
New Scheduling Approach using Reinforcement
Learning for Heterogeneous Distributed Systems

Alexandru Iulian Orheana, Florin Pop*a, Ioan Raicub

aComputer Science Department, Faculty of Automatic Control and Computers, University
Politehnica of Bucharest, Romania

bDepartment of Computer Science (CS), Illinois Institute of Technology (IIT)

Abstract

Computer clusters, cloud computing and the exploitation of parallel architec-
tures and algorithms have become the norm when dealing with scientific ap-
plications that work with large quantities of data and perform complex and
time-consuming calculations. With the rise of social media applications and
smart devices, the amount of digital data and the velocity at which it is pro-
duced have increased exponentially, determining the development of distributed
system frameworks and platforms that increase productivity, consistency, fault-
tolerance and security of parallel applications. The performance of such sys-
tems is mainly influenced by the architectural disposition and composition of
the physical machines, the resource allocation and the scheduling of jobs and
tasks. This paper proposes a reinforcement learning algorithm for the schedul-
ing problem in distributed systems. The machine learning technique takes into
consideration the heterogeneity of the nodes and their disposition within the
grid, and the arrangement of tasks in a directed acyclic graph of dependencies,
ultimately determining a scheduling policy for a better execution time. This
paper also proposes a platform, in which the algorithm is implemented, that
offers scheduling as a service to distributed systems.

Keywords: Scheduling, Distributed Systems, Machine Learning, SARSA.

1. Introduction1

The constant evolution of technology has grown in tandem with the quantity2

of data generated from scientific experiments and research. But in the last few3

years, due to the increase in popularity of social media applications and the4

rise of smart devices, such as smartphones, smartwatches and health monitor5

gadgets, smart city solutions, like intelligent semaphores, and the Internet of6

Things trend, the amount of data generated has grown exponentially. Proper7

*Corresponding author, Tel.: +40-723-243-958; Fax: +40-318-145-309; Email address:
florin.pop@cs.pub.ro.

Preprint submitted to Journal of Parallel and Distributed Computing March 1, 2017

analysis of that information, combined with the insight offered by data gathered8

by organizations and institutions, could prove useful in taking right decisions or9

in the prevention of catastrophes. In order to store, access, analyze and process10

large volumes of information, that is produced at a fast rate, new paradigms11

needed to be explored [1], paradigms that make use of parallel and distributed12

architectures and suitable algorithms. Computer clusters, computer grids and13

modern supercomputers have become the most popular systems when dealing14

with the challenges of big data or with intensive parallel applications.15

Supercomputers are formed of dedicated machines, that are connected with16

each other throughout a well organized and fast network, and have high per-17

formances, but usually have high costs and are specialized in solving certain18

problems. Computer clusters or grid systems made of commodity hardware are19

the favorite solution both in the industry and in the academia, because of its20

low costs and highly configurable characteristic, given by the frameworks and21

platforms that run on the systems. One such framework is the Apache Hadoop22

Ecosystem [2] that implemented the successful data processing model MapRe-23

duce [3], published by Google. The framework has grown over the years inte-24

grating components that assure data replication and consistency, fault-tolerance,25

security, safe execution of scalable parallel applications. One of the most im-26

portant enhancements to the Hadoop environment was the separation of the27

resource negotiator, known as YARN [4], the advantage being the ease of cus-28

tomization. This intended versatility of YARN confirms the importance of the29

scheduling process in the efficiency of the system and of the applications.30

Scheduling in distributed systems represents a broad subject, given the com-31

plexity of modern computer clusters and the nature of applications that run in32

them. Scheduling may refer to job or task scheduling or resource allocation. The33

scheduling can be dynamic, deciding for current running jobs and tasks, or it34

could schedule in advance the assignment of tasks from a given workflow. Mod-35

ern systems allocate virtual machines or containers, that have reduced resource36

capabilities, and form clusters of heterogeneous nodes in which applications can37

run. The general scheduling problem is a NP-hard [5] problem and it is difficult38

to find a general heuristic method to solve it. In this paper it is discussed the39

problem of assigning tasks, that can be represented as a directed acyclic graph of40

dependencies, on a given set of machines in order to obtain better performances.41

Machine learning is a vast domain of artificial intelligence, that has grown42

in popularity because of its simple recipes or algorithms that give programs43

the capability to learn patterns, behavior, models and functions, and use that44

information to make better decisions or actions in the future. Machine learning45

can be classified as: supervised learning, where a training data set is given and46

the agent learns how to predict output values of certain input targets; unsuper-47

vised learning, where an agent learns a certain structural organization of the48

input data or the relationship of the elements of the data set; and reinforcement49

learning, where an agent is given certain rewards corresponding to the utility50

of an action or decision relative to the world model, with which the agent in-51

teracts. Neural networks and deep learning are the most prominent concepts52

that roam in artificial intelligence, as a result of their capacity to find more effi-53

2

cient solutions than heuristic approaches. These are used in many classification54

problems [6, 7, 8, 9]. Regarding the problem of task scheduling in distributed55

systems, the machine learning box will use reinforcement learning algorithms to56

schedule the tasks in the given cluster of computers.57

The intent of this paper is to explore the scheduling problem in distributed58

systems, through the perspective of reinforcement learning algorithms. In or-59

der to be able to integrate machine learning methods in systems that use task60

schedulers, this paper proposes the implementation of a Machine Learning Box61

(MBox). The MBox application uses the BURLAP library [10, 11, 12] for the62

implementation of the reinforcement learning agents, the domains and the world63

models of the scheduling problem. BURLAP offers a simple and configurable64

interface for the implementation of various planning and learning algorithms,65

and it has a collection of machine learning algorithms ready for use. It also66

offers a suite of analysis tools for the visualization of domains and agent perfor-67

mance. The Machine Learning Box offers scheduling services, through the Java68

RMI API, to distant or local clients. The clients use remote allocated sched-69

ulers, in order to register different world models, that characterize the number70

of machines for which the scheduling will take place, and send schedule request,71

receiving a response with the scheduling solution. As an example, the Work-72

flowSim [13] toolkit was used for the testing and performance evaluation of the73

scheduling solution.74

The rest of the content is organized as follows. Related work is presented in75

Section 2, along with the the most known and most used reinforcement learning76

algorithms. In Section 3 the scheduling problem in distributed systems is defined77

and the proposed reinforcement learning model is discussed. In Section 4 the78

Machine Learning box architecture and design is detailed with the result being79

analyzed in Section 5. Section 6 draws conclusions and discusses future work.80

2. Background and related work81

2.1. Related work82

Given the problem of scheduling possible parallel tasks, that are dependent83

on one another, in distributed and heterogeneous systems, there are many re-84

searches and experiments published, some of them using heuristic approaches85

while others using evolutionary algorithms. Genetic algorithms [14] represent a86

class of suitable solutions, due to the natural affinity between the task schedul-87

ing solution and the representation of individual from the populations that a88

genetic computer program works with. Hybrid solutions, that combine different89

strategies, such as heuristic optimizations, definition of statistical models and90

artificial intelligence techniques [15], show great promise in solving the schedul-91

ing problem.92

Experiments show that machine learning algorithms can achieve great perfor-93

mances in scheduling tasks. Temporal difference, a classic reinforcement learn-94

ing algorithm, has been shown to be able to solve the scheduling problem [16],95

but with the help of a neural network that learned the evaluation functions over96

3

states. Other investigations have shown that queuing models combined with97

reinforcement learning techniques permit optimization of the tasks scheduling98

process at a finer granularity [17]. Mechanism that learn best scheduling strate-99

gies [18], from a list of methods that were created to improve certain metrics in100

cloud computing, have also been proposed, letting an agent decide from past ex-101

periences which strategy is more appropriate giving a set of conditions. Exotic102

research, circumvent the process of learning scheduling policies from past expe-103

riences by interacting with the environment or from other heuristic strategies,104

but from expert human or synthetic demonstrations [19].105

2.2. Reinforcement Learning Algorithms106

Reinforcement learning [20] [21] represents a class of machine learning algo-107

rithms in which the agent learns how to behave in a world through the positive108

and negative rewards that it receives. The rewards do not appear after each109

action the agent takes in the world, but only when it achieved a certain point110

of interest. Through multiple iterations the agent must realize which of the ac-111

tions led to the specific compensation. Initially having no idea on what are the112

consequences of every action, an agent must explore the world in order to better113

understand the purpose. Reinforcement learning algorithms always encounter114

the explore versus exploit dilemma, in which an agent must deiced if it should115

follow a course of actions or try to different paths. On one hand, if an agent116

commits to much on exploration it will not be able to learn anything valuable,117

on the other hand through exploitation it might not be able to discover the118

optimal sequence of steps that have the maximum utility.119

2.2.1. Q-Learning120

The Q-learning algorithm is a reinforcement learning technique, in which the121

agent tries to learn an optimal state-action policy based on a sequence of state-122

action-rewards, that represent the interactions the agent had with the world.123

This method does not require the model of the world to be know, computing the124

utilities of state-actions in order to maximize the reward. The optimal policy is125

realized through the selection of the best state-actions according to the utility126

values learned. Formally the Q-learning technique consists of an agent, a set127

of states S of the world, a set of actions A, a definition of how actions change128

the world T : S × A → S, also known as transition dynamics, a set of rewards129

R : S × A → R for each actions, a table of utilities Q : S × A → R and a130

policy π : S → A. The agents goal is to maximize the reward and in order to131

do so, it must learn which is the best action taken from each state, the optimal132

action having the highest long-term reward. For such a solution to be effective133

an agent should run multiple training episodes for the purpose of exploring and134

finding the optimal policy. Algorithm 1 describes the Q-learning algorithm in a135

deterministic and finite world.136

One of the most important factors of a Q-learning algorithm is the selection137

step of the action from a given state. The strategy used determines if the agent138

tend to explore new paths or to exploit currently known solutions. If an agent139

4

Algorithm 1 Q-learning

1: function Q-learning(sinitial, sterminal, α, d)
2: initialize Q[S,A]
3: s← sinitial
4: while s! = sterminal do
5: select a
6: r = R(s, a)
7: s

′
= T (s, a)

8: Q[s, a]← Q[s, a] + α(r + d ·maxa′Q[s
′
, a

′
]−Q[s, a])

9: s← s
′

chooses first the actions that where unexplored, then it will not be able to use140

the utilities it had learned in the previous episodes. If the agent chooses first141

the best action, if the world is deterministic it might get stuck on a known and142

well traveled path that might not represent the optimal policy.143

There are also two fine-tuning parameters in the utility value update function144

that characterize the performance of a reinforcement learning algorithm given145

a certain world or problem:146

Q[s, a]← Q[s, a] + α
(
r + d ·maxa′

{
Q[s

′
, a

′
]
}
−Q[s, a]

)
(1)

where:147

• α - represent the learning rate. It influences at what extent does the new148

acquired information influence the old information. The learning rate take149

values between 0 and 1, the inferior extremity meaning that the agent will150

not learn anything, while the superior extremity determines the agent to151

learn only the most recent information. In deterministic environments,152

usually α takes values closer or equal to 1, while in worlds with stochastic153

transition dynamics, lower values are preferred.154

• d - is the discount factor and it determines how much does a future reward155

influence the present one. As with the learning rate parameter, the dis-156

count factor takes values between 0 and 1, the inferior extremity making157

the agent not to consider future rewards at all, while values closer to the158

superior extremity will determine the agent to aim for the long-term high159

reward.160

2.2.2. State-Action-Reward-State-Action (SARSA)161

State-Action-Reward-State-Action is another reinforcement learning method162

in which the agent learn an optimal state-action policy using an on-policy strat-163

egy. Q-learning uses a off-policy strategy learning the optimal policy with disre-164

gard to the actual exploration that is being carried out. Sometimes the actions165

of an agent can generate large negative rewards, thus the strategy to update the166

value of the policy according to the exploration path it took can become and167

improvement. The latter strategy refers to off-policy learning, and SARAS is168

5

an algorithm that learns in this way. Algorithm 2 describes the computational169

steps of the SARSA method.170

Algorithm 2 SARSA

function SARSA(sinitial, sterminal, α, d)
2: initialize Q[S,A]

s← sinitial
4: select a

while s! = sterminal do
6: r = R(s, a)

s
′

= T (s, a)
8: select a

′

Q[s, a]← Q[s, a] + α(r + d ·Q[s
′
, a

′
]−Q[s, a])

10: s← s
′

a← a
′

The difference between SARSA and Q-learning can be seen in the utility171

value update function, SARSA choosing the utility from taking action from the172

exploration path rather than the best one. The rest of the parameters remain173

the same as the ones in the Q-learning algorithm.174

2.2.3. Monte-Carlo Technique175

Monte-Carlo Tree Search is a famous artificial intelligence algorithm, that176

runs a number of fast random sampled simulations to expand the tree with177

promising moves. Q-learning and SARSA methods have conceptual roots in the178

Monte-Carlo techniques, but one optimization could refer to the utility value179

update function. Instead of computing the utility of the action-state at the180

moment the action occurred, all the decisions will be remembered in a list and181

at when it arrived at a terminal state the utilities would be updated in the182

reverse order of apparition. This technique could fasten approximation of the183

optimal policy, but if not analyzed carefully, with regard to the problem at184

hand, it could create delusions for the agent.185

3. Reinforcement Learning Model for Scheduling186

Scheduling concurrent tasks, that have dependencies between each other,187

in a distributed heterogeneous system of computers is a complex and difficult188

endeavor. To be able to solve this problem, it must be reduced at a much simpler189

level, without loosing sight of the core behavior and model. Keeping in mind190

that a simple problem is easier to solve, in this section the scheduling problem191

in distributed systems is defined in a formal manner, presenting afterwards the192

codification of the scheduling process under the form of three additive layers193

that add more complexity and come closer to the scheduling problem. The194

abstract model of the scheduling process and the reinforcement learning aspects195

will be formally defined and explained for each cumulative layer.196

6

3.1. Scheduling Problem Definition197

Let there be n nodes, physical computers or virtual machines, that are con-198

nected through a network and can communicate with each other, with n ∈ N∗.199

Each node Ni has a set of attributes 〈nrpei,mipsi, rami, storagei, bwi〉, with200

1 ≤ i ≤ n, where:201

• nrpei the number of processing elements of node Ni, nrpei ∈ N∗;202

• mipsi the computational power of node Ni, measured in million instruc-203

tions per second, mipsi ∈ N∗;204

• storagei the storage capacity of node Ni, measured in bytes, storagei ∈205

N∗;206

• bwi the communication bandwidth of node Ni, measured in Megabits per207

second, bwi ∈ N∗.208

Let T be a set of tasks, that defines a job, and V be a set of edges cor-209

responding to a directed acyclic graph (DAG), where the tasks are nodes and210

the edges represent the dependencies between the tasks, with |T | ∈ N∗ and211

|V | ∈ N∗. Then v(ti, tj) represents an edge in the graph and it tells that task212

tj is dependent on task ti, with ti 6= tj .213

The function c(ti, nj), defined as c : T × N → R+, returns the execution214

time of task ti that ran on the machine nj , with ti ∈ T and nj ∈ N .215

The function d(v(tk, tp), ni, nj), defined as d : V ×N ×N → R+, returns the216

communication time between task tk and tp, while tk is running on ni and tp is217

running on nj , with v < tk, tp >∈ V and ni, nj ∈ N .218

A task assignment schedule P is described as a tuple of < Pt, Pv >, where219

Pt contains n subsets of tasks and Pv contains n subsets of edges such that:220

- ∀tk ∈ Pti, tk /∈ Ptj , with i 6= j and 1 ≤ i, j ≤ n and221

- ∀v(tk, tp) ∈ Pvi, tp /∈ Ptj , with i 6= j and 1 ≤ i, j ≤ n.222

An example of a DAG in which the tasks have been assigned to the nodes is223

presented in Figure 1. The labels t1 . . . t10 represent the task and the nodes of224

the DAG, while the edges show the dependencies between the tasks. After the225

scheduling process, as it can be observed from the picture, the tasks found in the226

red rectangle will be executed by machine1, the tasks from the blue rectangle227

will be executed by machine2, and the tasks from the red rectangle will be228

executed by the machine3. This was an example of a scheduling solution.229

The time elapsed to execute all the tasks from the subset of node Ni, after
all of the tasks have been assigned and a schedule P has been formed, can be
expressed as:

timei =
∑

tx∈Pti

c(tx, ni) +
∑

v(tk,ty)∈Pvi

d(v < tk, ty >,nj , ni) (2)

Finding the optimal task assignment schedule P that minimizes the max-230

imum of the timei, represents the definition of task scheduling problem. The231

objective of the machine learning box scheduler is to learn to schedule tasks in232

7

Figure 1: Task DAG example.

order to obtain an optimal schedule for a given cluster of machines, with the ob-233

servation that each machine has its own internal process scheduler. The smaller234

the execution time from the slowest queue the more efficient the scheduler is, a235

queue being a list of tasks assigned to a certain node. Initial it is considered that236

there is only one job running in the entire system, but adding the complexity237

of multiple already running jobs would mean to add dynamic attributes to the238

nodes, such as load, status etc.239

3.2. First Layer of Complexity: task DAG scheduling and machine performance240

The most basic scheduling problem definition has a set of nodes or machines,241

that have their characteristics similar to the ones found in modern grid systems,242

and a task DAG that needs to be scheduled such that the entire dag achieves243

optimal execution time. For simplicity, it is firstly presumed that all the tasks244

from the DAG have similar execution times and resource requirements, such245

that if all of those tasks would execute on a single machine sequentially, the246

execution time of each task would be approximately the same. This means that247

8

there is no variation in task execution caused by the internal structure of the248

tasks themselves. An optimal total execution time is going to be determined249

by the correct disposition of the tasks onto the nodes such that the hardware250

infrastructure and the DAG layout are properly exploited.251

Usually reinforcement learning agents have the possibility to move in a world252

and interact with the entities that reside in that world. But the scheduling253

problem has no environment in which the agent can move. The dynamics of254

the world can be imagined as a group of people that stand at a table, and one255

of them, the agent, must assign a set o papers with math problems. The math256

problems are of the same difficulty and some problems depend on the result of257

others. The job of the agent is to learn how to spread the math problems such258

that all of the tasks finish in the shortest time. The agent has no information259

regarding the capabilities of the people that solve problems but he knows that260

they won’t change their seats or leave.261

Having the previous example in mind, the agent represents the entity that,262

at one moment of time, must determine to whom to assign a task. The agent263

will have several episodes to train and find out what disposition of tasks onto264

the nodes is best and obtains the lowest total execution time. But this will265

work only if the tasks have no dependencies. In order to give the agent the266

perception regarding DAG structure, each node must signal, at one moment of267

time, if it has in its queue a task that represents the parent of this current task268

and if it has tasks that have the same parent, meaning they could be executed in269

parallel. The last information that the agent needs, is the number of tasks that270

he assigned to each node at the moment of time when it must decide where to271

assign the current task. The number of tasks is too precise metric and creates a272

large space of possible world states, a better solution being the introduction of273

a precision factor telling the agent the percentage of tasks assigned relative to274

the total number of tasks. Now that them main elements have been identified275

the formal definition is as follows:276

Let n be the number of nodes or machines in the computer cluster. Given a277

precision p and a list of m tasks, that have dependencies, the scheduling problem278

is defined as the finding of the best scheduling scheme for the tasks assignment279

to the execution queues such that the total execution time to be minimum.280

Figure 2 holds a visual representation of the main conceptual model.281

The states S of the world are defined as follows:

S = {〈load leveli, parenti, siblingi〉|1 ≤ i ≤ n}. (3)

where:282

• load leveli represents the number of tasks currently assigned to queue qi283

relative the given percentage precision p, load leveli ∈ N;284

• parenti informs if in qi a father of the current task resides, parenti =285

{true, false};286

• siblingi informs if in qi there are sons of the same father, siblingi =287

{true, false}.288

9

Figure 2: Conceptual model with first layer of complexity.

The set of actions A is represented by the index of the node to which the289

current task is going to be assigned.290

The transition dynamics T has a hidden world model, where precision of task291

numbers is highest, but it offers through the simplification of the states a smaller292

world space. When an action takes place the hidden world is consulted and the293

new corresponding state is returned. Even though the simplified world may294

seem non-deterministic, due to the deterministic nature of the hidden world,295

every action will determine the transition to a single state. The terminal state296

is characterized by an empty list of tasks to schedule.297

The reward r will remain null throughout the whole scheduling process, with298

the exception of the terminal state, when the execution time of the solution is299

compared with a base value and the reward either gains a positive or a negative300

value, depending on the performance of the execution schedule.301

The reinforcement learning agent is going to learn a policy on how to schedule302

the current task knowing the placement of other tasks that he might depend303

on, or tasks that can possibly run in parallel with, through the parenti and304

siblingi attributes. After a number training episodes the agent will also learn305

which node has more computational power and try to assign more tasks on its306

queue, but also taking in consideration the dependencies between them or the307

opportunity to run concurrently.308

The advantage of using a precision parameter to define the number of nodes309

from a queue is that, the learning agent and its policy will not be dependent310

on the number of tasks or tasks structure, allowing to test the learn policy on311

various DAGs.312

3.3. Second Layer of Complexity: dynamic cluster status313

The first layer of complexity presumed that all the task have the same in-314

ternal structure, and that there is only one job running at one time. In reality,315

a modern cluster systems has many jobs running and being scheduled, the true316

load of each machine influencing the quality of the policy learned from the317

10

world of the previous section. The advantage of the proposed scheduling so-318

lution is that it allows the extension of the world model without submitting319

heavy changes to the whole algorithm. As seen in Figure 3 each node should320

add a new attribute through which it can inform about it status. Every time the321

distributed system wants to use the agents policy to schedule, it should update322

the status fields of the world and inform the agent that he can start scheduling.323

An optimization would be to initially learn a policy without taking into324

consideration the status attribute, and the redistribute the utilities to the new325

scheme hoping that the new attribute would not influence the actual policy very326

much.327

Figure 3: Conceptual model with second layer of complexity.

3.4. Third Layer of Complexity: variable tasks and task classification328

The final layer of complexity taken into consideration in this paper, is the one329

regarding internal structure of the task. Until now the model considered that330

all the tasks have the same internal structure, and if all the tasks were to run331

on a single machine, one at a time, each execution time would be approximately332

the same. In the first two layers this was not possible, because the agent had no333

information regarding the task that it had to assign. The policy learned when334

and where to schedule a task to a certain queue, from history and from the335

load level attribute. The tasks in a job can vary in purpose and functionality336

drastically, having a great influence on the execution time if not placed properly.337

A task attribute added to the world model would increase the precision of338

the agents policy and would allow to schedule complex DAGs with variate tasks.339

But in order to better determine the type of a task, another component should340

be added to the main concept, a component that classifies incoming tasks and341

compresses their characteristics, to simplify the world model and reduce the342

number of states. Figure 4 is a visual representation of the concept with the343

task classifier extension. With the addition of the last component the model is344

complete, and should be able to learn scheduling policies that decrease the total345

11

execution time of jobs and improve overall performance of distributed systems346

like clusters and grid.347

Figure 4: Conceptual model with third layer of complexity.

4. Machine Learning Box Architecture348

The Machine Learning Box (MBox) is an application that offers scheduling349

services to other distributed systems or computer clusters. The scheduling en-350

gines use machine learning algorithms and agents to learn optimal scheduling351

policies for different machine setups. A client must firstly register a domain or352

a world definition. After that it can make scheduling requests of jobs that are353

meant to train the reinforcement learning agents, or it can request fast schedul-354

ing solutions for critical operations. MBox responds to the request with a task355

scheduling scheme, and informs the system if it requires an indication regarding356

the execution time of the scheduled set of tasks. The application is written in357

Java 8 and it has a library of necessary classes and interfaces for the implemen-358

tation of local MBox client. The MBox client uses Java RMI to communicate359

with the MBox service module, and must request a valid remote instance of360

a MBox scheduler. MBox schedulers are initialized through a command line361

interface from the server side, that can start monitoring tools for performance362

and system status analysis.363

Figure 5 shows a simple architectural model of the Machine Learning Box of364

the basic structural and functional components. The application is designed to365

support parallelism and easily scale into a big system that could handle many366

clients. Each major component runs, in the demo application, in a separate367

thread, this separation giving the system the capability to eventually move368

each component on dedicated servers. The domain database can be moved to a369

system that permits data replication and has integrated consistency and backup370

protocols, so that the already learned policies and registered world models are371

never lost and are always accessible. The possibility to run simultaneously many372

12

reinforcement learning agents can speed up the learning process and can lead373

to faster ways to find optimal policies on large world models.374

Figure 5: Visual representation of the MBox architecture, encapsulating the main components
of the platform, their relationship and the interfaces provided.

Following the mediator design pattern, the demo application has all the375

major components incorporated in a single class, through which communication376

is assured. The Mediator starts all of the other components at initialization377

and waits for their graceful termination when the program is ended. It also378

represents a communication medium and it can be replaced by physical software379

with little modification to the rest of the components.380

The MBox has a command line interface used for configuration and perfor-381

mance monitoring. A user with administrative clearance can create, destroy or382

display the status of the machine learning agents. The remote scheduler objects383

are also created and managed through that interface. The performance of the384

system currently relies on the utility tools offered by the BURLAP library, but385

they only allow to observe the machine learning elements not the entire system.386

The command line interface can be remotely accessed through already secure387

ssh connections, via the terminals offered by the operating system. A command388

line interface was preferred instead of a graphical user interface, because it can389

be remotely accessed for configuration without needing X11 sessions or other390

graphical engines, scripts and wrappers can be created to automate certain tasks391

and from the perspective of the system administrator it offers versatility.392

The clients that want to use the scheduling service must firstly make a re-393

quest, to the administrators or owners of the machine learning box instance,394

13

for the allocation of a number of MBox schedulers. Then, by using a library395

of common classes and interfaces, they must implement and integrate a custom396

unit that uses the remote allocated MBox scheduler to register new domains,397

update existing ones, make scheduling requests for jobs and indicate the execu-398

tion time of the scheduling solution. If the remote scheduler fails, then it is the399

duty of the local unit to deal with it, providing alternatives. As future work,400

the integration of learning from logs could prove to be useful, as the learning401

agents could learn from past solutions without having the need to physically402

test the scheduling solution.403

In the following subsections all the major components of the machine learn-404

ing box application will be presented, offering details about the implementation405

and the design decisions.406

4.1. MBox Service407

The role of the MBox Service component and Java class is to allow clients to408

connect to the main application and acquire the offered services. It holds and409

manages a list of MBox Scheduler objects, that represent the remote objects410

that the client will use. Figure 6 depicts a visualization of the structural design411

of the MBox Service, with regard to the external components and entities with412

whom it communicates. The interaction with the rest of the classes is realized413

through the MBox mediator and from whom it receives command to add new414

MBox Scheduler objects or remove existing ones.415

Figure 6: Visual representation of the MBox Service, of its internal structure and of its
interaction with the clients.

14

A client does not interact directly with MBox Service, instead it looks for416

the methods of a remote MBox Scheduler, calling them according to its needs.417

The remote scheduler object then checks the validity of the call and proceeds418

to execute the corresponding action with the help of the MBox Service. In419

the demo application, The MBox Scheduler offers to the client four methods:420

register, update, schedule and indicate.421

• register method receives as a parameter an object that describes the422

domain or world of the scheduling problem, that holds information about423

the nodes (how many, what are their characteristics, dynamic properties424

like status etc), and about the precision of the world model; When it is425

called, the designated MBox Scheduler send upward the command to the426

MBox Service, to create a new MLDomain and store it in the MLDatabase;427

• update method receives as a parameter an update object that describes428

the domain or world of the scheduling problem, that updates an already429

created MLDomain from the MLDatabase;430

• schedule method receives as a parameter a MBox request object, that431

stores the list of task that need to be scheduled and other information432

related to the type scheduling (learning mode or fast mode); it returns433

a response object, that contains the status of the scheduling (successful,434

learning, failed) and a scheduling solution of the tasks;435

• indication is used to inform the scheduler about the execution time of436

the solution that it provided; It is essential for a learning job to send that437

information to the MBox Scheduler, so that it can transmit that data438

forward to the learning agent, in order to finish the learning process and439

estimate a reward;440

4.2. MBox Machine Learning Engine441

The MBox Machine Learning Engine is the core of the MBox application,442

incorporating the environment for creating and running reinforcement learn-443

ing agents, world domains and tasks scheduling algorithms. The module was444

designed keeping in mind the benefits of parallel computing and the versatil-445

ity of the application. The two sub-components, the MLSupervisor and the446

MLDatabase, that define the functionality of this module, are placed in the447

same module in the demo application, but can be separated, so that they can448

run more efficiently. The MLSupervisor can be placed on a high performance449

parallel system, in order to exploit the advantages of running multiple learning450

agents concurrently on different threads and on different machines, while the451

MLDatabase can be placed on a distributed system that offers advanced stor-452

age techniques with accent being put on data replication and consistency. In453

Figure 7 there can be seen the structural disposition and the relation between454

the elements of the MBox Machine Learning Agent. This major component has455

been written in Java 8 and uses the BURLAP library for the implementation456

15

Figure 7: Visual representation of the MBox Machine Learning Engine, encapsulating the
communication between the domanis from the MLDatabase and the learning agents, moni-
tored by the MLSupervisor.

of the world models, the machine learning agents and reinforcement learning457

algorithms.458

BURLAP is a java code library for developing scheduling and learning algo-459

rithms. It offers a highly flexible framework for defining states and actions, sup-460

porting discrete, continuous and relational domains. There are several schedul-461

ing and learning algorithms implemented in the library and ready to use, and462

it allows the extension and creation of new ones. It also contains a suite of463

analysis tools for the visualization of the domains and for the performance of464

the running agents.465

The role of the MLDatabase is to store scheduling world models in the form466

of Domain Generators. Each Domain Generator describes a different model of467

the node architecture in a cluster of computers or groups of virtual machines in468

which job are scheduled in the form of task assignment. When a client invokes469

the register method, the MBoxService sends a command to the MLDatabase,470

which check if that domain wasn’t registered before, and if it hasn’t it register471

it in the form of a Domain Generator. The Domain Generator contains all the472

information from the parameter of the register method, the reward function, the473

terminal function and the scheduling policy. The reward function is activated474

when the agent is in learning mode and needs to asses the performance of a475

scheduling solution, which is done by comparing the current execution time476

with a baseline execution time. Initially the base time will be uninitialized and477

the first solution will become the baseline execution time. The reward will be478

calculated as the subtraction between the baseline and the current execution479

time. The sign of the result tell if the reward was a positive one or a negative480

one. The advantage using Domain Generator comes from the possibility to481

exploit parallel computing and generate new domains for each agent that wants482

to start a learning process. The combination of the policy utilities learned from483

16

agents that have run on similar domains represents an important factor in the484

performance of the entire platform.485

The MLSupervisor has the role of creating, initializing and running new486

learning agents, when the MBoxService has a MBoxScheduler invoking the487

schedule method. This module creates a new thread for each learning agent,488

gives them their respective domain and starts the learning process. The demo489

application does not have the possibility to select the machine learning schedul-490

ing algorithm on a schedule request, but for future works this functionality491

could be added. The reinforcement learning algorithms implemented in the492

BURLAP library are compatible with the definition of the scheduling prob-493

lem model. Nevertheless, the MLSupervisor permits custom implementation of494

planning and reinforcement learning algorithms, due to the high flexibility of495

the BURLAP library.496

4.3. MBox Scheduling with WorkflowSim497

A use scenario would firstly imply an administrative user from the server498

side to create a new MBoxScheduler. That can be realized through the MBox499

application command line interface. It is presumed that the Machine Learning500

Box application is already running. After the remote object was created and501

initialized, it it time for the client to do its part. The client must implement502

a custom module in the distribute system, using the compatibility library from503

the MBox repository. An example of an implementation will be presented later504

in this section. After the implementation the custom module should find the505

remote methods and obtain access to them. The clients module should firstly506

register the world model used in task scheduling. This is done also through507

the use of the classes and interfaces from the MBox library. After a registry508

request the custom module can send schedule requests to the remote MBox509

Scheduler. Initially the reinforcement learning agent will not return efficient510

task assignment schedules. In order for it to become more intelligent it must511

learn, and this is realized through learning job, defined as jobs that will run512

on the system for a large number of times, or through the analysis of the logs.513

The last form of learning has not been implemented and consists an idea for514

future work. Given enough time and enough learning episodes the reinforcement515

learning agents will become more proficient at realizing efficient task assignment516

scheduless and so improve the performance of the client system.517

To test the MBox application, the WorkflowSim 1.0 was used. WorkflowSim518

is an open source simulator of worklfows represented as DAGs. It can simulate519

large concentrations of nodes that form heterogeneous systems, node delays and520

even node failure. Using this simulation platform the MBox Scheduler can be521

tested without causing any harm to real computer clusters or grid systems.522

WorkflowSim comes with a rich set of jobs organized as directed acyclic graphs523

with different disposition of tasks, inspired from real scientific applications, that524

can be represented as a workflow.525

17

5. Results526

The section contains the observations made upon the reinforcement learning527

model used in the MBox application, and will firstly consider the theoretical528

expectations, followed by the experimental results. The demo application had529

only the first layer of complexity, that was described in section 3, implemented.530

5.1. Theoretical Limit531

Considering the first layer of complexity, the model had the following pa-532

rameters:533

• n heterogeneous nodes, with n ∈ N∗;534

• m tasks that form a DAG of dependencies, with m ∈ N∗;535

• precision p, with p ∈ N∗;536

• a set of states S = {〈load leveli, parenti, siblingi〉|1 ≤ i ≤ n}.537

If val(x) = list of all possible values x can take, then |val(load leveli)| = p,538

|val(parenti)| = 2, |val(siblingi)| = 2.539

Given the parameters above, the number of states a node can have can be
calculated:

|Si| = p · 2 · 2 = 4p (4)

Given the number of states for a single node, the number of world states can
be calculated, knowing that the world state is a concatenation of the state of
all the nodes:

|S| = (4p)n (5)

From the last result, it can be deduced that the number of states grows at
a magnitude given by the number of nodes; For example, if there is a cluster
with n = 10 and p = 10, then:

|S| = (4 · 10)10 = 410 · 1010 = 1.048576 · 1016 (6)

The conclusion is that the number of states grows too fast to the number540

of nodes from the cluster, for an agent or a group of agents to properly learn,541

using reinforcement learning. For a smaller cluster the reinforcement learning542

agent would be able to find the optimal policy, the number of tasks in a job543

accelerating the learning process.544

5.2. Experimental results545

Even it is hard to measure the performance of reinforcement learning al-546

gorithms, one form of evaluation might give some valuable insight. The plot547

of the cumulative reward as a function of the number of steps tells how fast548

and how good is the policy that the agent deduced after a certain amount of549

steps. The slope of the plot tells how good is the policy after it stabilized, the550

descending portion shows how much reward was wasted before it could improve551

18

Figure 8: Cumulative reward performance evaluation of Q-learning algorithm. 2 nodes - blue,
4 nodes - green, 8 nodes - red.

and the point of intersection with zero shows how much time took the algorithm552

to recuperate the lost reward.553

Figure 8 depicts a comparison in performance of Q-learning algorithm on554

three scenarios: a cluster formed of two nodes (blue plot), a cluster formed of555

4 nodes (green plot) and a cluster formed of 8 nodes (red plot). The cluster556

are heterogeneous and the training job remained constant through the steps.557

It is clear that the more nodes are added to the distributed system the more558

hard it got for the agent to learn a good policy. This reflects the theoretical559

observations.560

Figure 9 shows a comparison between the Q-learning algorithm (red plot)561

and SARSA (blue plot) on a cluster formed of two nodes. Experimental results562

have shown that SARSA behaves better that Q-learning, but it must be taken563

into consideration the fact that the reward is dynamically calculated in the564

first step, becoming the baseline for future steps with great influence on the565

utility distribution of the policy values. If the baseline sets high standards the566

majority of the rewards will be negative, while low initial baseline value could567

lead to higher utility values.568

Given enought time the reinforcement learning agents using the two algo-569

rithms are able to find better solutions for a given job, determining faster ex-570

ecutions even than classic algorithms. The results from Figure 10 depict an571

experiment in which a job, composed of 100 tasks, runs multiple times on a572

heterogeneous cluster of four nodes, using Q-learning, SARSA and HEFT as573

scheduling algorithms. After each step, that comprised of 100 iterations, the574

best solution of each reinforcement learning method is selected and the job is575

run again, the learning agents switching from a dynamically balanced policy576

19

Figure 9: Q-learning (blue) vs SARSA (red).

Figure 10: Learning capabilities of Q-learning (red) and SARSA (blue), compared to HEFT
(green) solution.

between exploration and exploitation to only exploitation, thus obtaining the577

time of the best solution found.578

The conclusion is that the proposed model has combined the characteristics579

of all the nodes or machines of the cluster, resulting in a huge world of states580

that cannot be properly explored by a reinforcement learning agent. Machine581

Learning algorithms have a though time dealing with such problems, and in582

order for those techniques to work they would need auxiliary help from other583

20

heuristics and strategies. Given the fact that the theoretical model has shown584

the limitations of the proposed algorithm, further experimentation would have585

been redundant. Regarding the comparison of other scheduling algorithms, most586

of other scheduling algorithms do not need iterations to arrive at a more mature587

state. The performance of the reinforcement learning method will be lower at588

the beginning, but it will surpass the classic algorithms after an enough number589

of iterations.590

6. Conclusion591

As computer clusters and distributed systems become more and more popu-592

lar, the need to improve the performance of such systems becomes a challenge,593

that if properly mastered could accelerate the evolution of science or could re-594

set the positions of industry giants. It is clear that the schedulers from such595

systems have a certain impact on the efficiency of parallel systems. Machine596

learning and artificial intelligence are gaining ground, intelligent solutions, that597

learn from the past and adapt, will become the norm when dealing with com-598

plex problems. Task schedulers in distributed systems would benefit greatly599

from intelligent agents, learning from past mistakes, exploring and finding new600

solutions that no human might have though before.601

In this paper, a platform, offering scheduling solutions as a service based602

on machine learning agents, was described, and a reinforcement learning world603

model for scheduling was proposed. The platform, know as the Machine Learn-604

ing Box, allows further development of scheduling algorithms and an easy inte-605

gration process. The application model can easily be mapped on parallel sys-606

tems, in order to scale and increase the overall efficiency. The learning model607

proved to have its limitations, due to the complex nature of a distributed sys-608

tem and the proposed codification as a world of states. While this codification609

works on smaller systems, the more nodes were added to the system the larger610

the world got, leaving the reinforcement learning agent incapable of properly611

learning an optimal policy.612

For future work the platform could be extended to support other types of613

algorithms and scheduling methods. Naturally the efficiency and bottlenecks of614

a parallel implementation of the platform could be analyzed. As for the rein-615

forcement learning used in scheduling in distributed systems, other techniques616

should be experimented, as well as other world models that could reduce the617

number of states and enhance the method. Worth exploring would be a model618

that does not combine the states of each node of the cluster, but creates indi-619

vidual policies that give utilities to the action of refusing or accepting a task to620

be assigned.621

Acknowledgment622

The research presented in this paper is supported by projects: DataWay :623

Real-time Data Processing Platform for Smart Cities: Making sense of Big Data624

21

- PN-II-RU-TE-2014-4-2731; MobiWay : Mobility Beyond Individualism: an In-625

tegrated Platform for Intelligent Transportation Systems of Tomorrow - PN-II-626

PT-PCCA-2013-4-0321; CyberWater grant of the Romanian National Authority627

for Scientific Research, CNDI-UEFISCDI, project number 47/2012; clueFarm:628

Information system based on cloud services accessible through mobile devices,629

to increase product quality and business development farms - PN-II-PT-PCCA-630

2013-4-0870.631

We would like to thank the reviewers for their time and expertise, construc-632

tive comments and valuable insight.633

References634

[1] R. Kumar, N. Gupta, S. Charu, S. K. Jangir, Architectural paradigms of635

big data, in: National Conference on Innovation in Wireless Communica-636

tion and Networking Technology–2014, Association with the Institution of637

Engineers (INDIA), 2014.638

[2] T. White, Hadoop: The Definitive Guide, 3rd Edition, O’Reilly - O’Reilly639

Media, 2012.640

[3] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large641

clusters, Communications of the ACM 51 (1) (2008) 107–113.642

[4] A. C. Murthy, V. K. Vavilapalli, D. Eadline, J. Niemiec, J. Markham,643

Apache Hadoop YARN: Moving Beyond MapReduce and Batch Processing644

with Apache Hadoop 2, Pearson Education, 2013.645

[5] J. D. Ullman, Np-complete scheduling problems, Journal of Computer and646

System sciences 10 (3) (1975) 384–393.647

[6] P. Liu, K.-K. R. Choo, L. Wang, F. Huang, Svm or deep learning? a648

comparative study on remote sensing image classification, Soft Computing649

(2016) 1–13.650

[7] L. Wang, J. Zhang, P. Liu, K.-K. R. Choo, F. Huang, Spectral–spatial651

multi-feature-based deep learning for hyperspectral remote sensing image652

classification, Soft Computing (2016) 1–9.653

[8] Y. Hu, J. Yan, K.-K. R. Choo, Pedal: a dynamic analysis tool for efficient654

concurrency bug reproduction in big data environment, Cluster Computing655

19 (1) (2016) 153–166.656

[9] Z. Xu, H. Zhang, V. Sugumaran, K.-K. R. Choo, L. Mei, Y. Zhu, Participa-657

tory sensing-based semantic and spatial analysis of urban emergency events658

using mobile social media, EURASIP Journal on Wireless Communications659

and Networking 2016 (1) (2016) 44.660

[10] J. MacGlashan, The brown-umbc reinforcement learning and planning661

(burlap) java code library (http://burlap.cs.brown.edu/) (2016).662

22

[11] D. E. Hershkowitz, J. MacGlashan, S. Tellex, Learning propositional func-663

tions for planning and reinforcement learning, in: 2015 AAAI Fall Sympo-664

sium Series, 2015.665

[12] J. MacGlashan, M. L. Littman, Between imitation and intention learning,666

in: Proceedings of the 24th International Conference on Artificial Intelli-667

gence, AAAI Press, 2015, pp. 3692–3698.668

[13] W. Chen, E. Deelman, Workflowsim: A toolkit for simulating scientific669

workflows in distributed environments, in: E-Science (e-Science), 2012670

IEEE 8th International Conference on, IEEE, 2012, pp. 1–8.671

[14] F. Pop, C. Dobre, V. Cristea, Genetic algorithm for dag scheduling in grid672

environments, in: Intelligent Computer Communication and Processing,673

2009. ICCP 2009. IEEE 5th International Conference on, IEEE, 2009, pp.674

299–305.675

[15] N. R. Satish, K. Ravindran, K. Keutzer, Scheduling task dependence graphs676

with variable task execution times onto heterogeneous multiprocessors, in:677

Proceedings of the 8th ACM international conference on Embedded soft-678

ware, ACM, 2008, pp. 149–158.679

[16] W. Zhang, T. G. Dietterich, A reinforcement learning approach to job-shop680

scheduling, in: IJCAI, Vol. 95, Citeseer, 1995, pp. 1114–1120.681

[17] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, W. Lin, Random task schedul-682

ing scheme based on reinforcement learning in cloud computing, Cluster683

Computing 18 (4) (2015) 1595–1607.684

[18] N. George, K. Chandrasekaran, A. Binu, An objective study on improve-685

ment of task scheduling mechanism using computational intelligence in686

cloud computing, in: 2015 IEEE International Conference on Computa-687

tional Intelligence and Computing Research (ICCIC), IEEE, 2015, pp. 1–6.688

[19] M. Gombolay, R. Jensen, J. Stigile, J. Shah, Apprenticeship scheduling:689

Learning to schedule from human experts, in: Proceedings of the Interna-690

tional Joint Conference on Artificial Intelligence (IJCAI), New York City,691

NY, USA, 2016.692

[20] D. L. Poole, A. K. Mackworth, Artificial Intelligence: foundations of com-693

putational agents, Cambridge University Press, 2010.694

[21] S. Russle, P. Norvig, Artificial Intelligence A Modern Approach, Third695

Edition, 2009.696

23

	Introduction
	Background and related work
	Related work
	Reinforcement Learning Algorithms
	Q-Learning
	State-Action-Reward-State-Action (SARSA)
	Monte-Carlo Technique

	Reinforcement Learning Model for Scheduling
	Scheduling Problem Definition
	First Layer of Complexity: task DAG scheduling and machine performance
	Second Layer of Complexity: dynamic cluster status
	Third Layer of Complexity: variable tasks and task classification

	Machine Learning Box Architecture
	MBox Service
	MBox Machine Learning Engine
	MBox Scheduling with WorkflowSim

	Results
	Theoretical Limit
	Experimental results

	Conclusion

