Optimizing Search in Un-Sharded Large-Scale Distributed Systems

Suraj Chafle1, Jonathan J. Wu2, Ioan Raicu1, Kyle Chard3

1Department of Computer Science, Illinois Institute of Technology, Chicago, IL
2Department of Computer Science, Washington University in St. Louis, St. Louis, MO
3Department of Computer Science, University of Chicago, Chicago, IL

OVERVIEW
- New challenges relating to efficiently discovering, accessing, managing, and analyzing distributed data
- Search framework does not rely on sharding
- Applicable to a range of distributed storage models
- No general model for searching in unsharded environments.

MOTIVATION
- Storage systems are increasingly distributed
- Discovery and access are crucial for management and analysis of data
- Nodes in unsharded environments more autonomous and network traffic decreased
- No general model for searching in unsharded environments.

OBJECTIVES
- Search
 - Discover files based on names and contents
 - Emphasis on speed and scalability
 - Support for near-real-time discovery
- Environment
 - Each document remains intact on each node
 - Information stored in system not necessarily balanced among nodes

ARCHITECTURE
- Lucene
 - Handles indexing, query processing, searching and scoring of documents
 - Near real time indexing to search capabilities
 - Server-Client Model
 - Client interface and a server exists on each node
 - Server gets query and begins searching while taking care of query distribution and result collection
 - Query Distribution
 - Spanning tree constructed using membership list of nodes, allowing for dynamic changes in cluster membership
 - Spanning tree allows queries to be distributed efficiently and reduces network traffic
 - Optimized by sending queries to nodes with larger indexes first, which are more likely to have a longer search time

EVALUATION
- Test Bed
 - 90000 Wiki documents per m3.large node
 - common, rare, non-existent queries
 - Evaluated against Solr and Grep

RESULTS
- Lower overhead
- Faster and scaled better than Solr and Grep

CONTRIBUTION
- Easy to integrate fast, scalable text search for unsharded environments
- Tree-based query distribution model
- Faster search than alternatives when scaled

ACKNOWLEDGEMENTS
This work is supported in part by the National Science Foundation under awards NSF-1461260 (REU).