
Toward Scalable Indexing and Search on Distributed and Unstructured Data

Alexandru Iulian Orhean, Itua Ijagbone, Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, 60616

aorhean@hwk.iit.edu, iijagbone@iit.edu, iraicu@cs.iit.edu

Kyle Chard
Computation Institute
University of Chicago

Chicago, IL, 60637
chard@uchicago.edu

Dongfang Zhao
CSE Department

University of Nevada
Reno, NV, 89557
dzhao@unr.edu

Abstract—The ubiquity of Big Data has greatly influenced
the direction and the development of storage technologies. To
meet the needs of storing and analyzing Big Data, researchers
and administrators have turned to parallel and distributed
storage and compute architectures in both industry and science.
While the problems of securely and consitently storing and
accessing data in large parallel and distributed file systems
have been addressed in both the research and production
systems, the indexing and search through large unstructured
data and metadata has largely been overlooked. According
to the International Data Corporation, more than 90% of
data found in the digital universe is unstructured, emphasizing
the importance of developing efficient solutions for querying
distributed data. This paper proposes a novel indexing solution,
called FusionDex, that significantly improves the performance
of querying across distributed file systems. FusionDex leverages
state-of-the-art, open-source indexing modules as its building
blocks to deliver an integrated system for enabling efficient
user-specified queries over distributed and unstructured data.
FusionDex has been evaluated on a cluster of 64 nodes, and
results show that it outperforms existing tools (in some cases
by orders of magnitude), such as Hadoop Grep and Cloudera
Search.

Keywords-indexing methods; distributed file systems; un-
structured data search

I. INTRODUCTION

In the era of Big Data, the amount of information con-
tinuously produced, by scientific instruments, social media
applications, smart devices and sensor networks, can not
often be accommodated on a single storage node. Modern
applications make use of parallel and distributed strategies
to store and process data at scale. While extensive research
has focused on the challenges associated with storing and
processing large amounts of data efficiently, the area of
information retrieval and data search in distributed systems
is often overlooked. Although various indexing techniques
have been studied in the database community, adapting them
to meet the needs of those applications whose data are
primarily distributed and unstructured is still in its infancy.
To make matters worse, according to the International Data
Company [1], most of the data found in distributed file
systems is unstructured, posing a serious challenge to the
development of efficient models for querying large, unstruc-
tured, and distributed data.

This paper proposes an indexing solution that takes into
account the unstructured and distributed nature of Big Data.
While many Big Data systems use a single coordinator to
manage resources and data placement (e.g., Hadoop [2] and
Myria [3]), the proposed indexing strategy envisions a fully
distributed architecture, deploying indexing modules locally
on each node of the underlying distributed file system. This
model assumes a relatively common distributed file system
model in which files are stored on the nodes as a whole.
That is they are not segmented into blocks or chunks and
spread across multiple nodes. Thus, at the cost of restricting
the model to a file level storage paradigm, the indexing-
related computations can be done locally, which reduces
communication between nodes. This scheme removes the
concept of a single point of failure and reduces the potential
performance degradation from inter-node interference, while
preserving scalability.

FusionDex represents the implementation of our proposed
indexing solution. It is implemented in the FusionFS [4]
distributed file system which leverages the ZHT [5] dis-
tributed key/value storage system, and uses the CLucene [6]
framework as the indexing engine. CLucene provides the
libraries for efficiently indexing and querying data. Inter-
node communication is accomplished through FusionFS’s
data transfer service. Investigation of FusionDex’s perfor-
mance, on a cluster composed of 64 nodes on the Amazon
EC2 cloud, showed that the distributed indexing approach
has high performance gains in comparison with state-of-
the-art approaches, such as Hadoop Grep [7] and Cloudera
Search [8]. Some of the results in this paper were first
reported in a master thesis [9] along with a poster [10].

The rest of the paper is organized as follows. Section II
describes the principles of the proposed indexing scheme,
before presenting the details of the underlying distributed
file system (FusionFS) and the implementation (FusionDex)
in section III and section IV, respectively. In section V
the performance of FusionDex is investigated and compared
with other state-of-the-art approaches. Finally, related work
is discussed in Section VI and our contributions are sum-
marized in Section VII.



II. DESIGN PRINCIPLE

In comparison with well structured data, found for ex-
ample in relational database systems, unstructured data
does not preserve the same structural characteristics, pre-
defined data models, or well-described organization. As
such, traditional models used for indexing data in relational
database system are not applicable to unstructured data.
While there are countless examples of indexing approaches
for unstructured and text-based data, including Lucene and
the many relational databases that now support free-text
queries, these cannot be directly applied to large storage
systems due to their distributed nature and extreme data
scales. With these properties in mind, FusionDex aims to
eliminate the performance bottleneck of distributed indexing
of unstructured data, by removing a single point of failure
and minimizing the penalties of such a strategy.

The first design principle of FusionDex is that it does not
have global coordinators. This approach is in contrast with
popular Big Data systems, like Hadoop [2], Myria [3] and
SciDB [11], that are all designed with a single coordinator
or master that is in charge of managing the entire system.
FusionDex is completely distributed, each node playing the
role of both an indexing unit and of a utility interface
(e.g., query interface). A client may submit queries to any
node, the operation is then distributed throughout the system
(across nodes) automatically and efficiently. A response
is then assembled by each node and sent back to the
client via the same interface. Through caching mechanisms
and the balancing of communication, the distributed query
throughput can be significantly increased in contrast to the
throughput of a single search server or coordinator.

Removing the coordinator has, admittedly, its own draw-
backs. The reason why so many systems embrace the idea of
single master is obvious: it is easy to maintain consistency
and synchronizations between operations, while efficiently
updating the control unit of the system. Proper motorization
of the operations and the internal state of the components
found in a peer-to-peer system, on the other hand, not
only requires greater care from the perspective of design
and development but also incurs N-to-N network overhead.
For the general problem of querying distributed and un-
structured data, there is no definitive solution that satisfies
all constraints, but in practice, trade-offs are balanced so
that the problem is solved for a reduced number of cases.
In FusionDex’s case, the benefits of efficiently and easily
updating global system consistency and coherence, usually
obtained through a master node or coordinator, are traded for
the benefits of increased scalability, thus providing a means
for managing and maintaining Big Data.

The second design principle is that FusionDex aims to
minimize data movement, for example during the indexing
of files in the distributed file system. This design decision is
somewhat a consequence of the removal of global coordina-

tors. Without a global coordinator the network traffic would
follow a N-to-N pattern, which would cause a performance
catastrophe if each node produces a considerable amount
of data, that must then be transferred. To overcome this
challenge, the proposed model precludes the inter-node
interference at the file level, by only allowing message
exchange across nodes. In other words, the system envisions
one indexing module deployed on each node, being respon-
sible only for the local files found on the respective node.
Therefore, FusionDex expects many small-size messages
to build up the global state. The rationale is that modern
network hardware is usually throttled by bandwidth rather
than latency, making FusionDex’s small messages an ideal
solution that does not pose much pressure on the systems.

III. FUSIONFS: A RECAP

As FusionDex is built upon the FusionFS [4] file system,
we first outline FusionFS’s architecture and unique features.
FusionFS is a user-level file system that runs on the compute
resource infrastructure. It enables every compute node to
actively participate in both metadata and data management.
A client (or application) is able to access the global names-
pace of the file system via a distributed metadata service.
Metadata and data are completely decoupled: the metadata
on a particular node does not necessarily describe the data
residing on the same node. The decoupling of metadata and
data allows different strategies to be applied to metadata and
data management, respectively.

A. Distributed Metadata Management

While many distributed file systems have adopted a dis-
tributed model for metadata management, such as partition-
based or hierarchical structure, FusoinFS’s metadata takes
a completely distributed topology directly on the flat file
system namespace. More specifically, every entity (either
file or directory) represents a key in a distributed hash table
followed by a value, which could be the physical location
of a file or a list of entities (files or directories) contained
within a directory.

FusionFS has different data structures for managing regu-
lar files and directories. For a regular file, the field addr
stores the node where the file resides. For a directory,
the field filelist records all the entries contained within
the directory. This filelist field is particularly useful for
providing in-memory speed for directory listing, e.g. “ls
/mnt/fusionfs”. Both regular files and directories share some
common fields, such as timestamps and permissions, which
are commonly found in traditional i-nodes.

B. Data Movement Protocols

Given the distributed nature of FusionFS there is a need
for nodes to communicate when accessing data and meta-
data. However, neither UDP nor TCP is ideal for supporting
communication between HPC compute nodes: UDP is a



highly efficient protocol, but lacks reliability; TCP, on the
other hand, supports reliable transfer of packets, but adds
significant overhead.

To address this challenge FusionFS includes a new data
transfer service called Fusion Data Transfer (FDT). FDT
is built upon UDP-based Data Transfer (UDT)—a reliable
UDP-based application level data transport protocol for
distributed data-intensive applications [12]. UDT adds its
own reliability and congestion control mechanisms on top
of UDP and supports higher speed transfers than TCP.

When the application on machine A issues a POSIX
fopen() call, it is caught by the FusionFS implementation
in the FUSE user-level interface (i.e., libfuse) for file open.
The metadata client then retrieves the file location from the
metadata server via its distributed hash table. The location
information might be stored in another machine B, so this
procedure could involve a round trip of messages between A
and B. Having resolved the location of the file to machine
C FusionFS then needs to transfer the file from C to A.
Finally the local operating system triggers the system call
to open the transferred file and returns the file handle to the
application.

Before writing to a file, FusionFS checks if the file is
being accessed by another process. If so, an error is returned
to the caller. Otherwise the process can do one of the
following two things. If the file is originally stored on a
remote node, the file is transferred to the local node in the
fopen() procedure, after which the process writes to the local
copy. If the file to be written is already on the local node,
or it is a new file, then the process starts writing the file
locally in the same way as any other system call. When the
process finishes writing to a file that is originally stored in
another node, FusionFS does not send the newly modified
file back to its original node. Instead, it simply updates the
metadata for that file. This saves the cost of transferring the
file data over the network.

IV. FUSIONDEX

FusionDex is designed with a share-nothing policy in
mind. Such systems do not require coordinators, instead they
operate by relying on dirrect collaboration between nodes.
FusionDex is designed to work with a share-nothing dis-
tributed file system such as HDFS [13] or FusionFS [4], both
of which store information in the form of files. Importantly,
files are stored as a whole on individual nodes, that is, they
are not split into blocks or chunks across nodes.

The general architecture of FusionDex is illustrated in
Figure 1. Each compute node holds its own local storage
comprised of local files and the associated index. In addition,
each node is deployed with a daemon service, namely
query server (Q Server), that listens to the request from
query clients (Q Client). The query server is responsible
for executing the query, distributing it to other nodes, and
assembling a response to a client. Query clients may be

implemented by users or applications to submit queries to
FusionDex. It should be noted that a query server does not
necessarily take the requests from the local query client.
That is, any client can communicate with any server in
the cluster in a N-to-N communication pattern. FusionDex
implements a custom communication protocol that leverages
the programming interfaces provided by FusionFS. This
flexibility permits FusionDex to attain high performance
through the seamless interconnection between the indexing
service and the distributed file system, but also between the
client and the server modules.

Figure 1. An architectural overview of FusionDex deployed to a share-
nothing cluster.

A. Building Blocks

FusionDex leverages CLucene to enable efficient indexing
and high performance, yet expressive query performance. It
also leverages FusionFS’s highly optimzed communication
model to share data between nodes.

1) CLucene: local indexing: As we can see in Figure 1,
from a single node’s perspective all files are only indexed lo-
cally. While many popular indexing tools exist, we chose an
open-source implementation as the local indexing module:
CLucene [6]. CLucene is the C++ port of the popular and
open source Apache Lucene [14]—a high-performance full-
text search engine library, implemented in Java. CLucene
is not as mature as Apache Lucene, but offers advantages
including increased performance and implicit compatibility
with the FusionFS distributed file system, that is also written
in C++.

2) FDT: inter-node communication: In order to satisfy
the design goals of the proposed solution, FusionFS has
been extended to enable inter-node queries over the indexes
and efficient communication between indexes. FusionFS has
its own inter-node data transfer service, called Fusion Data
Transfer (FDT), that migrates data chunks in the context of
POSIX system calls. The flexibility of the FusionFS system
allowed the easy integration of a new set of operation types
to the FDT layer, such that an N-to-N index query is routed
properly throughout the node topology and such that the



results are routed correctly back to the specific index node
query server.

B. Index Creation, Removal, and Update

Since files are distributed among the nodes that comprise
FusionFS, each node maintains the index of the files that
reside on it. This is possible because FusionFS is designed
to allow applications to carry out local reads and writes to
files using a scratch location. FusionFS manages a global
namespace for the path of the files, translating the absolute
path of each file into a relative path on that node. Fusion-
Dex’s Clucene index uses the translated paths to crawl local
data and build the index for each file locally.

When a file is modified the index needs to be updated, in
order to reflect the change. FusionDex relies on FusionFS’s
APIs to listen for notifications when files are modified. In
FusionDex, an index update message is issued only when a
file is closed, after the processing of the file has finished.
Thus, opening or reading a file will not trigger an index
update. This is possible as FusionFS tracks whether or not
a file is modified. FusionDex uses the CLucene update
function which automatically deletes the document from the
index and re-adds a new version.

File de-indexing, or the process of index removal, occurs
in two cases: when a file is removed from the distributed
file system or when a file is moved from one node to
another (usually in the case of remote writing). In either case
the following de-indexing procedure is applied. FusionDex
relies on FusionFS’s managemnet of the removal process.
When a file is to be removed, a FusionFS node sends a
message to the node that “owns” that file. FusionDex extends
this mechanism to add an additional message that instructs
the node to de-index the file. This message is sent prior to
the original removal message. Therefore, the file is removed
from the remote node’s index first. It is then followed by the
removal of the actual file from the distributed file system.
One additional step is needed in the case of file relocation:
the file that would reside in the local node after the relocation
process, will be added to the local node’s index upon the
completion of file migration and possibly write operation.

C. Server Protocols

Figure 2 illustrates the architecture of the query module
on the server side. The query server is implemented with a
thread pool, allowing concurrent requests to be satisfied in
parallel without blocking. When a server receives a query
request, it immediately queues the request. One of its worker
threads then takes the request from the queue and performs
the specific query task. Usually this task involves a search on
the local index. Each worker thread keeps track of the index
location, meaning that worker threads can perform queries
in parallel without interfering with one another. One visible
benefit of this approach is that the client waiting time for
the first response is greatly reduced, since the query request

is handled in an asynchronous fashion. The query server is
responsible for distributing the query across the distributed
system by directly contacting each of the other query servers.
The initial query server is responsible for aggregating the
results and returning a response to the requesting client.

Figure 2. Protocols of Concurrent Requests on Query Server

D. Client Protocols
Figure 3 shows the internal organization of the query

module from the client side. The query client provides an
interface via which users (or applications) can submit queries
to FusionDex. Each query client maintains a collection of
worker threads. Each query client is aware of the topology
and functional disposition of the members in the cluster,
knowing the locations of the nodes where query servers
modules are deployed. The membership information is ini-
tially read from a configuration file, the same configuration
used to define the FusionFS distributed file system. When
a user issues a query via a client, a particular worker
thread picks a server node from the queue, establishes
communication with the query server on that node, and sends
the query to that server. Clients are independent in that they
do not need to concern themselves with the locations of the
indexes, thus the client modules can be deployed to any node
as long as the membership information is available.

Figure 3. Protocols of Concurrent Requests on Query Client

V. EVALUATION

A. Experiment Setup
The test environment, on which we eveluate FusionDex,

is deployed on Amazon Web Services Elastic Compute



Cloud (EC2). In order to better investigate scalability and
performance under realistic scenarios we conifgured two
clusters with varying hardware and modified the number of
nodes per cluster in each experiment. The first cluster (C1)
is deployed on m3.large instances, each of which was
equipped with 2 Intel Xeon E5 vCPUs, 7.5 GB of memory,
and 32 GB SSDs. The second cluster (C2) was deployed on
m3.2xlarge instances, each of which was equipped with 8
Intel Xeon E5 vCPUs, 30 GB of memory, and 160 GB SSDs.
The evaluation process included: a performance comparison
between FusionDex, GNU grep and Hadoop grep on the
relatively lower-end cluster C1, and a more in depth analysis,
comparing FusionDex and Cloudera Search, on the higher-
end cluster C2.

In the abscene of data from a production distributed
file system we developed a test dataset derived from the
the Wikipedia dataset [15]. The test dataset was evenly
distributed across the cluster’s nodes. The evaluation process
encompassed the issuing of 1,000 queries over 160 data
chunks, each of which were 64 MB in size, all of these
on each of the multiple systems mentioned. Therefore, the
total amount of data was roughly 10 TB. Experiments were
carried out in an incremental manner with respect to the
number of nodes, the upper limit was 64 nodes.

B. Baseline Performance

To establish baseline performance of FusionDex we first
evaluated its performance on a single node.

1) Index and write throughput:: First, the raw indexing
throughput and rate of which files are written is shown
in Figure 4 for increasing data size. The write throughput
is calculated as the size of the file in MB, that can be
pushed to FusionFS, per second, with indexing enabled. The
index throughput is computed as the size of the file in MB,
that can be indexed in FusionFS, per second. The figure
illustrates that FusionDex can achive a write throughput
of approximately 100 MB/s and an index throughput of
approximately 1 MB/s irrespective of data size.

Figure 4. Indexing and write throughput on single node

2) Search latency:: The search latency is determined as
the time it takes for the server to respond to a query request
sent from a client. Figure 5 shows the search latency, with
and without caching. Intuitively, the expectation is that as the
file size increases the query latency also increases. However,
these experiments also showed that even with relatively
large data sizes of 100 MB that search latency barely
exceeds 0.3 seconds. In order to further reduce latency, we
enabled caching (this is useful in the cases when data is
not frequently updated), and found that the latency could be
significantly improved by an order of magnitude.

Figure 5. Query latency on single node

3) Query throughput:: Query throughput is calculated
as the number of concurrent clients that the server can
respond to per second. In carrying out this evaluation the
data size was kept constant, at the arbitrary value of 1
GB. The number of clients that concurrently queried the
server was increased by modifying the client configuration
files. In this evaluation the number of worker threads on
the server that handle incoming requests was also varied
incrementally Figure 6 shows that the query throughput is
poor when caching is disabled. This was expected since
the search did not cache previous requests. On the other
hand, when caching was enabled the throughput showed
substantial improvement, as the number of clients increased.

Figure 6. Query throughput on single node



C. Comparison to State-of-the-art Systems

In this section we compare FusionDex to several systems
that aim to provide search capabilities on distributed file
systems. More precisely, we aimed to explore the ability
of these systems to scale to large distributed systems: from
4 to 64 nodes. We compare FusionDex with state-of-the-
art solutions for querying distributed systems: Linux grep,
Hadoop grep, and Cloudera Search.

Linux grep searches input files line by line, identifying
matches to a given pattern list. When it finds a match in
a line, it copies the line to standard output (by default), or
returns a user-specified format as described by the given
parameters.

Hadoop grep [7] works differently from the default Linux
grep, in that it does not display the complete matching
line but only the matching string. Hadoop grep runs two
MapReduce jobs in sequence. The first job counts how many
times a matching string occurred in a given file and the
second job sorts those matching strings by their frequency
and stores the output in a single output file.

Cloudera Search relies on batch indexing documents
using MapReduce jobs. Cloudera Search uses the MapRe-
duceIndexerTool [8], a MapReduce batch job driver that
takes a configuration file and creates a set of Solr index
shards from a set of input files and writes the indexes into
HDFS in a flexible, scalable, and fault-tolerant manner. The
indexer creates an offline index on HDFS in the output
directory. Solr merges the resulting offline index into a
live running service. The MapReduceIndexerTool does not
operate on HDFS blocks as input splits, which means that
when indexing a smaller number of large files, fewer nodes
may be involved. Searches in Cloudera Search are conducted
using the Apache Solr REST interface.

1) Indexing Throughput: Figure 7 shows the indexing
throughput of FusionDex and CLoudera Search with an in-
creasing number of nodes. The figure shows that FusionDex
outperforms Cloudera Search except in a small cluster with
4 nodes. The reason for this behavior is due to FusionDex’s
indexing model, as compared to Cloudera’s indexing batch
tool. More precisely, when one file is indexed in FusionFS,
the index is locked such that other files must wait. These
locks have consequences especially when indexing a large
number of files under extremely short time frames as in
this case. Cloudera Search also implements index locking,
however, rather than lock for individual files it instead locks
once for the entire batch. Of course, this behavior also
means that indexed documents are more quickly queryable
in FusionDex than Cloudera Search. Nevertheless, as we
increase the number of nodes FusionDex performs much
better than Cloudera Search by a factor of at least 2.5.
This is due to the decentralized approach employed by
FusionDex, since the distributed indexing process amongst
multiple nodes amortizes FusionDex’s overhead. That is not

the case with Cloudera Search, and therefore its indexing
throughpt does not increase significanlty with the number
of nodes.

Figure 7. Indexing throughput on multiple nodes

2) Query Latency: Figure 8 shows the query latency of
FusionDex and Linux grep. Since Linux grep does not exploit
parallelism available in modern architectures, we focuse here
on a single node deployment. It is interesting to note, that
even under this single node deployment that FusionDex
outperforms Linux grep by several orders of magnitudes.
This is primarliy due to the multithreading strategy leveraged
by the FusionDex implementation and its ability to satisfy
the 1000 queries in parallel.

Figure 8. Query latency of Linux Grep and FusionDex

Figure 9 shows the query latency for Hadoop grep, Fu-
sionFS Search and Cloudera Search on cluster configurations
of 4, 16 and 64 nodes. The figure shows that Hadoop
grep has the worst performance of all search applications
considered. This is because Hadoop grep counts how many
times a matching string occurs and then sorts the matching
strings. Cloudera Search and FusionDex outperform Hadoop
Grep by several orders of magnitude. Cloudera Search
with and without caching performs similarly for all cluster
sizes with a difference of only 12 ms between all results.
FusionDex performs significantly better than all other search
applications, more than twice as fast as Cloudera Search for
all configurations when using caching. Again, the improved



performance of FusionDex is due to its ability to distribute
queries and perform operations in parallel.

Figure 9. Query latency on multiple nodes

VI. RELATED WORK

Indexing has been long studied in database systems [16],
significant results being obtained and efficient solutions
being developed. In such systems data is organized accord-
ing to a pre-determined model. Adapting this approach to
the context of unstructured data that is dispersed amongst
multiple nodes, suddenly becomes more challenging. In
the following paragraphs, we review different solutions and
research projects, that tackle the problem of indexing in
distributed systems.

One study follows the implementation of a B+-tree-
based indexing scheme [17], in which a structured overlay
is constructed over the nodes. The overlay is kept up to
date by local indexes in accordance with the data on each
node. Clients are able to query the overlay using an adaptive
selection algorithm. This solution is based on previous work
on distributed b-trees [18], with modifications to address the
needs of cloud computing environments.

Another study, uses the same model of building an overlay
over the nodes found in a cluster, using R-trees and a
custom routing protocol [19]. This approach leverages a
query-conscious cost model, that selects beneficial local R-
tree nodes for publishing to the overlay. This scheme was
designed to work well in power-aware cloud computing
environments (e.g., epiC [20]).

A different approach, named GLIMPSE [21], employs
partial inverted indexes that consume smaller disk space
than a full-text-inverted index. Geometric partitioning [22]
also manipulates inverted indexes by splitting it according to
updating time so to reduce the update overhead. Similarly,
query-based partitioning [23] categorizes inverted indexes
based on access and query frequency.

Recent prior work by Wu et. al. [24] have also looked
at orthogonal issues in optimizing search performance, by
reducing the network load in large-scale distributed systems
in one-to-many and many-to-one communication patterns,
commonly found in distributed search. We found that span-
ning trees are more efficient than direct one-to-many com-
munication, allowing search queries to propagate to many
distribtued indexes much faster with lower costs.

In comparison with these systems, FusionDex imple-
ments a completely distributed model across all participating
nodes. It leverages properties of the distributed file system to
optimize indexing, synchronization, and querying with the
aim to remove performance bottlenecks and removing the
single-point-of-failure.

VII. SUMMARY

The advent of Big Data has resulted in a shift in paradigms
and way of thinking about managing large quantities of
data that are produced at a high velocity. There are many
solutions and research initiatives for optomizing distributed
storage and data processing. However, in the context of
data indexing and querying in distributed systems there
remain significant challenges with respect to efficiency,
especially when unstructured data is increasingly common.
In this paper we proposed a distributed indexing scheme
for unstructured data dispersed across a distributed file
system. The proposed model, trade-offs and design decisions
were explored, focusing in particular on the importance of
eliminating a single-point-of-failure and its impact on per-
formance, scalability and utility. We presented, FusionDex,
an implementation of our approach within the FusionFS
distributed file system. Comparative analysis showed that
FusionDex performs better than state-of-the-art tools and
applications that tackle the same problem. It offers the ability
to realize high query throughput while also being able to
scale both horizontally and vertically.

ACKNOWLEDGMENT

This work was supported in part by the National Sci-
ence Foundation under award OCI-1054974 (CAREER) and
NSF-1461260 (REU).

REFERENCES

[1] (2016, Nov.) International data corporation. [On-
line]. Available: https://www.emc.com/collateral/analyst-
reports/idc-extracting-value-from-chaos-ar.pdf

[2] (2014, Sep.) Apache hadoop. [Online]. Available:
http://hadoop.apache.org/

[3] (2016, Jul.) Myria. [Online]. Available:
http://myria.cs.washington.edu

[4] D. Zhao, N. Liu, D. Kimpe, R. Ross, X.-H. Sun, and I. Raicu,
“Towards exploring data-intensive scientific applications at
extreme scales through systems and simulations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27,
no. 6, pp. 1824–1837, 2016.



[5] ——, “A convergence of key-value storage systems from
clouds to supercomputers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 6, pp. 1824–1837, 2016.

[6] (2016, Oct.) Clucene. [Online]. Available:
http://clucene.sourceforge.net

[7] (2016, Nov.) Hadoop grep. [Online]. Available:
https://wiki.apache.org/hadoop/Grep

[8] (2016, Nov.) Mapreduce index tool. [Online]. Available:
http://www.cloudera.com/documentation/archive/search/1-3-
0/Cloudera-Search-User-Guide/csug mapreduceindexertool.html

[9] I. Ijagbone and I. R. (advisor), “Scalable indexing and search-
ing on distributed file systems,” Department of Computer
Science, Illinois Institute of Technology, MS Thesis, 2016.

[10] I. Ijagbone, S. Vinayagam, D. Pisanski, K. Brandstatter,
D. Zhao, and I. Raicu, “Towards scalable searching of dis-
tributed file systems,” GCASR, 2016.

[11] (2016, Jul.) Scidb. [Online]. Available:
https://paradigm4.atlassian.net/wiki/display/ESD/SciDB+Documentation

[12] Y. Gu and R. L. Grossman, “Supporting configurable con-
gestion control in data transport services,” ACM/IEEE Con-
ference on Supercomputing, 2005.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Proceedings of IEEE
Symposium on Mass Storage Systems and Technologies, 2010.

[14] (2016, Oct.) Apache lucene. [Online]. Available:
https://lucene.apache.org

[15] (2016, Oct.) Wikipedia data download. [Online]. Available:
https://en.wikipedia.org/wiki/Wikipedia:Database download

[16] E. Bertino, B. C. Ooi, R. Sacks-Davis, K.-L. Tan, J. Zobel,
B. Shidlovsky, and D. Andronico, Indexing techniques for
advanced database systems. Kluwer Academic Publishers,
2012.

[17] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient b-
tree based indexing for cloud data processing,” Proc. VLDB
Endow., vol. 3, no. 1-2, Sep. 2010.

[18] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical
scalable distributed b-tree,” Proc. VLDB Endow., vol. 1, no. 1,
Aug 2008.

[19] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing
multi-dimensional data in a cloud system,” in Proceedings of
ACM SIGMOD International Conference on Management of
Data, 2010.

[20] Elastic Power-aware Data-intensive Cloud,
“http://www.comp.nus.edu.sg/ epic,” Accessed January
15, 2015.

[21] U. Manber and S. Wu, “Glimpse: A tool to search through
entire file systems,” in USENIX Winter Technical Conference,
1994.

[22] N. Lester, A. Moffat, and J. Zobel, “Fast on-line index
construction by geometric partitioning,” in Proceedings of
ACM International Conference on Information and Knowl-
edge Management, 2005.

[23] S. Mitra, M. Winslett, and W. W. Hsu, “Query-based parti-
tioning of documents and indexes for information lifecycle
management,” in Proceedings of ACM International Confer-
ence on Management of Data, 2008.

[24] J. Wu, S. Chafle, and I. Raicu, “Optimizing search in un-
sharded large-scale distributed systems,” IEEE/ACM Super-

Computing/SC, 2016.


