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Abstract 8 Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require
significant resources, however not all scientists have access to sufficient high-end computing systems. Cloud computing has
gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different
infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per
money spent. This work provides a comprehensive evaluation of EC2 cloud in different aspects. We first analyze the potentials
of the cloud by evaluating the raw performance of different services of AWS such as compute, memory, network and I/O. Based
on the findings on the raw performance, we then evaluate the performance of the scientific applications running in the cloud.
Finally, we compare the performance of AWS with a private cloud, in order to find the root cause of its limitations while running
scientific applications. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the
cloud in terms of both raw performance and scientific applications performance. Furthermore, we evaluate other services
including S3, EBS and DynamoDB among many AWS services in order to assess the abilities of those to be used by scientific
applications and frameworks. We also evaluate a real scientific computing application through the Swift parallel scripting system
at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we
expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific
applications between public clouds, private clouds, or hybrid clouds.

Index Terms 8 Cloud computing, Amazon AWS, performance, cloud costs, scientific computing
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1 INTRODUCTION

HE idea of using clouds for scientific applications has

been around for several years, but it has not gained
traction primarily due to many issues such as lower net-
work bandwidth or poor and unstable performance. Sc i-
entific applications often rely on access to large legacy
data sets and pretuned application software libraries.
These applications today run in HPC environments with
low latency interconnect and rely on parallel file systems.
They often require high performance systems that have
high 1/0 and network bandwidth. Using commercial
clouds gives scientists opportunity to use the larger re-
sources ondemand. However, there is an uncertainty
about the capability and performance of clouds to run
scientific applications because of their different nature.
Clouds have a heterogeneous infrastructure compared
with homogen ous high-end computing systems (e.g. si-
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percomputers). The design goal of the clouds was topro-
vide shared resources to multi-tenants and optimize the
cost and efficiency. On the other hand, supercomputers
are designed to optimize the performance and minimize
latency.

However, clouds have some benefits over supercon-
puters. They offer more flexibility in their environment.
Scientific applications often have dependencies on unique
libraries and platforms. It is difficult to run these applic a-
tions on supercomputers that have shared resources with
pre-determined software stack and platform , while cloud
environments also have the ability to set up a customized
virtual machine image with specific platform and user
libraries. This makes it very easy for legacy applications
that require certain specifications to be able to run. Setting
up cloud environments is significantly easer compared to
supercomputers, as users often only need to set up a vir-
tual machine once and deploy it on multiple instances.
Furthermore, with virtual machines, users h ave no issues
with custom kernels and root permissions (within the
virtual machine), both significant issues in non -
virtualized high -end computing systems.

There are some other issues with clouds that make
them challenging to be used for scientific computing. The
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network bandwidth in commercial clouds is significantly
lower (and less predictable) than what is available in su-
percomputers. Network bandwidth and latency are two
of the major issues that cloud environments have for
high-performance computing. M ost of the cloud re-
sources use commodity network with significantly lower
bandwidth than supercomputers [13].

The virtualization overhead is also another issue that
leads to variable compute and memory performance. 1/0O
is yet another factor that has been one of the main issues
on application perform ance. Over the last decade the
compute performance of cutting edge systems has m-
proved in much faster speed than their storage and I/O
performance. I/O on parallel computers has always been
slow compared with computation and communication.
This remains to be an issue for the cloud environment as
well.

Finally, the performance of parallel systems including
networked storage systems such as Amazon S3 needs to
be evaluated in order to verify if they are capable of ru n-
ning scientific applications [3]. All of the above men-
tioned issues raise uncertainty for the ability of clouds to
effectively support HPC applications. Thus it is important
to study the capability and performance of clouds in sup-
port of scientific applications . Although there have been
early endeavors in this aspect [10][14][16][20][23], we de-
velop a more comprehensive set of evaluation. In some of
these works, the experiments were mostly run on limited
types and number of instances [14][16][17]. Only a few of
the researches have used the new Amazon EC2 cluster
instances that we have tested [10][20][24]. However the
performance metrics in those papers are very limited.
This paper covers a thorough evaluation covering major
performance metrics and compares a much larger set of
EC2 instance types and the comnonly used Amazon
Cloud Services. Most of the aforementioned above men-
tioned works lack the cost evaluation and analysis of the
cloud. Our work analyses the cost of the cloud on differ-
ent instance types.

The main goal of this research is to evaluate the per-
formance of the Amazon public cloud as the most popular
commercial cloud available, as well as to offer some can-
text for comparison against a private cloud solution . We
run micro benchmarks and real applications on Amazon
AWS to evaluate its performance on critical metrics in-
cluding throughput, bandwidth and latency of processor,
network, memory and storage [2]. Then, we evaluate the
performance of HPC applications on EC2 and compare it
with a private cloud solution [27]. This way we will be
able to better identify the advantages and limitations of
AWS on the scientific computing area.
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benchmarks to gauge expected performance and a -
tailed monetary cost analysis, we expect this paper will
be a recipe cookbook for scientists to help them decide
where to deploy and run their scientific applications b e-
tween public clouds, private clouds, or hybrid clouds .

This paper is organized as follows: Section 2 provides
the evaluation of the EC2, S3 and DynamoDB perfor-
mance on different service alternatives of Amazon AWS.
We provide an evaluation methodology. Then we present
the benchmarking tools and the environment settings of
the testbed in this project. Sectbn 2.4 presents the bent-
marking results and analyzes the performance. On 2.5 we
compare the performance of EC2 with FermiCloud on
HPL application. Section 3 analyzes the cost of the EC2
cloud based on its performance on different aspects. In
section 4, we review the related work in this area. Section
5 draws conclusion and discussesfuture work .

2 PERFORMANCE EVALUATION

In this section we provide a comprehensive evaluation of
the Amazon AWS technologies. We evaluate the perfor-
mance of Amazon EC2 and storage services such as S3
and EBS. We also compare the Amazon AWS public
cloud to the FermiCloud private cloud.

2.1 Methodology

We design a performance evaluation method to measure
the capability of different instance types of Amazon EC2
cloud and to evaluate the cost of cloud computing for

scientific computing. As mentioned, the goal is to evalu-
ate the performance of the EC2 on scientific applicéions.
To achieve this goal, we first measure the raw perfor-
mance of EC2.We run micro benchmarks to measure the
raw performance of different instan ce types compared
with the theoretical performance peak claimed by the
resource provider. We also compare the actual perfa-
mance with a typical non-virtualized system to better
understand the effect of vir tualization. Having the raw

performance we will be able to predict the performance of
different applications based on their requirements on di f-
ferent metrics. Then we compare the performance of a
virtual cluster of multiple instances running HPL applica-
tion on both Amazon EC2 and the FermiCloud. Compa r-
ing the performance of EC2, which we do not have much
information about its underlying resources with the Fer-
miCloud, which we know the details about, we will be

able to come up with a better conclusion about the weak-
nesses of the EC2On the following sectio ns we try to
evaluate the performance of the other popular services of
Amazon AWS by comparing them to the similar open
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Finally, this work performs a detailed price/cost analy-
sis of cloud instances to better understand the upper and
lower bounds of cloud costs. Armed with both detailed

poses.
The performance metrics for the experiments are based
on the critical requirements of scientific applications. Di f-
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ferent scientific applications have different priorities. We
need to know about the compute performance of the in-
stances in case of running compute intensive applications.
We also need to measure the memory performance as
memory is usually being heavily used by scientific appli-
cations. We also measure the network performance which
is an important factor on the performance of scientific
applications.

2.2 Benchmarking tools and applications

It is important for us to use wide-spread benchmarking
tools that are used by the scientific community. Specifical-
ly in Cloud Computing area, the benchmarks should have
the ability to run over multiple machines and provide
accurate aggregate results.

For memory we use CacheBench. We perform read
and write benchmarks on single instances. For network
bandwidth, we use Iperf [4]. For network latency and hop
distance between the instances, we $se ping and trac-
eroute. For CPU benchmarking we have chosen HPL
benchmark [5]. It provides the results in floating -point
operations per second (FLOPS)

In order to benchmark S3, we had to develop our own
benchmark suite, since none of the widespread bend-
marking tools can be used to test storage like this. We
have also developed a tool for configuring a fully wor k-
ing virtual cluster with support for some specific file sys-
tems.

2.3 Parameter space and testbed

In order to better show the capability of Amazon EC2 on
running scientific applications w e have used two differ-
ent cloud infrastructure s: (1) Amazon AWS Cloud, and
(2) FermiCloud. Amazon AWS is a public cloud with

many datacenters all around the world. FermiCloud is a
private Cloud which is used for internal use in Fermi N a-
tional Laboratory.

In order to compare the virtualization effect on the pe r-
formance we have also included two local systems on our
tests: (1) A 6core CPU and 16 Gigabytes of memory sys-
tem (DataSys), and (2) a 48ores and 256 Gigabytes
memory system (Fusion).

2.3.1 Amazon EC2

The experiments were executed on three Amazon cloud
data centers: US East(Northern Virginia), US West (Or e-
gon) and US West (Northern California). We cover all of
the different instance types in our evaluations.

The operating system on all of the US West instances
and the local systems is a 64bits distribution of Ubuntu.
The US East instances use 64 bits CentOS opating sys-
tem. The US West instances use Parairtualization tec h-
nigue on their hypervisor. But the HPC instances on the
US East cloud center use Hardware-Assisted Virtualiz a-
tion (HVM) [7]. HVM techniques use the features of the
new hardware to avoid handling all of the virtualization
tasks like context switching or providing direct access to
different devices at the software level. Using HVM, Vi r-
tual Machines can have direct access to hardware with the
minimal overhead.

We have included different in stances as well asa non-
virtualized machine . The ml.small instance is a simle
core instance with low compute and network perfo r-
mance. M1.medium is a single core system with 3.75 GB
of memory. Cl.xlarge instance is a compute optimized
with 8 cores and 7 GB of memory. M2.4xlarge is a
memory optimized instances and is supposed to have
high memory performance. Hil.4xlarge is a storage opti-
mized instace with 2 SSD drives. Finally ccl.4xlarge and
cc2.8xlarge as cluster compute instances, and c3.8xlarge
as the new generation of HPC instances havel6 and 32
cores and more than 40 GB memory. These instances are
optimized for HPC workloads.

2.3.2 FermiCloud

FermiCloud is a private cloud providing Infrastructure -
as-a-Service servicesinternal use. It manages dynamically
allocated services for both interactive and batch pro-
cessing. As part of a national laboratory, one of the main
goals FermiCloud is being able to run scientific applic a-
tions and models. FermiCloud uses OpenNebula Cloud
Manager for the purpose of managing and launching the
Virtual Machines [27]. It uses KVM hypervisor that uses
both para-virtualization and full virtualization tech-
niques [33]. The FermiCloud Infrastructure is enabled
with 4X DDR Infini band network adapters. The main
challenge to overcome in the deployment of the network
is introduced when virtualizing the hardware of a m a-
chine to be used (and shared) by the VMs. This overhead
slows drastically the data rate reducing the efficiency of
using a faster technology like Infiniband. To overcome
the virtualization overhead they use a technique called
Single Root Input/output  Virtualiza tion (SRIOV) that
achieves device virtualization without using device em u-
lation by enabling a device to be shared by multiple vi r-
tual machines. The technique involves with modifications
to the Linuxds Hypervisor
manager [32].

Each server isenabled with a 4x (4 links) Infiniband
card with a DDR data rate for a total theoretical speed of
up to 20 Gbh/s and after the 8b/10b codification 16 Gb/s.
Network latency is 1 Ts when used with MPI [6]. Each
card has 8 virtual lanes that can create 1 physical function
and 7 virtual functions via SR-IOV. The serversare ena-
bled with 2 quad core 2.66 GHz Intel processors, 48Gb of
RAM and 600Gb of SAS Disk, 12TB of SATA, am 8 port
RAID Controller [32].

2.4  Performance Evaluation of AWS

2.4.1 Memory hierarchy performance

This section presents the memory benchmark results. We
sufficed to run read and write benchmarks. The experi-
ments for each instance were repeated three times.

Memory bandwidth is a critical factor in scientific a p-
plications performance. Many Scientific applications like
GAMESS, IMPACT-T and MILC are very sensitive to
memory bandwidth [8]. Amazon has not included the
memory bandwidth of the instances. It has only listed
their memory size. We also measure the memory band-
width of each instance.



Fig. 1 shows the system memory read bandwidth in
different memory hierarchy levels. The horizontal axis
shows the cache size. The bandwidth is very stable up to
a certain cache size. The bandwidth starts to drop after a
certain size. The reason for the drop off is surpassing the
memory cache size at a certain hierarchy level.

Memory performance of the ml.small instance is sig-
nificantly lower than other instances. The low memory
bandwidth cannot be only attributed to the virtualization
overhead. We believe the main reason ismemory thro t-
tling imposed based on the SLA of those instances.
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Fig. 1. CacheBench Read benchmark results, one benchmark pr o-
cess per instance

Another noticeable point is the low bandwidth of the
cc2.8xlarge and c3.8xlarge These instances have similar
performance that is much lower than other instances. A
reason for that can be the result of the different virtual
memory allocation on the VMs by HVM virtualization on
these instances. We have however observed an effect in
large hardware -assisted virtual machines such as those on
FermiCloud . In such machines, t will take a while for the
system to balance the memory out to its full size at the
first launch of the VM .

Atfter all, the results show that the memory bandwidth
for read operation in the larger instances is close to the
local non-virtuali zed system. We can conclude that thervi

tualization effect on the memory is low, which is a good sign -
scientific applications that are mostly sensitive to the memc"

performance.

Fig. 2 shows the write performance of different cloud
instances and the local system. The write performance
shows different results from the read benchmark. As in
write, the c3.8xlarge instance has the best performance
next to the non-virtualized local system.

For each instance we can notice two or three major
drop-offs in bandwidth. These drop -offs show different
memory hierarchies. For example on the c3.8xlarge in-
stance we can notice that the memory bandwidth drops at
24 Kbytes. We can also observe that the write throug h-
puts for different memory hierarchies are different. These
data points likely represent the different caches on the
processor (e.g. L1, L2, L3 caches).

Comparing the cluster instance with the local system,
we observe that on smaller buffer sizes, the local system
performs better. But cloud instance outperforms the local
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system on larger cache sizesThe reason for that could be
the cloud instances residing on more powerful physical

nodes with higher bandwidt hs. We can observe that the
write bandwidth on the cloud instances drops off at ce r-

tain buffer sizes. That shows the memory hierarchy ef-
fects on the write operation.

Users can choose the best transfer size for write opea-
tion based on the performance pees of each instance
type to get the best performance. This would optimize a
scientific application write bandwidth.
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Fig. 2. CacheBench write benchmark results, one benchmark pr o-
cess per instance

2.4.2 Network performance

We have run many experiments on network performance
of Amazon cloud. The experiments test the network per-
formance including bandwidth and latency.

We first test the local network bandwidth between the
same types of instances.Fig. 3 shows the network per-
formance of different types of nodes. In each case both of
the instances were inside the same datacenter. The ne
work bandwidth for most of the instances were as ex-
pected exceptfor two instances.
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Fig. 3. iPerf benchmark results. Network bandwidth in a single
client and server connection, internal network.

The lowest performance belongs to the tl.micro and
ml.small instances. These two instances use the same 1
Gb/s network cards used by other instances. But they
have much lower bandwidth. We believe that the reason
is sharing the CPU cores and not having a dedicated core.
This can affect network performance significantly as the
CPU is shared and many network requests cannot be
handled while the instance is on its idle time. During the
idle time of the instance, the virtual system calls to the
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VMM will not be processed and will be saved in the
gueue until the idle time is over. The network perfo r-
mance is highly affected by processor sharing techniques.
Other works had the same observations and conclusions
about the network performance in these two instance

We can predict the connection latency based on the
hop distance of instances. We have run the latency test for
other instance types. The resultsdo not seem to be ce-
pendent on instance type for the instances with the same
network interconnect. The latencyvariance of Amazonnk

types [9]. Another reason for the low performance of the
ml.small and tl.micro instances could be throttling the
network bandwidth by EC2. T he Xen hypervisor has the

stances isnuchhigher than the variance in a HPC system. The
high latency variance is not desirable for scientific applications.
In case oHPC instances which have the 10 Gigabit Ethernet

ability of network throttling if ne eded.

Among the instances that use the slower network
cards the m1l.medium instance has the best performance.
We did not find a technical reason for that. The
ml.medium instances use the same network card as other
instances and does not have any advantage on system
configuration over other instance types. We assume the
reason for that is the administrative decision on hyperv i-
sor level due to their popularity among different instance
types.

Another odd result is for ml.medium instance. The
bandwidth in medium instance exceeds 1 Glec, which
is the specified network bandwidth of these. m1.medium
instance bandwidth achieves up to 1.09 Gb/sec. That is
theoretically not possible for a connection between two
physical nodes with 1 Gb/s network cards. We believe the
reason is that both of the VMs reside in the same physical
node or the same cluster. In case of residing on the same
node, the packets stay in the memory. Therefore the can-
nection bandwidth is not limited to the network ban d-
width. We can also assumethat not necessarily the in-
stances have 1 Gb/s network cards. In fact the nodes that
run medium instances may have more powerful network
cards in order to provide better network performance for
these popular instances.

The HPC instances have the best netwmakdwidth among

cards, the latency rangérom 0.19ms to 0.Z&ms which shows
a smaller variance and more stable network performance.
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Fig. 4. Cumulative Distribution Function and Hop distance of
connection latency between instances inside a datacenter.

Other researches have compared thelatency of EC2
HPC instances with HPC systems. The latency of the HPC
instance on EC2is reported to be 3 to 40 times higher than
a HPC machine with a 23 Gb/s network card [10]. The
latency variance is also much higher.

2.4.3 Compute Performance

In this section we evaluate the compute performance of
EC2 instances. Fig. 5 shows the compute performance of
each instance using HPL as well as the ideal performance

the instances. They use 10 Gbh/sec network switches. The re%ﬂ&ﬁned by Amazon. It also shows the performance vari-
show that the network virtualization overhead in these instangnce of instances.

es is very low. Té performance gets as high a809@f ideal
performance.

We also measure the network connection latency and
the hop distance between instances inside the Oregon
datacenter of Amazon EC2. We run this experiment to
find out about the correlation of connection latency and
the hop distance. We also want to find the connection
latency range inside a dataenter. We measure the latency
and the hop distance on 1225 combinations of ml.small
instances.Fig. 4 shows the network latency distribution of
EC2 mlsmall instances. It also plots the hop distance of
two instances. The network latency in this experiment
varies between 0.006 ms and 394 ms, an arguably very
large variation.
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ormance variance for each instance. The performaice
variance of the instancesis low in most of the instance
types. Providing a consistent performance is an ad-
vantage for cloud instances.

x UOE EED ODudpd Mol tharlNd® ®f the allocated
instances to a user are 46 percent far from each other. In
other words the hop distance is 4-6 instances with the
probability of more than 94%.



Among all of the instances, the c3.8xlargeand the non-
virtualized node achieve the best efficiency. Overall we
can observe that the efficiency of non-HPC instances is
relatively low. Other papers have suggested the low per-
formance of HPL application while running on virtua |-
ized environments [11][14]. However, noticing the fact
that the HPC instances were as efficient as the non
virtualized node, and the fact that there is no other factor
(e.g. network latency) affecting the benchmark, can imply
that the virtualization overhead has no major effect on
this program on a single nod e scale.

2.4.4 1/O Performance

In this section we evaluate the 1/0 performance of the EBS
volume and local storage of each instance. The following
charts show the results obtained after running IOR on the
local storage and EBS volume storage of each of then-
stances with different transfer sizes and storage devices.
Fig. 6 shows the performance of POSIX read operation on
different instances. Except for the hil.4xlarge, which is
equipped with SSDs, the throughput among other in-
stances does not vary greatly from one another. For most
of the instances the throughput is close to a non
virtualized system with a normal spinning HDD.
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Fig. 6. Local POSIX read benchmark results on all instances

Fig. 7 shows the maximum write and read throughput
on each instance on both EBS volumes and local storage
devices. Comparing with local storage, EBS volumes
show a very poor performance, which is th e result of the
remote access delay over the network.

B Local writes
Local reads
W EBS writes

EBS reads

Instance type

Fig. 7. Maximum write/read throughput on different instances

Finally, to complete these micro-benchmarks, we set up a
software RAID -0 with EBS volumes, varying the number
of volumes from 1 to 8. We ran the same benchmark on a
cl.medium instance. Fig. 8 shows the write performance
on RAID -0 on different number of EBS volumes. Looking
at the write throughput, we can observe that the
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throughput does not vary a lot and is almost constant as
the transfer size increases That shows a stable write
throughput on EBS drives. The write throughput on the
RAID -0 increases with the number of drives. The reason
for that is that the data will be spread among the drives
and is written in parallel to all of the drives. That
increases the write throughput because of having parallel
write instead of serial write. Oddly, the performance does
not improve as the number of drives increases from 1 to 2
drives. The reason for that is moving from the local writes
to network. Therefore the throughput stays the same. For
4 EBS volumes, we can observe a 4x increase on the
throughput. In case of 8 EBS volumes we expect a 2x
speed up comparing with the 4 EBS experiment. However
the write throughput can not scale better because of the
limitation of the network bandwith. The maximum
achievable throughput is around 120MB/s, which is
bound to the network bandwidth of the instances that is 1
Gb/s. so we can conclude that the RAID throughput will
not exceed 120 MB/s if we add more EBSsolumes.
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Fig. 8. RAIDO Setup benchmark for different transfer sizes  t write

2.45 S3 and PVFS Performance

In this section we evaluate and compare the performance
of S3 and PVFS. S3 is a highly scalable storage service
from Amazon that could be wused on multinode
applications. Also, a very important requirement for most

of the scientific applications is a parallel file system
shared among all of the computing nodes. We have also
included the NFS as a centralized file system to show
how it performs on smaller scales.
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Fig. 9. S3 performance, maximum read and write throughput

First we evaluate the s3 performance on read and write
operations. Fig. 9 shows the maximum read and write
throughput on S3 accessed by different instance types.
Leaving aside the small instances, there is not much
difference between the maximum read/write throughp ut
across instances. The reason is that these values are
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implictily limited by either the network capabilities or S3
itself.

Next, We compare the performance of the S3 and PVFS
as two possible options to use for scientific applications.
PVFS is commonly used in scientific applications on HPC
environments. On the other hand, S3 is commonly used
on the multinode applications that run on cloud
environment. We have only included the read
performance in this paper. The experiment runs on
ml.medium instances. Fig. 10 shows that the read
throughput of the S3 is much lower compared to PVFS on
small scales. This results from the fact that the S3 is a
remote network storage while PVFS is installed and is
spread over each instance. As The number of the
instances increase, PVFS canroscale as well as the S3
and the performance of the two systems get closer to each
other up to a scale that S3 slightly performs better than
the PVFS. Therefore it is better to choose S3 if we are
using more than 96 instances for the application.
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Fig. 10. Comparing the read throughput of S3 and PVFS on different
scales

Next, we evaluate the performance of PVFS2 for the
scales of 1 to 64 as we found out that it performs better
than S3 in smaller scales. To benchmark PVFS2 for the
following experiments we use the MPIIO interface i n-
stead of POSIX. In the configuration that we used, every
node in the cluster serves both as an I/0 and metadata
server. Fig. 11 shows the read operation throughput of
PVFS2 on local storage with different number of instances
and variable transfer size. The effect of having a small
transfer size is significant, where we see that the
throughput inceases as we make the transfer size bigger.
Again, this fact is due to the overhead added by the 1/0O
transaction.

4500
4000

- 3500

@

S 3000

§ 2500

£ 2000

oo

3 1500

—64 instances
- 32 instances
~ 16 instances
-~ 8 instances
. —4instances

£ 1000 — -2 instances

500
0

—1 instance

4KB 16 KB 64 KB 256 KB512KB 1MB 2MB 4 MB 8 MB 16 MB
Transfer size

Fig. 11. PVFS readon different transfer sizes over instance storage

Finally, Fig. 12, shows the performance of PVFS2 and
NFS on memory through the POSIX interface. The results
show that the NFS cluster does not scale very well and
the throughput does not increase as we increase the
number of nodes. It basically bottlenecks at the 1Gb/s
which is the network bandwidth of a single instance.
PVFS2 performs better as it can scale very well on 64
nodes on memory. But as we have shown above, it will
not scale on larger scales.
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Fig. 12. Scalability of PVFS2 and NFS in read/write throughput
using memory as storage

2.4.6 DynamoDB performance

In this section we are evaluating the performance of Am-
azon DynamoDB. DynamoDB is a commonly used NoSq|
database used by commercial and scientific applic a-
tions [30]. We conduct micro benchmarks to measure the
throughput and latency of insert and look up calls scaling

from 1 to NtDud U U B @EibAJ E O w O U O EU B)EUGH Qi
i UOOwhyYYYY wU Gu hut EYO0OEYOIUE B EUAG U BuuE
O@OUT wOhd Ol EPUOWEOCE wWB EIB & UBRI® B (
UPDOOwEEXxEEDPUa w i OBuluYdOixw & E+BE O C
PT PET wbUwUTHI uGEHERBOODWALEY BD OB
OOwbOi OUOEUDPOOWUI Ol EUI EWEEOUU
OOwoi I 1 DEE WUy O &k ix EN0I6 wiime (H Oud |1
OEU]I OEawoli w#alOEOO#! WEOI UOz UwE
ECEwWUT I wYEOUI wiBl v B wdi @Hwiud U

O00#! wbUwl BT FO Y GhoEFIE@ EE@Y o look
up and insert calls made from 96 cc2.8xxlarge instances
The averagelatency for insert and look up are respective-
ly 10 ms and 8.7 ms.90% of the calls had a latengy of less
than 12 msfor insert and 10.5 ms for look up.
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Fig. 13. CDF plot for insert and look up latency on 96 8xxl instances

We compare the throughput of DynamoDB with ZHT
on EC2[26]. ZHT is an open source consistent NoSql da-
tabase providing a service which is comparable to Dyn a-



moDB in functionality . We conduct this experiment to

better understand the available options for having a sca-

able key-value store. We use both ml.medium and

cc2.8xlarge instances to run ZHT.On 96 nodes scale with
2cc.8xlarge instance type, ZHT offers 1215.0 K ops/s while
DynamoDB failed the test since it saturated the capacity.

The maximum measured throughput of Dyna moDB was
11.5K ops/s which is found at 64 cc2.8xlarge instance
scale. For a fair comparison, both DynamoDB and ZHT

have 8 clients per node.

Fig. 14 shows that the throughput of ZHT on
ml.medium and cc2.8xlarge instances are respectively
59x and 559x higher than DynamoDB on 1 instance scale.
On the 96 instance scale they are 20x and 134kigher than
the DynamoDB.
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Fig. 14. Throughput comparison of DynamoDB with ZHT running on
ml.medium and cc2.8xlarge instances on different scales.

2.4.7 Workflow Application Performance

(OwlT PUWUTI EUPOOwWPI wE OEHOGRGA A
UEDPI OUPI PEWEOOXxUUDPOT wExxODI
EOOUES w3l 1 wEx x Ob E FPoO0eatoralyY |
Marginal Price Simulation (LMPS), and it is coordinated
and run through the Swift parallel programming sy s-
tem [12]. Optimal power flow studies are crucial in u n-
derstanding the flow and price patterns in electricity u n-
der different demand and network conditions. A big
computational challenge arising in power grid analysis is
that simulations need to be run at high time resolutions in
order to capture effect occurring at multiple time scales.
For instance, power flows tend to be more constrained at
certain times of the day and of the year, and these need to

be identified.
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Fig. 15. The LMPS application tasks time distributions.
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The power flow simulation application under study an a-
lyzes historical conditions in the lllinois grid to simulate
instant power prices on an hourly basis. The application
runs linear programming solvers invoked via an AMPL
(A Mathematical Programming Language) representation
and collects flow, generation, and price data with at-
tached geographical coordinates [25]. A typical applic a-
tion consists of running the model in 8760 independent
executions corresponding to each hour of the year. Each
application task execution spans in the range between 25
and 80 seconds as shown inthe application tasks time
distribution graph in %D tu&Ausnapshot of one such re-
sult prices plotted over the map of lllinois is shown in %D 1T 8 w
hut The prices are in US dollars per megaWatt-hour
shown as interpolated contour plots across the areas cm-
nected by transmission lines and generation stations
shown as lines and circles respectively. A series of such
plots could be post processed to give an animated visual-
ization for further analysis in trends etc.
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Fig. 16. A contour plot snapshot of the power prices in $/MWh

across the state of lllinois for an instance in July 2000
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The execution of the application was performed on an
increasing number of ml.large instances(seeFig. 17).
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Fig. 17. The runtime of LMPS on m1.large instances in different scales.

For data storage, we use S3Given that the application
scales well to 80 instances, but not beyond that. e per-
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formance saturation is a salient point that comes out of
Fig. 17. With S3 object store being remote,at 100 VMs it
takes long enough to fetch the data that it is dominating

execution time. More scalable distributed storage subsys-
tem should be investigated that is geared towards scien-
tific computing, such as PVFS, Ludre, or GPFS.

2.5 Performance Comparison of EC2 vs.

FermiCloud
In this section we compare the performance of the EC2 as
a public cloud with FermiCloud as a private cloud on
HPL benchmark which is a real HPC application . Before
comparing the performance of Amaz on on real Applic a-
tions, we need to compare the raw performance of the
two resources.

2.5.1 Raw performance comparison

Before comparing the performance of the two infrastru c-
tures on real applications like HPL, we need to compare
their raw performance on the essential metrics in order to
find the root causes of their performance differences. The
most effective factors on HPL performance are compute
power, and Network latency and bandwidth . We need to
compare these factors on the instances with similar func-
tionalities.

On both of the Clouds, w e chosethe instances that can
achieve the highest performance on HPL applications . On
EC2, we use c3.&large instances that are enabled with
Intel Xeon E5-2680 v2 (lvy Bridge) Processorsand a 10
Gigabits network adapter with SRIOV technology. On
FermiCloud, each server machine is enabled with 2 quad
core 2.66 GHz Intel processors, and 8 port RAID Contrd-
ler. On FermiCloud machines are backed by (16 Gigabits
effective) Infiniband network adapters.

The CPU efficiency is defined as the performance of
the VM running HPL on a single VM with no network
connectivity, divided by the theoretical peak performance
of the CPU. Fig. 18 compares the raw performance of the
Amazon EC2 with FermiCloud on CPU and network pe r-
formance. The results show that the virtualization ove r-
head on FermiCloud instances areslightly lower than the
EC2 instances.
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Fig. 18 Raw performance comparison overview of EC2 vs. Fer-

miCloud

The significant difference of the two infrastructures is
on the network adapters. The FermiCloud instances are
enabled with InfiniBand network adapters and are able to
provide higher performance compared to the EC2 in-
stances that have 10 Gigabit network cards. The efficiency

of both of the systems on network throughput is high.
The network throughput efficiency is defined as the VM
network performance divided by the theoretical peak of
the device. FermiCloud and EC2 network adapters re-
spectively achieve 97.% and 97.4% efficiency. We used
MPIbench to calculate the network latency. There is a 6x
difference between the network latency of the two clouds.
The latency of the FermiCloud instance is 2.2 us as cm-
pared to the latency of EC2 instance which is 13 us. An-
other important factor is the latency variance. The latency
variance on both systems is within 20% which is stable.
HPL application uses MPI for communication among the
nodes. The network latency can decreasethe performance
of the application by affecting the MPI pe rformance.

2.5.2 HPL performance comparison

In this section we evaluate the performance of HPL appli-
cation on both on a virtual cluster on both FermiCloud

and EC2. The main difference onthe two infrastru ctures
is on their virtualization layer and the network perfo r-
mance. FermiCloud uses KVM and is enabled with In-
finiBand network adapters. EC2 uses its own type of vir-
tualization which is based on Xen hypervisor and has 10
Gigabit network adapters.

The best way to measure the efficiency of a virtual
cluster on a cloud environment is defining it as the per-
formance of the VM which include the virtualization
OYT Ul 1l EEWEPYPEI EwEawUT 1T wi OC
include virtualization overhead. We can measure th e effi-
ciency as defined for FermiCloud since we have access to
the host machines. But that is not possible for EC2 since
we do not have access to thephysical host machines.
Therefore we compare the scalability efficiency of the two
clouds which is defined asthe overhead of the application
performance as we scale up the number of cloud instanc-
es.

Fig. 19 compares the efficiency of EC2 and FermiCloud
running HPL application on a virtual cluster. Due to
budget limitations we run the experiment up to 32 i n-
stances scale
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Fig. 19. Efficiency comparison of EC2 and FermiCloud running
HPL application on a virtual cluster .

The results show that the efficiency is dependent on
the network latency. On the 2 instances scale, both cloud
show good efficiency. They only lose 10% efficiency that
is due to the MPI communications latency added between
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the instances. Since both of the clouds haverelatively
powerful network adapters, the communication overhead
is still not a bottleneck on 2 instances scale. As the nun-
ber of instances increase, the applications processes make
more MPI calls to each other and start saturating the net-
work bandwidth. Having InfiniBand network, the Fer-
miCloud loses less efficiency than the EC2. The efficiency
of EC2 drops to 82% and the efficiency of the FermiCloud
drops to 87%. The only major difference between the in-
stances of private and public cloud is on their network
latency. As a result, we can see that they provide similar
efficiency with the private cloud instance being roughly
about 5-8% more efficient on different scales.

3 COST ANALYSIS

In this section we analyze the cost of the Amazon EC2
cloud from different aspects. We analyze the cost of in-

stances for compute intensive applications as well as for

data intensive applications. Our analysis provides sug-

gestions to different cloud users to find the instance type

that fits best for certain application with specific requir e-

ments. Next section compares the instances based on their
memory capacity and performance.

3.1 Memory Cost

This section compares the cost of the memory on Amazon
EC2 instances. Fig. 20 compares the cost of instances
based on their memory capacity and bandwidth.

The GB/Dollar metric on the left hand side shows the
capacity cost effectivenessof the instances. The most cost
effective instances for memory capacity are the high
memory (m2.2xlarge & m2.4xlarge) instances. But looking
at the cost of the memory bandwidth, we can observe that
these instancesdo not have the best memory bandwidth
efficiency. The most cost effective instances based on the
memory bandwidth efficiency are the ml.small and
m1l.medium instances.
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Fig. 20. Memory capacity and memory bandwidth cost.

3.2 CPU Cost

In this section we analyze the costeffectiveness of in-
stances based on the performance of the instances while
running compute intensive applications. The metric for
our analysis is GFLOPS/Dollar.

Fig. 21 compares the ideal performance cost of the n-
stances based on Amazon claims with their actual per-
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formance while running HPL benchmark. The results
show that the most costeffective instance & c3.8xlarge.
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Fig. 21. CPU performance cost of instances

3.3 Cluster Cost

We analyze the cost of the virtual clusters set up by
ml.medium and ccl.4xlarge instances in different sizes.
Fig. 22 compares the cost of the virtual clusters based on
their compute performance.
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Fig. 22. Cost of virtual cluster of m1.medium and ccl.4xlarge.

3.4 DynamoDB Cost
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Fig. 23 Cost Comparison of DynamoDB with ZHT
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