
MANY-TASK COMPUTING ON MANY-CORE ARCHITECTURES

PEDRO VALERO-LARA∗, POORNIMA NOOKALA† , FERNANDO L. PELAYO‡ , JOHAN

JANSSON § , SERAPHEIM DIMITROPOULOS¶, AND IOAN RAICU‖

Abstract. Many-Task Computing (MTC) is a common scenario for multiple parallel systems,
such as cluster, grids, cloud and supercomputers, but it is not so popular in shared memory parallel
processors. In this sense and given the spectacular growth in performance and in number of cores
integrated in many-core architectures, the study of MTC on such architectures is becoming more
and more relevant. In this paper, authors present what are those programming mechanisms to take
advantages of such massively parallel features for the particular target of MTC. Also, the hardware
features of the two dominant many-core platforms (NVIDIA’s GPUs and Intel Xeon Phi) are also
analyzed for our specific framework. Given the important differences in terms of hardware and
software in our two many-core platforms, we have considered different strategies based on CUDA
(for GPUs) and OpenMP (for Intel Xeon Phi). We carried out several test cases based on an
appropriate and widely studied problem for benchmarking as matrix multiplication. Essentially, this
study consisted of comparing the time consumed for computing in parallel several tasks one by one
(the whole computational resources are used just to compute one task at a time) with the time
consumed for computing in parallel the same set of tasks simultaneously (the whole computational
resources are used for computing the set of tasks at very same time). Finally, we compared both
software-hardware scenarios to identify the most relevant computer features in each of our many-core
architectures.

Key words. Parallel Computing, Multi-Task Computing, Many-Core, GPU, Intel Xeon Phi,
CUDA, OpenMP

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Many-Task Computing (MTC), the execution of multiple tasks
on one particular parallel platform at very same time, is historically dominated by
some parallel platforms such as clusters, grids, and supercomputers. However, the ad-
vances in hardware, in particular in many-core architectures, for MTC applications is
a relevant topic. Again, the main problem is at the software side. Programmers need
to address the challenge of analyzing and studying the different hardware features
to efficiently map the MTC applications in order to achieve the best performance on
such architectures.

The main contribution of the present work is twofold. While, on one hand the
first motivation consists of presenting those approaches and mechanisms to efficiently
exploit Multi-Task Computing applications on current many-core architectures. Sec-
ondly, but not least important, authors provide a study to clarify what are the most
amenable features of the two dominant many-core systems today, these are NVIDIA
GPUs and Intel Xeon Phi, for the specific target of MTC.

In the last years, the use of scheduler based on many-core or heterogeneous ar-
chitectures for general or for specific applications has been widely studied [48, 27]. S.
Yamagiwa et al. [48] propose a GPGPU streaming based on distributed computing
environment; S. Nakagawa et al. [27] provide a new middleware capable of out-of-order

∗Univeristy of Manchester, UK, and Basque Center for Applied Mathematics (BCAM), Bilbao,
Spain (pvalero@bcamath.org).

†Illinois Institute of Technology (IIT), Chicago, USA (pnookala@hawk.iit.edu.)
‡University of Castilla-La Mancha (UCLM), Albacete, Spain (fernandol.pelayo@uclm.es.)
§Basque Center for Applied Mathematics (BCAM), Bilbao, Spain, and KTH Royal Institute of

Technology, Stockholm, Sweden (jjansson@bcamath.org).
¶Illinois Institute of Technology (IIT), Chicago, USA (sdimitro@hawk.iit.edu.)
‖Illinois Institute of Technology (IIT), Chicago, USA (iraicu@cs.iit.edu.)

1

2 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

execution of works and data transfers using stream processing. Other works [13, 46]
follow a similar strategy based on streaming to minimize data transfers overhead. S.
Kato et al. [22] introduce TimeGraph, a GPU scheduler composed by two different
GPU scheduling policies which allow to interrupt the low priority tasks execution in
order to execute higher priority tasks within a real-time multi-tasking environments
for video applications. Similar to the previously mentioned works and considering
that the GPUs in a cluster are not usually fully utilized, Duato et al. [10] present
their rCUDA, a middleware that enables CUDA remoting over a commodity network
by allowing to use CUDA-compatible GPUs installed in a remote computer, as, they
were installed in the computer where the application is being executed. Also, V. J.
Jiménez et al. [20] present a sort of predictive runtime scheduling which supports
several scheduling algorithms in order to choose the appropriate platform (Multicore,
GPU, . . .) in which the algorithm would be better executed, resulting in almost fully
usage of CPU/GPU-like systems, with a peak time reduction of 40% with respect
to only using the GPU. Basically most the aforementioned works take advantage of
overlapping memory transfers among CPU and GPU memories with single kernel
executions.

With the aim of exploiting MTC on many-core, other authors [26, 24] have stud-
ied the efficiency of this new feature. Merged task, maybe the first MTC approach
on GPUs, allows us to run several independent kernels over the same GPU simulta-
neously. It was presented by M. Guevara et al. [15] and P. Valero-Lara et al. [40].
Posteriorly, C. Gregg et al. [14] and K. Zhang et al. [49] included a scheduler which can
select the best matching among tasks before running. Additionally, P. Valero-Lara et
al. [41] applied this strategy to different GPU architectures to obtain the most con-
venient architectural features for running concurrent kernels. After that, in [42], it is
proposed a new heterogeneous (CPU-GPU) scheduler in which groups of independent
blocks of tasks were efficiently managed to fully use CPU-GPU and reduce the over-
head of memory transfers. More recently, S. Krieder et al. [25] presented GeMTC, a
CUDA based framework which allows MTC workloads to run efficiently on NVIDIA’s
GPUs. Posteriorly P. Nookala et al. [28] adapted this framework (GeMTC) to effi-
ciently use the particular features of Intel Xeon Phi and evaluate MTC applications
on Intel accelerators. In fact, we can now find some applications which takes advan-
tage of MTC on hardware accelerators. One of these applications was presented by
P. Valero-Lara et al. [43, 44], in which multiples tridiagonal problems are efficiently
executed on the same NVIDIA’s GPU simultaneously. Other examples consist of com-
puting several relatively small Linear Algebra problems [16, 17, 18], multiple range
queries in metric spaces [1, 2] or multiple string matching [23].

This work is structured as follows: Section 2 introduces the main features of
many-core architectures considered (NVIDIA GPUs and Intel Xeon Phi), then in
Section 3, authors briefly outline the different mechanisms for MTC on both many-
core architectures. After that, both platforms and the MTC mechanisms are deeply
analyzed and studied. Finally, Section 5 concludes summarizing the most relevant
results.

2. Many-Core Architectures. Today, the increase in performance for single-
threaded processor has come to an end due to the limitation of the current Very
Large Scale Integration (VLSI) technology. In response, most hardware companies
are designing and developing new parallel architectures [12]. Programs will only
increase in performance if they use and exploit the new parallel characteristics of new
architectures. On the other hand, multicore designs are also encountering scaling

Many-Task Computing on Many-Core Architectures 3

problems, notably the “Dark Silicon” phenomenon [11]. Power and cooling concerns
suggest the number of dynamically active transistors on a single die may be greatly
constrained in the near future. In other words, even if the number of transistors
per chip continues to follow Moore’s law, we will not be able to use all of them
simultaneously. This problem may lead to scenarios in which only a small percentage
of the chip’s transistors can be “on” at a time [34]. Given the limitations of current
CMOS technology and the excessive power consumption reached by current platforms,
it is necessary a renewal of hardware design.

In this context, many-core architectures may be an answer to these challenges.
These new massively parallel platforms offer a high ratio performance/cost and an
efficient power consumption design [39, 38, 37]. They are also widely used on high per-
formance computing, including systems ranging from cluster of personal computers,
to large scale supercomputers.

Most processors for high-performance computing (HPC) are still multi-core. How-
ever, as we can see in Top 500 list [36], many of the most powerful supercomputers
today are based on platforms that combine multicore processors with data paral-
lel accelerators. The fastest system, which is currenlty the Tianhe-2 supercomputer
from China, uses Intel’s Xeon Phi coprocessors and its runnerup, which is the Titan
supercomputer from the Oak Ridge National Laboratory, uses NVIDIA GPUs.

2.1. Graphic Processing Units (GPUs). GPUs are traditionally used for
interactive applications, and are designed to achieve high rasterization performance
however, their characteristics have allowed the opportunity to other more general
applications to be accelerated in GPU-based platforms. This trend is now called
General Purpose Computing on GPU (GPGPU) [31], or what is the same, the usage
of GPUs for applications for which they were not originally designed. These general
applications must have parallel characteristics and an intense computational load to
obtain a good performance.

The main feature of these devices is a large number of processing elements inte-
grated into a single chip at the expense of a significant reduction in cache memory.
These processing elements are arranged on memory cards that have a local high-
speed external DRAM and are connected to the computer through a high-speed I/O
interface (PCI Express).

Figure 2.1 shows an abstract block diagram of NVIDIA’s (Kepler) GPU [45]. The
GPU is organized into several multiprocessors, which in turn are composed of various
simple processors (cores) that operates in SIMD fashion. The multiprocessors have
fine grain multithreading capabilities, which means that they support hundreds of
threads in-fly. Every multiprocessor switches to a different set of threads every clock
cycle, which helps to maximize computational resources and hide the long latency
memory accesses to a share GPU main memory.

The GPU main memory, usually called “global memory”, is banked, which allows
the hardware to coalesce several simultaneous memory accesses to adjacent positions
into a single memory transaction. In addition, each multiprocessor contains a large
set of registers and an on-chip SRAM scratchpad memory, i.e., a software controlled
cache, to speed up data access. In more recent GPUs (starting from NVIDIA’s Fermi
architecture) the SRAM can be configured either as scratchpad or as cache memory
and the user decide, with certain restrictions, the size of both memories. These newer
GPUs also incorporate a L2 cache common to all multiprocessors. The access to the
global memory can also be performed through special read-only two level hierarchy
of so called texture caches, that are optimized to capture 2D access patterns [47].

4 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

Warp Scheduler Warp Scheduler

Core Core Core DP
Unit

DP
Unit

Core Core Core DP
Unit

DP
Unit

...
... ...

...

... ...

Register File (65,536 x 32 bit)

48KB Read−Only Data Cache

64KB Shared Memory / L1 Cache

Multiprocessor ...
GPU

L2 Cache

...

Global Memory

Memory Controller Memory Controller

Figure 2.1. NVIDIA GPU (Kepler) architecture [45].

2.2. Intel Xeon Phi. GPUs have a very restrictive programming model, but
provide at least an order of magnitude better throughput for applications painstak-
ingly coded to that model. To program GPUs, typically there is a need to learn
another programming language such as CUDA (NVIDIA) or OpenCL (AMD). As a
result, existing vendors must spend extra time and effort to modify or rewrite parts
of their codebase to take advantage of the new capabilities provided by General Pur-
pose GPUs (GPGPUs). Besides that, barely rewriting an application just to offload
computations to a GPU rarely works well. Because of the architecture of most GPUs
out there, applications must be tailored from the ground up to follow the rules of the
restrictive programming model of GPUs, otherwise they may suffer from severe per-
formance penalties. Because of that, interested vendors cannot afford to go through
the effort involved. Finally, while GPUs are great for massively parallel applications
with thread- switching that comes almost at no cost, their performance can take a
large hit when executing programs with complex logic (like complicated branching
and looping for example). Therefore they may be unsuitable for certain applications

Many-Task Computing on Many-Core Architectures 5

of MTC. The Intel Xeon Phi is a new family of processors based on the Intel MIC
Architecture [19] that incorporates earlier work on the Larrabee architecture [33]. It
follows an alternative programming model that, although may not provide the same
level of parallelism, provides more flexibility and therefore can be more suitable for
certain application of MTC that GPUs are not suited for. The reason is that the
Xeon Phi has x86 cores that are more capable (can handle complex branching and
looping) than most GPU cores. Another advantage of having x86 cores is that pro-
gramming the coprocessor minimizes the amount of work that needs to be done in
order to integrate a Xeon Phi to an existing system. That is because the Phi does
not require being programmed in any specific framework and it can natively run ap-
plications written in C with Pthreads or OpenMP. All of the above facts were enough
to motivate us to work on this project. We have used the 22nm Knights Corner chip
graphically described in Figures 2.2 and 2.3, which was the first commercial product
from this family.

4 Threads
In−Order

uCode

Pipe 0 Pipe 1

VPU RF X87 RF

X87VPU
512b SIMD

ALU0 ALU1

L2 C
on

tr
ol

le
r

512KB
L2 Cache

T0
T1
T2
T3

32KB Code
Chache

L1 TLB

Decode

Scalar RF

L1 TLB 32KB
Data Cache

TLB Miss
Handler

L2 TLB

TLB Miss
T

LB
 M

is
s

Core
Code Miss

Data Miss

Figure 2.2. Architecture of a single Intel Xeon Phi Core [19].

The Corner is a PCIe vector co-processor with integrates up to 61 in-order dual is-
sue x86 cores, which trace some history to the original Pentium core, like the Larrabee
predecessor. Among other enhancements, the Corner’s cores are augmented with
64-bit support, 4 hardware threads per core (resulting in more than 200 hardware
threads available on a single device) and 512-bit SIMD instructions [19]. Each core
has a 512KB L2 cache locally but has also access to all other L2 caches in the system
through a high-speed bidirectional ring [19]. Unlike previous GPUs, the L2 cache is
kept fully coherent by a global-distributed tag directory.

The performance achieved by Knight Corner chips is usually outperformed by

6 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

G
D

D
R

C
on

tr
ol

le
r

M
er

m
or

y

G
D

D
R

C
on

tr
ol

le
r

M
er

m
or

y

Vector
Core

Vector
Core

Vector
Core

Vector
Core

...

V
ector

C
ore

V
ector

C
ore

V
ector

C
ore

V
ector

C
ore

G
D

D
R

C
ontroller

M
erm

ory
G

D
D

R

C
ontroller

M
erm

ory

Interprocessor Network

Interprocessor Network

...

...

...

PCIe
Client
Logic

F
ix

ed
 F

un
ct

io
n

Lo
gi

c

...

Figure 2.3. Micro-architecture of the Entire MIC coprocessor [19].

NVIDIA’s counterparts [30]. However, last year Intel announced the Knight Landing
processor [35] that should significantly improve MIC performance.

3. Multi-Task Computing (MTC). Although, the dominant choice to com-
pute MTC problems continues being distributed memory architectures, the impressive
growth in performance of current parallel shared memory architectures makes pos-
sible to compute a considerable high number of independent tasks over this kind of
computational platforms.

���
���
���

���
���
���

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

��
��
��

��
��
��

����
����
����
����

����
����
����
��������
����
����
����
����

����
����
����
����
����

Size of MC resources

Alloc−Init MC Mem

CPU Mem−>MC Mem

Idle MC resources

MC Mem−>CPU Mem

Task 2

Task 1

Figure 3.1. Basic scheme for MTC on Many-Core (MC) architectures. Allocation and Ini-
tialization of MC memory (Alloc-Init MC Mem). Data transfer (input) from CPU memory to MC
memory (CPU Mem → MC mem). MC executions (Task 1 and Task 2). Idle cores in MC (Idle
MC resources). Data transfer (output) from MC memory to CPU mem (MC Mem → CPU Mem).

Many-Task Computing on Many-Core Architectures 7

In this regard, this section introduces some of the most extended and known ap-
proaches for computing MTC over many-core architectures (NVIDIA GPUs and Intel
Xeon Phi). Essentially, each of these approaches share the same major steps (Fig-
ure 3.1). These consist of performing memory transfers (communication) sequentially,
then the set of independent tasks are executed on many-core platform.

3.1. MTC on GPU. This subsection introduces 3 different approaches for MTC
running on NVIDIA’s GPUs. To clarify, we include some pseudocodes which can help
us to understand the differences among them and the particular features (advantages
and disadvantages) of every of them.

Merged Task is one of the strategies to compute MTC on GPUs. Several au-
thors [15, 40, 14, 41] proposed this strategy to fully utilize the GPU by running
multiple tasks (kernels) simultaneously on the same GPU. Basically, all of them in-
clude a single pass compiler which is able to create the merged task source code by
renaming the variables, by adding the if-else control flow, and by adding indexing in
the independent task that is executed by blocks that are offset from blockId. The
set of tasks are mapped either on one or on a set of blocks of threads. In this case,
the number of threads launched must be equal than the sum of all threads required
by all tasks. Also, all parameters must be included in the same call. We would like
to point out that this strategy can be carried out on all CUDA GPUs architectures.
Algorithm 1 illustrates a simple scheme of this strategy.

Algorithm 1 Merged Task.

MergedTaskCPU

1: CPUMemAllocate(ACPU ,BCPU ,CCPU ,DCPU)
2: GPUMemAllocate(AGPU ,BGPU ,CGPU ,DGPU)
3: CPU->GPUMemTransfer(ACPU ,AGPU)
4: CPU->GPUMemTransfer(CCPU ,CGPU)
5: CPU->GPUMemTransfer(DCPU ,DGPU)
6: MergedTask<THREADS1+THREADS2> (AGPU ,BGPU ,CGPU ,DGPU)
7: GPU->CPUMemTransfer(BGPU ,BCPU)
8: GPU->CPUMemTransfer(DGPU ,DCPU)

MergedTaskGPU(A,B,C,D)

9: i = index of thread
10: j = index of block
11: if j = 0 then ⊲ kernel1
12: B[i] = A[i] + 100
13: else if j = 1 then ⊲ kernel2
14: D[i] = C[i] × D[i]
15: end if

NVIDIA proposed a new approach [6, 42] called Concurrent Kernels which
allows to execute a set of independent tasks (kernels) on the same GPU by means
of streams. It only can be used over FERMI architecture forward. Using different
streams for CUDA kernels makes the concurrent execution being possible. Therefore
n kernels on n streams could theoretically run concurrently if they are fitted into the
hardware. This approach allows to execute up to 16 different kernels at the very same
time. A scheme of this approach is shown in Algorithm 2, where two kernels are used
in such way.

Recently, NVIDIA has introduced a new feature compatible for the KEPLER

8 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

Algorithm 2 Concurrent kernels.
ConcurrentKernelsCPU

1: CUDAStream Stream[2]
2: CPUMemAllocate(ACPU ,BCPU ,CCPU ,DCPU)
3: CPU->GPUMemTransfer(ACPU ,AGPU)
4: CPU->GPUMemTransfer(CCPU ,CGPU)
5: CPU->GPUMemTransfer(DCPU ,DGPU)
6: for i = 1 → 2 do
7: StreamCreate(Stream[i])
8: end for
9: Kernel1<THREADS1>(AGPU ,BGPU ,Stream[1])

10: Kernel2<THREADS2>(CGPU ,DGPU ,Stream[2])
11: for i = 1 → 2 do
12: StreamDestroy(Stream[i])
13: end for
14: GPU->CPUMemTransfer(BGPU ,BCPU)
15: GPU->CPUMemTransfer(DGPU ,DCPU)

CUDA architecture (Dynamic Parallelism [7]) which allows to manage multiple
tasks inside GPU. It is supported via an extension of the CUDA programming model
that enables a CUDA kernel to create and to synchronize new nested work. CUDA
kernel can consume the output from the other kernels (childs) without CPU involve-
ment. It requires at least two-level task running (parent-child).

Algorithm 3 Dynamic parallelism.

DynamicParallelismCPU

1: CPUMemAllocate(ACPU ,BCPU ,CCPU ,DCPU)
2: GPUMemAllocate(AGPU ,BGPU ,CGPU ,DGPU)
3: CPU->GPUMemTransfer(ACPU ,AGPU)
4: CPU->GPUMemTransfer(CCPU ,CGPU)
5: CPU->GPUMemTransfer(DCPU ,DGPU)
6: DynamicParallelismKernel<1> (AGPU ,BGPU ,CGPU ,DGPU)
7: GPU->CPUMemTransfer(BGPU ,BCPU)
8: GPU->CPUMemTransfer(DGPU ,DCPU)

DynamicParallelismKernel(A,B,C,D)

9: Kernel1<THREADS1>(AGPU ,BGPU)
10: Kernel2<THREADS2>(CGPU ,DGPU)
11: SyncronizeThreads

3.2. MTC on Intel Xeon Phi. Due to the foundations of Intel architecture,
the coprocessor can be programmed in several different ways [32]. Here we introduce
two different approaches, one using OpenMP and one using SCIF (Intel’s Symmetric
Communication Interface). OpenMP implementation uses offloading approach for of-
floading computations from host to the accelerator. The SCIF implementation runs
natively on the accelerator and accepts jobs from Clients running on the host. There
are several advantages and disadvantages between the two methods. The major ad-
vantage of native execution coupled with SCIF over offloading is that the developer
gets more control overall in the configuration and the architecture of their design in

Many-Task Computing on Many-Core Architectures 9

order to maximize performance. Computation does not necessarily have to be trans-
ferred back to the CPU. In addition, different MIC cards can communicate directly
with each other basically making certain designs more efficient. Finally, frameworks
that use offloading mode (OpenMP), do not necessarily take advantage of the DMA-
features of the hardware they run on while on SCIF you are guaranteed that if you
are using Remote Memory Access (RMA). That is not to say that OpenMP does not
come with any advantages over SCIF. Quite the opposite, the advantages of offloading
are pretty significant for the framework that was implemented for this project. The
low-level C code needed for the SCIF implementation is relatively a lot more complex
when compared with pragma directives provided by OpenMP. In addition, using SCIF
implies that the framework must have at least one of its parts running natively on the
Phi as the endpoint. In order to do that the developer needs to set up an application
to run natively on the Phi and involves a lot of configuration. Using OpenMP with
the offloading capabilities provided by the MIC, all this configuration is taken care of.

OpenMP version (Figure 3.2) uses asynchronous offloading capabilities. We have
employed a Producer-Consumer architecture which communicates using shared mem-
ory for IPC (InterProcess Communication). The Consumer side hosts the framework
which runs as a single thread and launches as many master processes on the Xeon Phi
as specified by the user [29]. The master processes use the shared memory space as a
queue structure, continuously accepting new tasks from producer processes. Likewise,
the producer acts as a client process which submits tasks to the queue via this shared
memory pool. For testing this framework, we have implemented two different types of
applications: Sleep and Matrix Multiplication. Both were developed and tested using
the OpenMP approach of offloading tasks on to Xeon Phi. The master processes in
our framework read the tasks from shared memory location and based on the type of
task, offload the computation part to Xeon Phi. Asynchronous offloading is used to
allow the framework to continue accepting tasks while other tasks are running. The
Phi sends a signal back to the master processes after job execution has completed.
At this point the output is sent back to the Client.

Figure 3.2. OpenMP-Phi diagram.

SCIF implementation employs a Client Server architecture [5] where clients send
their tasks to the Phi from the host and the server, which runs natively on the Phi,
accepts the jobs. After submitting the job, the clients can request the result and
the server will deliver it to them when the task has finished processing and is placed
on the results queue of the framework. The whole procedure is non-blocking for the

10 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

server who can handle multiple requests and submissions at the same time. That
functionality is implemented with epoll() [3] for handling connections that are later
passed to threads [25, 21] that push or dequeue tasks from the queues. The SCIF
socket-like API is used for communications between the server and the clients. It
comes as a shared library named *libmtcq [9]. This library includes all the functional-
ity that handles incoming and outgoing queues of tasks, pushing jobs and distributing
tasks to workers. It is also completely parametrizable in terms of queue sizes, worker
threads, and application threads. Since the Xeon Phi does not have the hierarchical
architecture of SMXs and Warps nor the concept of application kernels that you gen-
erally see in GPGPUs, everything is implemented with standard Pthreads. There is
a parametrizable number of master threads that dequeues tasks from the incoming
queue. If the task is a parallel application, which is the case most of the time, then the
master thread will assign the task to the specified number of worker threads. Else if
it is sequential only one thread will be assigned and the master thread will go back to
dequeue more jobs. Each queue is implemented as a finite buffer from the Producer-
Consumer model which means that it uses a single mutex and two semaphores to
ensure that no deadlocks or data-races arise.

4. Performance Evaluation. This section presents a performance study to test
and obtain what are the most relevant programming and hardware features for MTC.
Each of the programming approaches and many-core architectures are analysed in
deep.

4.1. NVIDIA GPUs. Taking into account that most many-core accelerators,
especially GPUs, reach their optimum performance over problems having a high level
of data parallelism together with a fine granularity, we have planned a set of tests
over one suitable problem (in the previous sense) as matrices multiplication. The
implementation used is an optimization of SGEMM method on GPU presented in [4]
which incorporates several optimizations for NVIDA’s GPUs, such as coalescing mem-
ory accesses and shared memory exploitation. Besides, we have considered the best
choice concern with the size of threads blocks.

Four different test cases have been carried out which consist of computing 2,
4, 8 and 16 tasks (maximum number of tasks for FERMI architecture) in parallel
on the same GPU. The size of matrices is increased in order to show the impact
on performance by increasing memory requirements. Results are shown in terms of
speedup (Figures 4.1 and 4.2), which is the ratio between the execution time when
running (one by one) several tasks (matrix multiplication), and, the execution time
when computing all multiplications (MTC approach) on the same GPU in parallel
according to each approach, Dynamic, Concurrent and Merged. Due to the memory
capacity of TESLA and FERMI, some tests carried out in the first graph could not
be included in the rest.

We have considered three different NVIDIA GPU architectures which we have re-
called as TESLA (GT 200), FERMI (GF 100) and KEPLER (GK 110). Although, all
of them share the major components, we can find important differences (Table 4.1).
As we see later, these differences have important consequences in performance. Each
of the CUDA-compatible MTC approaches (subsection 3.1) have been tested on our
three GPU architectures, when it is possible. The study carried out in this subsection
is an extension of the work previously presented in [40]. We include additional results
using new MTC approaches on new GPU architectures. We evaluate the Merged and
Concurrent approaches on our FERMI, as the Dynamic one is not compatible with
this architecture. Otherwise, we can analyze all approaches on KEPLER GPU, as it

Many-Task Computing on Many-Core Architectures 11

Table 4.1

GTX 285, GTX 480 and K 20c hardware.

GTX 285 GTX 480 K 20c

Code Name GT 200(TESLA) GF 100(FERMI) GK 110 (KEPLER)
Multiprocess. (MP) 30 15 13

Cores/MP 8 32 192
Cores 240 480 2496

Core Clock 648 Mhz 1401 Mhz 706 Mhz
Mem. Clock 1242 Mhz 1848 Mhz 2600 Mhz

Mem. Capacity 1 GB 1.5 GB 5 GB
On-chip Mem.
SM (per MP) - 16/48 KB 16/48 KB
L1 (per MP) - 48/16 KB 48/16 KB
L2 (unified) - 768 KB 768 KB
Mem. Bus 512 bits 384 bits 320 bits
Bandwidth 159 GB/s 177.4 GB/s 208 GB/s

Gigaflops (SP) 708 1344.96 4577

is one of the newest NVIDIA GPUs. However, our TESLA GPU is only compatible
with the Merged approach, as it is oldest architecture included in our study.

From the results obtained (Figures 4.1 and 4.2), we highlight several conclusions
comparing each of the MTC approaches over each of the architectures. On FERMI
both approaches, Merged and Concurrent, achieve a similar result, being faster the
Concurrent one. Although the Dynamic scheduler is an easy to implement approach
from programmer point of view, it does not show any benefit on KEPLER. In con-
trast, a better scalability is reached by using the other two approaches. The Merged
approach presents a good scaling for small matrix sizes, however, it turns to be in-
efficient for bigger sizes. Otherwise, the best scaling is obtained by the Concurrent
approach, even for medium matrix sizes.

Both approaches, Merged and Concurrent, share a similar trend on each of the
architectures. First, we focus on the impact of matrix size in performance. In this
regard, the best performance is reached in the first tests (small matrices). Obviously,
the performance achieved on the first tests is degraded by increasing matrix what
implies to increase also the number of threads per CUDA block. As consequence, the
GPU resources (multiprocessors) are saturated so that a higher degree of parallelism
can not be efficiently exploited. Second, we focus on analysing the trend in perfor-
mance by increasing the number of tasks. Unlike the results achieved by increasing
the matrix size, in which we appreciate an important fall in performance, we see the
opposite scenario, that is the performance achieved is higher by increasing the number
of tasks, at least for small matrix sizes.

Although all architectures are similar and share the major components, the most
relevant variance among them is found in the number of multiprocessors (Table 4.1).
While KEPLER is composed by 13 multiprocessors, TESLA is composed by 30. Given
these results, we can assume that this factor has a great influence in performance.
Although the number of cores in KEPLER is more than 10× than in TESLA, it is
remarkable, that the speedup reached by TESLA is up to almost 2× bigger than the
speedup obtained by KEPLER. In this regard, the number of cores is not as relevant

12 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000 3500 4000

S
pe

ed
up

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500 3000 3500 4000

S
pe

ed
up

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500 3000 3500 4000

S
pe

ed
up

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000 2500 3000 3500 4000

S
pe

ed
up

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

Figure 4.1. Performance (speedup) achieved by the Merged approach on TESLA and FERMI
architectures and Concurrent approach on FERMI architecture.

as the number of multiprocessors, at least in a MTC framework, since every core into
one multiprocessor shares the same control component. As consequence, a greater
number of small multiprocessors (TESLA) allows us to reach a better performance
than a lower number of big multiprocessors (FERMI and KEPLER).

4.2. Intel Xeon Phi. All of our experiments were ran on the MidWay High-
Performance Computing Cluster at University of Chicago. Our testing host is an Intel
SandyBridge with 16 cores at 2.6 Ghz and 32 GB of RAM. It has 2 Xeon Phis attached
to it (Table 4.2). In this subsection, we focused on analyzing the Matrix Multiplication
tasks by using the OpenMP approach (Figure 3.2), as the SCIF implementation is
under development and work is being carried out to run some experiments using Sleep
and Matrix Multiplication tasks to measure the performance of the framework.

In order to assess the real-world performance of the Xeon Phi [8], we developed a
matrix multiplication application to show how well it performed for various task sizes
and levels of concurrency. It should be noted that the work performed is exponentially
greater than the matrix size, since a naive matrix multiplication algorithm of O(n3)
was used.

We used the same speedup used previously for the GPUs analysis, time consumed
computing a set of tasks one by one over the time consumed by computing the same
set of tasks in parallel at very same time. In particular for our MTC approach and
ensuring full utilization of Xeon Phi, we use blocks of 60 tasks. Each of the tasks
is mapped on one Phi-core in which we use 4 hardware-threads, 60 × 4 = 240 total
threads). When one task completes, we send another until 600 tasks are computed.
Speedup was calculated by varying the matrix sizes, number of threads and also by

Many-Task Computing on Many-Core Architectures 13

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Matrices Size

S
pe

ed
up

Concurrent

Batched

Dynamic

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

Matrices Size

S
pe

ed
up

Concurrent

Batched

Dynamic

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

Matrices Size

S
pe

ed
up

Concurrent

Batched

Dynamic

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

Matrices Size

S
pe

ed
up

Concurrent

Batched

Dynamic

Figure 4.2. Performance (speedup) achieved by each of the approaches (Merged, Concurrent
and Dynamic) over KEPLER GPU architecture.

varying the level of concurrency of tasks. It was observed that higher performance is
achieved with very granular tasks, but the gain reduces as problem scales up to higher
matrix sizes. This clearly shows that overhead of data transfer from CPU to MIC
is high, which can be mitigated by employing techniques such as allocation a block
of memory during the initialization of the framework and reusing the memory blocks
for data transfer. Also, performance of sleep jobs was analyzed to assess the ideal
performance of Xeon Phi with very short length tasks. It was observed that efficiency
in higher 90s could be achieved with tasks lasting as short as 640 microseconds.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

S
pe

ed
up

Matrices Size

OpenMP-Phi

Figure 4.3. Performance (speedup) achieved by each Intel Xeon Phi by using the OpenMP
approach.

14 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

Table 4.2

Intel Xeon Phi hardware.

Intel Xeon Phi

Code Name 5110P (PHI)
Cores 60

Core Clock 1053 Mhz
Mem. Capacity 8 GB
On-chip Mem.
L1 (per core) 32 KB
L2 (per core) 256 KB
L2 (coherent) 30 MB
Bandwidth 320 GB/s

Gigaflops (DP) 2022

5. Conclusions. At the beginning of this work, we described a set of approaches
for dealing with MTC over two different many-core architectures, NVIDIA’s GPU and
Intel Xeon Phi. Also, the main features of both hardware-accelerators were briefly in-
troduced. After that, we analyzed each of the software-hardware approaches individu-
ally. In particular, for NVIDIA’s GPUs three programming approaches, Merged, Con-
current and Dynamic, were tested on three GPU architectures re-called as TESLA,
FERMI and KEPLER. Merged and Concurrent approaches shown the highest scal-
ing. The overall performance suffers a dramatic fall in performance by increasing the
memory requirements and the number of threads, reaching only a good performance
over those scenarios with a small demand of memory. Regarding GPUs architecture,
we proven that the number of multiprocessor is more relevant that the number of cores
to reach a good scaling, at least for our target problem. In this regard, the TESLA ar-
chitecture (30 multiprocessor and 240 cores) shown a better performance against the
KEPLER architecture (13 multiprocessor and 2496 cores). Unlike NVIDIA’s GPUs,
Intel Xeon Phi turned to be a more appropriate many-core architecture for MTC using
an OpenMP approach. We obtain a similar trend than obtained in GPUs, the peak
performance is reached on very granular tasks, the gain reduces as problem scales
up to higher matrix sizes. However, the fall in performance is not so dramatic as in
GPUs, and the number of tasks to be efficiently executed is considerable higher than
GPUs. Also the peak in performance is much higher, 24 against 9.

Acknowledgments. This research has been supported by EU-FET grant EU-
NISON 308874, the Basque Excellence Research Center (BERC 2014-2017) program
by the Basque Government, the Spanish Ministry of Economy and Competitiveness
MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323 and the Project of
the Spanish Ministry of Economy and Competitiveness with reference MTM2013-
40824.We also thank the support of the computing facilities of Extremadura Research
Centre for Advanced Technologies (CETA-CIEMAT) and NVIDIA GPU Research
Center program for the provided resources.

REFERENCES

[1] Ricardo J Barrientos, José I Gómez, Christian Tenllado, Manuel Prieto Matias, and

Mauricio Marin, knn query processing in metric spaces using gpus, in Euro-Par 2011
Parallel Processing, Springer Berlin Heidelberg, 2011, pp. 380–392.

Many-Task Computing on Many-Core Architectures 15

[2] Ricardo J. Barrientos, José I. Gómez, Christian Tenllado, Manuel Prieto Matias,

and Pavel Zezula, Euro-Par 2013 Parallel Processing: 19th International Conference,
Aachen, Germany, August 26-30, 2013. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013, ch. Multi-level Clustering on Metric Spaces Using a Multi-GPU Platform,
pp. 216–228.

[3] O’Hallaron Bryant, Using blocking to increase temporal locality,
http://csapp.cs.cmu.edu/2e/waside/wasideblocking.pdf, (2013).

[4] S. Chien, Hand-tuned sgemm on gt200 gpu, Technical Report, Tsing Hua university, R.O.C.
(Taiwan), (2010).

[5] Intel Corp., Intel many integrated core symmetric communications interface (scif) user guide,
(2012).

[6] NVIDIA Corp., Nvidia cuda compute unified device architecture-programming guide, version
5, (2012).

[7] Nvidia Corp., Dynamic parallelism in cuda - nvidia technical report, (2013).
[8] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey, Openmp programming on intel xeon phi

coprocessors: An early performance comparison, in Proceedings of the Many-core Applica-
tions Research Community (MARC) Symposium at RWTH Aachen University, November
2012, pp. 38–44.

[9] Serapheim Dimitropoulos, Gemtc-scif source code repository,
https://github.com/sdimitro/scif-modules/tree/ master/scif-sc.

[10] J. Duato, J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti, Performance of cuda
virtualized remote gpus in high performance cluster, the 40st International Conference on
Parallel Processing (ICPP), (2011), pp. 365–374.

[11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and

Doug Burger, Dark silicon and the end of multicore scaling, in Proceedings of the 38th
Annual International Symposium on Computer Architecture, ISCA ’11, New York, NY,
USA, 2011, ACM, pp. 365–376.

[12] David Geer, Industry trends: Chip makers turn to multicore processors, Computer, 38 (2005),
pp. 11–13.

[13] J. Gómez-Luna, J.M. González-Linares, J. I. Benavides, and N. Guil, Performance models
for cuda streams on nvidia geforce series, J. Parallel Distrib. Comput., 72 (2012), pp. 1117–
1126.

[14] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, Fine-grained resource sharing for
concurrent gpgpu kernels, In Proceedings of the 4th USENIX Workshop on Hot Topics in
Parallelism (HotPar), (2012).

[15] M. A. Guevera, C. Gregg, K. Hazelwood, and K. Skadron, Enabling task parallelism in
the cuda scheduler, In Proceedings of the Workshop on Programming Models for Emerging
Architectures (PMEA), in conjunction with the ACM/IEEE/IFIP International Conference
on Parallel Architectures and Compilation Techniques (PACT), (2009).

[16] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra,
Batched matrix computations on hardware accelerators based on gpus, IJHPCA, 29 (2015),
pp. 193–208.

[17] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack J. Don-

garra, Optimization for performance and energy for batched matrix computations on
gpus, in Proceedings of the 8th Workshop on General Purpose Processing using GPUs,
GPGPU@PPoPP 2015, San Francisco, CA, USA, February 7, 2015, 2015, pp. 59–69.

[18] , Towards batched linear solvers on accelerated hardware platforms, in Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015, 2015, pp. 261–262.

[19] James Jeffers and James Reinders, Intel Xeon Phi Coprocessor High Performance Pro-
gramming, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st ed., 2013.

[20] V. J. Jiménez, LL. Vilanova, I. Gelado, G. Fursin M. Gil, and N. Navarro, Predictive
runtime code scheduling for heterogeneous architectures, the 4th International Conference
on High Performance Embedded Architectures and Compilers (HiPEAC), (2009), pp. 19–
33.

[21] Jeffrey Johnson, Scott J Krieder, Benjamin Grimmer, Justin M Wozniak, Michael

Wilde, and Ioan Raicu, Understanding the costs of many-task computing workloads
on intel xeon phi coprocessors, 2nd Greater Chicago Area System Research Workshop
(GCASR), (2013).

[22] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, Timegraph: Gpu scheduling
for real-time multi-tasking environments, In Proceedings of the 2011 USENIX Annual
Technical Conference (USENIX ATC’11), (2011).

16 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

[23] Charalampos S. Kouzinopoulos, Panagiotis D. Michailidis, and Konstantinos G. Mar-

garitis, Multiple string matching on a GPU using cudas, Scalable Computing: Practice
and Experience, 16 (2015).

[24] J. Kreutz, Dgemm-tiled matrix multiplication with cuda, Jülich Forchungszentrum, (2013).
[25] Scott J. Krieder, Justin M. Wozniak, Timothy Armstrong, Michael Wilde, Daniel S.

Katz, Benjamin Grimmer, Ian T. Foster, and Ioan Raicu, Design and evaluation of
the gemtc framework for gpu-enabled many-task computing, in Proceedings of the 23rd In-
ternational Symposium on High-performance Parallel and Distributed Computing, HPDC
’14, New York, NY, USA, 2014, ACM, pp. 153–164.

[26] J. Lima, T. Gautier, N. Maillard, and V. Danjean, Exploiting concurrent gpu operations
for efficient work stealing on multi-gpus, 24rd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), (2012), pp. 75–82.

[27] S. Nakagawa, F. Ino, and K. Hagihara, A middleware for efficient stream processing in
cuda, Computer Science - Research and Development, 16 (2010), pp. 197–204.

[28] Poornima Nookala, Serapheim Dimitropoulos, Karl Stough, and Ioan Raicu, Evaluat-
ing the support of mtc applications on intel xeon phi many-core accelerators, in Interna-
tional Conference on Cluster Computing, CLUSTER ’15, 2015.

[29] Poornima Nookala and Karl Stough, Gemtc-openmp source code repository,
https://github.com/pnookala/ mic openmp gemtc.

[30] nVidia Corp., Just the facts, Nvidia. Retrieved, (2013).
[31] GPGPU. General purpose computation using graphics hardware, http://www.gpgpu.org.
[32] Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and MatthiasS.

MÃ 1

4
ller, Assessing the performance of openmp programs on the intel xeon phi, in Euro-

Par 2013 Parallel Processing, Felix Wolf, Bernd Mohr, and Dieter an Mey, eds., vol. 8097
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 547–558.

[33] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep

Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Es-

pasa, Ed Grochowski, Toni Juan, and Pat Hanrahan, Larrabee: A many-core x86
architecture for visual computing, in ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08,
New York, NY, USA, 2008, ACM, pp. 18:1–18:15.

[34] M. Själander, M. Martonosi, and S. Kaxiras, Power-Efficient Computer Architectures:
Recent Advances, Synthesis Lectures on Computer Architecture, Morgan and Claypool
Publishers, Dec. 2014.

[35] Ryan Smith, Intel’s knights landing xeon phi coprocessor detailed, June 2014.
[36] TOP500.org, TOP500 List June 2015.
[37] Pedro Valero, José L. Sánchez, Diego Cazorla, and Enrique Arias, A gpu-based imple-

mentation of the mrf algorithm in itk package, The Journal of Supercomputing, 58 (2011),
pp. 403–410.

[38] Pedro Valero-Lara, A gpu approach for accelerating 3d deformable registration (dartel) on
brain biomedical images, in Proceedings of the 20th European MPI Users’ Group Meeting,
EuroMPI ’13, New York, NY, USA, 2013, ACM, pp. 187–192.

[39] P. Valero-Lara, Multi-gpu acceleration of dartel (early detection of alzheimer), in Cluster
Computing (CLUSTER), 2014 IEEE International Conference on, Sept 2014, pp. 346–354.

[40] P. Valero-Lara and F. L. Pelayo, Towards a more efficient use of gpus, Computational
Science and Its Applications (ICCSA) Workshops, (2011), pp. 3–9.

[41] P. Valero-Lara and Fernando L. Pelayo, Analysis in performance and new model for
multiple kernels executions on many-core architectures, IEEE International Conference on
Cognitive Informatics (ICCI*CC), (2013), pp. 189–194.

[42] Pedro Valero-Lara and Fernando L Pelayo, Full-overlapped concurrent kernels, in Archi-
tecture of Computing Systems. Proceedings, ARCS 2015-The 28th International Confer-
ence on, VDE, 2015, pp. 1–8.

[43] Pedro Valero-Lara, Alfredo Pinelli, Julien Favier, and Manuel Prieto Matias, Block
tridiagonal solvers on heterogeneous architectures, in Proceedings of the 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with Applications, ISPA
’12, Washington, DC, USA, 2012, IEEE Computer Society, pp. 609–616.

[44] Pedro Valero-Lara, Alfredo Pinelli, and Manuel Prieto-Matias, Fast finite difference
poisson solvers on heterogeneous architectures, Computer Physics Communications, 185
(2014), pp. 1265 – 1272.

[45] Jeremiah van Oosten, Introduction to cuda 5.0, nVidia, (2014).
[46] B. van Werkhoven, J. Maassen, F.J. Seinstra, and H.E. Bal, Performance models for

cpu-gpu data transfers, CCGRID, (2014), pp. 11–20.
[47] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian

Many-Task Computing on Many-Core Architectures 17

Tenllado, and Francky Catthoor, Polyhedral parallel code generation for cuda, ACM
Trans. Archit. Code Optim., 9 (2013), pp. 54:1–54:23.

[48] S. Yamagiva and L. Sousa, Design and implementation of a stream-based distributed comput-
ing platform using graphics processing units, 4th Int. Conf. Computing Frontiers (CF’07),
(2007), pp. 197–204.

[49] Yao Zhang, Jonathan Cohen, and John D. Owens, Fast tridiagonal solvers on the gpu,
SIGPLAN Not., 45 (2010), pp. 127–136.

