
A Dynamically Scalable Cloud Data Infrastructure for
Sensor Networks

Tonglin Li1, Kate Keahey 2,3, Ke Wang1, Dongfang Zhao1, and Ioan Raicu 1,2

1Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
2MCS Division, Argonne National Laboratory, Lemont, IL, USA
3Computation Institute, University of Chicago, Chicago, IL, USA

ABSTRACT
As small, specialized sensor devices become more ubiqui-
tous, reliable, and cheap, increasingly more domain sciences
are creating ”instruments at large” - dynamic, often self-
organizing, groups of sensors whose outputs are capable
of being aggregated and correlated to support experiments
organized around specific questions. This calls for an in-
frastructure able to collect, store, query, and process data
set from sensor networks. The design and development of
such infrastructure faces several challenges. The challenges
reflect the need to interact with and administer the sen-
sors remotely. The sensors may be deployed in inaccessi-
ble places and have only intermittent network connectivity
due to power conservation and other factors. This requires
communication protocols that can withstand unreliable net-
works as well as an administrative interface to sensor con-
troller. Further, the system has to be scalable, i.e., capa-
ble of ultimately dealing with potentially large numbers of
data producing sensors. It also needs to be able to orga-
nize many different data types efficiently. And finally, it
also needs to scale in the number of queries and processing
requests. In this work we present a set of protocols and a
cloud-based data streaming infrastructure called WaggleDB
that address those challenges. The system efficiently aggre-
gates and stores data from sensor networks and enables the
users to query those data sets. It address the challenges
above with a scalable multi-tier architecture, which is de-
signed in such way that each tier can be scaled by adding
more independent resources provisioned on-demand in the
cloud.

1. INTRODUCTION
The last several years have seen a raise in the use of sen-

sors, actuators and their networks for sensing, monitoring
and interacting with the environment. There is a prolif-
eration of small, cheap and robust sensors for measuring
various physical, chemical and biological characteristics of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the environment that open up novel and reliable methods
for monitoring qualities ranging from the geophysical vari-
ables, soil conditions, air and water quality monitoring to
growth and decay of vegetation. Structured deployments,
such as the global network of flux towers, are being aug-
mented by innovative use of personal mobile devices (e.g.,
such as use of cell phones to detect earthquakes), use of
data from social networks, and even citizen science. In other
words, rather than construct a single instrument comprised
of millions of sensors, a ”virtual instrument” might comprise
dynamic, potentially ad hoc groups of sensors capable of op-
erating independently but also capable of being combined to
answer targeted questions. Projects organized around this
approach represent important areas ranging from ocean sci-
ences, ecology, urban construction and research, to hydrol-
ogy. This calls for an infrastructure able to collect, store,
query, and process data set from sensor networks. The de-
sign and development of such infrastructure faces several
challenges. The first group of challenges reflects the need
to interact with and administer the sensors remotely. The
sensors may be deployed in inaccessible places and have only
intermittent network connectivity due to power conservation
and other factors. This requires communication protocols
that can withstand unreliable networks as well as an admin-
istrative interface to sensor controller. Further, the system
has to be scalable, i.e., capable of ultimately dealing with
potentially large numbers of data producing sensors. It also
needs to be able to organize many different data types ef-
ficiently. And finally, it also needs to scale in the number
of queries and processing requests. In this paper we present
a set of protocols and a cloud-based data store called Wag-
gleDB that address those challenges. The system efficiently
aggregates and stores data from sensor networks and enables
the users to query those data sets. It address the challenges
above with a scalable multi-tier architecture, which is de-
signed in such way that each tier can be scaled by adding
more independent resources provisioned on-demand in the
cloud.

2. DESIGN AND IMPLEMENTATION

2.1 Design considerations
Write scalability and availability: The system needs

to support many concurrent writes from a large sensor net-
work, which continuously captures data and sends it to the
cloud storage. The system should be always available for
writing. For achieving these goals, we propose to use a

multi-layer architecture. A high performance load balancer
is used as the first layer to accept and forward all write re-
quests from sensor controller nodes evenly to a distributed
message queue, which works as a write buffer and handles
requests asynchronously. A separate distributed Data Agent
service keeps pulling messages from the queue, preprocess it
and then write to the data store.

The capability to present various data types: There
can be many different kinds of sensors in a sensor network,
each of them can read different number and types of values.
There is no fixed scheme for data formats from the different
types of sensors. Therefore we need a flexible data schema
so to enable a unified API to collect and store the data, and
to organize data in a scalable way for further use query and
analytics. To address this issue, we design a flexible message
data structure that easily fits into a large category of scalable
distributed databases, called column-oriented databases (or
BigTable-like data stores). This design enables us to ele-
vate the rich features, performance advantage and scalabil-
ity from column-oriented databases, as well as to define a
unified data access API.

2.2 Architecture
We design a loosely coupled multi-layer architecture to

boost the scalability while maintaining good performance.
As shown in fig 1, the system is composed of a sensor con-
troller node and a data server that is both written to by
the sensors and read from by the clients. On the server side,
there are 5 layers of components, namely load balancer, mes-
sage queue, Data Agent, database, and query execution en-
gine. Each layer can be deployed on a dedicated or shared
virtual cluster. If any layer becomes bottleneck, it can be
scaled easily by simply adding more resource.

Figure 1: System architecture. Sensor controller nodes send
messages and blobs to the cloud storage through APIs. Load
balancer forwards client requests to data streaming layer.
Nimbus Phantom controls dynamic scaling of queue servers
and data agent servers.

2.2.1 Sensor Controller Node
The sensor controller node accepts data captured from

sensors and wraps into a basic message. The client can also
send multiple messages in batch through a single transfer as
needed. When the clients need to send a big file such as an
image by a full-spectrum camera, it will first send the blob

through our API to the cloud blob store(such as Amazon S3)
or our own file-based blob storage system, and then send a
reference message to the database. This reference message
is organized in the same way as the basic message, which
contains all the metadata, but in the data field, it holds a
URL link or a pointer to that file. All these communication
are enhanced by our transactional transferring mechanism.

2.2.2 Designing dynamic scalable services
All component layers in our system are organized as scal-

able services, most of which can scale in a dynamic and au-
tomatic manner. To allow them to do so, a couple of require-
ments have to be satisfied [1]. First, the parallel instances of
a service can run on multiple machines independently. This
ensures a service can be scaled out. Second, a new instance
of the service should be able to discover and join a running
service. This ensures live scaling of a service, which means
the service can scale any time on demand without halting.

Load balancer service: A load balancer is used on top
of the whole architecture. The load balancer does not only
balance the workload, but also offers a single access point to
the clients so as to hide the potential change (such as scaling
or failure) in the message queue layer. Load balancer is setup
on a big virtual machine.

Message queue service:The message queue service is
asynchronously replicated across multiple VMs, which ide-
ally are located close to each other. We choose Availability
and Partition tolerance from the CAP theorem [2] and as-
sume that the connection between the VMs is reliable, which
is reasonable within a single cloud provider. In this way, any
single failed queue won’t cause any data loss. A new mes-
sage queue server can join a cluster easily. We used a simple
script to setup and start new message queue service, join the
cluster and update the load balancer config file, and then run
a reload on load balancer server to finish the system scaling.

Data Agent service: The only job that a Data Agent
does is pull messages from message queues, preprocess them,
and then push to the storage service. There is no communi-
cation and dependency between any two Data Agents. For
adding new Data Agents, users only need to tell the new
agent where to pull messages and where to push to, which
can easily been set as start parameters. Thus both require-
ments are satisfied.

Storage service: To meet the various needs of sensor
network applications, we design a hybrid storage service
that combines a column-oriented database [3] and a blob
store. Most of sensor readings are small, and can be put into
the database while big files are send to the blob store. For
each blob in the blob store, there is a tuple in the database,
through which the blob is presented as a regular sensor read-
ing. Thus users can access the data via a unified API.

2.2.3 Design discussion
In This work we use dedicated message queue service (Rab-

bitMQ) and data storage (Cassandra) in order to provide
best response time(or latency). One possible alternative so-
lution is to use cloud services such as Amazon SQS and Dy-
namoDB respectively. Uses of cloud service can simplify the
system implementation and deployment. However this con-
venience is at no cost. As we observed before, the response
time of both SQS and DynamoDB are multiple times slower
than most of user deployed software services. Economic cost
is also a big concern.

2.3 Transactional command execution
In sensor networks, administrators often need to carry

out diagnosis and system maintenance by running a series
of commands remotely. Conventional remote login such as
SSH or Telnet won’t work as desired because of the un-
reliable communication channels. The command execution
subsystem must be able to recover from most of the interrup-
tions and communication failures. For solving this problem,
we designed and implemented a transactional protocol and
stateful data middleware to track the command execution
sessions and to persist the results. When a user needs to
execute a series of command, s/he firstly sends an execution
request to the middleware, which assigns an incremental ses-
sion ID to the request and then forwards the request to a
dedicated database table on cloud. The commands will not
be executed immediately. Instead, controllers check out the
available commands from database periodically and then ex-
ecute them sequentially. We use pull method on controllers
instead of opposite, because the cloud side doesn’t know if
and when a usable network connection is available, so it
must be the controller that starts a communication and get
the commands. If a controller finds more than one sessions
in the database, it will firstly execute the session that with a
smallest ID. As the commands are executed on a controller,
the results are given a sequence number and push to the
database. The user can query the database any time to see
if there is any result available. Since both commands and
results are persisted in the database, the data lose caused
by connection failure is minimized.

2.4 Implementation
We have implemented the sensor controller client, user

query client, administration client, data agent servers and all
the adaptors between components in Python [4]. We choose
RabbitMQ as message queue server, and Cassandra [5] as
the column-oriented database for storage backend. For dy-
namic scaling on various tiers of the system, we adopted
Nimbus Phantom [1], an automatic cloud resource manager
and monitoring platform, which enable us manage each tier
independently. This work has been integrated into its on-
going parent project, Waggle, at Argonne National Labo-
ratory. The whole system is currently running with real
sensors and collecting environmental data.

3. EXPERIMENTAL RESULTS
As we writing this paper, the Waggle sensor network is

still in development and doesn’t have many sensor controllers.
So we used synthetic benchmarks to evaluate our system’s
performance and functionality on a public science cloud, Fu-
tureGrid. This method actually simulated the worst case
of the real-world scenario: all sensor controllers happen to
send data at the same time, while the normal case is that
they send data in a random manner. We claimed that Wag-
gleDB can handle highly concurrent write requests and pro-
vide high scalability. To demonstrate this we evaluated the
system with up to 8 servers and 128 clients, in terms of la-
tency, bandwidth, client/server-side scalability and dynamic
scaling. We used Tsung benchmarking tool to generate 128
clients on up to 16 virtual machines, and ran up to 8 servers
on other virtual machines. We sent 10,000 write requests
in a tight loop from each client to the load balancer, which
then forwarded requests to queue servers concurrently. Each
request was a fixed-length string message.

3.1 Concurrency and client-side scalability
To determine the capability of handling concurrency and

client-side scalability of WaggleDB system, we measured av-
erage latency, aggregated data bandwidth and throughput
with 1 server. The request latency consists of the time spent
on data transferring and request processing. To understand
the latency composition better, we measured the latencies
with different message sizes, from 10 bytes to 10k bytes.
Figure 2 shows that while the client scale increased by 32
times, the average latency only increased by 2.2 times. This
implied great potential of client-side scalability. Note that
the experiments were conducted with client-side tight loops
that were only bounded by CPU performance and network
bandwidth. Since the real-world clients in sensor networks
generally only contact servers occasionally, it’s safe to claim
that the single-server system can handle many more than
32 real clients. It’s worth noting that the latency differences
between 10 to 10k bytes message sizes were very small (<
20%). Within measured message size range, latency was not
sensitive to message size. This implied that request process-
ing (open/close socket, acknowledgement) takes more time
than data transferring within 10k bytes range.

0	

1	

2	

3	

4	

5	

6	

7	

1	 2	 4	 8	 16	 32	

La
te
nc
y	
in
	 m
s	

Clients	 #	

10	
100	
1000	
10000	

Message	 size	
	 in	 bytes	

Figure 2: Average latency only slowly increased with client
number.

3.2 Concurrency and server-side scalability
To determine the server-side scalability and measure the

overall performance, we fixed the message size to 1000 bytes
and performed similar experiment with up to 128 clients and
8 servers. As more clients joined, the latencies of all server
scales increased as shown in figure 3. The more the servers
were used, the less the latency increased. On the single-node
system, latency started to increase rapidly on 32-client scale
and above. This suggested that single server got saturated
when serving more than 32 clients.

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

1	 2	 4	 8	 16	 32	 64	 128	

La
te
nc
y	
in
	 m
s	

Clients	 #	

1	
2	
4	
8	

Queue	 Server	
Number	

Figure 3: Latency comparison. The more the servers were
used, the less the latency increased.

3.3 Dynamic scaling
To verify the functionality and performance impact of dy-

namic scaling, we measure the latency while scaling queue
server and Data Agent server layers on the fly. We firstly
tested queue server layer. We fixed the number of clients
to 128, started the experiment with single-queue server, ran
30 seconds, doubled the queue servers, and repeated. Even-
tually we scaled queue server layer to 8 nodes. In figure 4,
the column chart shows the average latency decreased sig-
nificantly. Take single-server system as a baseline, scaling
to 2, 4 and 8 server brought 36%, 55% and 64% perfor-
mance gain respectively. The curve chart shows the real-
time latency in logarithmic scale. The three high peaks were
caused by the load balancer configuration reloading (new list
of servers).When adding more than 4 queue servers, the la-
tency decreased slower, because it already close to the ideal
value and system was nearly idle.

13.5	

8.5	

6.1	
4.8	

462.8	 539.1	 568.3	

1	 2	 4	 8	

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	

10	

100	

1000	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	 130	

Number	 of	 queue	 servers	
La
te
nc
y	
in
	 m

s	

La
te
nc
y	
in
	 m

s	 (
lo
g)
	

Time	 in	 sec	

Average	 Latency	

Real-‐;me	 Latency	

Figure 4: Real-time and average latency on dynamic scaling
queue servers.

4. RELATED WORK
Our work adopts known techniques and extends previ-

ous work on data model and storage. However we are not
aware of other implemented systems that cover versatile
data model, scalable storage, transactional interaction, and
especially dynamic scalability on each system tier. The com-
munication and storage pattern used in our system can be
found in other types of systems, such as system state man-
agement [6], which was more designed to handle relatively
constant workload. On scalable distributed storage systems
for cloud and data intensive applications, there have been
works done on NoSQL databases, file systems. On data
storage tier, we use NoSQL databases instead of conven-
tional SQL databases, due to their limited scalability on
multi-node deployment. There are various types of NoSQL
databases for different applications: Key-value stores (ZHT
[7] [8]), document stores (MongoDB), and column-oriented
databases (BigTable [3]), etc. There are also works done
on distributed file systems that support very high concur-
rent read and write such as FusionFS [9]. Similar as queue
service in WaggleDB, Liu’s work utilize burst buffer [10] in
scalable parallel file systems. ON data streaming perspec-
tive, JetStream [11] enables event streaming across cloud
data centers.

5. CONCLUSIONS
In this work we present a set of protocols and a cloud-

based data streaming infrastructure called WaggleDB that
address those challenges. The system efficiently aggregates

and stores data from sensor networks and enables the users
to query those data sets. It address the challenges for accom-
modating sensor network data streams in cloud with a scal-
able multi-tier architecture, which is designed in such way
that each tier can be scaled by adding more independent re-
sources provisioned on-demand in the cloud. The featured
high availability and scalability, flexible data scheme and
transactional command execution make it a good candidate
for sensor network data infrastructure in cloud era.

6. ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation grant NSF-1054974. This work used the Future
Grid test bed funded by the National Science Foundation
under Grant No. 0910812.

7. REFERENCES
[1] K. Keahey, P. Armstrong, J. Bresnahan,

D. LaBissoniere, and P. Riteau, “Infrastructure
outsourcing in multi-cloud environment,”
FederatedClouds ’12, pp. 33–38, ACM, 2012.

[2] S. Gilbert and N. Lynch, “Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services,” SIGACT News, vol. 33, pp. 51–59, June
2002.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for
structured data,” ACM Trans. Comput. Syst., vol. 26,
pp. 4:1–4:26, June 2008.

[4] T. Li, K. Keahey, R. Sankaran, P. Beckman, and
I. Raicu, “A cloud-based interactive data
infrastructure for sensor networks,” IEEE/ACM
Supercomputing/SC’14, 2014.

[5] A. Lakshman and P. Malik, “Cassandra: a
decentralized structured storage system,” SIGOPS,
2010.

[6] T. Li, I. Raicu, and L. Ramakrishnan, “Scalable state
management for scientific applications in the cloud,”
BigData Congress ’14, pp. 204–211, 2014.

[7] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu, “ZHT: A
light-weight reliable persistent dynamic scalable
zero-hop distributed hash table,” IPDPS ’13,
pp. 775–787, 2013.

[8] T. Li, R. Verma, X. Duan, H. Jin, and I. Raicu,
“Exploring distributed hash tables in highend
computing,” SIGMETRICS Perform. Eval. Rev.,
vol. 39, pp. 128–130, Dec. 2011.

[9] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang,
D. Kimpe, P. Carns, R. Ross, and I. Raicu, “Fusionfs:
Towards supporting data-intensive scientific
applications on extreme-scale high-performance
computing systems,” IEEE BigData’14, 2014.

[10] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross,
G. Grider, A. Crume, and C. Maltzahn, “On the role
of burst buffers in leadership-class storage systems,”
MSST’12, 2012.

[11] R. Tudoran, O. Nano, I. Santos, A. Costan, H. Soncu,
L. Bougé, and G. Antoniu, “Jetstream: Enabling high
performance event streaming across cloud
data-centers,” DEBS ’14, 2014.

