
Toward High-performance Key-value Stores through
GPU Encoding and Locality-aware Encoding

Dongfang Zhao?, Ke Wang†, Kan Qiao‡, Tonglin Li§, Iman Sadooghi§, Ioan Raicu§
?Pacific Northwest National Laboratory †Intel ‡Google §Illinois Institute of Technology

Corresponding author: Dongfang Zhao, Phone: (509)375-3635, Email: dongfang.zhao@pnnl.gov

Abstract—Although distributed key-value store is becoming in-
creasingly popular in compensating the conventional distributed
file systems, it is often criticized due to its costly full-size
replication for high availability that causes high I/O overhead.
This paper presents two techniques to mitigate such I/O overhead
and improve key-value store performance: GPU encoding and
locality-aware encoding. Instead of migrating full-size replicas
over the network, we split the original file into smaller chunks
and encode them with a few additional parity codes using GPUs
before dispersing them onto remote nodes. The parity code is
usually much smaller than the original file, which saves the
extra space required for high availability and reduces the I/O
overhead. Meanwhile, the compute-intensive encoding process is
largely accelerated by the massive number of GPU cores. Yet,
splitting the original file into smaller chunks stored on multiple
nodes breaks data locality from application’s perspective. To
this end, we present a locality-aware encoding mechanism that
allows a job to be dispatched as finer-grained tasks right on
the node where the required chunk resides. Therefore, the data
locality is preserved at the finer granularity of sub-job (i.e., task)
level. We conduct an in-depth analysis of the proposed approach
and implement a system prototype named Gest. Gest has been
deployed and evaluated on a variety of testbeds demonstrating
that high data availability, high space efficiency, and high I/O
performance could be collectively achieved at the same time.

I. INTRODUCTION

Nowadays, distributed key-value store (KVS) is becoming
one of the most important storage paradigms that compensate
the conventional file systems on large-scale clusters. For
instance, cloud vendors have widely adopted distributed KVS
such as Cassandra [22], Dynamo [8], and Memcached [13].
High-performance computing follows a similar trend by lever-
aging distributed KVS for either performance improvement
or unprecedented services, some of which were demonstrated
in our prior work [24, 25, 32, 38, 44, 45]. The state-of-the-
art approach to achieve high reliability and availability for
distributed KVS is replication, which however, by nature has
the following drawbacks that have side effects on storage and
I/O performance: (1) significant space overhead, (2) additional
disk I/O, and (3) more network bandwidth consumption.

This work is orthogonal to previous studies that are focused
on algorithms, protocols, and models for better manipulating
replicas [2, 9, 20, 27, 33]: we propose to replace full-size
replication by more space-efficient parity coding along with
GPU acceleration. It is, to the best of our knowledge, the
first study that explores the feasibility of taking advantages of
both parity coding and GPU acceleration in distributed KVS.

While the computational overhead during the coding process
can be largely compensated by GPUs, one key challenge
is how to preserve the data locality of the scattered value
(or, file) because the original value is dispersed to different
nodes—the file-level locality from application’s perspective
is completely lost. To this end, we propose a locality-aware
encoding mechanism to directly assign the sub-job (i.e., task)
to the node where the requested chunk resides.

We justify the effectiveness of the proposed approach from
three perspectives.

First, we abstract and model the proposed approach with
environmental and system parameters, and derive the analyti-
cal results of the expected space utilization and performance
speedup when parity coding is accelerated by GPUs. Our
analysis shows that (1) the space efficiency of parity coding
is roughly m higher than the conventional replication and
(2) the end-to-end I/O throughput could be improved by mk
times, where m denotes the number of tolerable failures and
k denotes the number of chunks per file, respectively.

Then, we design and implement a distributed KVS prototype
named Gest: a GPU-accelerated encoded store. Gest has been
deployed and evaluated on a variety of platforms, ranging from
a commodity Linux cluster to a leadership-class supercom-
puter. Experimental results confirm that GPU-boosted coding
is a promising approach to achieve data availability, space
efficiency, and I/O performance collectively at the same time.

Finally, we evaluate the performance benefit from the
locality-aware encoding of tasks, which are split from the
application-level job and dispatched onto the chunks dis-
persed to different physical nodes. We replay two popular
MapReduce [7] workloads (i.e., sort and grep) when enabling
locality-aware encoding with our distributed scheduler named
MATRIX [39]. Results show that splitting jobs into smaller
tasks only incurs 5% overhead on 128 nodes and achieves
almost linear scalability when more nodes are available.

In summary, this paper makes the following contributions.
• We propose an approach to achieve high data availability,

low space overhead, and high I/O performance of dis-
tributed key-value stores. The approach takes advantages
of modern many-core architecture of GPUs to parallelize
and accelerate the parity coding of large data objects.
Together with a locality-aware distributed scheduler, the
proposed approach is able to significantly reduce the I/O
overhead.



• We conduct an in-depth analysis (Section IV) of the
proposed mechanism with a large space of parameters.
Theoretical analysis demonstrates that the model ab-
stracted from the proposed approach would achieve both
high space efficiency and high end-to-end I/O throughput.

• We design and implement a GPU-encoded distributed
KVS prototype, namely Gest (Section III). Extensive
evaluations (Section V) of Gest with both micro-
benchmarks and real-world applications on a variety of
testbeds demonstrate Gest’s effectiveness in practice.

II. MOTIVATION AND BACKGROUND

A. A Motivating Example

To make matters more concrete, Fig. 1 shows an example of
a distributed KVS deployed on a 6-node cluster 1 (Node 1 to
Node 6). In this example, value V1 is split into four chunks
(Chunk 1 to Chunk 4), and encoded with two parities
(Parity 1 and Parity 2) by six GPU cores. The encoded
chunks are then transferred to six remote nodes (Node 1 to
Node 6). The two parities allow for up to two failed nodes
out of the total six nodes. The space utilization rate is thus
4

2+4 = 67% (as opposed to 33% in the full-size replication);
and the transfer time is roughly 4 times faster because each
chunk is roughly a quarter of the original value V1 in size.

Fig. 1. A distributed key-value store, which can tolerate up to two failures,
is deployed on six nodes with GPU acceleration.

B. Distributed Key-Value Stores

A distributed key-value storage usually has a simpler
interface than a POSIX filesystem. Most file operations
are implemented as set(key, value) and value ←
get(key) in KVS, rather than conventional POSIX API such
as fh ← fopen(fname), fwrite(ptr, sz, cnt,
fh), fread(ptr, sz, cnt, fh), and fclose(fh).
It greatly simplifies the code complexity and allows developers
to focus more on the business logic rather than the I/O syntax.

Most distributed key-value store systems use replication to
achieve reliability. In spite of its simplicity, data replication
maintains several full-size replicas resulting in low space effi-
ciency and consequently high I/O cost. This work is focused

1Consider Node 0 as the master or login node (for example, preprocessing,
encoding, metadata management) only in this example.

on improving space efficiency and I/O performance while
retaining high reliability in distributed KVS.

ZHT [25] has a similar ring-shaped look as the traditional
DHT [35]. The node IDs in ZHT can be randomly distributed
across the network. The correlation between different nodes
is computed with some logistic information like IP address.
The hash function on the client side maps a string to an ID
that can be retrieved by a lookup(k) operation at a later
point. Besides common KVS operations like insert(k,v),
lookup(k), and remove(k), ZHT also supports a unique
operation, append(k,v), which we have found quite useful
in implementing lock-free concurrent writes. The replicas in
ZHT should not be confused with the file replicas in Gest;
ZHT replicas are used for the fault tolerance of metadata, and
have no direct impact on Gest’s reliability.

C. Erasure Coding

Erasure coding has been studied by the computer commu-
nication community since the 1990’s [26, 31], as well as in
storage and filesystems [16, 19, 29, 42]. Plank et al. [29]
conduct a thorough review of erasure libraries. The idea is
straightforward: a file is split into k chunks and encoded
into n > k chunks, where any k out of these n chunks
can reconstruct the original file. We denote m = n − k
as the number of redundant chunks (parities). Each chunk
is supposed to reside on a distinct disk. Weatherspoon and
Kubiatowicz [41] show that for total N machines out of which
M are unavailable, the availability of a chunk (or replica) A
can be calculated as

A =

n−k∑
i=0

(
M
i

)(
N−M
n−i

)(
N
n

)
Fig. 2 illustrates the encoding process. At first glance, the

scheme looks similar to file replication, as it allocates addi-
tional disks as backups. Nevertheless, the underlying rationale
of erasure coding is completely different from file replication
because of its complex matrix computation. As a case in point,
one popular erasure code is Reed-Solomon coding [30], which
uses a generator matrix built from a Vandermonde matrix to
multiply the k data to get the encoded k +m codewords, as
shown in Fig. 3.

Jerasure is a C/C++ library that supports a wide range
of erasure codes: Reed-Solomon coding, Minimal Density
RAID-6 coding, Cauchy Reed-Solomon coding, and most
generator matrix coding. One of the most popular codes is
the Reed-Solomon encoding method, which has been used
for the RAID-6 disk array model. This coding can use either
Vandermonde or Cauchy matrices to create generator matrices.

Gibraltar is a Reed-Solomon coding library for storage
applications. It has been demonstrated to be highly efficient on
a prototype RAID system. This library is known to be more
flexible than other RAID standards; it is scalable with parity’s
size of an array. Gibraltar has been created in C using Nvidia’s
CUDA framework.



Fig. 2. Encoding k chunks into n = k + m chunks so that the system is
resilient to m failures

Fig. 3. Encoding 4 files into 6 codewords with Reed-Solomon coding

D. GPU Computing

The graphics processing unit (GPU) was originally designed
to rapidly process images for the display. The nature of
image manipulations on displays differs from tasks typically
performed by the CPU. Most image operations are conducted
with single instruction and multiple data (SIMD), where a
general-purpose application on a CPU takes multiple instruc-
tions and multiple data (MIMD). To meet the requirement of
computer graphics, GPU is designed to have many more cores
on a single chip than CPU, all of which carry out the same
instructions at the same time.

Table I shows a comparison between two mainstream GPU
and CPU devices, which will also be used in the testbeds for
evaluation later in this paper. Although the GPU frequency
is only about 30% of CPU, the amount of cores outnumbers
CPU by 384

8 = 48 times. So the overall computing capacity
of GPU is still more than one order of magnitude higher than
CPU. This GPU’s power consumption should also be noted;
only 0.91

15.63 = 5.8% of CPU.

TABLE I
COMPARISONS OF TWO MAINSTREAM GPU AND CPU

Device GeForce GT640 AMD FX-8120
Number of Cores 384 8
Frequency (MHz) 900 3100
Power (W / core) 0.91 15.63

III. SYSTEM DESIGN

An overview of Gest architecture is shown in Fig. 4. Two
services are installed on each Gest node: metadata manage-
ment and data transfer. Each instance of these two services
on a particular node communicates to other peers over the
network when requested metadata or files cannot be found on
the local node.

Fig. 4. Architectural overview of Gest deployed on an n-nodes distributed
system. End users run applications on the ith node where files are encoded
and decoded by coding algorithms.

To make matters more concrete, Fig. 5 illustrates the sce-
nario of writing and reading a file with k = 4 and m = 2. On
the left hand side when the original file (i.e., orig.file)
is written, the file is chopped into k = 4 chunks and encoded
into n = k+m = 6 chunks. These 6 chunks are then dispersed
into 6 different nodes after which their metadata are sent to
the metadata hashtable that is also physically distributed across
these 6 nodes. A file read request (on the right hand side) is
essentially the reversed procedure of a file write: retrieves the
metadata, transfers the chunks, and decodes the file.

Fig. 5. An example of file writing and reading on Gest

A. Metadata Management
The traditional way of handling metadata for distributed

systems is to manipulate them on one or a few nodes. The
rationale is that metadata contains only high level information,
thus is small in size. Therefore, a centralized repository usu-
ally meets the requirement. Most distributed storage systems



in production employ centralized metadata management; for
instance the Google file system (GFS [14]) keeps all its
metadata on the master node. This design is easy to implement
and maintain, yet exposes a performance bottleneck for the
workloads that generate a large amount of small files: the
metadata accessing rate and memory footprint of a great
number of small files can easily saturate the limited number
of metadata servers. As a GFS tech lead mentioned, “a single
master soon became a bottleneck of GFS ... Therefore, new
and scalable schemes are needed for metadata management
...” [43].

In contrast, we manage Gest’s metadata in a completely
distributed fashion. Specifically, all metadata are dispersed
into a distributed hashtable (ZHT [25]). While there are
many choices of distributed hashtable implementations such
as Memcached [13] and Dynamo [8], we chose ZHT as the
underlying infrastructure because it is implemented in C/C++,
takes the lowest (constant, in most cases) routing time, and
supports both persistence (through periodical flushing) and
dynamic membership. ZHT is installed as daemon services
on Gest nodes.

In Gest, clients have a coherent view of all the files (i.e.,
metadata) no matter if the file is stored locally or not. That is,
a client interacts with Gest to inquiry any file on any node.
This implies that applications are highly portable across Gest
nodes and can run without modifications or recompiling. The
metadata and data on the same node, however, are completely
decoupled: a file’s location has nothing to do with its metadata
location.

Because all clients of Gest share the same global namespace
of the underlying files, from the API point of view there is
nothing particularly different between these clients. In fact,
Gest API is built upon ZHT’s own client API, which manages
all the mappings between file chunks and their locations. It is
ZHT’s client, deployed on each every node in the cluster, who
retrieves the metadata information of all files and chunks.

Besides the conventional metadata information for regular
files, a special flag indicates whether this file is being written.
Specifically, any client who requests to write a file needs to
acquire this flag before opening the file, and will not reset
it until the file is closed. The atomic compare-swap operation
supported by ZHT guarantees file’s consistency for concurrent
writes.

B. Data Transfer

As a distributed system Gest moves data back and forth
across the network, which should be efficient and reliable in
the ideal case. The User Datagram Protocol (UDP) is efficient
in transferring data, but is unreliable, while the Transmission
Control Protocol (TCP) is reliable but inefficient.

We have developed our own data transfer service – Gest
Data Transfer service (GDT) on top of UDP-based Data
Transfer (UDT [15]), which is a reliable UDP-based applica-
tion level data transport protocol for distributed data-intensive
applications. UDT adds its own reliability and congestion
control on top of UDP, thus delivers higher transfer rate than

TCP. Similarly to ZHT, GDT is installed as a daemon service
on each Gest node.

Technically, GDT serves in a similar way to TCP where
to specify the destination and port number when transferring
files. Nonetheless, it exposes a simpler interface customized
for Gest. It should be noted that, however, users are agnostic of
the network protocols in Gest (GDT in this case); they only
need to know how to use the Gest client API as shown in
Figure 5.

It should be clear that moving data is, usually, more costly
than dispatching the job to the node where the data resides.
In other words, a “locality-aware” encoding would be more
desirable than simply migrating file chunks into a remote
(random) node. To this end, we could leverage a locality-aware
job scheduler (e.g., MATRIX [39]) to strive to execute the
encoding process on the node holding the file chunk.

C. Coding Algorithms

In addition to daemon services running at the back end, Gest
plugs in encoding and decoding modules on the fly. Currently,
we support two built-in libraries, namely Jerasure [28] and
Gibraltar [6], as the default CPU and GPU libraries, respec-
tively. Gest is implemented to be flexible to adopt coding
libraries.

D. Workflows

When an application writes a file, Gest splits the file into k
chunks. Depending on which coding library the user chooses,
these k chunks are encoded into n = k + m chunks, which
are sent to n different nodes with GDT.

At this point the data migration is complete, and we will
need to update the metadata information. To do so, ZHT on
each of these n nodes is pinged to update the file entries.
This procedure of metadata update on the local node is
conducted with an in-memory hashmap whose contents are
asynchronously persisted to the local disk.

Reading a file is the reverse of writing it. Gest retrieves the
metadata from ZHT and uses GDT to transfer (any) k chunks
of data to the node where the user makes the request. These
k chunks are then decoded by the user-specified library and
restored into the original file.

E. Pipeline

Because the encoded data are buffered, GDT can disperse n
encoded chunks onto n different nodes while the file chunks
are still being encoded. This pipeline with the two levels of
encoding and sending allows for combining the two costs
instead of summing them, as described in Fig. 6.

F. User Interface

Gest provides a completely customizable set of parameters
for the applications to tune the behavior of Gest. In particular,
users can specify the coding library to use, the number of
chunks to split the file (i.e., k), the number of parity chunks
(i.e., m = n − k), the buffer size (default is 1 MB), and the
like.



Fig. 6. Pipelining of encoding and transferring for a write operation in Gest

IV. ANALYSIS

This section presents the analysis of the proposed mech-
anism for achieving fault tolerance in distributed key-value
stores. In particular, we show how the parameters quantita-
tively affect the system in terms of space utilization and I/O
performance. Evaluation on the real system will be presented
later in Section V.

A. Assumptions

We assume the multiple paths between the primary copy
and the remote nodes have no interference. Therefore, if a full
replica is split into 4 chunks and sent to 4 different nodes
concurrently, then the transfer speed is roughly reduced to
25% comparing with the full-size replication (assuming the
data are already loaded into memory). As mentioned before,
the full-size replica is transferred in a serialized manner.

For the encoding and decoding processes, we do not distin-
guish between the rates between both. This is because litera-
ture [6] shows that the difference between the two processes is
marginal. It should be noted that this assumption only holds for
this analysis section; we will report the performance difference
between encoding and decoding procedures in Section V.

We also assume the parity code is in the same size of the
chunk. In practice, this is the case of most coding algorithms.
It also greatly simplifies the analysis in this section.

B. Parameters

We consider the following parameters when analyzing the
abstraction model of Gest. The size of the primary copy is
denoted by s. The primary copy is split into k chunks. The
number of tolerable failures should be the same as the number
of parities in Gest, which is denoted by m. For example, if
we request that Gest is resistant to two failed nodes, then m
should be set to 2. The coding throughput (both encoding and
decoding) is c. The network bandwidth is indicated by b. All
these parameters are summarized in Table II.

C. Space Utilization

As discussed before, the space utilization (or, storage effi-
ciency) of conventional data replication is

Erep =
s

s ·m
=

1

m

The space utilization for Gest is, however, higher:

Egest =
s

s · k+m
k

=
k

k +m

TABLE II
PARAMETERS OF GEST ENVIRONMENT

Variable Unit Meaning
n Number Number of nodes
s Byte Size of the primary copy
k Number Number of chunks
m Number Number of parities
c Byte / second Coding rate
b Byte / second Network bandwidth

Note that, in practice m is a small number (for example, 2)
and k is usually set to n − m. By doing this, all the nodes
are involved in the data redundancy procedure. Therefore
the storage efficiency of Gest can be also expressed in an
alternative way (assuming all nodes participate in the coding
process):

Egest =
n−m

n
= 1− m

n

Again, since m is usually a small integer, and because in a
large-scale system n (the total number of nodes) is usually
significantly larger than m, the value of Egest is highly close
to 1. Also recall that the space efficiency of full-size replication
is 1

m . Consequently, the space efficiency of parity coding is
roughly m higher than the conventional replication where
m indicates the number of tolerable failures.

A variant of Gest is to keep one primary copy and only
apply the coding on replicas. This is for those applications
having many read requests. So an intact copy will avoid the
frequent decoding procedures. Indeed, such a full-size copy is
to trade some space for the improved file-read performance.
In this case, the storage efficiency is

Ep
gest =

s

s+ s · k+m−1
k

=
k

2k +m− 1

Similarly, if we assume k = n−m, then

Ep
gest =

n−m

2 · (n−m) +m− 1
= 1− n− 1

2n−m− 1

D. End-to-End I/O Performance

Both conventional replication and Gest need to load the
primary copy from disk to memory, so we do not differentiate
them. The difference lies in two parts. First, Gest introduces
computational overhead when encoding the data. Second, Gest
reduces the network transfer time since smaller chunks are
migrated in parallel.

Specifically, the time to transfer the full-size replicas is

Timerep =
m · s
b

Gest, on the other hand, needs to take both the GPU encoding
time and the transfer time into account for each encoded
chunk:

Timegest =
s

k · c
+

s

k · b
where the first term represents the GPU coding and the second



one is for network transfer.
Therefore, the speedup is

Speedup =
Timerep
Timegest

=
m·s
b

s
k·c +

s
k·b

=
m · k · c
b+ c

If we look at b and c in practice when GPU is leveraged,
we usually have b << c. For example we will show in later
evaluation part (Fig. 8 and Fig. 9) that for small m’s the
GPU coding throughput is higher than 1 GB/s (as opposed
to O(100 MB/s) for mainstream hard disks). Consequently,
the speedup can be expressed as

Speedup ≈ m · k

In other words, the end-to-end I/O throughput could be
improved by mk times when full-size replications is re-
placed by concurrent parity coding, where m indicates the
tolerable failures and k indicates the number of chunks
per file. This is also the case when the coding and transfer is
pipelined; the Timegest term is essentially degraded to s

k·b .

V. EVALUATION

A. Testbeds

Gest has been deployed on four testbeds: a Sun-Oracle
cluster (HEC), a high-performance GPU cluster (Sirius), the
Amazon EC2 cloud, and an IBM Blue Gene/P supercomputer
(Intrepid [1]). Each HEC node has 8 GB RAM, dual AMD
Opteron quad-core processors (8-cores at 2 GHz), and an OS
whose Linux kernel version is 2.6.28.10. Each Sirius node has
an 8-core 3.1 GHz AMD FX-8120 CPU along with a 384-core
900 MHz Nvidia GeForce GT 640 GPU, and 16 GB RAM.
Sirius’ operating system is OpenSUSE, compiled by Linux
kernel 3.4.11 with CUDA version 5.0 installed. Experiments
on the Amazon EC2 Cloud are deployed on the “m3.large”
instances up to 256 CPUs (i.e., 128 instances). Each instance
has 2 CPUs, 6.5 ECUs, 7.5 GB memory, 16 GB SSD, and the
Ubuntu 14.04 LTS OS. Intrepid has 40K-nodes each of which
has quad core 850 MHz PowerPC 450 processors and runs a
light-weight Linux with 2 GB RAM. In this paper we used up
to 512 nodes for evaluating Gest.

All experiments are repeated at least five times, or until
results become stable (i.e., within 5% margin of error). The
reported numbers are the average of all runs. Caching effect is
carefully precluded by reading a file larger than the on-board
memory before the measurement.

B. Experiment Design

We compare the conventional file replication with erasure
coding algorithms of different parameter combinations at
different scales. Table III summarizes the list of candidate
mechanisms, as well as the the number of chunks for both
the original file and the redundant data.

For file replication, the “chunks of the original data” is the
file itself, and the “chunks of redundant data” are plain copies
of the original file. We choose 2 replicas for file replication
as the baseline, since this is the default setup of most existing
systems. Therefore we see <Replica, 1, 2> in Table III.

TABLE III
LIST OF DATA REDUNDANCY MECHANISMS CONSIDERED IN GEST

Mechanism Chunks of Chunks of
Name Original File Redundant data
Replica 1 2
Erasure1 3 5
Erasure2 5 3
Erasure3 11 5
Erasure4 13 3
Erasure5 27 5
Erasure6 29 3

Similarly, different erasure-coding parameters of Gest are
listed as Erasure[1..6], along with different file gran-
ularity and additional parities. We design experiments at
different scales to study the scalability of Gest. Specifi-
cally, every pair of erasure mechanisms represents a different
scale: Erasure[1,2] for 8-nodes, Erasure[3,4] for 16-
nodes, and Erasure[5,6] for 32-nodes. For example, tuple
<Erasure6, 29, 3> means that we split the original file
into 29 chunks, encode them with 3 additional parities, and
send out the total 32 chunks into 32 nodes.

The numbers of redundant parities (i.e., “chunks of redun-
dant data”) for Erasure[1..6] are picked in accordance
with the following two rules. First, we are only interested
in those erasure mechanisms that are more reliable than the
replication baseline, because our goal is to build a more space-
efficient and faster KVS without compromising the reliability.
Therefore in all cases of erasure coding, there are at least 3
redundant parities, which are more than the replica case (i.e.,
2). Second, we want to show how different levels of reliability
affect the space efficiency and I/O performance. So there is one
additional configuration for each scale: the redundant parities
are increased from 3 to 5.

C. Data Reliability and Space Efficiency

Fig. 7 shows the tolerable failures (i.e., the number of failed
nodes that the system can tolerate) and space efficiency for
each of the 7 mechanisms listed in Table III. The tolerable
failures (histograms) of Erasure[1..6] are all more than
Replica, so is the space efficiency. Thus, in addition to
comparable data reliability, erasure codes outperform data
replication in terms of both reliability and efficiency. Before
we investigate more about performance in §V-E, the following
conclusions are drawn from Fig. 7.

First, a larger scale enables higher space efficiency. This
is counter-intuitive to some extent, as it is a well-accepted
practice to collect data on a small subset of nodes (e.g.,
collective I/O can batch small and dispersed I/Os to reduce
the number of I/O calls). Fig. 7, however, demonstrates that
when redundant parity stays the same, space efficiency is
monotonically increasing with respect to more nodes. The
reason is that with more nodes the redundant parity is in finer



Fig. 7. Data reliability and space efficiency

granularity and smaller in size. Therefore, less space is taken
by the redundant data.

Second, for a specific erasure code at a particular scale, reli-
ability and efficiency are negatively correlated. For example, if
we increase tolerable failures from 3 to 5, the space efficiency
goes from 65% down to 35% (i.e., Erasure2→Erasure1).
This is understandable, as increasing parities take more space.

D. Coding Rate

This section evaluates the encoding and decoding rates of
computing devices of our testbeds. The encode and decode
throughput of Jerasure (for CPU) and Gibraltar (for GPU)
are plotted in Fig. 8 with m increasing from 2 to 128 while
keeping a fixed storage efficiency as 33%. The buffer size is
set to 1 MB. In all cases, with larger m values, the throughput
decreases exponentially. This is because when the number of
parity chunks increases, encoding and decoding take more time
which reduces the throughput.

We then change the storage efficiency to 75% and measure
the throughput with different m values in Fig. 9. Similar
observations and trends are found just like the case of storage
efficiency of 33%.

From both experiments above we observe a significant gap
between Gibraltar and Jerasure. Gibraltar achieves 10 times
speedup comparing with Jerasure, which suggests that GPU-
based erasure coding would likely break through the CPU
bottleneck.

E. I/O Performance

We compare both read and write throughput of all mech-
anisms listed in Table III on the HEC cluster at the scales
of 8-nodes, 16-nodes, and 32-nodes. The files to be read and
written are 1 GB per node, with 1 MB block size. Fig. 10
shows the results. One important observation is the promising
performance by erasure coding even on CPUs. In many cases
(e.g., file read on 16-nodes with Erasure4), Gest delivers higher
throughput than the replication counterpart. This is because

Fig. 8. Throughput with buffer size = 1 MB, storage efficiency = 33%

Fig. 9. Throughput with buffer size = 1 MB, storage efficiency = 75%

replication uses more network bandwidth: two extra full-sized
replicas introduce roughly a double amount of data to be
transferred than erasure coding. We will discuss how GPUs
further improve Gest performance later in Fig. 13.

Fig. 10 also shows that, besides the number of nodes,
the number of redundant parities greatly impacts the I/O
performance. Simply increasing the number of nodes does
not necessarily imply a higher throughput. For instance,
Erasure2 on 8 nodes delivers higher I/O throughput than
Erasure3 on 16 nodes.

It is worth mentioning that the promising erasure-coding
results from HEC should be carefully generalized; we need to
highlight that the CPUs of HEC are relatively fast – 8 cores
at 2 GHz. So we wonder: what happens if the CPUs are less
powerful, e.g., fewer cores at a lower frequency?

To answer this question, and to evaluate Gest at larger



Fig. 10. Performance on the HEC cluster

scales, we deploy Gest on 512 nodes of Intrepid, where each
node only has 4 cores at 850 MHz. For a fair comparison,
we slightly change the setup of the previous experiment: the
replication mechanism makes the same number of replicas as
the additional parities in erasure coding. That is, the reliability
is exactly the same for all replication- and erasure-based mech-
anisms. Moreover, we want to explore the entire parameter
space. Due to limited space, we only enumerate all the possible
parameter combinations with constraint of 8 total nodes,
except for trivial cases of a single original or redundant chunk.
That is, we report the performance in the following format
(file chunks: redundant parities): (2:6), (3:5),
(4:4), (5:3), and (6:2); we are not interested in (1:7) and (7:1),
as the former is identical to 7 replicas and the latter to 1
replica.

As shown in Fig. 11, for all the possible parameters of
erasure coding, Gest is slower than file replication. As a side
note, the throughput is orders of magnitude higher than other
testbeds because Intrepid does not have local disk and we run
the experiments on RAM disks. This experiment confirms our
previous conjecture on the importance of computing capacity
to the success of Gest. After all, the result intuitively makes
sense; a compute-intensive algorithm needs a powerful CPU.
This, in fact, leads to one purpose of this paper: what if we
utilize even faster chips, e.g., GPUs?

Before discussing the performance of GPU-powered Gest at
scales, we investigate GPU and CPU coding speed on a single
Sirius node. As shown in Fig. 12, GPU typically processes the
erasure coding one order of magnitude faster than CPU on a
variety of block sizes (except for encoding 16 MB block size:
6 times faster). Therefore, we expect to significantly reduce the

Fig. 11. Performance on Intrepid [1]

coding time in Gest by GPU acceleration, which consequently
improves the overall end-to-end I/O throughput.

We re-run the 8-nodes experiments listed in Table III on the
Sirius cluster. The number of replicas is set to the same number
of redundant parities of erasure coding for a fair comparison
of reliability, just like what we did in Fig. 11. The results
are reported in Fig. 13, where we see for both (5:3) and (3:5)
cases, GPU-powered erasure coding delivers higher throughput
(read and write combined). Recall that Fig. 10 shows that CPU
erasure-coding outperforms file replication in some scenarios;
now Fig. 13 indicates that GPU accelerates erasure-coding to
outstrip all the replication counterparts.



Fig. 12. Gest coding time on a single Sirius node

Fig. 13. Performance on the Sirius cluster

F. Locality-aware Encoding

We evaluate the performance benefit from locality-aware
encoding by executing MapReduce workloads. The input data
is 10 GB extracted from Wikipedia. We do weak-scaling
experiments that process 256 MB data per instance. That is, at
128 instances the total data size is 32 GB (i.e., 3.2 copies of
the 10 GB input data). The first application is “grep”, which
searches texts to match the given pattern in the file. The second
application is “sort”, which performs in-place sort of all the
words of a given file. We set k = 4 and m = 2 in this
experiment; that is, each file is split into 4 equal chunks and
encoded with 2 additional parities with GPUs.

Fig. 14 shows, at different scales from 1 to 128 instances,
the speedup and efficiency when 4 tasks are derived from
a single job and then work on 4 chunks concurrently. The
speedup is measured by considering the scalability, the wall
time of the application when chunking files is disabled, and
the overhead introduced by the finer granularity of the tasks
(sub-jobs). The efficiency is defined as the ratio of the real
speedup over the scalability, i.e., the number instances in this
case.

We observe that the speedup is slightly decreased from
1 to 128 instances. The reason is that more instances incur
higher overhead of spawning a larger number of small tasks.

Fig. 14. Speedup and efficiency of two applications (sort and grep) when
data-locality aware encoding is enabled

Nevertheless, this overhead is significantly smaller than the I/O
gain from the data parallelism. As the efficiency plot shows,
the speedup keeps around 95% at 128 instances—we only
lose 5% efficiency after scaling up more than two orders of
magnitude.

G. Comparison of Popular Key-value Stores

This section focused on the performance comparison be-
tween Gest and other popular key-value stores. In particu-
lar, we are most interested in two representative systems—
Memcached [13] and Cassandra [22]. In this experiment, we
configure all three systems to tolerate up to three failures. That
is, for Gest it adopts the (5:3) erasure coding scheme while
the other systems maintain 3 replicas.

Fig. 15. Comparison of popular key-value stores

Figure 15 reports the throughput of all key-value stores at
different scales from 1 node to 64 nodes. The results evidently
shows the performance advantage of Gest over the others
at all scales. Two more observations should be noted. First,
Gest shows a strong scalability, which is highly desirable and
essential to many applications. Second, although Memcached
is a memory-based system, its performance could hardly



compete with Gest, which is largely due to Gest’s highly
efficient replication scheme and GPU’s acceleration.

H. Case Study: a Building Block for Distributed File Systems

In order to demonstrate the effectiveness of Gest in real-
world applications, we evaluate its performance impact to the
FusionFS [46] distributed file system. The original design of
FusionFS leverages a distributed KVS called ZHT [25] to
manage its metadata. We replace ZHT by Gest and we expect
a higher performance delivered by FusionFS.

Fig. 16. Throughput of Gest and Rep on FusionFS (block size 1 MB)

In this experiment, FusionFS is deployed on the Sirius
cluster. We keep the total number of nodes fixed (i.e., n = k+
m = 8). The tolerated number of failures (i.e., m) ranges from
2 to 6. It is equivalent to having 3 to 7 replicas (including the
primary copy) in the conventional data replication algorithms
(Rep). Figure 16 shows the end-to-end I/O throughput of
Gest- and Rep-based data redundancy in FusionFS. Only when
m = 2, Rep slightly outperforms Gest, and the difference is
almost negligible. Starting from m = 3, Gest clearly shows its
advantage over Rep, and the speedup increases for larger ms.
Particularly, when m = 6, i.e., to keep the system’s integrity
allowing 6 failed nodes, Gest throughput is 1.82 higher than
the traditional Rep method.

VI. RELATED WORK

Distributed key-value stores have been extensively studied
in recent years. In addition the most popular ones such as
Memcached [13] and Cassandra [22], there are a couple more
representative systems. Orbe [10] is a distributed key-value
store with scalable causal consistency built with newly pro-
posed protocols based on dependency matrices. Muninn [18]
is a versioning key-value store that leverages non-volatile
memory and an object-based storage model. Gest, to the best
of our knowledge, is the first distributed key-value store with
GPU acceleration.

Fault tolerance is one of the most challenging part in
distributed systems. Much research has been focusing on
replacing the full-size replicas. For example, partial fault
tolerance was shown to be highly effective in [17]. Another

angle (for example, [21]) is to have a non-static number of
replicas in the conventional wisdom, so that more replicas
could support higher throughput for popular data and fewer
replicas are allocated for unpopular data to save the storage
cost. In distributed networks, location-aware replication and
independent service-structure failure recovery was proposed
for group communication services in [40]. In Grid Computing,
a transparent fault tolerance architecture was proposed for
distributed workflows [11]. In Cloud Computing, data locality
and checkpoint placement were extensively studied for fault
tolerance in [36]. To achieve graceful degradation of quality of
service in case of system overloading, a distance-based priority
algorithm was studied in [23]. Recently, a new idea [5] was
proposed to expose the internal states and checkpoint them
in order to achieve the fault tolerance in stream processing
systems. None of the aforementioned systems takes the radical
change to break the replica as Gest does.

Recent GPU technology has drawn much research interest
of applying these many-cores for data parallelism. For ex-
ample, GPUs are proposed to parallelize the XML process-
ing [34]. In high performance computing, a GPU-aware MPI
was proposed to enable the inter-GPU communication without
changing the original MPI interface [37]. Nevertheless, GPUs
do not necessarily provide superior performance; GPUs might
suffer from factors such as small shared memory and weak
single-thread performance as shown in [4]. Another potential
drawback of GPUs lies in the dynamic instrumentation that
introduces runtime overhead. Yet, recent study [12] shows that
the overhead could be alleviated by information flow analysis
and symbolic execution. In this paper, we leverage GPUs in
key-value stores—a new domain for many-cores.

VII. CONCLUSION

This paper presents Gest, the first distributed key-value store
whose reliability is achieved through GPU-accelerated parity
coding as opposed to the conventional full-size replication.
Its data locality is uniquely achieved by dispatching tasks
right on the chunk node rather than the conventional merge-
decode paradigm. In addition to the theoretical analysis to
justify the effectiveness of Gest, we also, from a system’s
perspective, showcase how to design and implement a system
to solve the long-existing dilemma between data reliability,
space efficiency, and I/O performance at the same time. In a
more general sense, Gest demonstrates that a data-intensive
problem can be transformed into a compute-intensive one
(full-size replication vs. parity coding), which is then solved
by compute-intensive devices (GPUs) and a more distributed
architecture (i.e., locality-aware distributed scheduler).

Our future work on Gest is to deploy and tune it on
more heterogeneous testbeds. Since Gest is agnostic about the
underlying computing chips as long as the interfaces are im-
plemented, there is nothing architecturally preventing us from
leveraging new computing devices to further accelerate the
coding process. Another direction is to evaluate it on extreme
scales. For instance, we plan on conducting experiments on the



3,000-GPU Blue Waters supercomputer [3] at National Center
for Supercomputing Applications.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under awards OCI-1054974 (CAREER). This re-
search used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-06CH11357.

REFERENCES

[1] Argonne’s Intrepid, “https://www.alcf.anl.gov/
user-guides/intrepid-challenger-surveyor,” Accessed
September 5, 2014.

[2] A. Benoit, H. Larcheveque, and P. Renaud-Goud, “Opti-
mal algorithms and approximation algorithms for replica
placement with distance constraints in tree networks,”
in IEEE 26th International Symposium on Parallel Dis-
tributed Processing (IPDPS), 2012.

[3] Blue Waters, “http://ncsa.illinois.edu/enabling/
bluewaters,” Accessed April 17, 2015.

[4] R. Bordawekar, U. Bondhugula, and R. Rao, “Believe it
or not!: Mult-core cpus can match gpu performance for
a flop-intensive application!” in Proceedings of the 19th
International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’10, 2010.

[5] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki,
and P. Pietzuch, “Integrating scale out and fault tolerance
in stream processing using operator state management,”
in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’13,
2013.

[6] M. L. Curry, A. Skjellum, H. Lee Ward, and
R. Brightwell, “Gibraltar: A reed-solomon coding li-
brary for storage applications on programmable graphics
processors,” Concurr. Comput. : Pract. Exper., vol. 23,
no. 18, 2011.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters,” in Proceedings of
USENIX Symposium on Opearting Systems Design &
Implementation, 2004.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, Oct. 2007.

[9] Y. Ding, H. Tan, W. Luo, and L. Ni, “Exploring the
use of diverse replicas for big location tracking data,”
in Distributed Computing Systems (ICDCS), 2014 IEEE
34th International Conference on, June 2014.

[10] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe:
Scalable causal consistency using dependency matrices
and physical clocks,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, ser. SOCC ’13, 2013.

[11] O. Ezenwoye, M. B. Blake, G. Dasgupta, L. L. Fong,
S. Kalayci, and S. M. Sadjadi, “Managing faults for
distributed workflows over grids,” Internet Computing,
IEEE, vol. 14, no. 2, pp. 84–88, March 2010.

[12] N. Farooqui, K. Schwan, and S. Yalamanchili, “Efficient
instrumentation of gpgpu applications using information
flow analysis and symbolic execution,” in Proceedings of
Workshop on General Purpose Processing Using GPUs,
ser. GPGPU-7, 2014.

[13] B. Fitzpatrick, “Distributed caching with memcached,”
Linux J., vol. 2004, no. 124, Aug. 2004.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google
file system,” in ACM Symposium on Operating Systems
Principles, 2003.

[15] Y. Gu and R. L. Grossman, “Supporting config-
urable congestion control in data transport services,” in
ACM/IEEE Conference on Supercomputing, 2005.

[16] J. L. Hafner, V. Deenadhayalan, K. K. Rao, and J. A.
Tomlin, “Matrix methods for lost data reconstruction in
erasure codes,” 2005.

[17] G. Jacques-Silva, B. Gedik, H. Andrade, K.-L. Wu, and
R. K. Iyer, “Fault injection-based assessment of partial
fault tolerance in stream processing applications,” in
Proceedings of the 5th ACM International Conference on
Distributed Event-based System, ser. DEBS ’11, 2011.

[18] Y. Kang, T. Marlette, E. L. Miller, and R. Pitchumani,
“Muninn: a versioning key-value store using object-based
storage model,” in Proceedings of the 7th International
Systems and Storage Conference (SYSTOR 14), Jun.
2014.

[19] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang,
“Rethinking erasure codes for cloud file systems: Min-
imizing I/O for recovery and degraded reads,” in Pro-
ceedings of the 10th USENIX Conference on File and
Storage Technologies, 2012.

[20] T. Kobus, M. Kokocinski, and P. T. Wojciechowski,
“Hybrid replication: State-machine-based and deferred-
update replication schemes combined,” in Proceedings
of the 2013 IEEE 33rd International Conference on
Distributed Computing Systems, ser. ICDCS ’13, 2013.

[21] R. K. Krish, A. Khasymski, A. R. Butt, S. Tiwari, and
M. Bhandarkar, “Aptstore: Dynamic storage management
for hadoop,” in Proceedings of the 2013 IEEE Interna-
tional Conference on Cloud Computing Technology and
Science - Volume 01, ser. CLOUDCOM ’13, 2013.

[22] A. Lakshman and P. Malik, “Cassandra: A decentralized
structured storage system,” SIGOPS Oper. Syst. Rev.,
vol. 44, no. 2, Apr. 2010.

[23] J. Li, Y. Song, and F. Simonot-Lion, “Providing real-time
applications with graceful degradation of qos and fault
tolerance according to (m, k)-firm model,” Industrial
Informatics, IEEE Transactions on, vol. 2, no. 2, 2006.

[24] T. Li, R. Verma, X. Duan, H. Jin, and I. Raicu, “Ex-
ploring distributed hash tables in highend computing,”
SIGMETRICS Perform. Eval. Rev., vol. 39, no. 3, Dec.
2011.

https://www.alcf.anl.gov/user-guides/intrepid-challenger-surveyor
https://www.alcf.anl.gov/user-guides/intrepid-challenger-surveyor
http://ncsa.illinois.edu/enabling/bluewaters
http://ncsa.illinois.edu/enabling/bluewaters


[25] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu, “ZHT: A light-
weight reliable persistent dynamic scalable zero-hop dis-
tributed hash table,” in Proceedings of IEEE Interna-
tional Symposium on Parallel and Distributed Process-
ing, 2013.

[26] A. J. McAuley, “Reliable broadband communication us-
ing a burst erasure correcting code,” in Proceedings of
the ACM Symposium on Communications Architectures
& Protocols, 1990, pp. 297–306.

[27] S. Mu, K. Chen, Y. Wu, and W. Zheng, “When paxos
meets erasure code: Reduce network and storage cost in
state machine replication,” in Proceedings of the 23rd
International Symposium on High-performance Parallel
and Distributed Computing (HPDC), 2014.

[28] J. S. Plank, “Jerasure: A library in C/C++ facilitating
erasure coding for storage applications,” University of
Tennessee, Tech. Rep., 2007.

[29] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-
O’Hearn, “A performance evaluation and examination
of open-source erasure coding libraries for storage,” in
Proccedings of the 7th Conference on File and Storage
Technologies, 2009.

[30] I. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society of Industrial and
Applied Mathematics, no. 2, 06/1960.

[31] L. Rizzo, “Effective erasure codes for reliable computer
communication protocols,” SIGCOMM Comput. Com-
mun. Rev., no. 2, pp. 24–36, Apr.

[32] I. Sadooghi, J. H. Martin, T. Li, K. Brandstatter, K. Ma-
heshwari, T. P. P. de Lacerda Ruivo, G. Garzoglio,
S. Timm, Y. Zhao, and I. Raicu, “Understanding the per-
formance and potential of cloud computing for scientific
applications,” IEEE Transaction on Cloud Computing
(TCC), 2015.

[33] N. Santos and A. Schiper, “Achieving high-throughput
state machine replication in multi-core systems,” in Dis-
tributed Computing Systems (ICDCS), 2013 IEEE 33rd
International Conference on, 2013.

[34] L. Shnaiderman and O. Shmueli, “A parallel twig join
algorithm for XML processing using a GPGPU,” in In-
ternational Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architec-
tures, 2012.

[35] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” SIGCOMM Comput.
Commun. Rev., vol. 31, no. 4, pp. 149–160, Aug. 2001.

[36] X. Su, “Efficient fault-tolerant infrastructure for cloud
computing,” Ph.D. dissertation, Yale University, 2013.

[37] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and
D. Panda, “Gpu-aware mpi on rdma-enabled clusters:
Design, implementation and evaluation,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 25,
no. 10, 2014.

[38] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu,

“Using simulation to explore distributed key-value stores
for extreme-scale system services,” in Proceedings of
ACM/IEEE International Conference on Supercomput-
ing, 2013.

[39] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I. Raicu,
“Optimizing load balancing and data-locality with data-
aware scheduling,” in Proceedings of IEEE International
Conference on Big Data (BigData Conference), 2014.

[40] Y.-H. Wang, Z. Zhou, L. Liu, and W. Wu, “Fault toler-
ance and recovery for group communication services in
distributed networks,” Journal of Computer Science and
Technology, vol. 27, no. 2, pp. 298–312, 2012.

[41] H. Weatherspoon and J. Kubiatowicz, “Erasure coding
vs. replication: A quantitative comparison,” in Revised
Papers from the First International Workshop on Peer-
to-Peer Systems, 2002, pp. 328–338.

[42] H. Xia and A. Chien, “RobuSTore: a distributed stor-
age architecture with robust and high performance,” in
ACM/IEEE Conference on Supercomputing, 2007.

[43] X. Yang, Principles, Methodologies, and Service-
Oriented Approaches for Cloud Computing, 1st ed. Her-
shey, PA, USA: IGI Global, 2013.

[44] D. Zhao, K. Qiao, and I. Raicu, “Hycache+: Towards
scalable high-performance caching middleware for par-
allel file systems,” in Proceedings of the 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, 2014, pp. 267–276.

[45] D. Zhao, C. Shou, T. Malik, and I. Raicu, “Distributed
data provenance for large-scale data-intensive comput-
ing,” in Cluster Computing, IEEE International Confer-
ence on, 2013.

[46] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe,
P. Carns, R. Ross, and I. Raicu, “FusionFS: Toward sup-
porting data-intensive scientific applications on extreme-
scale distributed systems,” in Proceedings of IEEE Inter-
national Conference on Big Data, 2014, pp. 61–70.


	Introduction
	Motivation and Background
	A Motivating Example
	Distributed Key-Value Stores
	Erasure Coding
	GPU Computing

	System Design
	Metadata Management
	Data Transfer
	Coding Algorithms
	Workflows
	Pipeline
	User Interface

	Analysis
	Assumptions
	Parameters
	Space Utilization
	End-to-End I/O Performance

	Evaluation
	Testbeds
	Experiment Design
	Data Reliability and Space Efficiency
	Coding Rate
	I/O Performance
	Locality-aware Encoding
	Comparison of Popular Key-value Stores
	Case Study: a Building Block for Distributed File Systems

	Related Work
	Conclusion

