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1 INTRODUCTION
Free-text search across a billion-file filesystem is an old and often-
addressed problem [5, 8]. However, when that system is distributed
and multiplied by several thousand, traditional methods become
infeasible. This is the landscape presented to users of Globus [3], a
service that facilitates high performance and reliable data access,
transfer, and synchronization across a network of more than 10,000
research filesystems and repositories (called “endpoints”). The semi-
structured nature and scale of these endpoints makes manual search
difficult for users, especially as they gain access to more endpoints
over time.

To avoid having to build a new access-specific inverted index for
each query, we consider indexes built across the entire Globus net-
work, irrespective of access privileges (which may be subsequently
accounted for when filtering results). We also limit the scope of
search to file metadata (i.e., a “find” query) for two reasons: first, it
makes indexing the entire network (centrally or otherwise) feasi-
ble by reducing the data sizes stored; and second, it is appropriate
for many research repository file types which contain little free
text [7].

Traditional methods suggest two approaches to search in such
a model: a single complete centrally-stored index (the Centralized
Model) [2, 6]; and distinct indexes at each endpoint (the Distributed
Model) [1]. Search engines like Solr [9] and ElasticSearch [4] can
accomplish the former by maintaining complete indexes at a cen-
tralized location; however, scaling to the Globus network requires
significant investment in infrastructure. The alternative is building
indexes at each endpoint and implementing support for distributed
querying. While this approach reduces central storage require-
ments, it adds significant query overhead as many indexes must be
queried.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SC ’17, November 12-17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN .
https://doi.org/
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Figure 1: The three indexing architectures

Our solution provides a compromise by introducing two levels of
indexes composed of many endpoint-specific indexes and a single,
approximate, central Second-Level Index (SLI). The SLI is much
smaller than the full centralized index because it reduces the number
of terms in the index (through aggressive stemming and range
consolidation) and the number of objects referenced for each term
(endpoints rather than documents). Queries are then only redirected
to the relevant subset of endpoints. The three index models are
illustrated in Figure1.

2 METHODOLOGY
Irrespective of which indexing model is used, each endpoint must
be crawled to compile a comprehensive set of metadata. We use the
Xapian search engine [6] for indexing and extend its tokenizer to
parse terms from metadata-specific string formats and numerical
fields.

In the SLI model, we construct a standard endpoint-level index
and then collapse fields and records into the SLI. For example, string
fields (e.g., name, pathname) are split by separators (e.g., underscore,
camel-case) and then aggregated into common tokens. Numerical
fields (e.g., size, modification date) are collapsed into ranges. Queries
at the SLI are stemmed in the same way as its index terms so that
they are fully represented by the index, eliminating false negatives.
Full queries are then passed to identified endpoint indexes.
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(a) Scalability of Public Endpoints (b) Scalability of NERSC Filesystem

Figure 2: Scalability of Size of Indexing Modes and Reduction Between Modes

3 RESULTS
We explore the performance of the three indexing models using two
different sets of real Globus data: the 37 largest public Globus end-
points (as of June 2017), which are generally small and diverse; and
a snapshot of a NERSC filesystem, representative of large, private
Globus endpoints. For the NERSC dataset, we simulate a Globus
network structure by grouping documents by path proximity, and
binning them into eight roughly equal shards on separate virtual
machine instances that communicate with a central node.

Table 1 shows the index size for each model and dataset. For
both datasets, the central SLI index is more than 96% smaller than
that required in the Centralized Model. Because the SLI model also
stores traditional indexes on each endpoint, its aggregate space
requirements are slightly higher, but the burden on any single node
is greatly reduced.

Table 1: Index Size Comparison Between Models

Public Endpoints
Size of Index at Location (MB)

Model Central Endpoints Per-Endpoint Avg.
Centralized 10,370 0 0

SLI 240 13,001 351
Distributed 0 13,001 351
Size Reduction of Central Index 97.69%

NERSC Filesystem
Size of Index at Location (MB)

Model Central Endpoints Per-Endpoint Avg.
Centralized 30,553 0 0

SLI 970 38,579 4,822
Distributed 0 38,579 4,822
Size Reduction of Central Index 96.83%

In order to evaluate the SLI model’s scalability, we track the
sizes of the centralized index and SLI as endpoints are added. As
shown in Figure 2, both the aggregate (sum) and merged indexes
for the SLI model grow at a much lower rate than the traditional
centralized index, and the reduction percentage for the SLI model
does not decay as data grows.

We also note that the incidence of terms existing on all endpoints
is low, even between the artificially similar NERSC“endpoints.” We

conclude that the SLI model improves on the Distributed Model
whenever the SLI accurately narrows the set of relevant endpoints,
which Figure 3 indicates is likely to be common.

Figure 3: Frequency of filename or pathname terms occur-
ring on multiple endpoints

4 CONCLUSION
We present a second-level index (SLI) model as a compromise be-
tween the two traditional large-scale indexing architectures. We
evaluate the effectiveness of the approach on data across a collec-
tion of Globus endpoints. We find that the SLI algorithm stores far
less data at the central node than a purely centralized approach
while also greatly reducing search overhead relative to a purely
distributed approach. Thus this approach makes search over the
complete Globus ecosystem achievable and scalable.
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