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Abstract ð Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require 

significant resources, however not all scientists have access to sufficient high-end computing systems. Cloud computing has 

gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different 

infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per 

money spent. This work provides a comprehensive evaluation of EC2 cloud in different aspects. We first analyze the potentials 

of the cloud by evaluating the raw performance of different services of AWS such as compute, memory, network and I/O. Based 

on the findings on the raw performance, we then evaluate the performance of the scientific applications running in the cloud. 

Finally, we compare the performance of AWS with a private cloud, in order to find the root cause of its limitations while running 

scientific applications. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the 

cloud in terms of both raw performance and scientific applications performance. Furthermore, we evaluate other services 

including S3, EBS and DynamoDB among many AWS services in order to assess the abilities of those to be used by scientific 

applications and frameworks. We also evaluate a real scientific computing application through the Swift parallel scripting system 

at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we 

expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific 

applications between public clouds, private clouds, or hybrid clouds. 

Index Terms ð Cloud computing, Amazon AWS, performance, cloud costs, scientific computing   
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1 INTRODUCTION

HE idea of using clouds for scientific applications has 
been around for several years, but it has not gained 

traction primarily due to many issues such as lower net-
work bandwidth or poor and unstable performance. Sc i-
entific applications often rely on access to large legacy 
data sets and pre-tuned application software libraries. 
These applications today run in HPC envir onments with 
low latency interconnect  and rely on parallel file systems. 
They often require high performance systems that have 
high I/O and network bandwidth. Using commercial 
clouds gives scientists opportunity to use the larger r e-
sources on-demand. However, there is an uncertainty 
about the capability and performance of clouds to run 
scientific applications because of their different nature. 
Clouds have a heterogeneous infrastructure compared 
with homogen ous high -end computing systems (e.g. su-

percomputers). The design goal of the clouds was to pro-
vide shared resources to multi-tenants and optimize the 
cost and efficiency. On the other hand, supercomputers 
are designed to optimize the performance and minimize  
latency. 

However, clouds  have some benefits over supercom-

puters. They offer more flexibility in their environment. 

Scientific applications often have dependencies on unique 

libraries and platforms. It is difficult to run these applic a-

tions on supercomputers that have shared resources with 

pre-determined software stack and platform , while c loud 

environments also have the ability to set up a customized 

virtual machine image with specific platform and user 

libraries. This makes it very easy for legacy applications 

that require certain specifications to be able to run. Setting 

up cloud environments is significantly easier compared to 

supercomputers, as users often only need to set up a vi r-

tual machine once and deploy it on multiple instances.  

Furthermore, with virtual machines, users h ave no issues 

with custom kernels and root permissions (within the 

virtual machine), both significant issues in non -

virtualized high -end computing systems.  
There are some other issues with clouds that make 

them challenging to be used for scientific comput ing. The 
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network bandwidth in commercial clouds is significantly 
lower (and less predictable) than what is available in su-
percomputers. Network bandwidth and latency are two 
of the major issues that cloud environments have for 
high-performance computing. M ost of the cloud re-
sources use commodity network with significantly lower  
bandwidth than supercomputers   [13]. 

The virtualization overhead is also another issue that 
leads to vari able compute and memory performance. I/O 
is yet another factor that has been one of the main issues 
on application perform ance. Over the last decade the 
compute performance of cutting edge systems has im-
proved in much  faster speed than their storage and I/O 
performance. I/O on parallel computers has always been 
slow compared with computation and communication. 
This remains to be an issue for the cloud environment as 
well.  

Finally, the performance of parallel systems including 
networked storage systems such as Amazon S3 needs to 
be evaluated in order to verify if they are capable of ru n-
ning scientific applications   [3]. All of the above men-
tioned issues raise uncertainty for the ability of clouds to 
effectively support HPC applications. Thus it is important 
to study the capability and performance of clouds in sup-
port of scientific applications . Although there have been 
early endeavors in this aspect  [10] [14] [16] [20] [23], we de-
velop a more comprehensive set of evaluation. In some of 
these works, the experiments were mostly run on limited 
types and number of instances  [14] [16] [17]. Only a few of 
the researches have used the new Amazon EC2 cluster 
instances that we have tested  [10] [20] [24]. However the 
performance metrics in those papers are very limited. 
This paper covers a thorough evaluation covering major 
performance metrics and compares a much larger set of 
EC2 instance types and the commonly used Amazon 
Cloud Services. Most of the aforementioned above men-
tioned works lack the cost evaluation and analysis of the 
cloud. Our work  analyses the cost of the cloud on differ-
ent instance types.  

The main goal of this research is to evaluate the per-
formance of the Amazon public cloud as the most popular 
commercial cloud available , as well as to offer some con-
text for comparison against a  private cloud solution . We 
run micro benchmarks and real applications on Amazon 
AWS to evaluate its performance on critical metrics in-
cluding throughput, bandwidth and latency of processor, 
network, memory and storage  [2]. Then, we evaluate the 
performance of HPC applications on EC2 and compare it 
with a private cloud solution   [27]. This way we will be 
able to better identify the advantages and limitations of 
AWS on the scientific computing area. 

Over the past few years, some of the ÚÊÐÌÕÛÐÍÐÊɯÍÙÈÔÌɪ
ÞÖÙÒÚɯ ÈÕËɯ È××ÓÐÊÈÛÐÖÕÚɯ ÏÈÝÌɯÈ××ÙÖÈÊÏÌËɯ ÜÚÐÕÎɯ ÊÓÖÜËɯ
ÚÌÙÝÐÊÌÚɯÈÚɯÛÏÌÐÙɯÉÜÐÓËÐÕÎɯÉÓÖÊÒÚɯÛÖɯÈÓÓÌÝÐÈÛÌɯÛÏÌÐÙɯÊÖÔ×Üɪ
ÛÈÛÐÖÕɯ×ÙÖÊÌÚÚÌÚɯ ȻƕƖȼ ȻƗƕȼȭɯ6ÌɯÌÝÈÓÜÈÛÌɯÛÏÌɯ×ÌÙÍÖÙÔÈÕÊÌɯÖÍɯ
ÚÖÔÌɯÖÍɯÛÏÌɯ 62ɯÚÌÙÝÐÊÌÚɯÚÜÊÏɯÈÚɯ2ƗɯÈÕËɯ#àÕÈÔÖ#!ɯÛÖɯ
ÐÕÝÌÚÛÐÎÈÛÌɯÛÏÌÐÙɯÈÉÐÓÐÛÐÌÚɯÖÕɯÚÊÐÌÕÛÐÍÐÊɯÊÖÔ×ÜÛÐÕÎɯÈÙÌÈȭ 

Finally, this work  performs a detailed price/cost analy-
sis of cloud instances to better understand the upper and 
lower bounds of cloud costs. Armed with both detailed 

benchmarks to gauge expected performance and a de-
tailed monetary cost analysis, we expect this paper will 
be a recipe cookbook for scientists to help them decide 
where to deploy and run their scientific applications b e-
tween public clouds, private clouds, or hybrid clouds .  

This paper is organized as follows: Section 2 provides 
the evaluation of the EC2, S3 and DynamoDB perfor-
mance on different service alternatives of Amazon AWS. 
We provide an evaluation methodology. Then we present 
the benchmarking tools and the environment settings of 
the testbed in this project. Section 2.4 presents the bench-
marking results and analyzes the performance. On 2.5 we 
compare the performance of EC2 with FermiCloud on 
HPL application.  Section 3 analyzes the cost of the EC2 
cloud based on its performance on different aspects. In 
section 4, we review the related work in this area. Section 
5 draws conclusion and discusses future work . 

2 PERFORMANCE EVALUATION  

In this section we provide a comprehensive evaluation of 
the Amazon AWS technologies. We evaluate the perfor-
mance of Amazon EC2 and storage services such as S3 
and EBS. We also compare the Amazon AWS public 
cloud to the FermiCloud private cloud.   

2.1 Methodology  

We design a performance evaluation method to measure 
the capability of different instance types of Amazon EC2 
cloud and to evaluate the cost of cloud computing for 
scientific computing. As mentioned, the goal is to evalu-
ate the performance of the EC2 on scientific applications. 
To achieve this goal, we first measure the raw perfor-
mance of EC2. We run micro benchmarks to measure the 
raw performance of different instan ce types, compared 
with the theoretical performance peak claimed by the 
resource provider. We also compare the actual perfor-
mance with a typical non -virtualized system to better 
understand the effect of vir tualization. Having the raw 
performance we will be  able to predict the performance of 
different applications based on their requirements on di f-
ferent metrics. Then we compare the performance of a 
virtual cluster of multiple instances running HPL applica-
tion on both Amazon EC2 and the FermiCloud. Compa r-
ing the performance of EC2, which we do not have much 
information about its underlying resources with the Fer-
miCloud, which  we know the details about, we will be 
able to come up with a better conclusion about the weak-
nesses of the EC2. On the following sectio ns we try to 
evaluate the performance of the other popular  services of 
Amazon AWS by comparing them to the similar open 
source services. 

Finally,  we analyze the cost of the cloud computing 
based on different performance metrics from the previous 
part. Using the actual performance results provides more 
accurate analysis of the cost of cloud computing while 
being used in different scenarios and for different pu r-
poses.  

The performance metrics for the experiments are based 
on the critical requirements of scientific applications. Di f-
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ferent scientific applications have different priorities. We 
need to know about the compute performance of the i n-
stances in case of running compute intensive applications. 
We also need to measure the memory performance, as 
memory is usually being heavily used by scientific appl i-
cations. We also measure the network performance which 
is an important factor on the performance of  scientific 
applications.  

2.2 Benchmarking tools and applications  

It is important for us to use wide-spread benchmarking 
tools that are used by the scientific community. Specifical-
ly in Cloud Computing area, the benchmarks should have 
the ability to run over multiple machines and provide 
accurate aggregate results.  

For memory we use CacheBench. We perform read 
and write benchmarks on single instances. For network 
bandwidth, we use Iperf  [4]. For network latency and hop 
distance between the instances, we use ping and trac-
eroute. For CPU benchmarking we have chosen HPL 
benchmark  [5]. It provides the results in floating -point 
operations per second (FLOPS). 

In order to benchmark S3, we had to develop our own 
benchmark suite, since none of the widespread bench-
marking tools can be used to test storage like this. We 
have also developed a tool for configuring a fully wor k-
ing virtual cluster with support for some specific file sys-
tems.  

2.3 Parameter space and testbed  

In order t o better show the capability of Amazon EC2 on 
running scientific applications w e have used two differ-
ent cloud infrastructure s: (1) Amazon AWS Cloud, and 
(2) FermiCloud. Amazon AWS is a public cloud with 
many datacenters all around the world. FermiCloud is a 
private Cloud which is used for internal use in Fermi N a-
tional Laboratory.  

In order to compare the virtualization effect on the pe r-
formance we have also included two local systems on our 
tests: (1) A 6-core CPU and 16 Gigabytes of memory sys-
tem (DataSys), and (2) a 48-cores and 256 Gigabytes 
memory system (Fusion). 

2.3.1 Amazon EC2 

The experiments were executed on three Amazon cloud 
data centers: US East (Northern Virginia), US West (Or e-
gon) and US West (Northern California). We cover all of 
the different instance types in our evaluations.  

The operating system on all of the US West instances 
and the local systems is a 64bits distribution of Ubuntu. 
The US East instances use 64 bits CentOS operating sys-
tem. The US West instances use Para-virtualization tec h-
nique on their hypervisor. But the HPC instances on the 
US East cloud center use Hardware-Assisted Virtualiz a-
tion (HVM)  [7]. HVM techniques use the features of the 
new hardware to avoid handling all of the virtualization 
tasks like context switching or providing direct access to 
differen t devices at the software level. Using HVM, Vi r-
tual Machines can have direct access to hardware with the 
minimal overhead.  

We have included different in stances as well as a non-
virtualized machine . The m1.small instance is a single 
core instance with low compute and network perfo r-
mance. M1.medium is a single core system with 3.75 GB 
of memory. C1.xlarge instance is a compute optimized 
with  8 cores and 7 GB of memory. M2.4xlarge is a 
memory optimized instances and is supposed to have 
high memory  performance. Hi1.4xlarge is a storage opti-
mized instace with 2 SSD drives. Finally cc1.4xlarge and 
cc2.8xlarge as cluster compute instances, and c3.8xlarge 
as the new generation of HPC instances have 16 and 32 
cores and more than 40 GB memory. These instances are 
optimized for  HPC workloads.  

2.3.2 FermiCloud 

FermiCloud is a private cloud providing Infrastructure -
as-a-Service services internal use. It manages dynamically 
allocated services for both interactive and batch pr o-
cessing. As part of a national laboratory, one of the main 
goals FermiCloud is being able to run scientific applic a-
tions and models. FermiClou d uses OpenNebula Cloud 
Manager for the purpose of managing and launching the 
Virtual Machines   [27]. It uses KVM hypervisor that uses 
both para-virtualization  and full virtualization  tech-
niques  [33].  The FermiCloud Infrastructure is enabled 
with 4X DDR Infini band network adapters . The main 
challenge to overcome in the deployment of the network 
is introduced when virtualizing the hardware of a m a-
chine to be used (and shared) by the VMs. This overhead 
slows drastically the data rate reducing the efficiency of 
using a faster technology like Infiniband. To overcome 
the virtualization overhead  they use a technique called 
Single Root Input/output  Virtualiza tion (SRIOV) that 
achieves device virtualization without using device em u-
lation by enabling a device to be shared by multiple vi r-
tual machines. The technique involves with  modifications 
to the Linuxõs Hypervisor as well as the OpenNebula 
manager  [32]. 

Each server is enabled with a 4x (4 links) Infiniband 
card with a DDR data rate for a total theoretical speed of 
up to 20 Gb/s and after the 8b/10b codification 16 Gb/s. 
Network  latency is 1 ȋs when used with MPI   [6]. Each 
card has 8 virtual lanes that can create 1 physical function 
and 7 virtual functions via SR -IOV. The servers are ena-
bled with 2 quad core 2.66 GHz Intel processors, 48Gb of 
RAM and 600Gb of SAS Disk, 12TB of SATA, and 8 port 
RAID Controller   [32]. 

2.4 Performance Evaluation  of AWS 

2.4.1 Memory hierarchy performance 

This section presents the memory benchmark results. We 
sufficed to run read and write benchmarks. The exper i-
ments for each instance were repeated three times.  

Memory bandwidth is a critical factor in scientific a p-
plications performance. Many Scientific applications like 
GAMESS, IMPACT-T and MILC are very sensitive to 
memory bandwidth  [8]. Amazon has not included the 
memory bandwidth of the instances. It has only listed 
their memory size. We also measure the memory band-
width of each instance. 
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Fig. 1 shows the system memory read bandwidth in 
different memory hierarchy levels. The horizontal  axis 
shows the cache size. The bandwidth is very stable up to 
a certain cache size. The bandwidth starts to drop after a 
certain size. The reason for the drop off is surpassing the 
memory cache size at a certain hierarchy level.  

Memory performance of the m1.small instance is sig-
nificantly lower than other instances. The low memory 
bandwidth cannot be only attributed to  the virtualization 
overhead. We believe the main reason is memory thro t-
tling imposed based on the SLA of those instances. 

 
Fig. 1. CacheBench Read benchmark results, one benchmark pr o-

cess per instance 

Another noticeable point is the low bandwidth of the 
cc2.8xlarge and c3.8xlarge. These instances have similar 
performance that is much lower than other instances. A 
reason for that can be the result of the different virtual  
memory allocation on the VMs by  HVM  virtualization  on 
these instances.  We have however observed an effect in 
large hardware-assisted virtual machines such as those on 
FermiCloud . In such machines, it will take  a while for the 
system to balance the memory out to its full size  at the 
first launch of the VM . 

After all, the results show that the memory bandwidth 
for read operation in the larger instances is close to the 
local non-virtuali zed system. We can conclude that the vir-
tualization effect on the memory is low, which is a good sign for 
scientific applications that are mostly sensitive to the memory 
performance. 

Fig. 2 shows the write performance of different cloud 
instances and the local system. The write performance 
shows different results from the read  benchmark. As in 
write, the c3.8xlarge instance has the best performance 
next to the non-virtualized local system.  

For each instance we can notice two or three major 
drop -offs in bandwidth. These drop -offs show different 
memory hierarchies. For example on the c3.8xlarge in-
stance we can notice that the memory bandwidth drops at 
24 Kbytes. We can also observe that the write throug h-
put s for different memory hierarchies are different. These 
data points likely represent the different caches on the 
processor (e.g. L1, L2, L3 caches).  

Comparing the cluster instance with the local system, 
we observe that on smaller buffer sizes, the local system 
performs better. But cloud instance outperforms the local 

system on larger cache sizes. The reason for that could be 
the cloud instances residing on more powerful physical 
nodes with higher bandwidt hs. We can observe that the 
write bandwidth on the cloud instances drops off at ce r-
tain buffer sizes. That shows the memory hierarchy ef-
fects on the write operation.   

Users can choose the best transfer size for write opera-
tion based on the performance peaks of each instance 
type to get the best performance. This would optimize a 
scientific application write bandwidth.  

 
Fig. 2. CacheBench write benchmark results, one benchmark pr o-

cess per instance 

2.4.2 Network performance 

We have run many experiments on network performance 
of Amazon cloud. The experiments test the network pe r-
formance including bandwidth and latency.  

We first test the local network bandwidth between the 
same types of instances. Fig. 3 shows the network per-
formance of different types of nodes. In each case both of 
the instances were inside the same datacenter. The net-
work bandwidth for most of the instances were as ex-
pected except for two instances.   

 
Fig. 3. iPerf benchmark results. Network bandwidth in a single 

client and server connection, internal network.  

The lowest performance belongs to the t1.micro and 
m1.small instances. These two instances use the same 1 
Gb/s network cards used by other instances. But they 
have much lower bandwidth. We believe that the reason 
is sharing the CPU cores and not having a dedicated core. 
This can affect network performance significantly as the 
CPU is shared and many network requests cannot be 
handled while the instance is on its idle time. During the 
idle time of the instance, the virtual system calls to the 
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VMM will not be processed and will be saved in the 
queue until the idle time is over. The network perfo r-
mance is highly affected by processor sharing techniques. 
Other works had the same observations and conclusions 
about the network performance in these two instance 
types  [9]. Another reason for the low performance of the 
m1.small and t1.micro instances could be throttling the 
network bandwidth by EC2. T he Xen hypervisor has the 
ability of network throttling if ne eded. 

Among the instances that use the slower network 
cards the m1.medium instance has the best performance. 
We did not find a technical reason for that. The 
m1.medium instances use the same network card as other 
instances and does not have any advantage on system 
configuration over other instance types. We assume the 
reason for that is the administrative decision on hyperv i-
sor level due to their popularity among different instance 
types. 

Another odd result is for m1.medium instance. The 
bandwidth in medium  instance exceeds 1 Gb/Sec, which 
is the specified network bandwidth of these. m1.medium 
instance bandwidth achieves up to 1.09 Gb/sec. That is 
theoretically not possible for a connection between two 
physical nodes with 1 Gb/s network cards. We believe the 
reason is that both of the VMs reside in the same physical 
node or the same cluster. In case of residing on the same 
node, the packets stay in the memory. Therefore the con-
nection bandwidth is not limited to the network ban d-
width. We can also assume that not necessarily the in-
stances have 1 Gb/s network cards. In fact the nodes that 
run medium instances may have more powerful network 
cards in order to provide better network performance for 
these popular instances. 

The HPC instances have the best network bandwidth among 
the instances. They use 10 Gb/sec network switches. The results 
show that the network virtualization overhead in these instanc-
es is very low. The performance gets as high as 97% of ideal 
performance.  

We also measure the network connection latency and 
the hop distance between instances inside the Oregon 
datacenter of Amazon EC2. We run this experiment to 
find out about the correlation of connection latency and 
the hop distance. We also want to find the connection 
latency range inside a datacenter. We measure the latency 
and the hop distance on 1225 combinations of m1.small 
instances. Fig. 4 shows the network latency distribution of 
EC2 m1.small instances. It also plots the hop distance of 
two instances. The network latency in this experiment 
varies between 0.006 ms and 394 ms, an arguably very 
large variation.  

We can observe from the results that: (1) ƝƝǔɯÖÍɯÛÏÌɯÐÕɪ
ÚÛÈÕÊÌÚɯÞÏÐÊÏɯÏÈÝÌɯÛÏÌɯÛÙÈÕÚÔÐÚÚÐÖÕɯÓÈÛÌÕÊàɯÖÍɯƔȭƖƘɯÛÖɯ
ƔȭƝƝɯÔÚɯÈÙÌɯƘɯÖÙɯƚɯÏÖ×ÚɯÍÈÙɯÍÙÖÔɯÌÈÊÏɯÖÛÏÌÙȭɯ2ÖɯÞÌɯÊÈÕɯ
ÊÓÈÐÔɯÛÏÈÛɯÐÍɯÛÏÌɯÓÈÛÌÕÊàɯÐÚɯÉÌÛÞÌÌÕɯƔȭƖƘɯÛÖɯƔȭƝƝɯÔÚɯÛÏÌɯ
ËÐÚÛÈÕÊÌɯÉÌÛÞÌÌÕɯÛÏÌɯÐÕÚÛÈÕÊÌÚɯÐÚɯƘɯÛÖɯƚɯÏÖ×ÚɯÞÐÛÏɯÛÏÌɯ
×ÙÖÉÈÉÐÓÐÛàɯÖÍɯƝƝǔȭɯȹƖȺɯMore than 94% of the allocated 
instances to a user are 4-6 percent far from each other. In 
other words the hop distance is 4-6 instances with the 
probability of more than 94%.  

We can predict the connection latency based on the 
hop distance of instances. We have run the latency test for 
other instance types. The results do not seem to be de-
pendent on instance type for the instances with the same 
network interconnect. The latency variance of Amazon in-
stances is much higher than the variance in a HPC system. The 
high latency variance is not desirable for scientific applications. 
In case of HPC instances which have the 10 Gigabit Ethernet 
cards, the latency ranges from 0.19ms to 0.255ms which shows 
a smaller variance and more stable network performance. 

 
Fig. 4. Cumulative Distribution Function and Hop distance of 

connection latency between instances inside a datacenter.  

Other researches have compared the latency of EC2 
HPC instances with HPC systems. The latency of the HPC 
instance on EC2 is reported to be 3 to 40 times higher than 
a HPC machine with a 23 Gb/s network card  [10]. The 
latency variance is also much higher.  

2.4.3 Compute Performance 

In this section we evaluate the compute performance of 
EC2 instances.  Fig. 5 shows the compute performance of 
each instance using HPL as well as the ideal performance 
claimed by Amazon. It also shows the performance var i-
ance of instances. 

 
Fig. 5. HPL benchmark results : compute performance of single 

instances comparing with their ideal performance.  

Amo ng the Amazon instances, the c3.8xlarge has the 
best compute performance. The t1.micro instance shows 
the lowest performance. The figure also shows the per-
formance variance for each instance. The performance 
variance of the instances is low in most of the instance 
types. Providing a consistent performance is an ad-
vantage for cloud instances. 
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Among all of the instances, the c3.8xlarge and the non-
virtualized node achieve the best efficiency. Overall we  
can observe that the efficiency of non-HPC instances is 
relatively low. Other papers have suggested the low per-
formance of HPL application while running on virtua l-
ized environment s  [11] [14]. However, noticing the fact  
that the HPC instances were as efficient as the non-
virtualized node, and the fact that there is no other factor 
(e.g. network latency) affecting the benchmark, can imply  
that the virtualization overhead has no major effect on 
this program on a single nod e scale. 

2.4.4 I/O Performance 

In this section we evaluate the I/O performance of the EBS 
volume and local storage of each instance. The following 
charts show the results obtained after running IOR on the 
local storage and EBS volume storage of each of the in-
stances with different transfer sizes and storage devices. 
Fig. 6 shows the performance of POSIX read operation on 
different instances. Except for the hi1.4xlarge, which is 
equipped with SSDs, the throughput among other i n-
stances does not vary greatly from one another. For most 
of the instances the throughput is close to a non-
virtualized system with a normal spinning HDD.  

 
Fig. 6. Local POSIX read benchmark results on all instances  

Fig. 7 shows the maximum write and read throughput 
on each instance on both EBS volumes and local storage 
devices. Comparing with local storage, EBS volumes 
show a very poor performance, which is th e result of the 
remote access delay over the network. 

 
Fig. 7. Maximum write/read throughput on different instances  

Finally, to complete these micro-benchmarks, we set up a 
software RAID -0 with EBS volumes, varying the number 
of volumes from 1 to 8. We ran the same benchmark on a 
c1.medium instance. Fig. 8 shows the write performance 
on RAID -0 on different number of EBS volumes. Looking 
at the write throughput, we can observe that the 

throughput does not vary a lot and is almost constant as 
the transfer size increases. That shows a stable write 
throughput on EBS drives. The write throughput on the 
RAID -0 increases with the number of drives. The reason 
for that is that the data will be spread among the drives 
and is written in parallel to all of the drives. That 
increases the write throughput because of having parallel 
write instead of serial write. Oddly, the performance does 
not improve as the number of drives increases from 1 to 2 
drives. The reason for that is moving from the local writes 
to network. Therefore the th roughput stays the same. For 
4 EBS volumes, we can observe a 4x increase on the  
throughput. In case of 8 EBS volumes we expect a 2x 
speed up comparing with the 4 EBS experiment. However 
the write throughput can not scale better because of the 
limitation of the network bandwith. The maximum 
achievable throughput is around 120MB/s, which is 
bound to the network bandwidth of the instances that is 1 
Gb/s. so we can conclude that the RAID throughput will 
not exceed 120 MB/s if we add more EBS volumes. 

 
Fig. 8. RAID0 Setup benchmark for different transfer sizes ɬ write  

2.4.5 S3 and PVFS Performance 

In this section we evaluate and compare the performance 
of  S3 and PVFS. S3 is a highly scalable storage service 
from Amazon tha t could be used on multinode 
applications. Also, a very important requirement for most 
of the scientific applications is a parallel file system 
shared among all of the computing nodes. We have also 
included the NFS as a centralized file system to show 
how it performs on smaller scales. 

 
Fig. 9. S3 performance, maximum read and write throughput  

First we evaluate the s3 performance on read and write 
operations. Fig. 9 shows the maximum read and write 
throughput on S3 accessed by different instance types. 
Leaving aside the small instances, there is not much 
difference between the maximum read/write throughp ut 
across instances. The reason is that these values are 
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implictily limited by either the network capabilities or S3 
itself.  

Next, We compare the performance of the S3 and PVFS 
as two possible options to use for scientific applications. 
PVFS is commonly used in scientific applications on HPC 
environments. On the other hand, S3 is commonly used 
on the multinode applications that run on cloud 
environment. We have only included the read 
performance in this paper. The experiment runs on 
m1.medium instances. Fig. 10 shows that the read 
throughput of the S3 is much lower compared to PVFS on 
small scales. This results from the fact that the S3 is a 
remote network storage while PVFS is installed and is 
spread over each instance. As The number of the 
instances increase, PVFS cannot scale as well as the S3 
and the performance of the two systems get closer to each 
other up to a scale that S3 slightly performs better than 
the PVFS. Therefore it is better to choose S3 if we are 
using more than 96 instances for the application.  

 
Fig. 10. Comparing  the read throughput of S3 and PVFS on different 

scales 

Next, we evaluate the performance of PVFS2 for the 
scales of 1 to 64 as we found out that it performs better 
than S3 in smaller scales. To benchmark PVFS2 for the 
following experiments we use the MPIIO interface i n-
stead of POSIX. In the configuration that we used, every 
node in the cluster serves both as an I/O and metadata 
server. Fig. 11 shows the read operation throughput  of 
PVFS2 on local storage with different number of instances 
and variable transfer size. The effect of having a small 
transfer size is significant, where we see that the 
throughput inceases as we make the transfer size bigger. 
Again, this fact is due to the overhead added by the I/O 
transaction. 

 
Fig. 11. PVFS read on different transfer sizes over instance storage  

Finally, Fig. 12, shows the performance of  PVFS2 and 
NFS on memory through the POSIX interface. The results 
show that the NFS cluster does not scale very well and 
the throughput does not increase as we increase the 
number of nodes. It basically bottlenecks at the 1Gb/s 
which is the network bandwidth of a single instance. 
PVFS2 performs better as it can scale very well on 64 
nodes on memory. But as we have shown above, it will 
not scale on larger scales.  

  
Fig. 12. Scalability of PVFS2 and NFS in read/write throughput 

using memory as storage 

2.4.6 DynamoDB performance 

In this section we are evaluating the performance of Am-
azon DynamoDB. DynamoDB is a commonly used NoSql 
database used by commercial and scientific applic a-
tions  [30]. We conduct micro benchmarks to measure the 
throughput and latency of insert and look up calls scaling 
from 1 to ƝƚɯÐÕÚÛÈÕÊÌÚɯÞÐÛÏɯÛÖÛÈÓɯÕÜÔÉÌÙɯÖÍɯÊÈÓÓÚɯÚÊÈÓÐÕÎɯ
ÍÙÖÔɯƕƔƔƔƔɯÛÖɯƝƚƔƔƔƔɯÊÈÓÓÚȭɯ6ÌɯÊÖÕËÜÊÛɯÛÏÌɯÉÌÕÊÏÔÈÙÒÚɯ
ÖÕɯÉÖÛÏɯÔƕȭÔÌËÐÜÔɯÈÕËɯÊÊƖȭƜßÓÈÙÎÌɯÐÕÚÛÈÕÊÌÚȭɯ3ÏÌɯ×ÙÖÝÐɪ
ÚÐÖÕɯ ÊÈ×ÈÊÐÛàɯ ÍÖÙɯ ÛÏÌɯ ÉÌÕÊÏÔÈÙÒÚɯÐÚɯƕƔ*ɯÖ×ÌÙÈÛÐÖÕÚɤÚɯ
ÞÏÐÊÏɯÐÚɯÛÏÌɯÔÈßÐÔÜÔɯËÌÍÈÜÓÛɯÊÈ×ÈÊÐÛàɯÈÝÈÐÓÈÉÓÌȭɯ3ÏÌÙÌɯÐÚɯ
ÕÖɯÐÕÍÖÙÔÈÛÐÖÕɯÙÌÓÌÈÚÌËɯÈÉÖÜÛɯÏÖÞɯÔÈÕàɯÕÖËÌÚɯÈÙÌɯÜÚÌËɯ
ÛÖɯÖÍÍÌÙɯÈɯÚ×ÌÊÐÍÐÊɯÛÏÙÖÜÎÏ×ÜÛȭɯ6ÌɯÏÈÝÌɯÖÉÚÌÙÝÌËɯÛÏÈÛɯÛÏÌɯ
ÓÈÛÌÕÊàɯÖÍɯ#àÕÈÔÖ#!ɯËÖÌÚÕɀÛɯÊÏÈÕÎÌɯÔÜÊÏɯÞÐÛÏɯÚÊÈÓÌÚȮɯ
ÈÕËɯÛÏÌɯÝÈÓÜÌɯÐÚɯÈÙÖÜÕËɯƕƔÔÚȭɯ3ÏÐÚɯÚÏÖÞÚɯÛÏÈÛɯ#àÕÈɪ
ÔÖ#!ɯÐÚɯÏÐÎÏÓàɯÚÊÈÓÈÉÓÌȭɯFig. 13 shows the latency of look 
up and insert calls made from 96 cc2.8xxlarge instances. 
The average latency for insert and look up are respective-
ly  10 ms and 8.7 ms. 90% of the calls had a latency of less 
than 12 ms for insert and 10.5 ms for look up.  

 
Fig. 13. CDF plot for insert and look up latency on 96 8xxl instances 

We compare the throughput of DynamoDB with ZHT 
on EC2  [26]. ZHT is an open source consistent NoSql da-
tabase providing a service which is comparable to Dyn a-
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moDB in functionality . We conduct this experiment to 
better understand the available options fo r having a scal-
able key-value store. We use both m1.medium and 
cc2.8xlarge instances to run ZHT. On 96 nodes scale with 
2cc.8xlarge instance type, ZHT offers 1215.0 K ops/s while 
DynamoDB failed the test since it saturated the capacity. 
The maximum  measured throughput of Dyna moDB was 
11.5K ops/s which is found at 64 cc2.8xlarge instance 
scale. For a fair comparison, both DynamoDB and ZHT 
have 8 clients per node. 

Fig. 14 shows that the throughput of ZHT on 
m1.medium and cc2.8xlarge instances are respectively 
59x and 559x higher than DynamoDB on 1 instance scale. 
On the 96 instance scale they are 20x and 134x higher than 
the DynamoDB.  

 
Fig. 14. Throughput comparison of DynamoDB with ZHT running on 

m1.medium and cc2.8xlarge instances on different scales.  

2.4.7 Workflow Application Performance  

(ÕɯÛÏÐÚɯÚÌÊÛÐÖÕɯÞÌɯÈÕÈÓàáÌɯÛÏÌɯ×ÌÙÍÖÙÔÈÕÊÌɯÖÍɯÈɯÊÖÔ×ÓÌßɯ
ÚÊÐÌÕÛÐÍÐÊɯ ÊÖÔ×ÜÛÐÕÎɯ È××ÓÐÊÈÛÐÖÕɯ ÖÕɯ ÛÏÌɯ  ÔÈáÖÕɯ $"Ɩɯ
ÊÓÖÜËȭɯ3ÏÌɯÈ××ÓÐÊÈÛÐÖÕɯÐÕÝÌÚÛÐÎÈÛÌËɯÐÚɯPower Locational 
Marginal Price Simulation (LMPS) , and it is coordinated 
and run through the Swift parallel programming sy s-
tem  [12]. Optimal power flow studies are crucial in u n-
derstanding the flow and price patterns in electricity u n-
der different demand and network conditions. A big 
computational challenge arising in  power  grid analysis is 
that simulations need to be run at high time resolutions in 
order to capture effect occurring at  multiple time scales. 
For instance, power flows tend to be more constrained at 
certain times of the day and of the year, and these need to 
be identified.  

 
Fig. 15. The LMPS application tasks time distributions.  

 

The power flow simulation application under study an a-
lyzes historical conditions in the Illinois grid to simulate 
instant power prices on an hourly basis. The application 
runs linear  programming  solvers invoked via an AMPL 
(A Mathematical  Programming Language)  representation 
and collects flow, generation, and price data with a t-
tached geographical coordinates  [25]. A typical applic a-
tion consists of running  the model in 8760 independent 
executions corresponding to  each hour of the year. Each 
application task execution spans in the range between 25 
and 80 seconds as shown in the application tasks time 
distribution graph in  %ÐÎȭɯƕƙ. A snapshot of one such re-
sult prices plotted over the map of  Illinois is shown in %ÐÎȭɯ
ƕƚ. The prices are in US dollars per megaWatt-hour 
shown as interpolated contour plots across the areas con-
nected by transmission lines and generation stations 
shown as lines and circles respectively. A series of such 
plots could be post processed to give an animated visual-
ization for  further ana lysis in trends etc.  

 
Fig. 16. A contour plot snapshot of the power prices in $/MWh 

across the state of Illinois for an instance in July 2000  

The execution of the application was performed on an 
increasing number of m1.large instances (see Fig. 17).  

 
Fig. 17. The runtime of LMPS on m1.large instances in different scales.  

For data storage, we use S3. Given that the application 
scales well to 80 instances, but not beyond that. The per-
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formance saturation is a salient point that comes out of 
Fig. 17. With S3 object store being remote, at 100 VMs it 
takes long enough to fetch the data that it is dominating 
execution time. More scalable distributed storage subsys-
tem should be investigated that is geared towards scien-
tific computing, such as PVFS, Lustre, or GPFS. 

2.5 Performance Comparison of EC2 vs. 
FermiCloud  

In this section we compare the performance of the EC2 as 
a public cloud with FermiCloud as a private cloud on 
HPL benchmark which is a real HPC application . Before 
comparing the performance of Amaz on on real Applic a-
tions, we need to compare the raw performance of the 
two  resources.  

2.5.1 Raw performance comparison 

Before comparing the performance of the two infrastru c-
tures on real applications like HPL, we need to compare 
their raw performance on the essential metrics in order to 
find the root causes of their performance differences. The 
most effective factors on HPL performance are compute 
power , and Network  latency and bandwidth . We need to 
compare these factors on the instances with similar func-
tionalities.  

On both of the Clouds, w e chose the instances that can 
achieve the highest performance on HPL applications . On 
EC2, we use c3.8xlarge instances that are enabled with  
Intel Xeon E5-2680 v2 (Ivy Bridge) Processors and a 10 
Gigabits network adapt er with SRIOV technology . On 
FermiCloud, each server machine is enabled with  2 quad 
core 2.66 GHz Intel processors, and 8 port RAID Control-
ler. On FermiCloud machines are backed by (16 Gigabits 
effective) Infiniband network  adapters. 

The CPU efficiency is defined as the performance of 
the VM running HPL on a single VM with no network 
connectivity, divided by the theoretical peak performance 
of the CPU. Fig. 18 compares the raw performance of the 
Amazon EC2 with FermiCloud on CPU and network pe r-
formance. The results show that the virtualization ove r-
head on FermiCloud instances are slightly  lower than the 
EC2 instances. 

 
Fig. 18. Raw performance comparison overview of EC2 vs. Fe r-

miCloud  

The significant difference of the two infrastructures is 
on the network adapters. The FermiCloud instances are 
enabled with InfiniBand network adapters and are able to 
provide higher performance compared to the EC2 in-
stances that have 10 Gigabit network cards. The efficiency 

of both of the systems on network throughput is high. 
The network throughput efficiency is defined as the VM 
network performance divided by the theoretical peak of 
the device. FermiCloud and EC2 network adapters r e-
spectively achieve 97.9% and 97.4% efficiency. We used 
MPIbench to calculate the network latency. There is a 6x 
difference between the network latency of the two clouds. 
The latency of the FermiCloud instance is 2.2 us as com-
pared to the latency of EC2 instance which is 13 us. An-
other important factor is the latency variance. The l atency 
variance on both systems is within 20% which is stable. 
HPL application uses MPI for communication among the 
nodes. The network latency can decrease the performance 
of the application by affecting the MPI pe rformance. 

2.5.2 HPL performance comparison 

In this section we evaluate the performance of HPL appl i-
cation on both on a virtual cluster on both FermiCloud 
and EC2. The main difference on the two infrastru ctures 
is on their virtualization layer and the network perfo r-
mance. FermiCloud uses KVM  and is enabled with In-
finiBand  network adapters. EC2 uses its own type of vi r-
tualization which is based on Xen hypervisor and has 10 
Gigabit network adapters.  

The best way to measure the efficiency of a virtual 
cluster on a cloud environment is defining it as the pe r-
formance of the VM which include the virtualization 
ÖÝÌÙÏÌÈËɯËÐÝÐËÌËɯÉàɯÛÏÌɯÏÖÚÛɯ×ÌÙÍÖÙÔÈÕÊÌɯÛÏÈÛɯËÖÌÚÕɀÛɯ
include virtualization overhead. We can measure th e effi-
ciency as defined for FermiCloud since we have access to 
the host machines. But that is not possible for EC2 since 
we do not have access to the physical host machines. 
Therefore we compare the scalability efficiency of the two 
clouds which is defined  as the overhead of the application 
performance as we scale up the number of cloud instanc-
es. 

Fig. 19 compares the efficiency of EC2 and FermiCloud 
running HPL application on a virtual  cluster. Due to 
budget limitations we run the experiment up to 32 i n-
stances scale.  

 Fig. 19. Efficiency comparison of EC2 and FermiCloud running 

HPL application on a virtual cluster .  

The results show that the efficiency is dependent on 
the network latency. On the 2 instances scale, both clouds 
show good efficiency. They only  lose 10% efficiency that 
is due to the MPI communications latency added between 



10 IEEE TRANSACTIONS ON CLOUD COMPUTING  MANUSCRIPT ID 

 

the instances. Since both of the clouds have relatively 
powerful network adapters, the communication overhead 
is still not a bottleneck on 2 instances scale. As the num-
ber of instances increase, the applications processes make 
more MPI calls to each other and start saturating the net-
work bandwidth. Having InfiniBand  network, the Fer-
miCloud loses less efficiency than the EC2. The efficiency 
of EC2 drops to 82% and the efficiency of the FermiCloud 
drops to 87%. The only major difference between the in-
stances of private and public cloud is on their network 
latency. As a result, we can see that they provide similar 
efficiency with the private cloud instance being roughly 
about 5-8% more efficient on different scales. 

3 COST ANALYSIS  

In this section we analyze the cost of the Amazon EC2 
cloud from different aspects. We analyze the cost of in-
stances for compute intensive applications as well as for 
data intensive applications. Our analysis provides su g-
gestions to different cloud users to find the instance type 
that fits best for certain application with specific requir e-
ments. Next section compares the instances based on their 
memory capacity and performance. 

3.1 Memory Cost  

This section compares the cost of the memory on Amazon 
EC2 instances. Fig. 20 compares the cost of instances 
based on their memory capacity and bandwidth.  

The GB/Dollar metric on the left hand side shows the 
capacity cost effectiveness of the instances. The most cost 
effective instances for memory capacity are the high 
memory (m2.2xlarge & m2.4xlarge) instances. But looking 
at the cost of the memory bandwidth, we can observe that 
these instances do not have the best memory bandwidth 
efficiency. The most cost effective instances based on the 
memory bandwidth efficiency are the m1.small and 
m1.medium instances. 

 
Fig. 20. Memory capacity and memory bandwidth cost.  

3.2 CPU Cost  

In this  section we analyze the cost-effectiveness of in-
stances based on the performance of the instances while 
running compute intensive applications. The metric for 
our analysis is GFLOPS/Dollar.  

Fig. 21 compares the ideal performance cost of the in-
stances based on Amazon claims with their actual per-

formance while running HPL benchmark. The results 
show that the most cost-effective instance is c3.8xlarge. 

 
Fig. 21. CPU performance cost of instances  

3.3 Cluster Cost  

We analyze the cost of the virtual clusters set up by 
m1.medium and cc1.4xlarge instances in different sizes. 
Fig. 22 compares the cost of the virtual clusters based on 
their compute performance.  

 
Fig. 22. Cost of virtual cluster  of m1.medium and cc1.4xlarge.  

3.4 DynamoDB Cost  

%ÐÕÈÓÓàɯÐÕɯÛÏÐÚɯÚÌÊÛÐÖÕɯÞÌɯÌÝÈÓÜÈÛÌɯÛÏÌɯÊÖÚÛɯÖÍɯ#àÕÈÔÖ#!ȭɯ
(ÕɯÖÙËÌÙɯÛÖɯÉÌÛÛÌÙɯÜÕËÌÙÚÛÈÕËɯÛÏÌɯÝÈÓÜÌɯÖÍɯÖÍÍÌÙÌËɯÚÌÙÝÐÊÌȮɯ
ÞÌɯÊÖÔ×ÈÙÌɯÛÏÌɯÊÖÚÛɯÞÐÛÏɯÛÏÌɯÊÖÚÛɯÖÍɯÙÜÕÕÐÕÎɯ9'3ɯÖÕɯ$"Ɩɯ
ÖÕɯËÐÍÍÌÙÌÕÛɯÐÕÚÛÈÕÊÌɯÛà×ÌÚȭ 
%ÐÎȭɯƖƗɯÚÏÖÞÚɯÛÏÌɯÏÖÜÙÓàɯÊÖÚÛɯÖÍɯƕƔƔƔɯÖ×ÚɤÚɯÊÈ×ÈÊÐÛàɯÖÍɪ

ÍÌÙÌËɯÉàɯ#àÕÈÔÖ#!ɯÊÖÔ×ÈÙÌËɯÛÖɯÛÏÌɯÌØÜÈÓɯÊÈ×ÈÊÐÛàɯ×ÙÖɪ
ÝÐËÌËɯÉàɯ9'3ɯÍÙÖÔɯÛÏÌɯÜÚÌÙɯ×ÖÐÕÛɯÖÍɯÝÐÌÞȭɯ 

 
Fig. 23 Cost Compariso n of DynamoDB with ZHT  

6ÌɯÈÙÌɯÊÖÔ×ÈÙÐÕÎɯÛÏÌɯÛÞÖɯËÐÍÍÌÙÌÕÛɯÚÊÌÕÈÙÐÖÚɯÖÍɯÊÖÚÛɯÖÍɯ
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