
XTASK - eXTreme fine-grAined concurrent taSK
invocation runtime

POORNIMA NOOKALA, DR. PETER DINDA, DR. KYLE HALE, DR. IOAN RAICU
pnookala@hawk.iit.edu, pdinda@northwestern.edu, khale@cs.iit.edu, iraicu@cs.iit.edu

Department of Computer Science, Illinois Institute of Technology
Department of Electrical Engineering and Computer Science, Northwestern University

Abstract—Exascale computers are expected to be made of
millions of nodes and billions of threads of execution. To support
high degrees of parallelism for various applications, the threads
and task scheduling needs to be fine-grained and should be able
to execute in the order of tens to a few hundred CPU cycles. Over-
decomposition of applications to fine-grained applications is ideal
to achieve maximum speed up and there is a need for a parallel
runtime system which can launch tasks for execution and report
the results with very low latency at high levels of concurrency.
This work aims at enabling the launch of independent tasks on
many-core accelerator hardware architectures and mechanisms
to support tasks of fine granularity on the order of tens of few
hundreds of CPU cycles at a large scale. This work also focuses
on analyzing the performance of various queue-based data
structures commonly used in parallel programming languages
and runtime systems. This analysis is essential for designing an
efficient runtime system for scheduling billions of tasks with very
low latency and high throughput. Lastly, the runtime would also
support data dependencies and task dependencies required for
task-based shared memory parallel programming.

Index Terms—Parallel runtime; Fine-grained parallelism;
Queues; Many-task computing; Accelerators; Intel Xeon Phi;
Coprocessor; Xtask

I. INTRODUCTION
Moore’s law states that number of transistors in an Inte-

grated Circuit will double approximately every two years. But,
according to processor manufacturers, we are approaching the
limits of scaling with silicon and the future of Moore’s law is
currently undetermined. Alternatives to improving processor
performance is by packing more processors together so they
can work in parallel on different parts of the same workload. It
is typical nowadays to have two, four or eight cores all running
in parallel in most devices and systems. This necessitates
the need for a programming approach that can leverage and
processor’s full capacity.

A. Many-Task Computing
Many-Task Computing (MTC) [2] has been an emerging

paradigm and area of research for some years now. An MTC
workload consists of task that run uninterrupted from start to
completion. The task duration may be highly variable, ranging
from tens of cycles to hundreds and thousands of cycles.
Their dependency and data-passing characteristics may range
from many similar tasks to complex, and possibly dynami-
cally determined, dependency patterns. Many-task computing
differs from high throughput computing (HTC) in the context
of using large number of computing resources over short

periods of time to accomplish many computational tasks. To
efficiently handle MTC workloads, the system needs to exploit
parallelism as much as possible. As more and more cores
are being added to increase the processing speed, the need
for parallel runtime systems that can leverage full capabilities
of the processors by over-decomposition of tasks into fine-
grained tasks is increasing.

B. Task-Based Parallelism
Task-based parallelism is a simple paradigm for shared-

memory parallelism in which a computation is broken-down
into a set of inter-dependent tasks which can then be executed
concurrently on various cores. Task dependencies and data
dependencies are used to control the flow of tasks through
the runtime system. Tasks can be modeled as Directed Acyclic
Graph (DAG) which can be traversed in order. Given the DAG,
tasks can be executed using a set of threads where each thread
dequeues a task from a queue and executes it. If the queue is
empty, thread waits for a task to come in to the queue until
the whole DAG is processed. Figure1 shows a DAG with set
of tasks with arrows showing the dependencies. Nodes at one
level can ideally be executed in parallel. Here tasks G and H
can be executed in parallel and they do no have dependencies
since they are the leaf tasks. Once the dependencies for D,E
and F have been resolved, they can be executed in parallel as
well.

Figure 1 shows a set of tasks with arrows representing
dependencies. G and H represent leaf tasks which can be
executed in parallel. D, E and F are the tasks at same level in
the graph, so ideally can be run in parallel.

There are several factors that can limit the degree of
parallelism and it also depends on the dependencies that
exist between the tasks. Most parallel runtime systems today
support execution of coarse-grained tasks with very high
efficiency, however when it comes to fine-grained tasks, the
efficiency decreases due to the overhead of scheduling and
dispatching tasks and collecting results from different cores.
Hence, there is a need for a parallel runtime system that can
dispatch billions of tasks with very low latency and very high
throughput. This is the primary motivation for this work.

II. RELATED WORK

There are many existing parallel runtime systems, some
which exhibit implicit parallelism and some where parallelism



Fig. 1: Directed Acyclic Graph

needs to be explicitly represented. One of the first task-based
parallel programming system implementations is Cilk[3]. Cilk
is an extension of C language which allows spawning tasks
as new tasks. Dependencies can be represented using sync
keyword which forces a thread to wait for all tasks that it
created to be complete.

StarPU (Augonnet et al., 2011) is a software tool allow-
ing programmers to exploit computing power of CPUs and
specialized hardware such as accelerators and coprocessors.
QUARK (YarKhan et al., 2011) stands for Queueing and
Runtime for Kernels and provides mechanisms to execute
tasks with data dependencies in multi-core, multi-socket and
shared memory environment. It infers dependencies between
tasks from the way data is used and executes tasks in an
asynchronous fashion. XKAAPI (Gautier et al., 2007) is
a runtime for scheduling irregular fine-grained tasks with
dataflow dependencies. In all these parallel runtimes, the
programmer specifies what shared data each task will access,
and how that data will be accessed. The dependencies between
tasks are then generated dynamically by the runtime system,
assuming that the data must be accessed and updated in the
order in which the tasks are generated. Intel?s Threading
Building Blocks (TBB) (Reinders, 2010) provide task-based
parallelism using C++ templates in which dependencies are
handled either by explicitly waiting for spawned tasks, or
by explicitly manipulating task reference counters. Legion
uses deferred execution which means all runtime calls are
deferred and computation is performed only when it is safe
to do so. Finally, the very popular OpenMP standard provides
some basic support for spawning tasks, similar to Cilk, as of
version 3.0 (Board, 2008). OmpSs (Duran et al., 2011) extends
this scheme with automatic dependency generation along with
the ability to explicitly wait on certain tasks. Charm++ is a
machine independent parallel programming system which uses
message-driven execution to hide the latency of communica-
tion between tasks and remote data.

In all the above mentioned runtimes, it is the responsibility
of the application to decide the level of task granularity and
how to decompose algorithms into tasks that can achieve
performance gain by exploiting high levels of parallelism.
Swift/T, on the other hand, is a data-flow driven implicitly
parallel programming model. It dynamically generates a DAG
where tasks can generate sub-tasks and uses futures for repre-
senting data dependencies. Swift/T has been shown to run well
on tens of thousands of nodes with task graphs in the range
of millions of tasks[swift]. Swift uses MPI (Message Passing
Interface) for inter-node and intra-node communication.

In Xtask system, task dependencies are represented by
hierarchical locks on the data objects which ensures tasks are
executed only when they are ready and data dependencies
have been resolved. Xtask expects a DAG as input to the
runtime with dependencies expressed in terms of data locks
and holds. It is up to the runtime to schedule tasks based on the
dependencies. Queues are basic data structures that are used
in most parallel runtime systems. Due to the FIFO nature of
queues, it is widely used as message queues for queueing up
tasks and processing them in order. Xtask also uses queues
to hold a bag of tasks. There is a certain latency associated
with the queueing operations including the latency to enqueue,
dequeue and wait time in the queue. These latencies can easily
become the bottleneck for overall performance of the system
under high levels of concurrency. Also, multiple producer
multiple consumer queue is a common structure used in
parallel runtime system to exploit high degrees of parallelism.
Threads are considered a convenient and efficient mechanism
to use multicore processors. However, there is cost associated
with implementing queues with locks and mutexes vs other
mechanisms to make it thread safe. Performance analysis
needs to be done on various architectures since the latency and
throughput can vary based on the architecture. In this work,we
study the performance of various queue implementations using
AMD and Haswell processors and Intel Xeon Phi coprocessor.
Intel Xeon Phi is a PCI device with roughly 60 cores and
over 240 hardware threads. Its design makes it ideal for
application that are performance critical and need large levels
of parallelism. Moreover, the fact that it implements x86 for its
instruction set architecture, makes its integration with existing
systems simpler. For these reasons, it is worthwhile to note that
the Xeon Phis are considered valuable additions for clusters,
grids and supercomputers.

This work is inspired from prior work called GeMTC
which stands for GPU-Enabled Many Tasks Computing. The
GeMTC framework and its API are limited exclusively to
NVIDIA GPUs since it is developed in CUDA. GeMTC also
uses queues to hold a bag of tasks to be executed on the
GPU. In early work, frameworks similar to GeMTC were
designed using OpenMP and SCIF to dispatch tasks on to
Intel Xeon Phi Co-processor which also used queues with
mutex locks and semaphores as the basic data structure for
holding bag of tasks.



III. DESIGN CONSIDERATIONS
The goal of Xtask runtime system is to enable execution of

fine-grained tasks on shared memory multi-core architectures
with very low latency and high throughput. To achieve this
goal, analysis of basic data structures that form the barebones
of the runtime is essential so they do not become the bottleneck
for performance.

A. Analysis of Synchronization Mechanisms
To run programs in parallel using multithreading, threads

need to be synchronized. Various thread synchronization
mechanisms exist which ensure that threads do not simultane-
ously execute a critical section of the program. Common syn-
chronization mechanisms include mutexes (mutual exclusion
locks), semaphores, reader/writer locks, condition variables
and atomic builtins. While it is essential to synchronize data
between threads, it can easily get costly at higher levels on
concurrency. Figures 2, 3 and 4 show that all synchronization
mechanisms exhibit higher latencies due to contention at
higher levels of concurrency. These benchmarks are obtained
by running a tight loop of operations for a specific period
of time and collecting the aggregate of the results. These
benchmarks used RDTSCP as the timing function.

Vanilla shared represents the latency of incrementing a
shared variable which is not thread safe. Vanilla unique
represents the cost of incrementing a variable local to a thread
which is not shared between any other threads. At full cpu
utilization, the average cost of atomic operations is around
2500 CPU cycles for Haswell and Xeon Phi co-processor
and the cost is around 9000 cycles for AMD processor. The
latencies increase as the systems are over-provisioned by
increasing the number of threads. There are many factors that
impact the cycle counts like cache coherence, communication
latency between cores on different sockets, interrupts, cache
misses, etc. Hence, it is important to run multiple iterations
of these benchmarks and to compute the average number of
cpu cycles to estimate the latency of these operations.

B. Analysis of Queue Implementations
A data structure like queue can be made thread safe by using

the synchronization mechanisms mentioned above. The most
common way is to use locks such as mutexes and semaphores.
Queues can also be implemented as lock-free data structures
using atomic builtins that are supported by hardware. Squeue
is a simple ticket lock based lock-free queue that uses atomic
operations. Enqueue operation gets an empty slot in the queue
and copies the data in that slot. Dequeue operation gets a
slot in the queue and waits in a while loop until an element
comes in. If an element is already present in the slot, there
is no wait time in the while loop. Basic linux queue is a
queue used by Linux kernel and it was made thread safe using
mutex locks. Read Copy Update (RCU) and LIBLFDS are
open-source libraries for lock-free queues. Another variation
of data structures for holding a bag of tasks is to have multiple
queues with one producer and one consumer pair for each

Fig. 2: Latency of synchronization mechanisms on 12C 24T
Haswell

Fig. 3: Latency of synchronization mechanisms on 48C AMD

Fig. 4: Latency of synchronization mechanisms on 57C 228T
Intel Xeon Phi



Fig. 5: Latency of enqueue operation on 12C 24T Haswell

Fig. 6: Latency of dequeue operation on 12C 24T Haswell

queue. Bounded multiple producer multiple consumer is a
common model used in many runtime systems and fine-tuning
the performance of queues is essential for achieving the best
performance.

The data structures mentioned above are benchmarked for
latency and throughput. Benchmarking is done using a tight
loop of continuous enqueues and dequeues. In some experi-
ments, enqueues follow the dequeues and in others, enqueues
and dequeues happen concurrently. Latency is measured in
CPU cycles using RDTSCP instruction on Haswell and AMD
and RDTSC on Xeon Phi. The test bed for experiments
included Haswell with 12 cores and 24 hardware threads,
AMD with 48 cores, Xeon Phi Knights Corner with 57 cores
and 228 hardware threads and AMD Ryzen with 8 cores and
16 hardware threads. AMD Ryzen is a new architecture with
highest clock rate of 4.0 GHz frequency. AMD Ryzen exhibits
lowest latencies compared to other x86 architectures given its
high clock rate. Results in figures 5 to 12 represent the average
latency of few millions of operations.

Fig. 7: Latency of enqueue operation on 48C AMD

Fig. 8: Latency of dequeue operation on 48C AMD

Fig. 9: Latency of enqueue operation on 57C Phi



Fig. 10: Latency of dequeue operation on 57C Phi

Fig. 11: Latency of enqueue operation on 8C 16T AMD Ryzen

Fig. 12: Latency of dequeue operation on 8C 16T AMD Ryzen

Fig. 13: Throughput of enqueue operation on 12C 24T Haswell

Dequeue operation has higher latency compared to enqueue
operation due to waiting in the while loop for an element
to come in. This implementation can be improved to reduce
the overall latency. However, with current implementation, the
benchmarks ensure that queue is full most of the time. Hence
the results presented here can be considered as the best average
case values.

Throughput is an important metric when it comes to mea-
suring the performance of a runtime system. Throughput of
various queue operations can provide a baseline of how many
tasks per second can be pushed in and out of the queue in
a second. Throughput is measured by running a tight loop
for few seconds and measuring the number of operations
processed per second. As seen in latency measurements in
figures 5 to 12, since latency per operation increases as
concurrency increases, throughput remains constant for most
implementations except multiple queues approach. With mul-
tiple queues, since contention remains the same as threads
are scaled up, latency stays constant and higher throughput is
obtained with threads equal to number of cores. However as
we scale up the threads, due to overhead of context switches,
latency and throughput suffer.

While most of the lock-free queue implementations provide
10 million operations per second in throughput, multiple
queues approach has an order of magnitude better throughput.
Although the caveat here is to distribute the load across
multiple queues so no workers are idle waiting for work.
This is currently done using naive round robin distribution,
however work stealing can be implemented to further improve
the performance. Intel Xeon Phi also provides throughput from
6 million to 8 million when all the cores are utilized. However,
an important point to note here is that basic queue with locks
provide an order of magnitude less throughput compared to
other lock-free implementations.



Fig. 14: Throughput of dequeue operation on 12C 24T Haswell

Fig. 15: Throughput of enqueue operation on 48C AMD

Fig. 16: Throughput of dequeue operation on 48C AMD

Fig. 17: Throughput of enqueue operation on 57C Phi

Fig. 18: Throughput of dequeue operation on 57C Phi

Fig. 19: Throughput of enqueue operation on 8C 16T AMD
Ryzen



Fig. 20: Throughput of dequeue operation on 8C 16T AMD
Ryzen

IV. DESIGN AND IMPLEMENTATION OF XTASK

The Xtask framework employs a producer consumer ar-
chitecture. Underlying data structure is a bounded lock-free
queue which is implemented using ticket lock algorithm.
Number of producers and consumers is configurable at runtime
along with the queue size. When the framework bootstraps,
it allocates memory for the queues using malloc. A pool of
worker threads are launched waiting to consume tasks from
a queue. Currently the framework uses pthreads as workers.
Two versions of Xtask exist, one which processes independent
tasks (it will be called XtaskS for the purposes of discussion in
this paper) and other which handles dependencies within tasks
(it will be called XtaskD for the purposes of discussion in
this paper). XtaskS and XtaskD together will be called Xtask
in the remainder of this paper. XtaskS treats all the tasks in
the queue as independent and schedules them for execution.
Results are put in another queue so they can be retrieved
later by the program. Since this framework is written in C,
it runs on Intel Xeon Phi which also has x86 architecture. In
preliminary stages of this work, the runtime also included the
ability to offload tasks on to Intel Xeon Phi for processing
using OpenMP constructs. Sleep and NOP tasks are used for
benchmarking of this framework.

Swift/T is an implicitly parallel data-flow language which
uses MPI for inter-node as well as intra-node communication.
Pthreads have less communication overhead as compared to
an MPI implementation. However, to be able to replace lower
layer of Swift/T with a threaded model, it is essential for
XtaskS to be able to deal with task and data dependencies.
A new model of the framework XtaskD was implemented
which could deal with task dependencies. In many existing
runtime systems, DAG is generated dynamically as execution
progresses. Each task can create sub tasks which also creates
dependencies using in, out or inout parameters. In some
parallel runtimes, dependency is expressed explicitly by the
programmer using pragma or some constructs which require

a special compiler. XtaskD uses a different approach than
traditional runtime systems. XtaskD requires a DAG to be the
input to the runtime system. Leaf tasks that do no depend on
any other tasks are readily pushed on the queue for execution.
Dependencies can be expressed using a structure which has
task dependency information. When the dependencies are re-
solved, the tasks will be added to the queue for execution. This
design was chosen so the runtime system can make informed
decisions by knowing the structure of the whole DAG before
execution starts. The disadvantage of this approach is that
the burden of generating task graph is on the programmer,
however this can be addressed as part of future work. XtaskD
framework is currently under development and work needs
to be done to optimize it for lower latencies and higher
throughput. Fibonacci program was implemented on top of
XtaskD framework for the purposes of evaluation. Currently,
since the framework is in initial stages of implementation, it
only supports computing one integer as the output. However,
it can be easily extended and will be extended to support
multiple outputs as part of future work.

V. OPTIMIZATIONS

There are multiple points to consider when implementing
or benchmarking systems on multicore processors for high
performance. The way operating systems bind threads and
the way they move threads between cores has great impact
on multicore performance. Threads needs to be pinned to the
cores to achieve optimal performance. Hence Xtask employs
a topology aware thread pinning to improvise performance.
A tool for hardware locality called HWLOC is used to
identify the CPU architecture and the placement of cores.
HWLOC provides constructs to get information about the
topology, placement of NUMA nodes, IO devices and how
the numbering of physical cores.This information is retrieved
during bootstrap of the runtime system and threads are pinned
to CPUs to achieve maximum performance. Below is a figure
generated by HWLOC tool on a Haswell machine.

VI. EVALUATION

This section presents evaluation on XtaskS and XtaskD
runtime systems. XtaskS was benchmarked with two
implementations of queues, one being the basic linux queue
implemented using mutexes and the other being Squeue
which was implemented using atomics. Prior evaluation of
lock-based queues showed that the latencies are higher at
high levels of concurrency and lock-free queues are a better
alternative to obtain lower latency and higher throughput.
Sleep jobs and NOP tasks are used to evaluate the framework.
Micro benchmarks for such fine-grained tasks can be obtained
by using RDTSC/RDTSCP instructions. These instructions
are available in most architectures and there is subtle
difference between the two versions. RDTSCP flushes the
CPU pipeline before reading the time stamp counter which
is not the case with RDTSC. This is necessary to ensure the
operation in flight has completed execution to get an accurate
benchmark. However, the caveat to using RDTSCP is that



Fig. 21: Topology of a Haswell Machine with 12 Cores and
24 Hardware Threads using HWLOC

subsequent instructions can start execution while time stamp
counter is being read which can skew the benchmark results.
Hence a combination of CPUID + RDTSC can be used as
the start timer which ensures all instructions before have
been executed and RDTSCP can be used as the end timer.
Also, every core has it’s own time stamp counter (TSC).
Hence careful measurement is required to synchronize the
the counters to get an accurate measurement. Also,when
collecting raw data for benchmarking, it is important to
make sure data collection does not perturb the execution of
the program in a way that it could affect the contention.
Extra attention is paid to the way data is being collected
for micro-benchmarks since the measurements range in
few hundreds to few thousand cycles and any major data
collection can perturb the overall execution thereby skewing
the results. Figures 21 and 22 show the latency of sleep
and nop operations using single producer single consumer
(SPSC) lock-based queue as the underlying data structure.
Latencies go up as level of concurrency increases as expected
and seen the queue behavior. The latencies are higher with
a lock-based queue measured to be around 30k cycles at 24
hardware threads on Haswell. Throughput is measured for
SPSC version of framework with lock-based queues which
averaged around 100 thousand tasks per second on all the
architectures.

Fig. 22: Latency of Xtask using Basic Linux Queue

Fig. 23: Latency of Xtask using Basic Linux Queue

Fig. 24: Latency of Xtask using Basic Linux Queue



Fig. 25: Latency of Xtask using Basic Linux Queue

Single producer multiple consumer (SPMC) is a variation
that is used in real world applications. There is a single
thread that produces tasks and multiple threads processing
them as and when they are ready. This was chosen for
evaluation where producer would put tasks in the queue
in a round robin or random fashion. A challenge with this
approach is that the throughput of the queue is limited by the
speed of producer being able to push tasks on to the queue.
This is quite a possibility with real world application like
Fibonacci where a single thread could be producing the tasks
while multiple consumers could be consuming the tasks.
Below is the evaluation of SPMC variation with lock-free
queues. Latencies were measured to be around 4k cycles and
throughput around 1 million tasks per second to dequeue,
execute and enqueue the result.

OpenMP is a parallel runtime which can automatically
parallelize sections of code within pragmas specified by the
user. The task construct of OpenMP [11] resembles bag of
tasks pattern and using which we can implement an SPMC
version of the program. Since OpenMP is widely used to
parallelize code within single node, it was used as comparison
in the experiments. OpenMP showed throughput which is
comparable to basic queue implementation with locks with
values ranging from 60K to 100K. Hence there is certainly
room for improvising the OpenMP runtime to get better
throughput. OpenMP uses queues based on ticket locks and
it can be made better to reduce the overall latency of the
operations.

To summarize, Xtask achieved a throughput of 10 million
tasks per second with full utilization of all the hardware
threads. While OpenMP version started at 10 million tasks
per second, it dropped as threads were scaled up to match to
the number of hardware threads. This behavior shows that
there is room for improvement in OpenMP which is also part
of our research focus. Final variation of Xtask version was
made to use multiple queues with multiple producers and



multiple consumers. This version performed the best when
evaluation was done on queue operations. The motive here is
to leverage the advantages of using multiple queues approach
and evaluate the approach with naive load balancing to get
an idea of the performance. Below are the preliminary results
obtained which needs to be investigated to validate the results.

Swift/T uses MPI for sending and receiving tasks within a
node and between various nodes. MPI send/receive latency
is measured to understand the performance of Swift on a
single node and to provide a comparison with a naive pthread
implementation. Figure below shows the results obtained for
throughput of simple MPI send/receive pairs. With one MPI
process, throughput achieved is around 3 to 4 million, however
as number of processes goes up, throughput quickly drops
to one million. Hence Swift/T can certainly be improved to
achieve better performance on single node which is a work in
progress currently.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a thread based runtime and execution
framework Xtask which can process tasks with low latencies
and high throughput. Various queue implementations and
synchronization mechanisms are analyzed and benchmarked
to understand the cost associated with these operations at high
levels of concurrency. Clearly, lock-free implementations are
better choice to achieve high throughput although latency suf-
fers with severe contention. Optimal solution would be to use
multiple queues with good load balancing technique like work
stealing to achieve maximum efficiency. OpenMP achieved
less throughput compared to other queueing mechanisms de-
scribed in this paper. Comparison with OpenMP showed that
our simple framework can provide ten times higher throughput
compared to OpenMP. These are preliminary results and there
is much room for improvement in the framework which is part
of future work. Also we presented another version of Xtask
called XtaskD which deals with task dependencies. This is
an essential feature of a runtime which needs to implemented
fully and evaluated. Immediate goals include evaluating the
framework for multiple producers and multiple consumers.
Also, plan is to finish implementation of XtaskD to be able to
efficiently handle dependent tasks.

Swift/T [7] uses MPI for sending tasks to worker processes
within a node. Certainly MPI send receive has higher latency
compared to enqueue and dequeue operations of queues.
Currently work is being done to replace MPI with threads
in Swift/T. Also future research plan is to evaluate various
kernel level abstractions like interrupts that can be leveraged to

notify workers of new tasks which will be an entirely different
approach of building a runtime. End goal is to develop a
complete parallel runtime system XTASK which can dispatch
tasks with very low latency and very high throughput.

VIII. ACKNOWLEDGEMENTS
I would like to express my gratitude to Dr.Ioan Raicu

(Illinois Institute of Technology), Dr. Peter Dinda (Northwest-
ern University) and Dr. Kyle Hale (IIT) for suggesting such
an interesting idea to explore user space and kernel space
capabilities for designing a parallel runtime system to support
fine grained parallelism.

REFERENCES

[1] Poornima Nookala, ”Benchmarking Source Code Repository”, https:
//github.com/pnookala/MyWork/tree/master/QueueBenchmarks.

[2] Ioan Raicu, Ian T. Foster, Yong Zhao, Many-task computing for grids and
supercomputers, IEEE, 2008.

[3] ROBERT D. BLUMOFE, CHRISTOPHER F. JOERG, BRADLEY C.
KUSZMAUL, CHARLES E. LEISERSON, KEITH H. RANDALL, AND
YULI ZHOU, ”Cilk: An Efficient Multithreaded Runtime System”, Oc-
tober 17, 1996.

[4] YarKhan, A., ”Dynamic Task Execution on Shared and Distributed
Memory Architectures,”, University of Tennessee, December, 2012.

[5] S. Krieder, J. Wozniak, T. Armstrong, M. Wilde, D. Katz, B. Grimmer,
I. Foster and I. Raicu, ”Design and Evaluation of the GeMTC Framework
for GPU-enabled Many-Task Computing”, ACM HPDC, 2014.

[6] Justin M. Wozniak, et al., Swift/T: Scalable Data Flow Programming for
Many-Task Applications, PPoPP 2013.

[7] J. Johnson, S. Krieder, B. Grimmer, J. Wozniak, M. Wilde and I. Raicu,
”Understanding the Costs of Many-Task Computing Workloads on Intel
Xeon Phi Coprocessors”, GCASR, 2013.

[8] David R. Butenhof, ”Programming with POSIX Threads”, 1997.
[9] Bryant, O’Hallaron, ”Computer Systems: A Programmer’s Perspective”,

2011.
[10] Allen B. Downey, ”The Little Book of Semaphores”, http://

greenteapress.com/semaphores/.
[11] Allen B. Downey, ”Swift/T”, https://www.mcs.anl.gov/project/

swift-fast-parallel-scripting-language.
[12] J. Johnson, S. Krieder, B. Grimmer, J. Wozniak, M. Wilde and I. Raicu,

”Understanding the Costs of Many-Task Computing Workloads on Intel
Xeon Phi Coprocessors”, GCASR, 2013.

[13] David R. Butenhof, ”Programming with POSIX Threads”, 1997.
[14] Bryant, O’Hallaron, ”Computer Systems: A Programmer’s Perspective”,

2011.
[15] Allen B. Downey, ”The Little Book of Semaphores”, http://

greenteapress.com/semaphores/.
[16] Allen B. Downey, ”Swift/T”, https://www.mcs.anl.gov/project/

swift-fast-parallel-scripting-language.
[17] ”Computing a Fibonacci number”, http://www.cs.ucsb.edu/projects/

jicos/tutorial/fibonacci/.
[18] ”HWLOC”, https://www.open-mpi.org/projects/hwloc/doc/v1.11.6/.
[19] ”ADLB”, https://www.cs.mtsu.edu/⇠rbutler/adlb/.
[20] ”OpenMP Tasks”, https://www.kth.se/polopoly fs/1.224493!/Menu/

general/column-content/attachment/openmp tasks.pdf.

https://github.com/pnookala/MyWork/tree/master/QueueBenchmarks
https://github.com/pnookala/MyWork/tree/master/QueueBenchmarks
http://greenteapress.com/semaphores/
http://greenteapress.com/semaphores/
https://www.mcs.anl.gov/project/swift-fast-parallel-scripting-language
https://www.mcs.anl.gov/project/swift-fast-parallel-scripting-language
http://greenteapress.com/semaphores/
http://greenteapress.com/semaphores/
https://www.mcs.anl.gov/project/swift-fast-parallel-scripting-language
https://www.mcs.anl.gov/project/swift-fast-parallel-scripting-language
http://www.cs.ucsb.edu/projects/jicos/tutorial/fibonacci/
http://www.cs.ucsb.edu/projects/jicos/tutorial/fibonacci/
https://www.open-mpi.org/projects/hwloc/doc/v1.11.6/
https://www.cs.mtsu.edu/~rbutler/adlb/
https://www.kth.se/polopoly_fs/1.224493!/Menu/general/column-content/attachment/openmp_tasks.pdf
https://www.kth.se/polopoly_fs/1.224493!/Menu/general/column-content/attachment/openmp_tasks.pdf

	INTRODUCTION
	Many-Task Computing
	Task-Based Parallelism

	RELATED WORK
	DESIGN CONSIDERATIONS
	Analysis of Synchronization Mechanisms
	Analysis of Queue Implementations

	DESIGN AND IMPLEMENTATION OF XTASK
	OPTIMIZATIONS
	EVALUATION
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	References

