available NVMe
disks in terms of number of blocks read per second.

So far the described ReaderDriver was optimized to read
fixed-size blocks of data from the file system as fast as
possible, but in practice this approach can be problematic.
The fixed-size approach can end up breaking tokens in halves,
which need to be addressed and the halves recombined in order
to implement a correct indexing engine. To solve this issue,
we proposed the WaveReaderDriver, which uses a small addon
block to read additional data from disk and computes how
long the blocks needs to be so that it does not break tokens in
halves. The WaveReaderDriver exposes an idempotent method
for reading blocks of data from a file, that returns a variable-
size block and retains the memory pool design pattern and OS
cache and buffer bypass optimizations. We solved this issue
in the ReaderDriver, because we observed that it is the fastest
component and had enough computing resources to spare.

E. Tokenizer

The second component in the SCANNS indexing pipeline is
the Tokenizer. This component is responsible for reading the
raw data passed from a ReaderDriver and transforming the raw
data into smaller units of data that can be subsequently used
by the Indexer. In the context of this work, the Tokenizer pops
a variable-size block of data from a DualQueue and extracts
tokens from the block, that are separated by some delimiter.
Basically this component implements a split function, that
splits a string into a list of tokens (i.e. substrings that are
separated by a list of characters that act as delimiters). The
process behind the Tokenizer is typically compute-intensive,
reading the input string and extracting the tokens sequentially.

While this component can be implemented in a standard
way in C through the use of the strtok() function, we observed
that the performance of the standard approach is very low
when compared to how fast the ReaderDriver can read data



from disk. In order to improve the Tokenizer’s performance,
we proposed a re-implementation of the split function, where
we replaced the call to strtok() with an approach that uses
branchless programming. Figures 4 and 5, show the conceptual
difference between the standard and the optimized Tokenizers.

Fig. 4: SCANNS Standard Tokenizer.

Fig. 5: SCANNS Optimized Branchless Tokenizer.
We replaced the for loop and the if-block, that strtok() used

to iterate over the list of delimiters to find out if a byte in
the input buffer is a delimiter or not, with an O(1) lookup
in a hash table of delimiters. For each character the delimiter
hash table returns zero if the character is a delimiter and zero
negated otherwise. We then replaced the portion of the code
where strtok() runs an if-block to check if it has reached the
end of a token and returns the token address when true, with
C ternary operations that implement the same functionality.
The ternary operations get in turn generated into conditional
assembly instructions that do not cause branches or jumps.
This optimization removes the overhead of branch misses, that
are caused by the CPU branch predictor and the unstructured
nature of the input data, allowing the Tokenizer to catch up
the ReaderDriver, in terms of performance.

F. Indexer

The Indexer is the third and last component of the SCANNS
framework and is responsible with taking the tokens/terms
extracted by the Tokenzier and with re-organizing them into
an TFIDF inverted index, that is stored in main memory. At
the core of the Indexer stands the design of the inverted index,
which can be seen in Figure 6.

For this work we picked hash tables as the search data
structure to be incorporated in the inverted index, due to their
increased performance and their potential to be distributed
across computers. The SCANNS inverted index does not
depend on a specific implementation of a hash table and
supports pluggable hash tables, in order to allow the user to use

any hash table with any hash function that is appropriate for
their dataset. In SCANNS we used two hash tables: the C++
unordered map, for the standard hash table, and the Google
Swiss Table [16], for the efficient hash table; and we show
that while the search data structure is important, poor inverted
index data structure design can lead to reduced performance.

Fig. 6: SCANNS Inverted Index Design.

The design in Figure 6 shows the additional data structures
used to implement the TFIDF inverted index: IDFIndexEntry
and TFIndexEntry. Both data structures are implemented as
linked lists and each instance stores a pointer to the next
element in the list. The hash table stores in each of its buckets a
list of IDFIndexEntries, and each IDFIndexEntry keeps track
of the token associated with the entry, the number of files
that contain the term, a head and a tail to the TFIndexEntry
linked list. The TFIndexEntry stores the index associated with
a file, the frequency of a term in that file and a pointer to the
next TFIndexEntry. During indexing, the Indexer will perform
lookups in the hash table and create new IDFIndexEntries or
TFIndexEntries if they don’t exist and update the frequency
information for each term-file pair. Since SCANNS is aimed at
building the index from scratch for the first time, we instructed
the framework to pass the data blocks to the Indexers such that
a block only belongs to the same file that is being processed
or a new file, but never to a previously processed file. This
high-level data flow optimization, allows the Indexer to avoid
additional searches in the list of TFIndexEntries, performing
update or append on the tail TFIndexEntry of a IDFIndexEntry,
and thus providing a boost in performance.

But even with this minimalist design and the proposed high-
level optimization on how file blocks are passed to the Indexer,
the inverted index yielded poor scalability with increasing
number of cores. After further investigations we identified two
main causes: (1) the standard memory allocator wasn’t scaling
to the number of small IDFIndexEntry and TFIndexEntry
objects that were being created and (2) there were still too
many CPU cache misses, caused by the hash table lookup and
the indirection from the inverted index data structures.

To address the problem of memory allocation we proposed
the implementation of a monotonic paged sub-allocator for the
index data structures. The sub-allocator allocates large pages
of memory and then creates the required inverted index objects
from those pages in user-space, at faster speeds than when



calling a system call for each object.
To deal with the second issue, we introduce an Append-

Cache to the IDFIndexEntry that removes the indirections to
the TFIndexEntry list tail during term frequency updates. The
AppendCache is part of the IDFIndexEntry, thus whenever
the IDFIndexEntry is being accessed the AppendCache is
brought in the CPU cache as well, subsequently improving
indexing performance. The cache is flushed when a block from
a new file is processed. The last optimization scales well with
datasets where terms appear frequently, and with the page sub-
allocator and enough compute cores, the Indexer can achieve
higher performance than state-of-the-art indexing solutions.

G. Global optimizations

The SCANNS framework also incorporates in its design
optimizations that are global in nature and do not belong
specifically to only one component. These optimizations deal
with reducing the overheads of inter-NUMA communication,
the page-fault subsystem of the OS and the tuning of the file
block sizes and sub-allocator page sizes. The first optimization
is applied over the ensemble of DualQueues, read and index
threads, making sure that the threads are grouped by NUMA
node and that the memory allocated and accessed by each com-
ponent also resides in the same NUMA node. This is achieved
through the use of the libnuma library, that allows users to set
NUMA affinities and memory policies to programs.

The second global optimization is the use of huge pages
for the monotonic sub-allocator and for any buffers. With
huge pages, the application can relived the OS from having to
handle many page faults, implicitly improving the performance
of any memory-intensive application, including the Indexer
component. And the last set of optimization relate to the tuning
of ReaderDriver block sizes and Indexer sub-allocator page
sizes, in order to further improve performance. The SCANNS
framework exposes these parameters to the users, allowing
them to better tune the indexing engine accordingly to the
underlying hardware. All of the experimental results have a
certain degree of manual tuning performed.

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
the SCANNS framework and its constituting components. We
include, in the discussion, details about the experimental setup,
the used dataset and the SCANNS components variants.

A. Experimental Setup

The experimental setup is comprised of three single-node
high-end systems deployed on Mystic, an NSF-funded testbed
designed to study system re-configurability. The three systems
differ in many aspects, but for this work the most important
differences are the number of cores and the number of storage
devices available on each machine. The number of cores are

a reflection of computational power, while the storage devices
showcase varied IO capabilities. Table I presents hardware
details for each system. The three systems allow us to evaluate
SCANNS under different environments: (a) a machine with
many cores, 8 NUMA nodes, but few disks (64cores-1disk),
(b) a machine with few cores, 2 NUMA nodes, but many
disks (32cores-16disks), and (c) a machine with many cores,
8 NUMA nodes, and many disks (192cores-16disks).

We configured the hardware and the OS to use performance
governors and turbo-boost for all CPUs, and all of the storage
devices used during experiments were PCIe NVMe SSDs,
that were accessed exclusively, in order to eliminate any
interference caused by other running applications. For systems
that have only one disk we configured XFS directly on the
device, while for systems that had more than one disk, we
grouped the disks by NUMA nodes, and configured Linux
software RAID0 arrays with XFS for each group.

In terms of software, 64cores-1disk and 32cores-16disks ran
Ubuntu 18.04 LTS with Linux Kernel 4.15 and g++-8.4, while
192cores-16disks ran Ubuntu 20.04 LTS with Linux Kernel
5.4 and g++-10.3. For Google SwissTable we used version
20210324.2 from the abseil library. SCANNS is implemented
in C++17 and we use openjdk-11 to run Apache Lucene.

The datasets used throughout the experimental evaluation
were generated from a file system dump provided by NERSC.
The file system dump is a snapshot of the file system metadata
of the NERSC storage system, that was stored in one single
240GB file with each line of the file containing a full file path
and all POSIX metadata information (size, timestamps, own-
ers, permissions, inode etc) separated by space. We cleaned
and split the 240GB file system dump file into smaller files of
approximately and up to 32MiB in size. The ReaderDriver and
Tokenizer evalution was done over a collection of small file
system dump files of 6144 files (192GiB), while the TFIDF
End-to-End indexing and search evaluation was conducted on
a collection of 1536 files (48GiB). We picked the file system
dump dataset because it represents a real dataset and it has
interesting properties: most of the space or slash separated
terms found in the file system dump are alphanumerical and
numerical and only a few have only letters in their composi-
tion. This means that classical free-text stemming techniques
cannot work with this dataset, which increases difficulty of
building indexes by having many unique terms.

B. Component Variants

For each of the SCANNS framework components we imple-
mented multiple variants to show performance improvements
of each optimization and technique used. For the ReaderDriver
we experimented with the following variants:

• xs-rd-std - (the baseline) reads fixed-size blocks of data
without any kind of optimizations;

machine name processors cores main memory nvme storage
(a) 64cores-1disk 2 x AMD EPYC 7501 64 128GiB DDR4 2666 MHz 1 x Intel Optane 900P SSD

(b) 32cores-16disks 2 x Intel Xeon Gold 6130 32 192GiB DDR4 2666 MHz 16 x Samsung 970 EVO SSD
(c) 192cores-16disks 8 x Intel Xeon Platinum 8160 192 768GiB DDR4 2666 MHz 16 x Intel Optane 900P SSD

TABLE I: Mystic Cloud machines used for the experimental evaluation and their specifications.



• xs-rd-nonuma - uses the memory pool design pattern and
the OS cache and buffer bypass optimizations;

• xs-rd-numa - similar to xs-rd-nonuma, plus NUMA-aware
thread scheduling and memory allocation;

• xs-rd-wave - similar to xs-rd-numa, but implements the
WaveReaderDriver that reads variable-size blocks of data;

For the Tokenizer evaluation, the implementation used the
WaveReaderDriver to read and pass blocks of data to the Tok-
enizer. Instead of index threads, we called the the threads that
ran the Tokenizers tokenize threads. These are the Tokenizer
variants that we experimented with:

• xs-rdtokstd-nonuma - implementation using strtok();
• xs-rdtokstd-numa - similar to xs-rdtokstd-nonuma, plus

NUMA-aware thread scheduling and memory allocation;
• xs-rdtok-nonuma - implementation that uses branchless

programming and the delimiter hash table optimizations;
• xs-rdtok-numa - similar to xs-rdtok-nonuma, plus

NUMA-aware thread scheduling and memory allocation;
The TFIDF End-to-End indexing and search evaluation is

performed on variants that include both the WaveReaderDriver
and the Tokenizer in their runtime. We compare the SCANNS
variants between themselves but also to an indexing and
search application implemented using the Apache Lucene
information retrieval library. We used ClassicSimilarity and the
WhiteSpaceAnalyzer to tell the Lucene variant to perform the
same kind of indexing and search that SCANNS implements,
namely TFIDF. We further tuned the Lucene variant by setting
the JVM available and start memory to the maximum available
on the system, we enabled server mode and parallel garbage
collector, and we tuned Lucene itself to use 1GiB buffers and
two merge threads per index thread. In the Lucene variant,
similar to the SCANNS variant, each index thread builds a
local index and there is no communication between the index
threads. Here all of the variants that we experimented with
during the TFIDF End-to-End indexing and search:

• xs-rdtokidx-std - implementation using C++
unordered map and without any optimizations;

• xs-rdtokidx-swiss - implementation using Google Swiss
Table and without any optimizations;

• apache-lucene - uses Apache Lucene;
• xs-rdtokidx-std-pa - similar to xs-rdtokidx-std, plus the

monotonic paged sub-allocator, the append cache opti-
mization, NUMA-aware configurations and huge pages;

• xs-rdtokidx-swiss-pa - similar to xs-rdtokidx-swiss, plus
the monotonic paged sub-allocator, the append cache op-
timization, NUMA-aware configurations and huge pages;

C. ReaderDriver

Figure 7a shows the performance the ReaderDriver variants,
measured in MiB/sec with increasing number of read threads,
when running on a system that has only one NVMe device
installed. We can see that all variants are able to saturate the
single NVMe device (2.5 GiB/sec) with sufficient threads.

In Figure 7b we see a different picture. The baseline Reader-
Driver seems to be cap at approximately 7.5 GiB/sec, while the
optimized versions reach close to the theoretical limit, which
is 56 GiB/sec for 16 Samsung 970 EVO NVMe SSDs (3.5
GiB/sec theoretical throughput per device), assuming linear
scalability. The WaveReaderDriver’s throughput caps at 40
GiB/sec, and after investigation we realized that this is caused
by the fact that these SSDs have a 4GiB internal fast cache.
The internal fast cache guarantees the advertised throughput as
long as the data does not exceed the cache size, but in our case
the data set size split across 16 devices does exceed the cache
size, which causes the throughput to fluctuate. We consider this
to be acceptable since the Tokenizer and the Indexer typically
exhibit lower performance than the WaveReaderDriver.

Figure 7c shows the performance of the ReaderDriver
variants on a system with many cores and multiple NVMe
devices. The most interesting result in this configuration is
the importance of NUMA-aware configurations. We can see
an improvement of 20% between the variant that uses NUMA
aware thread scheduling and memory allocation versus the one
that does not. The WaveReaderDriver achieves approximately
35 GiB/sec which is close to the theoretical 40 GiB/sec that
16 Intel Optane 900P devices can achieve.

D. Tokenizer

Figure 8a shows the performance, measured in MiB/sec with
increasing number of read and tokenize threads, for all of the
4 variants, running on the system that has only one NVMe
disk. We can see that all of the variants manage to reach the
disk limit in terms of performance after 8 read threads plus
8 tokenize threads (for a total of 16 threads), but we can see
that the optimized version is able to reach that limit faster
than the standard versions, with or without NUMA-aware

(a) 64cores-1disk (b) 32cores-16disks (c) 192cores-16disks

Fig. 7: ReaderDriver throughput with increasing number of read threads.



configurations. In this setup the NUMA-aware configurations
have no affect as there is only one NVMe device.

Figure 8b shows performance on a system that has many
NVMe devices but not many cores. Here we can see a
significant difference in performance between the optimized
and standard Tokenizer versions. Throughout all of the num-
ber of thread configurations, we can see that the optimized
Tokenizer achieves performance that is roughly twice as fast
as the standard version, reaching approximately 18.8 GiB/sec
throughput with 32 read threads and 32 tokenize threads. In
this setup the NUMA-aware configuration only makes a differ-
ence when we saturate the hardware threads of the machine,
but the difference is slight, increasing the performance of the
optimized version from 16.9 GiB/sec to 18.8 GiB/sec.

Figure 8c shows performance with many cores and multiple
NVMe devices and here we can clearly see the difference
between all variants and thus between all optimization options.
Between the versions that do not use any kind of NUMA-
aware optimizations, we can see that the optimized Tokenizer
achieves better performance than the standard version capping
up at around 20 GiB/sec, but both versions seem to start losing
performance when the number of read plus tokenize threads
exceeds 96. As for when the Tokenizer also uses NUMA-aware
configurations, we can see that both optimized and standard
Tokenizers reach the disk limit and flatten out at a throughput
of approximately 34 GiB/sec. While both of these versions
reach the disk cap, we can clearly see that the optimized
version reaches the cap faster and if the disk wouldn’t be a
limit it would probably still maintain the 2x advantage over the
standard variant. We consider these results satisfactory, since
we observed that the slowest component is the Indexer, that
cannot reach the Tokenizer or ReaderDriver in performance.

E. End-to-end TF-IDF indexing and search

Figure 9a shows the performance, measured in MiB/sec of
End-to-End indexing with increasing number of read and index
threads, for all variants. Each index thread is paired with a
read thread, with the exception of the Lucene variant that two
merge threads with each index thread instead. We can see that,
for a system that has only one NVMe disk, solutions that do
not use any kind of memory optimizations seem to reach a low
performance threshold, at about 400 MiB/sec for the Lucene
variant, 450 MiB/sec for the Swiss Table implementation and

275 MiB/sec for the standard implementation. When using
all of the memory optimizations, since the Indexer is more
memory-intensive rather than compute-intensive, combined
with the NUMA-aware tuning and huge-pages we can see
that both the standard and the Swiss Table implementations
can surpass the low performance threshold. The standard
implementation reaches up to 815 MiB/sec with 32 index
and 32 read threads, while the Swiss table reaches 2255
MiB/sec. These results show that in order to achieve high
indexing performance, the inverted index needs a fast search
data structure but also an efficient inverted index design.

When looking at a system that has multiple NVMe devices
but not that many cores, as depicted in Figure 9b, we see
a similar trend. The un-optimized solutions, including the
Apache Lucene variant, due the fact that they do not exploit the
memory hierarchy properties of these systems, cannot achieve
very high performance and cap out at 366 MiB/sec for Apache
Lucene, 628 MiB/sec for the Swiss Table implementation
and 486 MiB/sec for the standard implementation. Only by
incorporating the memory and NUMA-aware optimizations
can the standard implementation reach 1185 MiB/sec and the
Swiss Table implementation reach 2431 MiB/sec, both with
32 index threads and 32 read threads. This system achieves
better performance overall dues to the fact that there are more
memory channels per NUMA node that on 64cores-1disk.

On the system that has many cores and multiple NVMe
devices and the most memory channels per NUMA node, we
can see that the SCANNS framework can reach very high
throughput, when the proper optimizations are used. Figure 9c
captures this performance, and shows that the un-optimized
variants reach a similar performance limit to the previous
setups, where the Apache Lucene implementation caps at 478
MiB/sec, the standard Indexer caps at 443 MiB/sec and the
Swiss Table Indexer caps at 519 MiB/sec. The plot also shows
that when using the memory optimizations to reduce the cache
misses and to reduce the number of page faults while also
using NUMA-aware scheduling of threads and allocation of
memory, the standard Indexer can reach a throughput of 964
MiB/sec, with 24 index threads and 24 read threads, while the
Swiss Table Indexer can reach a whopping 9425 MiB/sec, with
192 index threads and 192 read threads. This last result shows
that actually in order to build a high-performance indexing
engine on a single node computer, one needs a fast search

(a) 64cores-1disk (b) 32cores-16disks (c) 192cores-16disks

Fig. 8: ReaderDriver and Tokenizer throughput with increasing number of read and tokenize threads.



(a) 64cores-1disk (b) 32cores-16disks (c) 192cores-16disks

Fig. 9: End-to-end TF-IDF indexing throughput with increasing number of read and index threads.

data structure, such as the Swiss Table, but one also needs to
design the TFIDF inverted index data structures in such a way
that they can benefit from the memory hierarchy.

Table II presents the average search latency of the SCANNS
TFIDF implementation that uses the Swiss Table as the search
data structure and the efficient design and optimization of the
inverted index and compares it against the Lucene variant,
on the three different systems. The SCANNS variant exhibits
magnitudes lower latency, overall under 500 microseconds,
when compared to the Lucene variant that runs search queries
on average with latency over 20,000 microseconds. One im-
portant observation to make is that even though both variants
return the same results with the same TFIDF relevance scores,
the lucene variant also sorts the results, while the SCANNS
variant does not sort the results. The sorting of the results could
add additional overhead to the SCANNS search operations, but
optimizing the query engine is the subject of future work.

cores 64cores-1disk 32cores-16disks 192cores-16disks
scanns lucene scanns lucene scanns lucene

1 237 26143 134 23224 229 20056
2 210 27811 134 23327 233 21747
4 214 30866 142 27952 237 25160
8 180 47981 153 28831 238 29412

16 189 45232 160 36787 248 33601
24 - - - - 269 39004
32 218 51520 173 39524 - -
48 - - - - 296 53666
64 264 65920 - - - -
96 - - - - 360 64651

192 - - - - 476 134061

TABLE II: TFIDF End-to-end search latency (microseconds).

F. Random Access Memory Benchmark

The Indexer seems to be the only component that requires
further exploration, as even with all our optimizations the
throughput does not reach 10 GiB/sec, even with 192 cores, 8
NUMA nodes and 16 NVMe devices, when the IO-intensive
ReaderDriver and the compute-intensive Tokenizer compo-
nents with optimization can achieve throughput in the 30 to
50 GiB/sec. We argue that the reason for such relatively low
performance, even in the presence of optimizations, is the
memory-intensive nature of the component and the implied
random access present when building an inverted index. We

ran multiple random access memory benchmarks, where we
copied the elements of an input buffer to an output buffer.
Both buffers were pre-allocated in memory and were split
into multiple blocks, and the benchmark distributed the blocks
to multiple NUMA-aware threads that sequentially read the
elements in from each input block and wrote them randomly
in an output blocks (see Figure 10).

Fig. 10: Random Access Memory Benchmark Design.

The results that we got for increasing block sizes and
increasing number of threads, run on the 192cores-16disks
machine, are depicted in Figure 11. It is interesting how much
performance degrades when the block size exceeds a certain
value, and in the context of re-organizing data when building
and inverted index, we argue that it points to a practical upper
bound in performance. An implementation of an inverted index
does multiple random read and write accesses, and even if
there were an implementation that would do a single random
access it would not exceed the throughput measured in this
experiment. We use this result to argue that the performance of
SCANNS is good, when compared to the upper bound random
memory access, and excellent when compared to existing or
un-optimized solutions.

Fig. 11: Random Access Memory Benchmark.



G. Results Summary and Discussion

This evaluation showed that a naive approach to reading data
from a modern filesystem, deployed on multi PCIe NVMe SSD
storage devices, can lead to drastic performance degradation
(up to 6x) and we presented several techniques (e.g., memory
pool design pattern and direct IO) that can be used to avoid
performance loss.

We reduced the cost of tokenization of blocks of data read
from disk, by using a hashtable to replace delimiters in the
block in O(1) and branchless programming to iterate over the
bytes in the block without causing branches/jumps. Variable
sized tokens can cause a significant number of branch mispre-
dictions. The removal of branches from tokenization eliminates
the cost of branch mispredictions and allows a better use of the
CPU pipelines, leading to improved performance compared to
standard C strtok() function.

We showed that the main bottleneck for the inverted index
solution is not the process of reading from disk, or even the
process of tokenizing blocks of data read from disk, but the
process of re-organizing the data into the form of an inverted
index. Building the inverted index inherently exhibits random
access read/write patterns which stresses the memory subsys-
tem and ultimately becomes the main bottleneck. However,
we showed that with careful index data structure design, such
as minimizing pointer indirection inside the inverted index
data structure that subsequently reducing the number of cache
misses, search engines can still obtain increased performance
close to the upper bound supported by the memory subsystem.

Finally, combining each of these components (ReaderDriver,
Tokenizer and Indexer) with the proposed set of global op-
timizations (NUMA affinity and huge pages) we showed
that SCANNS can achieve up to 19x better indexing while
delivering up to 280x lower search latency when compared
to Apache Lucene, on configurations with up to 192-cores,
768GiB of RAM, 8 NUMA nodes and up to 16 NVMe drives.

V. CONCLUSION

In this paper we presented the SCANNS indexing frame-
work to address the problem of efficiently indexing data in
high-end systems, characterized by many-core architectures,
with multiple NUMA nodes and multiple PCIe NVMe storage
devices. We designed SCANNS as a single-node framework
that can be used as a building block for implementing
high-performance indexed search engines, where the software
architecture of the framework is modularized, tunable and
scalable by design. The indexing pipeline is exposed and
allows easy modification and tuning, enabling SCANNS to
saturate storage, memory and compute resources, and exploit
the properties of modern high-end systems. Our evaluation
showed that SCANNS can deliver, on machines with up to
192-cores, 768GiB of RAM, 8 NUMA nodes and up to 16
NVMe drives, up to 19x higher indexing throughput and 280x
lower search latency, when compared to Apache Lucene.

In future work we will implement semi-automatic hyper-
parameter tuning as part of the SCANNS framework to allow
easier selection of key parameters that affect performance

on particular hardware. We will explore persistent indexes
through the use of Intel Optane DC memory. We will explore
methods for distributing indexing and search to scale to some
of the largest HPC storage systems available. Specifically,
we will investigate integration of the distributed SCANNS
system into parallel and distributed storage systems [17]–[19]
to enable automatic metadata and data indexing and search.

ACKNOWLEDGMENT

This work is supported in part by National Science Foun-
dation CNS-1730689 CRI and OAC-2107548 Core awards.

REFERENCES

[1] A. Białecki, R. Muir, G. Ingersoll, and L. Imagination, “Apache lucene
4,” in SIGIR 2012 workshop on open source information retrieval, 2012.

[2] D. Shahi, “Apache solr: an introduction,” in Apache Solr. Springer,
2015, pp. 1–9.

[3] C. Gormley and Z. Tong, Elasticsearch: the definitive guide: a dis-
tributed real-time search and analytics engine. ” O’Reilly Media, Inc.”,
2015.

[4] S. Khalsa, P. Cotroneo, and M. Wu, “A survey of current practices in
data search services,” Research Data Alliance Data (RDA) Discovery
Paradigms Interest Group, 2018.

[5] Datanyze. Enterprise search software market share. [Online]. Available:
https://www.datanyze.com/market-share/enterprise-search--287

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 2010, pp. 1–10.

[7] H. Sim, Y. Kim, S. S. Vazhkudai, G. R. Vallée, S.-H. Lim, and A. R.
Butt, “Tagit: an integrated indexing and search service for file systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–12.

[8] A. K. Paul, B. Wang, N. Rutman, C. Spitz, and A. R. Butt, “Efficient
metadata indexing for hpc storage systems,” in 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, 2020, pp. 162–171.

[9] H. Sim, A. Khan, S. S. Vazhkudai, S.-H. Lim, A. R. Butt, and Y. Kim,
“An integrated indexing and search service for distributed file systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 10,
pp. 2375–2391, 2020.

[10] D. J. Bonnie, “Gufi overview,” Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), Tech. Rep., 2018.

[11] G. A. Grider, D. A. Manno, W. K. Poole, D. J. Bonnie, and J. T. Inman,
“Grand unified file indexing,” Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), Tech. Rep., 2021.

[12] G. P. Rodrigo, M. Henderson, G. H. Weber, C. Ophus, K. Antypas, and
L. Ramakrishnan, “Sciencesearch: Enabling search through automatic
metadata generation,” in 2018 IEEE 14th International Conference on
e-Science (e-Science). IEEE, 2018, pp. 93–104.

[13] W. Zhang, S. Byna, H. Tang, B. Williams, and Y. Chen, “Miqs:
Metadata indexing and querying service for self-describing file formats,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–24.

[14] K. Wang, J. Liu, and F. Chen, “Put an elephant into a fridge: optimizing
cache efficiency for in-memory key-value stores,” Proceedings of the
VLDB Endowment, vol. 13, no. 9, 2020.

[15] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval.
ACM press New York, 1999, vol. 463.

[16] S. Benzaquen, A. Evlogimenos, M. Kulukundis, and R. Perepelitsa, “Ab-
seil,” 2021. [Online]. Available: https://abseil.io/about/design/swisstables

[17] D. Zhao, N. Liu, D. Kimpe, R. Ross, X.-H. Sun, and I. Raicu, “Towards
exploring data-intensive scientific applications at extreme scales through
systems and simulations,” IEEE Transaction on Parallel and Distributed
Systems (TPDS) 2015, 2015.

[18] T. Li, X. Zhou, K. Wang, D. Zhao, I. Sadooghi, Z. Zhang, and I. Raicu,
“A convergence of key-value storage systems from clouds to super-
computers,” Concurrency and Computation: Practice and Experience,
vol. 28, no. 1, pp. 44–69, 2015.

[19] P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,”
in Proceedings of the 2003 Linux symposium, vol. 2003, 2003, pp. 380–
386.


