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Abstract—Enabling efficient fine-grained task parallelism is a
significant challenge for hardware platforms with increasingly
many cores. Existing techniques do not scale to hundreds of
threads due to the high cost of synchronization in concurrent data
structures. To overcome these limitations we present XQueue, a
novel lock-less concurrent queuing system with relaxed ordering
semantics that is geared towards realizing scalability up to
hundreds of concurrent threads. We demonstrate the scalability
of XQueue using microbenchmarks and show that XQueue can
deliver concurrent operations with latencies as low as 110 cycles
at scales of up to 192 cores (up to 6900× improvement compared
to traditional synchronization mechanisms) across our diverse
hardware, including x86, ARM, and Power9. The reduced latency
allows XQueue to provide orders of magnitude (3300×) better
throughput that existing techniques. To evaluate the real-world
benefits of XQueue, we integrated XQueue with LLVM OpenMP
and evaluated five unmodified benchmarks from the Barcelona
OpenMP Task Suite (BOTS) as well as a graph traversal
benchmark from the GAP benchmark suite. We compared the
XQueue-enabled LLVM OpenMP implementation with the native
LLVM and GNU OpenMP versions. Using fine-grained task
workloads, XQueue can deliver 4× to 6× speedup compared
to native GNU OpenMP and LLVM OpenMP in many cases,
with speedups as high as 116× in some cases.

Index Terms—concurrent data structures, fine-grained paral-
lelism, lock-free, lock-less, queues, parallel runtime, tasks

I. INTRODUCTION

Task parallelism is an increasingly important class of
parallelism in which computation is broken into a set of
inter-dependent tasks which may be executed concurrently
on various cores. The execution models of many parallel
languages and libraries [1]–[6] rely on such task parallelism.

This work was supported in part by the National Science Foundation
(NSF) under grants 2107548/2107283, CCF-1757964, CNS-1730689, CNS-
1763612, CNS-1718252, CCF-2028958, CCF-2028851, CNS-1763743 and
CCF-2119069.

For example, OpenMP [1] has evolved to a task-centric model
to enable parallelization of applications where units of work
is generated dynamically. When a task is created by some
thread, it is conceptually queued for execution by a future
available thread. Software dataflow languages [2], [3] similarly
include a runtime that executes a dynamically unfolding task
graph in which tasks are scheduled via concurrent queues.
To achieve strong scaling and high levels of parallelism,
today’s parallel languages and execution models are moving
to tasks with finer granularity. One reason for this is that as
core counts per node increase, applications need to support
over-decomposition in order to improve performance, hide
latency caused by blocking operations, and achieve maximum
speedup. This and other drivers produce the same outcome:
tasks and their dependencies need to be managed at sub-
microsecond timescales.

Queues are an integral component of tasking runtime sys-
tems and as task granularity decreases, execution performance
is increasingly dependent on queue performance. Of particular
interest here are single producer, single consumer (SPSC)
and multiple producer, multiple consumer (MPMC) concurrent
queues. The queue itself contains tasks, typically in the form
of pointers (to task objects). Threads running concurrently
can interleave instructions in many ways and a shared data
structure needs to be carefully protected to avoid races. Con-
current SPSC and MPMC queues are no exception and require
that their state (e.g., head, tail and data) be protected with a
synchronization mechanisms, such as mutual exclusion locks
(mutexes), spinlocks, semaphores, or atomic primitives.

A second approach to concurrent queues is to avoid separate
synchronization by incorporating race-avoidance directly into
the data structure itself. This also has the benefit of avoiding
common concurrency bugs (e.g., deadlocks) due to misuse
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of synchronization primitives. Lock-free data structures use
atomic primitives, such as Compare-and-Swap (CAS) and
Fetch-and-Add (FAA), to push the burden down to hardware
and achieve synchronization at a finer granularity. Several
libraries internally use lock-free techniques [7]–[9], but the
literature has shown that it is difficult to write correct lock-
free code [10]. Even more compelling are lock-less data
structures [11], which not only avoid the use of locks, but
also can avoid the need for atomic operations under certain
conditions. Both lock-free and lock-less programming are
challenging due to instruction and memory access reordering
imposed by the compiler and the hardware, and the need to
account for the memory consistency model supported by both.

In order to address the aforementioned issues, we design,
implement, and evaluate XQueue, a novel lock-less concurrent
queuing system with relaxed ordering semantics. XQueue is
not a general-purpose MPMC queue, but rather a task queuing
system aimed to improve the task management overhead in
parallel runtime systems.

We make the following contributions:
1) We design and implement XQueue, a lock-less, relaxed-

order MPMC queue that uses multiple queues for im-
proved locality without using locks or atomic operations.
We demonstrate the scalability of XQueue using mi-
crobenchmarks measuring latency as low as 110 cycles
and throughput as high as 1 billion ops/sec across
today’s largest shared-memory systems.

2) We integrate XQueue into LLVM OpenMP and eval-
uate the performance improvements on 5 unmodified
applications (Fib, FFT, Multisort, NQueens, and Health)
from the Barcelona OpenMP Task Suite (BOTS) as well
as the breadth first search (BFS) application from the
GAP benchmark suite. We show that the combination
of XQueue and LLVM OpenMP is capable of delivering
better scalability for fine-grained task-parallel workloads
with up to 6× speedup compared to native LLVM
OpenMP and 1× to 4× speedup compared to GNU
OpenMP in most cases, and up to 116× speedup in some
cases.

II. MOTIVATION

Concurrent data structures have to deal with data synchro-
nization and communication between threads. Synchronization
mechanisms like mutexes, semaphores, and spinlocks are
known to have significant overhead and can easily become
the bottleneck to achieving high performance.

An SPSC array-based queue provides the lowest latency
the microarchitecture can provide for enqueue and dequeue
operations when both operations do not occur simultaneously
since they do not require data synchronization or thread-to-
thread communication and can benefit from data locality. A
popular approach to implement parallelism in applications is
to use concurrent queues for sharing work among various
threads; MPMC queue is the most commonly used data
structure in such cases. Thread contention on shared data,
synchronization overheads, cache coherence effects, and cache

misses are some of the many factors that can significantly
impact the performance of MPMC queues and limit scalability.
In order to show the scalability and performance of MPMC
queues compared to SPSC queues, we selected five diverse
systems (see Table I) from the Mystic Testbed [12] that
represent different architectures with large core counts. We
conducted experiments on Ubuntu 18.04.3 and compiled using
LLVM Clang version 11.0.0 with O3 optimization level and
−march = native.

TABLE I: Testbed for evaluation from the Mystic System
Machine Model Sockets-Cores/HT@Freq

skylake-192 Intel Xeon Gold 8160 8-192/384@2.1GHz
skylake-48 Intel Xeon Gold 8160 2-48/96@2.1GHz
skylake-32 Intel Xeon Gold 6130 2-32/64@2.1GHz
skylake-16 Intel Xeon Silver 4110 2-16/32@2.1GHz

phi-64 Intel Xeon Phi 7210 1-64/256@1.5GHz
broadwell-16 Intel Xeon E5-2620 v4 2-16/32@2.1GHz
haswell-12 Intel Xeon E5-2620 v3 2-12/24@2.4GHz

epyc-64 AMD Naples 7501 2-64/128@2.0GHz
theadripper-32 AMD Threadripper 2990WX 1-32/64@3.0GHz

ryzen-8 AMD Ryzen 7 1700 1-8/16@3.0GHz
opteron-48 AMD Opteron 6168 4-48/48@1.9GHz
power9-40 POWER9 EP73 2-40/160@3.8GHz

thunderx-96 ThunderX 88XX ARM v8 2-96/96@2.0GHz

We measure the latency and throughput of a simple SPSC
array-based circular queue to identify baseline performance on
the latest many-core architectures. We run 1 billion enqueue
operations followed by a sequence of dequeues. We measure
the latency of each operation and calculate the average time
per enqueue/dequeue pair. For throughput experiments, we
measure the total time taken for 1 billion enqueue/dequeue
operations and calculate the throughput. Results in Table II
show the average latency and throughput of both enqueue and
dequeue operations. We see that the latency of any operation
on queues takes between 29 and 68 cycles depending on the
architecture and clock frequency. Average throughput reaches
270 million ops/sec on skylake-192 machine. Although these
results are significant, an SPSC queue is limited in parallel
runtime systems because it cannot alone be used to implement
parallelism and concurrency.

TABLE II: Average latency and throughput of en-
queue/dequeue operations on SPSC queue

Machine Latency (cycles) Throughput (ops/sec)
skylake-192 41 270M
epyc-64 47 155M
phi-64 68 26M
thunderx-96 36 58M
power9-40 29 36M

We measure the latency and throughput of an MPMC queue
by implementing the queue using a semaphore which tracks
free spaces in the queue and uses pthread_mutex_lock to
lock the queue during enqueue and dequeue operations. This
experiment aims to quantify the poor scalability of MPMC
queues using mutex locks. Each experiment enqueues and
dequeues 1 billion items using an equal number of producer
and consumer threads. In all experiments, we use a round-
robin pinning of threads, with producer and consumer threads
being on the same core (but distinct hyperthreads) which
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can result in better cache utilization, thereby reducing costly
memory accesses.

(a) Latency (b) Throughput

Fig. 1: Performance of MPMC queue operations

Figures 1a and 1b show the latency and throughput, respec-
tively. Our results indicate that latency can reach up to millions
of cycles under high contention, and throughput can drop down
to as low as 311,329 operations per second (aggregate over all
threads). For the skylake-192 system, which had the best single
core performance at 270 million operations/sec, the MPMC
approach yielded only 810 operations per second per thread
at a 384-thread scale (a 333,333× loss of performance). The
fastest MPMC queue throughput at any scale reached just 5
million operations/sec.

We were not surprised by these findings, as the fundamental
problem stems from the cost of synchronization. In prior
work, we studied the cost of synchronization mechanisms
from low to high levels of concurrency, and found that
none of these mechanisms offered scalable solutions beyond
single digit concurrent threads [13]. Use of such concurrent
data structures in modern parallel runtimes have significant
overheads for managing extremely fine-grained tasks. For ex-
ample, when computing the 44th Fibonacci number recursively
using LLVM OpenMP, the runtime overhead dominates the
overall execution time by consuming over 90% of CPU time
for synchronization and scheduling. These findings motivated
our investigation into methods to eliminate synchronization
mechanisms in order to unleash the full performance of many-
core architectures under high concurrency.

III. XQUEUE- SCALABLE CONCURRENT QUEUES ON
MODERN MANY-CORE ARCHITECTURES

XQueue is motivated in large part by the significant latency
gap observed with SPSC and MPMC models (Section II).

A simple concurrent SPSC queue can enqueue and
dequeue items in less than 100 cycles. Independent SPSC
queues per core could, in theory, scale linearly with increas-
ing core counts. Thus, we believe that an MPMC lock-less
queue can be built using SPSC queues by manipulating the
task/data flow carefully.

We introduce XQueue, a novel lock-less MPMC, out-of-
order queuing mechanism that can scale up to hundreds of
threads. XQueue uses B-queue [14] as a building block. B-
queue is a concurrent SPSC lock-free queue designed for effi-
cient core-to-core communication. It is implemented without

using any locks, atomic operations, or barriers. The latency
of queue operations in B-queue is as low as 20 cycles. B-
queue uses batching where both producer and consumer detect
a batch of available slots that are safe to use. Batching avoids
shared memory access and therefore improves performance.
Several fast SPSC queues have been proposed in recent
years [15]–[17] and we aim to demonstrate that XQueue can
be built with any fast and scalable SPSC queue.

Figure 2 shows the architectural of XQueue on a 4-core
system. The key idea here is to have N SPSC concurrent
queues per worker if there are N workers. There is one
master queue and N − 1 auxiliary queues per worker, with
N (equal to number of workers) producers adding items into
master queues. Every item is a void pointer that represents
a task where a task could be a function pointer or data
pointer. One worker exists for dequeueing tasks from the
master queue as well as the auxiliary queues. A worker first
tries to dequeue a task from the master queue. If a task
is dequeued successfully, it is processed immediately. The
item when processed can generate one or more items to be
enqueued into the auxiliary queues of the other CPU cores.
Every worker distributes work to auxiliary queues in a round-
robin fashion as shown in Figure 2. A worker then tries to
dequeue an item from its auxiliary queues and dequeued items
are processed immediately.

Fig. 2: Architecture of XQueue on a 4-core machine with 4
queues per consumer.

A simplified version of pseudocode for worker logic is
outlined in Algorithm 1. Since all queues in XQueue are con-
current SPSC queues, producer and consumer threads can act
concurrently processing items in the queues. The strategy of
distributing work across queues (as shown in Figure 2) ensures
that there is a only a single producer and single consumer for
every queue at any point in time. Due to this design, locks
can be completely avoided thereby reducing the latencies of
queue operations and improving overall performance.

A. Load balancing

In most parallel programming systems, it is a common
scenario to use multiple queues, one per worker, with work
produced and consumed locally by the workers/threads. Load
balancing is commonly achieved by using techniques like
work stealing [18], [19]. While XQueue also uses multiple
queues, it balances load by the virtue of its design with N
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Data: id ← coreId;next ← nextCoreId;
while 1 do

ret ← dequeueFromMaster(id, item);
if ret = SUCCESS then

retItem ← processItem(item);
if retItem 6= NULL then

enqueueToAuxiliary(next, retItem);
end

end
ret ← dequeueFromAuxiliary(id, item);
if ret = SUCCESS then

retItem ← processItem(item);
if retItem 6= NULL then

enqueueToAuxiliary(next, retItem);
end

end
next ← (next + 1)%numCores;

if next == id then
next++; /* do not enqueue to self */

end
end

Algorithm 1: Worker logic.

queues per core and consumer threads inserting items into
the auxiliary queues of all the other cores. This architecture
enables distribution of task graphs to multiple threads with
minimal overhead due to the lock-less design as compared to
the state-of-the-art work stealing techniques which primarily
use locks or atomics to achieve synchronization.

In a task-parallel program, tasks can be modeled as a
Directed Acyclic Graph (DAG) which can be traversed based
on inter-dependencies between the tasks. Task graphs have a
pool of ready tasks which can be processed by threads and
subtasks can be generated. The master and auxiliary queues
and the communication between them is modelled after the
dynamic execution of a program where a task can generate
subtasks. In the case of XQueue with N workers and N queues
per worker, as shown in Figure 2, we employ a ring buffer
topology for communicating between queues. Essentially, the
consumer thread of every set of queues acts as a producer
thread of N −1 auxiliary queues of all the other threads. This
pattern of task distribution ensures optimal load balancing in
terms of the number of tasks processed per worker. However,
this may not be the best fit for every scenario for various
reasons, such as data locality, task dependencies, and per task
execution time. Optimal allocation of work among various
threads is known to be NP-hard, but, in the case of XQueue,
depending on the nature of work, the topology of connections
between queues and task distribution strategy can be changed
to achieve best performance.

The load balancing mechanism in XQueue can be consid-
ered as a push-based mechanism as opposed to pull-based
work stealing approach. This primary difference impacts how
initially imbalanced workloads are handled. For example, con-
sider the case of Fibonacci. Execution starts with a single task
which recursively unfolds the DAG as execution progresses.
In the work stealing approach, idle workers randomly try
to steal tasks from other workers. This results in several
failed steals and coupled with the cost of locking for every
steal, incurs significant overhead. On the other hand, the
push-based approach of XQueue handles this efficiently with
its round-robin distribution without the use of locks, thus
incurring minimal overhead. We discuss the advantages and
disadvantages of this approach in Section IV.

On modern many-core architectures, it is common to have
multiple Non-uniform memory access (NUMA) zones which

impact the latency of memory operations from various cores.
In XQueue, every worker allocates queues in its respective
NUMA zone.This ensures that any memory reads and writes
from various threads have the lowest latency possible. How-
ever, when tasks propagate through auxiliary queues in the
system, the latency of memory read/write is higher across
NUMA zones. With XQueue’s ring buffer design across N
cores with N queues, some latency is unavoidable due to the
underlying architecture.

In summary, there is a lot of flexibility for defining the
topology for task distribution statically and dynamically during
program execution with XQueue. If the nature of the DAG
and data access patterns are known, the task distribution can
be tuned to achieve best performance as compared to state-of-
the-art work stealing approaches.

B. XQueue Integration with the OpenMP Runtime

In order to extend our research to real systems, we integrated
XQueue into OpenMP [20] to enable execution of unmodified
OpenMP programs using XQueue. OpenMP’s tasking model
provides a way to efficiently parallelize dynamic task graphs
and recursive algorithms. Several implementations of OpenMP
exist: GNU OpenMP (for GCC) [21], LLVM OpenMP [20],
and Intel OpenMP. We chose to integrate XQueue into the
LLVM OpenMP due to its open source code and its superior
performance as compared to GNU OpenMP with fine-grained
tasks [22].

Implementation: In the LLVM OpenMP tasking implemen-
tation, every thread owns a queue and the enqueue/dequeue op-
erations are protected by locks implemented using Lamport’s
bakery algorithm. We replaced the task queues in OpenMP
with multiple SPSC queues per worker to model XQueue.
OpenMP implements a work-stealing scheduler. Every thread
first checks it’s own queue for tasks. If no tasks are found, a
thread is randomly chosen to steal a single task. We replaced
the work stealing scheduler with the scheduler for XQueue
as shown in Algorithm 1. In our XQueue-based OpenMP
implementation, every thread checks it’s own queue for tasks.
If no tasks are found, the scheduler checks all auxiliary queues.
This process of checking the master queue and auxiliary
queues is repeated until a termination condition is satisfied.

Optimizations: We applied few optimizations to the
XQueue system during integration with the OpenMP runtime.
Since the core design of XQueue is to have multiple queues
per worker, at higher thread counts (hundreds), the latency
of checking all auxiliary queues can become significant and
reduce the overall performance. To solve this issue, we im-
plemented a hinting mechanism where every producer stores
the ID of the last queue to which the task was pushed. This
hint can possibly be over-written by multiple threads writing
to various queues, however this simple mechanism reduces the
latency of checking auxiliary queues many times.

IV. PERFORMANCE EVALUATION

We evaluate the performance of XQueue using synthetic and
real workloads. For the purposes of evaluating XQueue inde-
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pendently, we developed a prototype parallel runtime system
that can process a dynamic task graph with task dependencies
using XQueue. We first evaluate XQueue individually using
a series of micro-benchmarks. We deployed XQueue on 13
systems (Table I); we then picked the system with the highest
number of cores, the skylake-192 with 192-cores and 8 NUMA
zones to conduct deeper analysis.

A. Experiment Setup

We implemented three systems for the micro-benchmark
evaluation:

1) XQueue (SPSC) uses a single SPSC queue per worker.
2) XQueue (MPMC) uses an MPMC queue with a master

queue per worker.
3) XQueue (Cilk Deque) uses a Cilk deque [5] with a

separate queue per worker.
Cilk deque is implemented as part of Cilk 5 multi-threaded

language [5] and uses a shared-memory, mutual-exclusion
protocol called the THE protocol [23] for implementing locks.
This mechanism of locking is about 25% faster than hardware
locking primitives.

For the macro-benchmarks, we use the XQueue-enabled
LLVM OpenMP implementation with N queues per worker
and N workers. We compare it with the native LLVM OpenMP
and GNU OpenMP libraries.

B. Micro-benchmark Performance Results

In each experiment we perform 1 billion enqueues/dequeues
concurrently by varying the number of threads. We consider
a single operation to be the act of dequeing an item from the
master queue and executing the function to which that item
points to. The function performs a single NOP operation. The
X-axis on all the figures represents the number of produc-
ers/consumers.

Figure 3a shows the latency of queue operations on XQueue
using lock-less queue. Each queue operation takes around 110
to 400 CPU cycles on average on all architectures considered.
ARM ThunderX shows the lowest latency and IBM Power9
shows the highest latency in these micro-benchmarks. Intel
processors Skylake, Haswell, Broadwell and Xeon Phi show
latencies in the range of 180 to 300 CPU cycles on average.
The standard deviation is low across all architectures indicat-
ing that XQueue with lock-less queue can scale up to hundreds
of threads with latencies as low as 110 to 400 cycles.

Figure 3b compares the latency of XQueue (SPSC) with
Cilk Deque and MPMC queues on skylake-192. Here, Cilk
Deque/MPMC is a single queue shared across all the workers.
With 192 producers/consumers, latency of MPMC queue is
13× the latency of Cilk deque. Cilk deque’s Dijkstra-like
locking mechanism achieves much lower latency than locks
implemented using hardware locking primitives. However, the
latency is much higher compared to XQueue which does not
use any locks. It is noteworthy that XQueue has relatively
constant latency as we increase the number of threads by two
and half orders of magnitude, while Cilk deque and MPMC
show significant latency increases over the same scale.

Figure 3c is a log-log plot showing the throughput of
XQueue using lock-based and lock-less queues on the skylake-
192 system. The throughput achieved on this system with
XQueue with lock-less queue is 1 billion operations per second
with all hyper threads being utilized. For XQueue using lock-
based queue, the average throughput achieved is 200 million
operations per second and 397 million for the Cilk deque. In
the case of MPMC queue, each mutex lock is held for short
intervals and contention is low, but acquiring the lock has a
cost which explains the 5× gap in performance as compared
to XQueue with lock-less queue. Cilk deque also incurs a cost
for acquiring and releasing the lock (a 2.5× gap), although
the cost is lower compared to mutex-based locks. As noted
in Section II for MPMC queue, with high contention on the
mutex lock with more than 8 threads, throughput drops to
about 300K operations per second on skylake-192 with 384
threads. In case of Cilk deque, the throughput drops to 4
million operations per second. This clearly shows a 3300X
gap in throughput between XQueue with lock-less queue and
single lock-based queue with hundreds of threads.

The results obtained from micro-benchmarks using XQueue
with lock-less queue and lock-based queue are significant and
show that this architecture can scale to at least hundreds of
threads with any scalable concurrent SPSC queue implemen-
tation. It can be noted that these micro-benchmarks do not
take into consideration the cache effects of task distribution
to other cores in XQueue since there are no auxiliary queues.
Hence, this benchmark shows the lowest latency and highest
throughput that can be achieved, providing a baseline.

C. Macro-benchmark Performance Results

To quantify the improvements in real application workloads,
we evaluate the speedup achieved using XQueue-enabled
LLVM OpenMP as compared to the native LLVM OpenMP
and GNU OpenMP libraries. We evaluate five out of nine
applications from the BOTS benchmark suite [24]: Fibonacci,
FFT (Fast Fourier Transform), Multisort, NQueens and Health.
Results are shown in Figure 4. We also evaluate the breadth
first search application from the GAP benchmark suite [25]
with real-world social network graphs such as those from
Friendster and Twitter. Results are shown in Figure 6. The
application workloads are summarized in Table III.

TABLE III: Application - number of tasks

Application Inputs(S,M,L,XL) Highest Task Count
Fibonacci 44, 46, 48, 50 40.7B

FFT 134M, 268M, 536M, 1B 128M
Multisort 134M, 268M, 536M, 1B 14M
Nqueens 14, 15, 16 1.1B
Health small, medium, large 126M
BFS friendster 79M
BFS twitter 40M

Fibonacci (Fib) computes the Nth Fibonacci number using
recursive parallelism. While Fib is hardly a critical parallel
application, it does have extremely fine-grained tasks (e.g.,
addition of two numbers) with extremely large number of
tasks, and thus exposes the limits of a tasking runtime in
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(a) Average latency of enqueue/dequeue operations using
XQueue (SPSC)

(b) Latency Comparison (c) Throughput Comparison

Fig. 3: XQueue Performance on Skylake-192

terms of granularity. Figure 4 shows the results obtained on
skylake-192. OpenMP with XQueue achieves 3× speedup
as compared to the native LLVM and GNU versions for
Fib(50). The performance gap increases with problem size
due to the increase in overhead of locking operations in the
native OpenMP versions with more fine-grained tasks. Further
analysis using Intel Vtune Profiler showed that about 50% of
the execution time is spent in these operations which includes
waits and atomics, where as this overhead is negligible in
the XQueue version due to the lack of locks or atomics. The
overall runtime overhead for managing fine-grained tasks of
this application reduced from over 90% to 29% of the CPU
time when using XQueue.

Multisort sorts 32-bit randomly generated numbers using a
fast parallel sorting variation of mergesort. It uses a recursive
algorithm with a base condition of 2048 numbers and they
are sorted using serial quicksort and insertion sort is used for
arrays with less than 20 elements. The application scales well
up to 96 threads for all the runtimes and XQueue is faster for
all problem sizes with 1.97× speedup for the largest problem
size. However, the performance drops by 50% at 192 threads.
As shown in Figure 4, XQueue achieves similar performance
compared to LLVM and GNU versions using 192 threads.
LLVM and GNU versions of OpenMP exhibit high CPI (cycles
per instruction) rate (0.5 for XQueue vs 24 for both LLVM and
GNU for the largest problem size) which is the result of waits,
atomics, and locks in the GNU/LLVM versions. However,
since this application is heavily memory-bound, the benefits
of avoiding locks and lower CPI in XQueue are outweighed
by the data movement across cores, thereby resulting in no
performance benefit.

Health simulates the Columbian Health Care System [26].
A list of potential patients in a village with one hospital are
simulated with several possibilities of getting sick, needing
treatment or reallocating to an upper level hospital. Every
village being simulated is run as a task. The different proba-
bilities at each step cause indeterminism and load imbalance.
On skylake-192, the performance of this application is heavily
impacted due to remote memory accesses for moving the vil-

lage data across NUMA zones. Despite some load imbalance,
XQueue achieves 6× speedup compared to LLVM variant and
4× speedup compared to GNU variant using the large input
data.

Fast Fourier Transform (FFT) computes the 1D FFT
of a vector with N complex values using the Cooley-Tukey
Algorithm. This algorithm recursively divides the FFT into
several smaller Discrete Fourier Transforms (DFTs) creating
multiple tasks at each step. Although the XQueue version has
the advantage of reduced overhead due to lock-less queues, the
task distribution suffers due to the static round-robin placement
of tasks resulting in similar overall execution time as compared
to other versions of OpenMP. Figure 5 shows the timeline view
of the OpenMP parallel region for the largest problem size,
where green represents effective work and black represents
the spin/wait/overhead time introduced by load imbalance. It
is noteworthy that OpenMP with XQueue with worse load
balancing can still achieve slightly improved performance
(between 0.9× to 1.2×) due to the smaller overheads incurred
by avoiding locks.

Fig. 4: Speedup of XQueue over standard GNU and LLVM
OpenMP implementations on the BOTS benchmarks on
skylake-192 using 192 threads.

NQueens computes all the solutions for placing N queens
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Fig. 5: Load balance of FFT on skylake-192 - LLVM+XQueue
(left), Native LLVM (middle), GNU(right)

on an N × N chess board such that no queens can attack
each other. The algorithm prunes certain branches of the
tree that cannot reach the solution which creates load im-
balance. Figure 4 shows that the XQueue OpenMP achieves
4X speedup compared to the GNU version. The performance
loss in XQueue as compared to standard LLVM is due to the
significant load imbalance. On the other hand, GNU OpenMP
incurs huge synchronization overheads for managing fine-
grained tasks (about 60% on skylake-192) and the performance
is significantly lower for GNU OpenMP compared to OpenMP
with XQueue.

Breadth First Search (BFS) is a fundamental building
block of many graph algorithms: it checks the connectivity
of the graph from given source vertices, visiting one layer at
a time. In order to demonstrate the applicability of XQueue us-
ing real-world datasets, we evaluate the BFS application from
the GAP Benchmark Suite [25] using social network graphs
such as Twitter and Friendster. The original implementation
of BFS in the GAP benchmark leverages loop parallelism
(LP) to parallelize every level of the tree. We modified the
code to use recursive task-based (TP) parallelism with a base
condition of 1024 nodes to evaluate XQueue. We also evaluate
the extreme case with a base condition of 1 node, which
creates several extremely fine-grained tasks. Each data point is
the average speedup obtained by running BFS 64 times from
pseudo-randomly selected non-zero degree source vertices.
The Twitter graph has 61 million nodes and 1.47 trillion
directed edges for a degree of 23 where degree is the maximum
number of edges connecting a vertex. The Friendster graph has
65 million nodes and 3.61 trillion directed edges for a degree
of 55.

Figure 6 shows the speedup achieved for both the test graphs
on the skylake-192 using 192 threads. For the Friendster graph
with a base case of 1024 nodes, GNU OpenMP scales well up
to 24 threads and performance degrades at higher concurrency
levels. XQueue performs reasonably well at full scale of 192
threads as compared to GNU and LLVM. XQueue achieves
a speedup of 1.4× for Friendster and 3× for Twitter graphs
over GNU with base case of 1024 nodes. Execution times
for LLVM and XQueue are similar for Friendster and for
Twitter, XQueue achieves 2.4× speedup. For the base case of
1 node, while there is no significant performance difference
between LLVM and XQueue, GNU’s performance suffers
significantly (up to 116× slower) due to the overhead of
managing fine-grained tasks. Since real social network graphs
are very unbalanced, they result in highly irregular memory
accesses and load imbalance. Compared to the original GAP
BFS using loop parallelism, XQueue achieves 1.9× speedup
using Friendster and 1.6× speedup using Twitter with 192

threads, showing promise that the task-based parallel approach
can be beneficial for these types of workloads.

Fig. 6: Speedup of XQueue over standard GNU and LLVM
OpenMP implementations when applied to Breadth First
Search from GAP Benchmark Suite on skylake-192 using 192
threads.

Overall, our results show that there is significant room
for improvement in existing task-parallel runtimes and higher
performance can be achieved by using lock-less techniques.
Improving load balancing could yield further performance
improvements similar in size to the improvements seen here.

V. RELATED WORK

XQueue is most closely related to work in concurrent
queues and parallel runtime systems.

Concurrent queues: Several researchers have proposed
concurrent queue implementations. Scogland et al. [27] pre-
sented the characterization of various concurrent queues on
many-core architectures and proposed a high-throughput queue
specifically engineered for many-core architectures. Schweizer
et al. [28] performed detailed analysis of x86 atomic instruc-
tions on various architectures and discovered that atomics
prevent instruction level parallelism and that latency depends
on architectural properties such as the coherence state of the
accessed cache lines. Scott et al. [29] proposed a lock-free
queue algorithm for machines that provide atomic primitives.
Cache-friendly concurrent lock-free queue (CFCLF) [7] is a
lock-free queue that employs a matrix for the queue structure,
reducing core-to-core communication overhead and making
it cache efficient. BQ [30] is a lock-free queue that exploits
batching to gain better performance. Morrison et al. [31] pro-
posed a concurrent nonblocking linearizable FIFO queue using
atomic FAA that outperforms CAS based implementations by
up to 2×.

Parallel runtime systems: Most parallel runtime systems
and execution models, such as OpenMP [20], Charm++ [32],
and Swift/T [3], use concurrent queues for sharing data
between threads or processes. OpenMP’s task construct [33]
enables task-based parallelism. Charm++ demonstrates about
10-20% improvement in performance by using optimization
techniques like lock-free queues, CPU affinity, and memory
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management [34]. Recently, Cpp-taskflow [6] emerged as an
alternative to OpenMP task parallelism for C++.

To the best of our knowledge, we are the first to explore
lock-less strategies in concurrent programming where data
can be carefully manipulated to avoid the use of locks.
Furthermore, existing runtime systems have not focused on the
efficient support of fine-grained tasks, resulting in sub-optimal
application execution, a problem that will only get worse with
larger many-core architectures.

VI. CONCLUSION AND FUTURE WORK

XQueue is an extremely scalable lock-less MPMC out of
order queuing system which can be used in tasking runtimes
to overcome the performance limitations due to overhead
of synchronization. Evaluation results show that XQueue is
scalable up to hundreds of threads of execution with up to
6900× lower latencies and 3300× higher throughput when
compared to naive implementations. We integrated XQueue
with LLVM OpenMP and were able to achieve up to 6×
speedup compared to native LLVM OpenMP and 1× to 4×
speedup compared to GNU OpenMP in most cases with up
to 116× speedup in some cases on applications from the
BOTS benchmark suite and BFS application from the GAP
benchmark suite.

In our previous work, we explored various lock-based work
stealing approaches [35]. In the future we will investigate lock-
less work stealing [36] as a scalable mechanism for dynamic
load balancing with the aim to improve the current deter-
ministic load balancing, broaden the applicability of XQueue,
and achieve better performance on modern machines with
hundreds of cores. We also plan to explore integration with
GNU OpenMP [21], the Swift/T workflow system [3], as
well as the Parsl parallel programming library [2] in order
to further broaden the applications that could take advantage
of the proposed techniques.
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