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Abstract—The scalability of systems such as Hive and Spark
SQL that are built on top of big data platforms have enabled
query processing over very large data sets. However, the per-
node performance of these systems is typically low compared to
traditional relational databases. Conversely, Massively Parallel
Processing (MPP) databases do not scale as well as these systems.
We present HRDBMS, a fully implemented distributed shared-
nothing relational database developed with the goal of improv-
ing the scalability of OLAP queries. HRDBMS achieves high
scalability through a principled combination of techniques from
relational and big data systems with novel communication and
work-distribution techniques. While we also support serializable
transactions, the system has not been optimized for this use
case. HRDBMS runs on a custom distributed and asynchronous
execution engine that was built from the ground up to support
highly parallelized operator implementations. Our experimental
comparison with Hive, Spark SQL, and Greenplum confirms that
HRDBMS’s scalability is on par with Hive and Spark SQL (up
to 96 nodes) while its per-node performance can compete with
MPP databases like Greenplum.

Index Terms—SQL, big data, distributed query processing

I. INTRODUCTION

The increasing scale of data to be processed for analytics
has brought traditional DBMS that scale only to a few nodes
to their limits. Massively Parallel Processing (MPP) databases
provide better scale out by parallelizing query processing
across processors and nodes using a shared-nothing architec-
ture. Systems like Greenplum [5], Teradata [3], and Netezza
feature parallel execution engines that are specialized for
processing relational queries. Recently, a new class of SQL
engines has been built on top of Big Data [42] platforms
such as MapReduce [18] and Spark [11], [49]. This class
of systems include Hive [44], Spark SQL [47], Dremel [32],
and many others. Big Data platforms utilize distributed file
systems like HDFS for storage and resource managers like
YARN [45] to schedule execution of tasks on a cluster. SQL
engines built on top of Big Data platforms rely on the fault
tolerance and load balancing techniques of these platforms
for scalability. While these approaches provide better scale
out (deployments on 1000s of nodes are not uncommon),
their performance per-node is limited by the programming,
storage, and execution model of the underlying platform.
Both types of systems have in common that they optimize
for OLAP, i.e., complex, mostly read-only, queries. Figure 2
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Fig. 1: Anatomy of a HRDBMS cluster

compares systems in terms of scalability (scale-out) and per-
node performance. Databases without intra-query parallelism
(e.g., Postgres) do not scale to large clusters and also have
limited per-node performance for complex queries, because
they do not exploit the available parallelism on a single
machine. MPP databases provide better per-node performance
and better scalability. Big Data platforms provide scalability
at the cost of per-node performance.

The goal of building HRDBMS (highly-scalable relational
DBMS), the system we present in this work, is to build a
DBMS with a per-node performance comparable to MPP
databases as well as scalability comparable with Big Data
platforms. Based on an analysis of scalability bottlenecks
in MPP databases and Big Data platforms, we propose and
implement novel techniques to address these bottlenecks. In
the following we discuss the design of our system and the
techniques we have developed for achieving scalability without
sacrificing performance. An overview of our design decisions
is shown in Figure 3. We indicate in parentheses after a feature
whether it is typical for relational databases, typical for Big
Data platforms, or is novel.

A. System Overview

Cluster Organization. As shown in Figure 1, an HRDBMS
cluster consists of coordinator and worker nodes. Coordinators
store metadata, handle communication with clients, and are
responsible for query optimization, transaction coordination,
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Feature Implementation in HRDBMS

Storage Page-oriented storage (DB) partitioned across nodes and disks; Memory caching using a parallel buffer manager (DB);
Disk-resident index structures; Predicate-based data skipping (N); External Table Framework for accessing non-HRDBMS
sources

Fault tolerance Replicated storage is supported but not yet used for fault tolerance; Mid-query failures require query restart (DB);
Temporary node failures are handled by ARIES-style log-based recovery (DB)

Resource
Management

Coordinator nodes manage communication and distribution of work across workers; Worker nodes manage memory and
degree of parallelism individually (DB).

Execution Engine Custom distributed, pipelined (DB) execution engine with built-in support for relational operators; Inherent parallel
implementation of all operator types; Extensive use of shuffle and other distributed implementations of operators (BD)

Optimization A cost-based optimizer that applies heuristic and cost-based transformations (DB)

Communication Enforcing a limit Nmax on the number of neighbors a node has to communicate with for both hierarchical (BD) and
n-to-m communication (N); Multiple coordinators for reliability and load-balancing client communication and transaction
management

Fig. 3: Overview of HRDBMS design decisions. We indicate which features are typical for big
data platforms (BD), typical for (distributed) relational databases (DB), or are novel (N).

and cluster-wide resource management. HRDBMS provides
serializability using 2PL [9] and 2PC [35], a protocol that is
implemented by many modern distributed databases such as
Spanner [15]. Workers store data and execute queries. Systems
such as Hadoop use a single node for handling client requests
and storing metadata. These systems allow for additional
stand-by masters which do not process requests. HRDBMS
replicates metadata and statistics across all coordinators in a
cluster, but allows multiple coordinators to process requests
in parallel. Queries are executed across the workers using
HRDBMS’s custom execution platform. Query results are
always routed to a client through the coordinator that planned
the query.

Communication. A challenge faced by any distributed
database system is that operations like shuffling require one
node to communicate with a large number of nodes in the
cluster. This is one of the primary scalability bottlenecks in
MPP systems. The shuffle implementation of most Big Data
platforms is designed to scale. However, scalability comes
at the cost of performance since shuffle operations in these
systems are blocking and most implementations persist data to
local or distributed file systems. We develop new communica-
tion primitives that enforce scalable communication topologies
for all communication in the system including query execution
and transaction processing. Our approach enforces a hard limit
Nmax on the number of neighbors a node has to communicate
with. Specifically, we propose two communication topologies -
the tree topology for hierarchical communication (e.g., commit
processing [35]) as well as a n-to-m topology for all-to-all
communication (e.g., a shuffle). Our tree topology is similar
to how systems like Dremel [32] implement hierarchical
aggregation. To the best of our knowledge we are the first
to generalize this idea to n-to-m communication. As a general
rule, all operations involving communication in HRDBMS are
non-blocking and do not spill to disk.

Storage and Locality. HRDBMS supports both row and
columnar tables. Data is stored on the local disks of worker
nodes using a page-oriented layout. Similar to MPP databases,
tables are partitioned across nodes and disks based on a parti-

tioning strategy that is selected at table creation time. Having
full control over storage location enables our optimizer and
execution engine to enforce data locality which is critical for
performance and scalability. Page-oriented storage and support
for disk resident index structures enables us to feasibly support
DML operations and transactions. Data is cached in memory
using a parallel buffer manager. We introduce predicate-based
data skipping as a lightweight method for skipping pages
during scan operations based on the results of previous scans.
This method generalizes static schemes like small materialized
aggregates [33], and could be retrofitted into existing database
systems. We do not use a distributed file system such as HDFS
for storage, because these file systems are typically append-
only and their read/write throughput is less than native file
operations. In addition to better read/write performance, we
also gain full control over data locality by managing local
storage directly. One advantage of Big Data platforms is
that they can process queries over data from various sources
without requiring the data to be ingested into the system. To
combine the best of both worlds we have implemented an
external table framework that allows HRDBMS to access a
variety of external data sources, including HDFS.

Execution Engine. A major contributor to the poor per-
formance of Hive and other Hadoop-based approaches is
excessive materialization. Even systems such as Spark SQL
still materialize data during shuffle operations per default.
Similar to MPP systems we only materialize intermediate
results to disk when necessary to save memory. Operator
implementations in HRDBMS are inherently parallel. Similar
to both Big Data platforms and MPP databases we spawn one
scan thread for each fragment of a table, but the parallelism
of other operators is controlled separately. HRDBMS features
a cost-based query optimizer that uses statistics for cost
estimation.

Fault Tolerance. Fault tolerance in HRDBMS is currently
limited to Aries-style recovery [34] based on write-ahead logs
maintained on each node. Metadata is replicated across all
coordinators and kept in-sync using the 2PC protocol [35].

Resource management. Systems like YARN [45] and



Mesos [21] are frequently used to manage the resources in
a cluster, e.g., to let multiple applications share the same
cluster. We deliberately chose to let HRDBMS manage its own
resources, because HRDBMS tasks dynamically resize their
resource allocations based on their current requirements and
availability of resources. Resource management in HRDBMS
operates on three levels. At the cluster level, our query
optimizer balances load and communication across workers.
Workers monitor the resource usage on the machine they
are running on and reduce the degree of parallelism for
query operators if resources are scarce. Finally, operators can
spill data to disk if necessary to limit memory consumption.
This decentralization of resource management for lower level
tasks is critical for scalability, because it avoids overloading
coordinators with decisions that can be better made locally.

B. Contributions

Our key contributions are two-fold: (i) we demonstrate
how a principled combination of traditional query processing
techniques with ideas from distributed dataflow engines can
improve performance and scalability leading to a system
that is more than the sum of its components. However, to
fully achieve our goal we had to (ii) develop novel tech-
niques that overcome the remaining performance and scal-
ability bottlenecks. We implement these ideas as a system
called HRDBMS, a fully functional shared-nothing distributed
DBMS. HRDBMS’s open source codebase (https://
github.com/IITDBGroup/HRDBMS) currently consists of
about 170,000 lines of Java code.

Analysis of Bottlenecks and Principled System Design. We
identify and address performance bottlenecks including non-
scalable communication, blocking shuffle operations, and data
locality not being exploited. By choosing and picking the
most effective and scalable techniques from MPP databases
and big data platforms, we can overcome many of these
bottlenecks. This results in a new hybrid design which has
both characteristics from distributed relational databases such
as Greenplum as well as big data platforms such as Spark as
discussed in Section I-A.

Novel Techniques. The principled combination of previous
ideas however is not sufficient for achieving our goal. We
additionally make the following technical contributions that
improve the state-of-the-art in distributed query processing in
several regards.
• Scalable communication patterns for all operations:

Approaches like Dremel [32] reduce the number of neigh-
bors a node has to communicate with for hierarchical op-
erations such as aggregation. However, to the best of our
knowledge, we are the first to enforce this for operations
with n-to-m communication patterns such as a shuffle.
For that we apply a variation of the binomial graph
topology [4] to be able to enforce a constant limit on the
number of neighbors a node has to directly communicate
with. Since shuffle is a prevalent operation in distributed
query processing (e.g., it is used to implement distributed

versions of group-by aggregation and join), this translates
into a significant improvement in scalability (e.g., see the
discussion of our experimental results for TPC-H query
19 in Section VII).

• Predicate-based Data Skipping: Data skipping based on
small materialized aggregates [33] stores for each page of
a table the minimal and maximal values for each of the
table’s attributes. This information is used during query
processing to skip a page if based on the minimal and
maximal attributes values of records stored on this page,
none of the records can fulfill the selection conditions of
the query. We generalize this idea by caching at runtime
which pages contain rows matching a query’s predicate
and then use this information to skip reading pages for
future queries with the same or similar predicates. Since
many workloads follow the 80-20 rule, i.e., 80% of the
queries only access 20% of data, it is quite effective to
cache query-specific information about relevant data.

Experimental Evaluation. We experimentally evaluate our
system on a 96 node cluster comparing against Hive, Spark
SQL, and Greenplum. Our results demonstrate that HRDBMS
provides per-node performance competitive with Greenplum
and exhibits scalability comparable with Hive and Spark SQL.
Furthermore, HRDBMS performs well if data is significantly
larger than the available main memory.

The remainder of this paper is organized as follows. We
discuss related work in Section II. Section III discusses the
system’s storage engine and indexing capabilities. We intro-
duce our distributed execution engine in Section IV. Section V
covers HRDBMS’s cost-based optimizer. Section VI covers
concurrency control and recovery. We present experimental
results in Section VII and conclude in Section VIII.

II. RELATED WORK

HRDBMS builds upon the long history of relational query
processing as well as on ideas from big data platforms. We
did present a preliminary version of the system in [7], [8].

MPP Databases. MPP databases such Greenplum, Netezza,
and Teradata distribute pipelined query processing across
nodes using a shared-nothing architecture. MPP databases
utilize local disks on worker nodes for page-oriented record
storage and replication for fail-over. A single master node
handles communication with clients and query optimization.
In general these systems are high-performance, but are not
designed to scale to large clusters. Several approaches pair
MPP processing with HDFS storage (e.g., HAWQ [13]).

SQL on Big Data Platforms. Hive [44] is an SQL engine
built on top of Hadoop. While inheriting the scalability of its
host platform, the per-node performance of Hive is severely
restricted by the excessive materialization of MapReduce and
lack of support for exploiting data locality. Since MapReduce
is largely I/O-bound, compressed file formats like ORC and
Parquet can significantly improve performance [19]. While
these techniques address some of the bottlenecks of MapRe-
duce, others, such as limitations of the MapReduce shuffle
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model, are inherent to the platform itself. Tez [39] improves
MapReduce by allowing multiple mappers and reducers to be
chained together without writing temporary data to HDFS and
by reconfiguring dataflows at runtime. Impala [25] deploys
daemons on HDFS data nodes which access the data stored
locally on a node to ensure data locality and eliminate most
of the overhead of HDFS. Spark SQL [6] is an SQL engine
that is part of Spark. The system features an extensible
optimizer. Even though most materialization is eliminated by
using Spark, shuffle operations still write data to disk by de-
fault. Furthermore, the system has high memory requirements.
Dremel [32] is designed for aggregation-heavy analytics across
large clusters. The system performs well for aggregation
queries with small result sets because of its serving-tree
architecture. HRDBMS applies a generalization of this idea
by dynamically organizing nodes in a suitable topology to
compute aggregation, sort, and shuffle operations. Apache
Flink [10], [20] is a streaming dataflow engine. Operators
execute in parallel and slower operators can backpressure
upstream operators to prevent unlimited growth of streams.
SQL on Key-value Stores. Recently, several SQL front-
ends for NoSQL databases (key-value stores) such as Cassan-
dra [26] and ZHT [29], [30] have been introduced. NoSQL
databases are typically designed for high-throughput CRUD
operations and cannot efficiently process batch operations [38]
which is required for OLAP workloads. However, there are
key-value stores such as BigTable [12] that are better suited
as storage backends for relational engines. Spanner [15] is a
database based on BigTable with support for strongly consis-
tency. In Spanner, data is co-located within the key-value store
backend based on a hierarchical nesting of tables. However,
not all workloads can benefit from hierarchical co-location.
NewSQL. Another class of systems target scalable processing

of OLTP workloads. These include Spanner [15], VoltDB [43]
(which is a commercialization of the H-store [23] research
prototype), FoundationsDB, Amazon Aurora, and many more.
To scale-out, these systems horizontally partition tables across
several nodes. Transactions that only access data stored on one
node are handled locally while transactions involving multiple
nodes use a distributed commit protocol such as 2PC [35]
or a consensus protocol like Paxos [27] or Raft [37]. For
example, Spanner [15] applies Paxos to ensure consistency
among multiple replicas of a table fragment and 2PC to
coordinate transactions that access more than one fragment.
While transaction processing is not our main focus, HRDBMS
nonetheless supports serializable transactions relying on a
hierarchical version of the 2PC protocol. However, the per-
formance of our current implementation is relatively poor.

III. STORAGE

HRDBMS stores data on the local filesystems of worker
nodes. Tables may be hash- or range-partitioned, or dupli-
cated across nodes. Within each node an additional level of
partitioning is applied to spread data across the node’s disks.
The partitioning strategy for a table is selected by the user
at table creation time. The coordinator nodes track how table

data is distributed across workers and use this information to
enforce that data is always read on the worker node(s) where
it resides. This is in contrast to systems such as Hive or Spark
SQL where locality can only be stated as a preference.
Block Storage. All index and table data in HRDBMS is
stored in pages of configurable size (up to 64MB). Pages are
compressed using LZ4 [14] (fast decompression).
Row and Column Storage. HRDBMS supports both row
and columnar tables. The row-oriented table implementation is
standard: each page contains a header with information about
the rows stored on that page and their schema; the rest of the
page contains data. Each row is assigned a physical row ID
(RID) that consists of identifiers for the node, disk, and page
on which the row resides plus a slot number identifying the
row’s position within the page. The user can specify that a
table should be clustered on a list of attributes. Data is sorted
during loading to enforce the clustering. DML operations
do not respect the clustering. However, HRDBMS provides
support for reorganizing tables to restore clustering.

Columnar tables are implemented as a row/columnar hybrid,
similar to PAX [2]. All columns of a table are stored in a
single file as a sequence of page sets. A page set for a table
with n columns consists of n pages, each storing values of
one column. Each page in a page set stores the same number
of values which simplifies reconstruction of rows. A naı̈ve
implementation of the page-set approach would underutilize
pages since the column with the largest values determines the
number of rows that can be stored in a page set. We address
this problem by 1) using Huffman encoding [22] of strings
and LZ4 page compression and 2) using a Linux sparse file,
i.e., free space on pages will (almost) not occupy any space
on disk. The Linux sparse file approach allows us to directly
access a certain page in a file without knowing the offsets of
compressed pages within the file.
Buffer Manager. All access to data and index pages in
HRDBMS is handled by a node’s buffer manager. The buffer
manager has the ability to dynamically grow and shrink the
buffer pool as needed. The buffer pool of a node is partitioned
into stripes - each managed by a stripe manager (separate
thread). The assignment of pages to stripes is determined
by a hash of the page number. The parallel nature of the
buffer manager is hidden from its clients through a lightweight
wrapper that forwards requests to the stripe managers. We use
a variant of the standard clock algorithm for page eviction.
Our implementation differs from the standard clock algorithm
in that table scans periodically pre-declare the pages they will
request in the near future and these pages will be prioritized by
the clock algorithm. This approach is particularly effective if
a large percentage of buffer operations stems from concurrent
table scan operations as is common for OLAP workloads.
Predicate-based Data Skipping. During a table scan,
HRDBMS keeps track of which pages do not contain any
rows matching a predicate and records this information in a
predicate cache associated with each individual page. This is
maintained as a mapping cache : P → {θi} from a page P to



a set of predicates θi. Subsequent table scan operations with
a predicate θ can then skip each page P with θ ∈ cache(P ).
Furthermore, if a predicate θ logically implies one of the
cached predicates for a page P , say predicate θi, then it is
guaranteed that page P cannot contain any rows matching the
predicate and, thus, can safely be skipped. Inserts in HRDBMS
are append-only and updates are not executed in place. Thus,
as long as a page or page set is full, any information we
cache about it will be valid until the table is reorganized.
Based on our experience with HRDBMS, a 10TB database
with 1000 previously executed queries running on 10 nodes
would contain about 250MB of predicate cache data per node.
Predicate caches are periodically persisted to disk and loaded
during database restarts. Many databases implement a concept
known as min-max indexes where the database tracks the
minimum and maximum value of a column on each page [33].
Our method is a generalization of min-max indexes.

Index Structures. HRDBMS supports B+-trees and disk-
resident skip lists. Skip lists are fairly common in main-
memory databases (e.g., [17]) because they can support non-
blocking concurrent access. We map skip lists to disk as an
append-only page file. Any new node inserted into a skip list
is inserted to the current page and deletes are logical. In spite
of its simplicity, this results in reasonable I/O performance for
traversing the index if data is mostly inserted in batches.

External Data Sources. HRDBMS features an extensible
external table framework which supports distributed access
to external data sources. A user-defined external table type
(UET) for a distributed data source can expose the horizontal
partitioning of data to HRDBMS and the system will distribute
scans of fragments of such a table across worker nodes. As a
proof-of-concept we have implemented an external table type
for reading CSV data from HDFS.

IV. EXECUTION ENGINE

HRDBMS features a distributed dataflow engine with built-
in support for relational operators. Our engine is inherently
asynchronous and pipelines operations within and across nodes
and processors. Per default, once data is read from disk, all
operations execute in main memory, spilling to disk only
where necessary. The engine enforces data locality - all table
and intermediate data is accessed locally on the node where
it resides. Importantly, HRDBMS’s optimizer can place any
operator on any worker node.

Pipelined Execution. Pipelining is a standard practice that
avoids unnecessary materialization of intermediate results.
Operators that need to consume their whole input before
producing a result are called blocking. HRDBMS tries to
avoid blocking operators, e.g., by choosing a non-blocking
implementation of an operator or by splitting an operator into
two phases where only one of the phases is blocking.

Enforcing Scalable Communication. A critical scalability
bottleneck of many distributed SQL engines is that operations
such as shuffle may require nodes to communicate with O(n)
neighbors where n is the number of nodes in the cluster.

(a) Tree (n = 7, Nmax = 3)
(b) n-to-m (n = 12, Nmax = 8)

Fig. 4: Exemplary tree and n-to-m topologies

For large cluster sizes, the amount of resources occupied
by opening and monitoring such a large number of sockets
may already be a performance bottleneck. We support two
strategies for enforcing a limit Nmax on the number of
network connections per node which we refer to as tree-
topology and n-to-m-topology, respectively.

We distribute hierarchical computations using a tree topol-
ogy with a maximal fan-out of Nmax−1 (see Figure 4(a)). An
example of a hierarchical operator is a distributed merge sort,
where each merge phase can be processed by a separate level
in such a tree. Note that this topology is similar to what has
been referred to as a serve-tree in [32]. In this topology every
node is only communicating with its parent and children. In
addition to limiting the amount of network connections, the
tree-topology also results in more evenly balanced load.

The second strategy is applied for operations that require
n-to-m communication, e.g., a shuffle. To enforce the Nmax

limit, we use some nodes as intermediate communication hubs
which forward data from senders to receivers. Our approach
is based on the binomial graph topology [4]. In this topology,
nodes are organized in a ring. Particularly, a node has links
to nodes if the distance (on the ring) between the source and
the destination is a power of 2, e.g., 0, 1, 2, 4, and so on.
This topology has logarithmic diameter and node degrees. We
determine the base of the powers based on the number of
nodes n and Nmax. The appropriate base b is computed as
b = n

2
Nmax . Figure 4(a) shows such a topology.

Non-blocking, Hierarchical Shuffle. A shuffle operation
hash-partitions data across nodes. In Hadoop, reducers expect
their input to be sorted by key. Hadoop’s shuffle is a blocking
operation because of this sorting step. Since many relational
operator implementations such as a partition hash join can be
performed on unsorted data, it is beneficial to make the sort
optional. HRDBMS implements this idea as a non-blocking
shuffle operation that avoids writing data to disk. A potential
drawback of a non-blocking shuffle is the large number of
concurrent network connections that are required - each node
has a connection to each other node involved in the shuffle.
We use our n-to-m topology to address this drawback and refer
to the resulting operation as a hierarchical shuffle.

Operator Implementations. HRDBMS implements hash-
based aggregation, optionally using a shuffle to assign a subset
of the groups to each worker. Alternatively, each nodes pre-
aggregates data available locally akin to a combiner in MapRe-
duce. If pre-aggregation is used, then we use our tree topology
where each node further aggregates the pre-aggregated results



γsum(extended price)

σo orderkey=l orderkey∧o custkey=c custkey∧c nationkey=n nationkey∧n name=′CANADA′

×

Nation Customer Orders Lineitem

Fig. 5: Initial plan for the query from Example 1

received from its children. The same concept applies to sorting.
We use a distributed implementation of an n-way merge sort
based on the tree topology. Leaf nodes create sorted runs. Non-
leaf nodes merge runs into larger runs. HRDBMS uses hash
joins as long as at least one conjunct in the join condition is
an equality comparison. Our hash join implementation uses
bloom filters built over the join attributes of both inputs to
filter rows to reduce communication (e.g., see [36]).

Operator Parallelism. HRDBMS uses both intra- and inter-
operator parallelism to evaluate an execution plan on a worker
node. The degree of parallelism for scan operators is deter-
mined based on the number of disks per worker. Complex
operations such as joins and aggregations are executed in
separate threads with a degree of parallelism that is adjusted
independently. For example, an in-memory hash join has
multiple threads reading records from its input, and each of
these threads simultaneously probes the hash table.

Spilling to Disk. All operator implementations in HRDBMS
have the ability to spill data to disk as needed. This decision
is made at runtime based on available memory and statistics
which predict the amount of memory that will be required.

V. OPTIMIZER

HRDBMS has a cost-based optimizer that uses statistics
for cost estimation. To reduce the size of the search space,
we split optimization into multiple phases (e.g., join order is
determined in the 1st phase independent on how the query
will be distributed across nodes) and make extensive use of
heuristics. Optimization consists of the following phases:

• 1. Global Optimization Phase - Perform heuristic and
cost-based optimizations ignoring distribution.

• 2. Dataflow Conversion Phase - Convert the query plan
into a naı̈ve distributed dataflow by ensuring data-locality
of table and index scans. This is achieved by splitting
scan operators into one scan per fragment of a table and
placing the scan for each fragment on the node where the
fragment resides. At this point all remaining operators of
the query are placed on a coordinator node.

• 3. Dataflow Optimization Phase - Optimize the dataflow
by re-distributing operators from the coordinator to
worker nodes and distributing the execution of individual
operators across nodes.

In the following we describe each of these phases in detail
using the example shown below.

Example 1. Consider the following query over the TPC-
H schema [16] that computes how much money Canadian
customers have spent. Figure 5 shows the initial operator tree
produced by HRDBMS’s parser.

SELECT sum(l_extendedprice)
FROM lineitem, orders, customer, nation
WHERE o_orderkey = l_orderkey

AND o_custkey = c_custkey
AND c_nationkey = n_nationkey
AND n_name = ’CANADA’

1. Global Optimization Phase. HRDBMS takes advantage
of decades of research and development in relational query
optimization to build efficient execution plans. As a first
step, conditional expressions are normalized and attribute
equivalence classes are computed (e.g., equivalence classes
are later used in join reordering). Afterwards, we apply stan-
dard heuristic transformations including pushing down selec-
tions [28] and projections. HRDBMS always de-correlates and
un-nests nested subqueries if possible. Currently, we support
the rewrites described by Kim [24]. We plan to implement
more advanced techniques in the future (e.g., magic decorre-
lation as described by Seshadri et al. [41]).

Next we use statistics to apply cost-based join enumeration
(determining the join order with the lowest cost) using a
variant of the so-called greedy join enumeration algorithm [46]
and choose which physical operators to use (e.g., table vs.
index scan). Currently, our cost estimation module uses simple
models for operator implementations. Parameters of these cost
models are the estimated cardinalities of an operator’s inputs
(and for some operators also the estimated output cardinality).
We estimate intermediate result sizes using standard tech-
niques based on attribute-level statistics.

Afterwards, we apply transformations such as pushing
group-by through joins. Our group-by transformation is in-
spired by Wong et al. [48]. Since this transformation is only
sometimes beneficial, we make a cost-based decision on when
to apply it. In the future, we will implement a wider variety
of such transformations. Furthermore, we will investigate the
use of non-exhaustive search strategies following an approach
similar to cost-based transformations [1].

Example 2. Reconsider the previous example query. Fig-
ure 6(a) shows a plan for this query that may be generated by
the first phase of optimization. The selection on n name has
been pushed through the crossproduct and the crossproduct
has been transformed into joins using conjuncts from the
selection’s condition. The system has decided to use a left-deep
plan joining tables nation and customer first, then joining the
result with the orders table and afterwards the lineitem table.

2. Dataflow Conversion Phase. After a global plan has been
produced by phase 1, the operator tree is converted into a naı̈ve
distributed dataflow by splitting each table scan operator into
individual scan operators for the fragments of the table. The
scan operator for a fragment is placed on the node storing the
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Fig. 6: Optimizing the query from Example 1. We show the query plan after each optimization phase.

fragment to enforce data locality. For tables that are replicated
across the cluster, we assign the scan to a random worker. In
this naı̈ve dataflow translation all other operators are placed on
the coordinator. Furthermore, union operators executed on the
coordinator are used to merge the results of the fragment table
scans on the worker nodes. The optimizer uses the selection
conditions applied by the query to prune scans of fragments
that are not needed to answer the query. For instance, if a
table is range partitioned then we can exclude fragments for
inequality and equality comparisons (e.g., a < 5).

Example 3. Continuing with Example 2, assume the query is
executed on a cluster with one coordinator and two workers
with one disk each. Table nation is replicated across both
workers, table customer is hash-partitioned on c custkey,
table orders is hash-partitioned on o custkey, and table
lineitem is hash-partitioned on attribute l orderkey. Fig-
ure 6(b) shows the dataflow graph produced by Phase 2 for the
running example. We use R[i] to denote the fragment of table
R stored on node i. Note that locality is enforced for scans,
but all remaining operators are placed on the coordinator.

3. Dataflow Optimization Phase. In the dataflow optimization
phase, we redistribute work from the coordinator to worker
nodes by replacing operators with distributed implementations.
We apply tree or n-to-m topologies to enforce the threshold
Nmax of neighbors a node has to communicate with. A major
objective in this phase is to take further advantage of data
locality and co-location - both existing locality based on
partitioned table storage as well as data locality that is the
result of shuffle operations. By striving to achieve locality we
automatically reduce the amount of communication required
and often reduce the number of shuffle operations.
Push Operators from Coordinator to Worker Nodes. We
traverse the query plan produced by phase 2 bottom-up to
distribute relational operators that are currently placed on the
coordinator to the workers. Operators such as projection and
selection can be pushed to the worker nodes directly. Equi-
joins can be performed using a parallel distributed hash join
as long as the data is partitioned across workers based on the
join keys (or replicated across all workers corresponding to a

broadcast join). At this stage we introduce shuffle operations
to ensure co-location of join inputs. Likewise, sorting can be
distributed by sorting independently at the workers followed
by a merge phase on the coordinator. Instead of using a full
sort, top-k queries (LIMIT with ORDER BY) are implemented
using a local min-heap (assuming descending sort order) on
each worker that computes the top-k rows on this worker. A
newly arriving element is compared with the current minimum
in the heap and only if the element is larger than the current
minimun, then the minimum is removed and the new element
is inserted into the heap. This guarantees that at any moment
in time the heap stores the top-k elements we have seen
so far. A max-heap is used at the coordinator (or another
worker node) to merge the results of the individual top-k
computations. There are corresponding rules for parallelization
of all remaining relational operators. When multiple options
for distributing an operator are available (e.g., aggregation) we
make a greedy cost-based decision considering the cost of the
complete plan for both options (at this stage we use a refined
cost model that also incorporates communication cost). For
instance, consider a query with an aggregation followed by a
sort. Once we have determined which method to use for the
aggregation we would never revert this decision.

Removing Unnecessary Shuffle Steps. Next, we remove
unnecessary shuffle operations. For example, consider a query
where one operation requires that data is hash-partitioned on
a column a (all rows with a = x are on the same worker
node) and another operation requires that data is partitioned
on columns a (first) and column b (second). We can omit the
second shuffle operation since guaranteeing that all tuples with
the same a attribute value are present on the same worker
automatically implies that all tuples with common a and b
attribute values are present on the same worker.

Example 4. Continuing with Example 3, the output of the final
optimization phase is shown in Figure 6(c). The optimizer de-
termines that the join between the nation and customer tables
can be executed locally since the nation table is replicated
across both nodes. Since the customer table is partitioned on
c custkey and the orders table is partitioned on o custkey,



the join between these two tables can be executed locally too.
Finally, since lineitem is partitioned on l orderkey, the result
of the previous joins has to be partitioned on o orderkey
using a shuffle to evaluate the final join. Since the final
aggregation does not use group-by, the optimizer decides to
split the aggregation into a pre-aggregation at the worker
nodes and a final aggregation on the coordinator.

VI. CONCURRENCY CONTROL

Unlike most databases built on-top Big Data platforms,
HRDBMS supports DML operations and serializable transac-
tions. HRDBMS runs a lock manager, transaction manager,
and log manager on every coordinator and worker node.
Additionally, each coordinator runs an XA manager that is
responsible for coordinating commits using a hierarchical two-
phase commit (2PC) protocol. While HRDBMS does support
serializable transactions and DML, this has not been our main
focus, and thus the performance and scalability of OLTP has
not been thoroughly evaluated yet.

Lock Manager. HRDBMS achieves serializability and weaker
isolation levels (such as repeatable read and read committed)
via page-level locks using two lock-modes (shared and exclu-
sive). We use a standard SS2PL locking protocol [9] (i.e., locks
are held until transactions commit) to ensure serializability.
The lock manager running on a node is only responsible for
granting locks on that node. If a lock request fails on a node
(due to deadlock or timeout), that lock manager will inform
the XA manager on the coordinator handling the transaction.
The XA manager will then initiate a cluster-wide rollback of
the transaction. The lock managers currently implement local
deadlock detection via a wait-for graph [31] and timeout to
prevent deadlocks with multiple nodes involved. By default
deadlock detection runs once a minute.

XA Manager and Transaction Manager. The XA man-
ager on a coordinator acts as the global transaction manager
keeping track of all active transactions that initiated from
that coordinator. For each transaction it tracks which nodes
are involved in this transaction. If a transaction T is to be
committed or rolled back, the XA manager initiates a two-
phase commit (2PC) process. HRDBMS uses a hierarchical
2PC protocol similar to the one used in System R* [35], i.e.,
all 2PC communication is based on our tree topology. The
advantage of our tree topology is that messages can be quickly
broadcasted to a large number of nodes, and that responses
are aggregated before they are returned to the coordinator.
This effectively reduces the amount of work and network
communication at the coordinator. First, a PREPARE message
is sent to all nodes involved in the transaction. Each node
prepares the commit (or signals abort) and waits for a response
from all nodes to which it forwarded the prepare message
(its children in the tree topology). If the prepare processing
on a node is successful and it receives positive responses
from all of its children, then it returns a positive response to
its parent. Only if all responses are positive, the coordinator
sends a COMMIT message to all involved nodes. When a node

receives a PREPARE, COMMIT, or ROLLBACK message, the
transaction manager on that node that processes the necessary
actions. This includes 1) requesting the buffer manager to
unpin pages, 2) requesting the lock manager to release locks,
and 3) requesting the log manager to persist entries to the
write-ahead log.

Log Manager. Each node has a log manager that manages the
write-ahead log (WAL) on that node. In the case of worker
nodes, the WAL is tracking changes to user data. For the
coordinator nodes, the WAL is tracking changes to the system
metadata tables. The log managers on the coordinator nodes
also manage an additional log called the XA log. This log
stores PREPARE, COMMIT, and ROLLBACK records as required
by the 2PC protocol. The XA log is used to deal with
worker node failures. When a worker node restarts, it attempts
recovery from its own WAL. In some cases this log may not
have enough information to determine the global state of a
transaction. For example, if the last message that a worker
received before it crashed was a PREPARE message for a
transaction T , then it does not know if the consensus was to
commit or rollback transaction T . The PREPARE record stored
in the worker’s WAL stores which coordinator is responsible.
The worker contacts this coordinator to determine whether it
should commit or rollback the transaction. While HRDBMS
does not yet implement recovery for permanent node failures,
it can recover the database state after a failed node (worker or
coordinator) is brought back online.

Synchronization of Coordinator Metadata. In a deployment
of HRDBMS with multiple coordinator nodes, the system
metadata tables must be kept in sync across the coordinators.
To achieve this, all insert, update, and delete statements that
access metadata tables have to finish successfully on all
coordinators in order to be considered successful. This means
that a transaction changing metadata is not allowed to commit
unless its DML operations have completed successfully on
every coordinator. This is achieved using the 2PC protocol
described above where the coordinator receiving a DDL state-
ment coordinates the protocol.

VII. EXPERIMENTS

Setup & Workloads. We ran the TPC-H benchmark [16]
query workload over a 1TB instance (SF1000) on setups rang-
ing from 8 to 96 nodes. All tests were run on the Cooley cluster
at Argonne National Laboratory. Each node has two Intel
Haswell E5-2620 v3 processors, for a total of 12 cores and
384GB RAM. The nodes are connected via FDR Infiniband.
All data, including temporary data, was placed on the GPFS
filesystem [40] that these nodes share. All of the databases that
we tested are designed to operate with local filesystems. Since
the system we had access to only has a shared filesystem,
we had to make sure that the shared filesystem was not a
bottleneck in our experiments. We did extensive testing to
determine appropriate sizing, i.e., as how many local disks
should the GPFS filesystem be represented as on each node.
We determined that we could allow each node to mimic 2



(a) total runtime (b) Speed-up (relative to 8 nodes) (c) Step-wise Speed-up

Efficiency Relative to Linear

System 8 to 16 16 to 32 32 to 64 64 to 96 8 to 96

Hive 103% 95% 91% 94% 83%

Spark 150% 115% 86% 97% 145%

Greenplum 104% 84% 82% 70%

HRDBMS 99% 109% 95% 99% 103%

Speed-up

System 8 to 16 16 to 32 32 to 64 64 to 96 8 to 96

Hive 2.06 1.90 1.82 1.41 10.02

Spark 3.01 2.31 1.72 1.46 17.34

Greenplum 2.08 1.67 1.23 8.37

HRDBMS 1.99 2.18 1.91 1.49 12.37

Fig. 7: 1TB TPC-H experiments: (a) total runtime, (b) speed-up relative to 8 nodes, and (c) step-wise speed-up
(a) 8 nodes

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Σ w/o Q9+Q18 Σ Speed-up

HRDBMS 844 227 472 481 738 85 471 854 2,186 445 122 226 20 50 101 2,262 2,580 872 308 1,889 263 10,730 15,496 16.41 x

Hive 5,141 2,010 9,766 7,367 14,337 1,788 21,625 12,838 45,525 7,181 443 4,904 3,942 4,546 3,584 29,331 27,952 11,492 9,812 29,108 1,649 180,864 254,341 1.00 x

Spark SQL 3,182 497 7,410 3,107 9,357 1,826 8,675 9,107 13,310 4,038 791 2,923 2,067 1,886 836 17,911 18,845 6,186 3,452 27,718 640 111,609 143,764 1.77 x

Greenplum 868 104 372 296 384 216 569 489 OOM 304 75 312 255 497 91 1,508 OOM 343 410 1,086 115 8,294 N/A N/A

(b) 96 nodes

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Σ Speed-up

HRDMBS 83 27 41 46 56 8 40 65 121 33 40 20 2 7 11 145 194 77 25 151 61 1,253 20.26 x

Hive 789 275 1,044 911 1,445 156 2,176 1,337 4,215 944 179 797 622 678 510 1,744 2,453 1,068 986 2,588 468 25,385 1.00 x

Spark SQL 308 144 292 270 385 191 655 429 898 316 184 279 202 210 170 606 475 308 676 1170 121 8,289 3.06 x

Greenplum 75 16 32 26 35 19 43 47 88 32 12 29 24 46 11 105 433 31 90 85 14 1,293 19.63 x

Fig. 8: 1TB TPC-H per query runtime, total runtime (sec), and speed-up over slowest system at 8 vs. 96 nodes with lowest
runtimes in bold. Since Greenplum did run out of memory for two queries on 8 nodes, we also show totals w/o these queries.

local disks for data storage and 2 local disks for temporary
data using the GPFS filesystem, and that this could be scaled
to 96 nodes in the Cooley environment without becoming a
bottleneck. Since in our setup, data is distributed quite evenly
across nodes, I/O operations also were quite evenly distributed.
That is, the use of GPFS was not hiding load balancing
issues. The main purpose of our evaluation is to compare
the scalability and per-node performance of our system over
a typical OLAP workload against main memory and disk-
resident SQL engines built on top of Big Data platforms as
well as against an MPP database system. We chose to test
with Hive V1.2.1, Spark SQL V1.6.0, and Greenplum V4.3.99.
Since we also wanted to evaluate system performance when
the size of data exceeds available main memory, we restricted
each node to use 24GB of RAM.

TPC-H. For our evaluation we use the TPC-H benchmark at
the 1TB scale. The benchmark consists of 22 complex decision
support queries. We ran 21 of the 22 queries, skipping the
one that involved an outer join as outer joins have not been
implemented in HRDBMS yet.

As mentioned before, we ran the benchmark on Hive, Spark
SQL, Greenplum, and HRDBMS. Figure 7a shows the total
elapsed time (wall clock time) for all TPC-H queries for each
system when scaling from 8 to 96 nodes (log-log scale). Note
that no result is shown for Greenplum at 8 nodes because the
system ran out of memory for some of the queries. Figure 7b
shows the speedup for each system relative to performance
at 8 nodes. For computing the speedup, we used the elapsed
time of the 19 queries that did finish at 8 nodes on Greenplum.

Figure 7c shows stepwise speed-up for all systems (bottom)
and stepwise speed-up as a percentage of linear speed-up on
top (e.g, doubling the number of nodes decreases the runtime
by 50%). Figure 8 shows individual query runtimes for 8 (top)
and 96 nodes (bottom).

In general, Spark SQL is several times faster than Hive in
our evaluation, HRDBMS is several times faster than Spark
SQL, and Greenplum is 15% - 30% faster than HRDBMS.
The performance gains over Spark are due to our non-blocking
shuffle without materialization, scalable n-to-m topology for
shuffles, predicate-based data skipping, and enforced data
locality which allows us to often avoid shuffles for joins (and
other operations). At 8 nodes, the performance for Spark SQL
is much worse compared to the other cluster sizes. This is
due to the fact that Spark uses excessive amounts of memory
which results in high JVM garbage collection overhead. The
poor performance of Spark SQL at 8 nodes artificially inflates
its speedup results. Thus, we also show step-wise speed-up
in Figure 7(c). While Spark SQL exhibits decent speedup,
HRDBMS did even better. At the other end of the cluster
size spectrum, we observe that Greenplum runs into scalability
issues at 64 nodes and had significant problems scaling to 96
nodes. The other databases, HRDBMS included, scaled well
to 96 nodes. In fact at 96 nodes, HRDBMS outperformed
Greenplum by 3%.

Per Query Comparison with Greenplum. Since Greenplum
was most competitive in terms of performance, we take a
closer look at the performance of individual queries comparing
against this system. Query 1 exhibits similar runtime on



# Nodes Greenplum (runtime) (speed-up) HRDBMS (runtime) (speed-up)

8 OOM 2,580

16 856 1.00 1,499 1.00

32 395 2.17 731 2.05

64 351 2.44 319 4.70

96 433 1.98 194 7.73

Fig. 9: TPC-H query Q18 runtime (sec) and speed-up relative
to 16 nodes (in parentheses) for Greenplum and HRDBMS.

HRDBMS and Greenplum at both 8 nodes and 96 nodes.
This indicates that both systems have similar table scan
performance and aggregation performance. Note that we use
columnar tables for both systems. HRDBMS performs much
better than Greenplum for queries 6, 14, 15, and 20. This is
due to predicate-based data skipping. Greenplum outperforms
HRDBMS on queries 2, 11, and 21 which involve correlated
subqueries. Both Greenplum and HRDBMS unnest and decor-
relate these subqueries, however there is an opportunity in
these queries for reuse of intermediate results which HRDBMS
does not currently exploit. Greenplum outperforms HRDBMS
on query 19. Query 19 involves a complex predicate that
becomes massive when converted into conjunctive normal
form. Greenplum reorders the conjunctions after the con-
version such that tuples are eliminated as early as possible.
HRDBMS currently does not apply this optimization. Query
22 is an aggregation over a single table. The query contains
two nested subqueries - one is a correlated NOT EXISTS while
the other one is an uncorrelated scalar subquery (it returns
a single value). Greenplum outperforms HRDBMS on this
query, because it caches the result of the scalar subquery while,
as mentioned above, HRDBMS does not yet support caching
of intermediate results.

Figure 9 shows the runtime and speed-up for query 18. Up
to 32 nodes, Greenplum outperforms HRDBMS. For higher
number of nodes HRDBMS outperforms Greenplum. At 96
nodes, HRDBMS significantly outperforms Greenplum on
this query. This query involves (semi-)joins producing large
intermediate results, and an aggregation with 1.5 billion groups
(for the 1TB instance). HRDBMS benefits from our n-to-m
topology and from implementing the group-by using a shuffle.

3TB TPC-H Instance. In this experiment, we increased the
size of the dataset to 3TB on 8 nodes. For this configuration
the data is about 15 times larger than memory prior to com-
pression. Given that Greenplum failed with out-of-memory
errors for two queries at the 1TB scale at 8 nodes, it is not
surprising that the same queries (Q9 and Q18) also failed at
3TB. In addition, Spark SQL failed with out-of-memory errors
for the same queries at 3TB. We assume that Hive would have
been able to complete all of the queries successfully, but based
on our results for the 1TB TPC-H instance, we estimate that
runtime of the entire benchmark would have taken close to
9 days to complete for the 3TB instance. HRDBMS, on the
other hand, completed all 21 queries successfully taking 2.85x
longer than the runtime for 1TB (for a total of ∼12 hours).

Current System Versions. To test how HRDBMS compares

to newer versions of the tested systems, we repeated the 8
node experiments utilizing the full memory of the nodes
(384GB) using Hive 2.1.0 (Hadoop 2.7.3) on Tez 0.8.4,
Spark 2.0.1 (Hadoop 2.7.3), and Greenplum (V4.3.99). The
total runtimes for each system are shown below. Spark SQL
runtime is improved by ∼40%, HRDBMS by ∼12%, and all
queries finished successfully with Greenplum. We observed a
3.7x speedup for Hive on Tez compared to Hive. However,
HRDBMS still outperforms Hive on Tez by a factor of 2.9.

Hive on Tez Spark SQL Greenplum HRDBMS

Runtime (sec) 39,228 86,227 10,186 13,621

Summary. These results demonstrate that we were able to
meet our main goal in developing HRDBMS. We have devel-
oped a distributed query execution engine capable of per-node
performance on par with a traditional MPP relational database
and with scalability on par with systems such as Hive and
Spark SQL up to scales of 96 nodes.

VIII. CONCLUSIONS AND FUTURE WORK

We present HRDBMS, a shared-nothing distributed database
aimed to achieve good per-node performance as well as
scalability. HRDBMS achieves this goal though a careful com-
bination of traditional query processing techniques with tech-
niques typically found in scalable dataflow systems. Achieving
our goal required innovations including enforcing scalable
communication patterns, predicate-based data skipping, and
aggressive parallelization of all parts of the engine. In future
work, we plan to implement fault tolerance to be able to
recover from the complete loss of a node or disk and support
iterative dataflows for machine learning and complex analytics.
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