
Distributed NoSQL Storage for Extreme-Scale
System Services

Tonglin Li1, Ioan Raicu1,2

1Computer Science Department, Illinois Institute of Technology, Chicago, IL, USA
2MCS Division, Argonne National Laboratory, Lemont, IL, USA

Abstract—Today with the rapidly accumulated data, data-
driven applications are emerging in science and commercial areas.
On both HPC systems and clouds the continuously widening per-
formance gap between storage and computing resource prevents
us from building scalable data-intensive systems. Distributed
NoSQL storage systems are known for their ease of use and
attractive performance and are increasingly used as building
blocks of large scale applications on cloud or data centers.
However there are not many works on bridging the performance
gap on supercomputers with NoSQL data stores.

This work presents a convergence of distributed NoSQL
storage systems in clouds and supercomputers. It firstly presents
ZHT, a dynamic scalable zero-hop distributed key-value store,
that aims to be a building block of large scale systems on
clouds and supercomputers. This work also presents several real
systems that have adopted ZHT as well as other NoSQL systems,
namely ZHT/Q (a Flexible QoS Fortified Distributed Key-Value
Storage System for the Cloud), FREIDA-State (state management
for scientific applications on cloud), WaggleDB (a Cloud-based
interactive data infrastructure for sensor network applications),
and Graph/Z (a key-value store based scalable graph processing
system); all of these systems have been significantly simplified
due to NoSQL storage systems, and have been shown scalable
performance.

I. INTRODUCTION

Today’s science is generating datasets that are increasing
exponentially in both complexity and volume, making their
analysis, archival, and sharing one of the grand challenges
of the 21st century. As supercomputers and data centers gain
more parallelism at exponential rates, the storage infrastructure
performance is increasing at a significantly lower rate. This
implies that the data management and data flow between
the storage and compute resources is becoming the new
bottleneck for large-scale applications. The support for data
intensive computing is critical to advancing modern science
as storage systems have experienced a gap between capacity
and bandwidth that increased more than 10-fold over the last
decade. There is an emerging need for advanced techniques
to manipulate, visualize and interpret large datasets. Many
domains(e.g.astronomy, bioinformatics, and financial analysis)
share these data management challenges, strengthening the
potential impact from generic solutions.

Distributed NoSQL storage systems are known for their
ease of use and attractive performance and are increasingly
used as building blocks of large scale applications on cloud or
data centers. However there are not many works on bridg-
ing the performance gap on supercomputers with NoSQL
data stores. This work presents a convergence of distributed
NoSQL storage systems in clouds and supercomputers. It
firstly presents ZHT, a light-weight reliable persistent dynamic
scalable zero-hop distributed key-value store, that aims to be
a building block of large scale systems on both clouds and

supercomputers. This work also presents several distributed
systems that have adopted ZHT as well as other NoSQL
systems, namely ZHT/Q, (a Flexible QoS Fortified Distributed
Key-Value Storage System for the Cloud), FREIDA-State
(state management for scientific applications on cloud), Wag-
gleDB (a Cloud-based interactive data infrastructure for sensor
network applications), and Graph/Z (a key-value store based
scalable graph processing system); all of these systems have
been significantly simplified due to NoSQL storage systems,
and have been shown to outperform other leading systems by
orders of magnitude in some cases. It is important to highlight
that some of these systems are rooted in HPC systems from
supercomputers, while others are rooted in clouds and ad-hoc
distributed systems; through our work, we have shown how
versatile NoSQL storage systems can be in such a variety of
environments.

II. ZHT: A LIGHT-WEIGHT RELIABLE PERSISTENT
DYNAMIC SCALABLE ZERO-HOP DISTRIBUTED HASH TABLE

One of the major bottlenecks in current state-of-the-art
storage systems is metadata management [1]. Metadata op-
erations on most of parallel and distributed file systems can
be inefficient at large scales. Our previous work [3] on a
Blue Gene/P supercomputer with 16K-cores shows the various
costs for file/directory creating (metadata operation of file
systems) on GPFS. GPFS’s metadata performance degrades
rapidly under concurrent operations, reaching saturation at
only 4 to 32 core scales (on a 160K-core machine). Ideal
performance would have been constant at different scales,
but we see the cost of these basic metadata operations (e.g.
create file) growing exponentially, from tens of milliseconds
on a single node (four-cores), to tens of seconds at 16K-
core scales; at full machine scale of 160K-cores, we expect
one file creation to take over two minutes for the many
directory case, and over 10 minutes for the single directory
case. Previous work shows these times to be even worse,
putting the full system scale metadata operations in hours
range, although GPFS might have been improved over the last
several years. On a large scale HPC system, whether the time
per metadata operation is minutes or hours, the conclusion is
that the metadata management in GPFS does not have enough
degree of distribution, and not enough emphasis was placed
on avoiding lock contention.

HPC storage is not the only area that suffers the storage
bottleneck. Similar with the HPC scenarios, distributed file
system such as HDFS [4, 5] and cloud based distributed
systems also have to face storage bottleneck. Furthermore,
due to the dynamic nature of cloud applications, a suitable
storage system needs to satisfy more requirements, such as
being able to handle dynamic nodes join and leave on the



ZHT 

instance

ZHT 

Manager

Update

Response 

to request

Partition

ZHT 

instance

Partition

Response

to request

Physical node

Membership 

table

UUID(ZHT)

IP

Port

Capacity

workload

Broadcast

(a) ZHT server single node architec-
ture. Each node run multiple ZHT
instances with multiple partitions.

(b) Performance evaluation of ZHT and Mem-
cached plotting latency vs. scale (1 to 8K
nodes on the Blue Gene/P)

Fig. 1: ZHT server architecture and performance

fly and the flexibility to run on different cloud instance types
simultaneously.

As an initial attempt to meet these needs, we propose and
build ZHT (zero-hop distributed hash table [6, 7], an instance
of NoSQL database. ZHT has been tuned for the specific
requirements of high-end computing (e.g. trustworthy/reliable
hardware, fast networks, non-existent ”churn”, low latencies).
ZHT aims to be a building block for future distributed sys-
tems, with the goal of delivering excellent availability, fault
tolerance, high throughput, scalability, persistence, and low
latencies. ZHT has several important features making it a
better candidate than other distributed hash tables and key-
value stores. Highlighted features include being light-weight,
dynamically allowing nodes join and leave, fault tolerant
through replication, handling failures gracefully, efficiently
propagating events throughout the system, a customized con-
sistent hashing mechanism. Unlike conventional key-value
store, ZHT implemented new operations such as append,
compare_swap and state_change_callback in addi-
tion to insert/lookup/remove. To provide ZHT a persis-
tent back end, we also created a fast persistent single node data
store that could be easily integrated and operated in lightweight
Linux OS typically found on today’s supercomputers as well as
clouds. We have evaluated ZHT’s performance under a variety
of systems, ranging from a Linux cluster with 512-cores, to
an IBM Blue Gene/P supercomputer with 160K-cores. Using
micro-benchmarks, we scaled ZHT up to 32K-cores with
latencies of only 1.1ms and 18M operations/sec throughput.
We compared ZHT against two other systems, Cassandra and
Memcached and found it to offer superior performance for the
features and portability it supports, at large scales up to 16K-
nodes. We also compared it to DynamoDB in the Amazon
AWS Cloud, and found that ZHT offers significantly better
performance and economic cost than DynamoDB. ZHT have
been adopted in six real systems, namely FusionFS, IStore,
MATRIX, Slurm++, Fabriq and Graph/Z. They have been
implemented and evaluated at modest scales. 1) ZHT is used
in the FusionFS distributed file system to deliver distributed
meta-data management and data provenance capture/query.
On a 512-nodes deployment at Los Alamos National Lab,
FusionFS reached 509kops/s metadata performance. 2) ZHT is
used in the IStore, an erasure coding enabled distributed object
storage system, to manage chunk locations delivering more
than 500 chunks/sec at 32-nodes scales. 3) ZHT is also used
as a building block to MATRIX, a distributed task scheduling
system, delivering 13k jobs/sec throughput at 4K-core scales.
4) Slurm++, a distributed job launch system that avoids the
centralized gateway nodes in Slurm. 5) ZHT is used in Fabriq,
a distributed message queue, to store messages reliably, and

load balance the resource requirements. 6) As a back end and
building block, ZHT is used to build Graph/Z, a key-value
store based scalable graph processing system, and enable it to
efficiently handle large data sets that cannot fit in memory.

III. A FLEXIBLE QOS FORTIFIED DISTRIBUTED
KEY-VALUE STORAGE SYSTEM FOR THE CLOUD

In the era of Big Data and Cloud, distributed key-value
stores are increasingly used as building blocks of large scale
applications. Comparing to traditional relational databases,
key-value stores are particularly compelling due to their low
latency and excellent scalability. Many big companies, such
as Facebook and Amazon, run multiple different applications
and services on top of a single key-value store deployment to
reduce the deployment and maintenance complexity as well
as economic cost. However every application has its own
performance requirement but most of current key-value store
systems are designed to serve every application request equally.
This design works well when single application accesses
the key-value store, but it is not as good for the emerging
concurrent multi-application scenario. In this work we present
ZHT/Q, a flexible QoS Fortified distributed key-value storage
system for Clouds. It enhances a high performance key/value
store with flexible QoS (Quality of Service) properties such
that both configurable latency and high aggregated throughput
can be achieved. It satisfies different applications’ latency re-
quirements with QoS while improves the overall performance
through dynamic and adaptive request batching mechanisms.
The system QoS provides guaranteed and best-effort service
on latency for different scenarios. It also watches the perfor-
mance change and dynamically adjusts the batching strategy
to alleviate performance degradation upon traffic.

We design the new system based on ZHT and propose to
add a proxy layer (fig.2a) for dynamic batching mechanism on
the client side instead of server side. The client proxy works
on each client, collects and batches the requests that share a
same destination server and sends to the server. The destination
server unpacks the batch with a parser, executes the requests
sequentially, packs the return status (including lookup results)
in a batch and send back. This keeps the communication and
storage layers of key-value store unchanged. The experiment
results show that our new system delivers up to 28 times higher
throughput than the base solution while more than 99% of
requests’ latency requirements are satisfied (fig.2b).

Request Handler

B1 B2 B3 Bn-1 Bn

Condition Monitor

& Sender

Batching 
Strategy 
Engine

Plugin

Plugin

Plugin

Check 
condition

Check 
results

Batch buckets

Push requests to batch
Update condition

Returned batch 
results

Sending batches

Initiate results

K

V

K

V

K

V

K

V
…

K

V

K

V

Result 

Service

Unpack and 

insert

Client API Wrapper

Choose 
strategy

…

Latency 

Feedback

Response 
buffer

(a) Client side batcher architecture.

0.1 0.5 5.0 50.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency in ms

(b) Batch latency CDF (4 workloads)
Fig. 2: ZHT server architecture and performance

IV. FRIEDA-STATE: SCALABLE STATE MANAGEMENT
FOR SCIENTIFIC APPLICATIONS ON CLOUD

Cloud is as an emerging platform and increasingly attrac-
tive to scientists due to its flexibility and convenience. But



Fig. 3: FRIEDA-State system architecture. State collector captures static states from static
and dynamic sources. Captured states are encapsulated into the form of key-value pairs
and pushed to one of three storage solutions as selected by the user.

cloud environments are typically transient. Virtual machine
instances are terminated after applications complete execution.
Users cannot leave data and/or revisit the resource setup
to diagnose discrepancies. In the cloud environment, users
have the responsibility to capture everything before the virtual
machines are shutdown. Big data scientific run-time systems
[8] need to track every step of the scientific process, data access
and environment for lineage, reconstruction, validity and repro-
ducibility purposes. It is important to know the environment
in which the applications run (e.g., floating point operations
could give different results on different machines). Provenance
tools have tracked workflow and data lineage at various levels,
monitoring tools have been developed to monitor real-time
system changes. These systems provide methods to collect,
aggregate, and query monitoring data. However, this data is
often insufficient for reproduction since they do not capture
human knowledge. Furthermore, state management in cloud
environments needs to tackle additional challenges due to its
characteristics. First, the transient nature of the environments
makes it important to capture metadata and state at various
levels. Second, the performance and reliability characteristics
of virtual machines is important to consider in the design of
the collection system. Finally, different clock drifting rates on
physical machines make it hard to have a unified time view
for the end-user to rebuild meaningful semantics.

In this work, we present FRIEDA-State, a state manage-
ment system for cloud environments 3. We use the term state
to represent the metadata from both execution framework
and applications. FRIEDA-State addresses the transient nature,
performance concerns and clock drifting issue in its design.
FRIEDA-State is currently implemented atop of FRIEDA, a
data management and execution framework for cloud environ-
ments, which supports a high-throughput and data-intensive
scientific applications,. We present a key-value based collec-
tion system to manage state in dynamic transient environments.
We design and implement a vector clock based event-ordering
mechanism to address the clock drifting issue. FRIEDA-State
collects static and dynamic state data. Static state data is the
information that doesnt change when the system is running
(e.g., CPU/Memory info, environment variables and software
stack information). Dynamic state data, on the other hand,
changes during application running, such as the information
on details of the input file that is processed, the time taken for
a machine to finish execution or failure of jobs.

V. WAGGLEDB: A DYNAMICALLY SCALABLE CLOUD
DATA INFRASTRUCTURE FOR SENSOR NETWORKS

The last several years have seen a raise in the use of
sensors, actuators and their networks for sensing, monitor-
ing and interacting with the environment. There is a pro-

Fig. 4: WaggleDB system architecture. Sensor controller nodes send data to the cloud
storage. Load balancer forwards client requests to data streaming layer. Nimbus Phantom
controls dynamic scaling of queue servers and data agent servers.

liferation of small, cheap and robust sensors for measuring
various physical, chemical and biological characteristics of
the environment that open up novel and reliable methods for
monitoring qualities ranging from the geophysical variables,
soil conditions, air and water quality monitoring to growth
and decay of vegetation. Structured deployments, such as
the global network of flux towers, are being augmented by
innovative use of personal mobile devices (e.g., such as use
of cell phones to detect earthquakes), use of data from social
networks, and even citizen science. In other words, rather than
construct a single instrument comprised of millions of sensors,
a ”virtual instrument” might comprise dynamic, potentially ad
hoc groups of sensors capable of operating independently but
also capable of being combined to answer targeted questions.
Projects organized around this approach represent important
areas ranging from ocean sciences, ecology, urban construction
and research, to hydrology. This calls for an infrastructure
able to collect, store, query, and process data set from sensor
networks. The design and development of such infrastructure
faces several challenges. The first group of challenges reflects
the need to interact with and administer the sensors remotely.
The sensors may be deployed in inaccessible places and
have only intermittent network connectivity due to power
conservation and other factors. This requires communication
protocols that can withstand unreliable networks as well as
an administrative interface to sensor controller. Further, the
system has to be scalable, i.e., capable of ultimately dealing
with potentially large numbers of data producing sensors. It
also needs to be able to organize many different data types
efficiently. And finally, it also needs to scale in the number of
queries and processing requests. In this work we present a set
of protocols and a cloud-based data store called WaggleDB
that address those challenges (fig.4). The system efficiently
aggregates and stores data from sensor networks and enables
the users to query those data sets. It address the challenges
above with a scalable multi-tier architecture, which is designed
in such way that each tier can be scaled by adding more
independent resources provisioned on-demand in the cloud.

VI. GRAPH/Z: A KEY-VALUE STORE BASED SCALABLE
GRAPH PROCESSING SYSTEM

With the advancement of social networks, online gaming
and scientific applications such as geospatial systems and
bioinformatics, graph data has been used ubiquitously. There
have been works on work flow systems and data streaming
management systems attempted to handle structured big data



sets from scientific and commercial applications, which are
typically stored in file systems(such as Hadoop HDFS and Fu-
sionFS), SQL databases(such as Oracle and DB2) or Column
Family databases (such as Hadoop Hive and Cassandra). Data
mining, machine learning and security management techniques
are also widely used to extract the value from these big data
sets. However it is not easy to fully reveal and utilize the sci-
entific and commercial value from the continuously increasing
graph data sets. It’s even more challenging when moving these
works to clouds. The traditional relational database has been
used and dominated for many years, and it also works well
for a long time. Graph related query is tremendously slow on
the traditional relational database. An ideal solution for this
problem is to replace the traditional data infrastructure with a
graph-centric model, including storage and computing, thus to
better serve graph-based applications in terms of performance
and programmability.

Pregel [9] is a Bulk Synchronous Parallel model based
distributed graph processing system developed by Google. It
inspires couple of similar variation projects, such as Giraph
and GraphLab, now known as Pregel-like systems. However
Pregel-like systems have some limitations. First, they only
work on in-memory data and don’t accept new data as soon
as data loading is finished. This limits their use especially
when the dataset can’t fit in memory. Second, the master node
coordinates both synchronization barriers and checkpointing
for fault tolerance, which makes it a significant bottleneck. We
design and implement a new graph processing system Graph/Z
with ZHT as a building block. Graph/Z can be considered as
another Pregel-liked graph processing system, but it inherits
some important features from ZHT, a distributed key-value
store, which differentiate Graph/Z from other systems. ZHT is
a zero-hop distributed key-value store featured with high scal-
ability, persistency and fault tolerance. By leveraging ZHT’s
persistency, Graph/Z can run with a much larger working
dataset.

Fig. 5: Graph/Z architecture

The increment of loading time is almost linear because each
worker node only need to load its local vertexes and don’t
need to communicate with a remote node. Due to the load
balance feature of ZHT, the amount of work that each worker
needs to do are basically equal. PageRank algorithm uses all
the vertexes and edges in every superstep. Thus this is a good
algorithm to test data locality and load balance. When running
on 8 nodes, the system achieves the highest performance, and
then it decreases greatly on 16 nodes. This is mainly because
the average work load on each node is too small and relatively
more cross-node communication is involved due to large scale.

VII. CONCLUSION

On different platforms, ranging from conventional cluster,
super computers to multiple clouds, we have shown that
NoSQL data storage systems exhibit great potential to be an

excellent building block of large scale distributed systems, such
as job schedulers, data streaming systems and file systems.

We believe that NoSQL data storage could transform the
architecture of future higher level storage systems in HPC and
clouds, and open the door to a broader class of applications
that would have not normally been tractable. Furthermore, the
concepts, data-structures, algorithms, and implementations that
underpin these ideas in resource management at the largest
scales, can be applied to emerging paradigms, such as High-
Performance Computing, Cloud Computing and Many-Task
Computing.

Based on these projects, I have 11 peer-reviewed publi-
cations [3, 6, 7, 10–17] on journals and conferences. These
contributions have also lead to 13 additional [18–30] publica-
tions that are not directly authored by me and have been used
as a building block towards more complex distributed systems.

REFERENCES

[1] J. Liu and Y. Chen, “Fast data analysis with integrated statistical metadata in scientific datasets,” in
Cluster Computing (CLUSTER), 2013 IEEE International Conference on, pp. 1–8, Sept 2013.

[2] J. Liu, Y. Zhuang, and Y. Chen, “Hierarchical collective i/o scheduling for high-performance
computing,” Big Data Research, vol. 2, no. 3, pp. 117 – 126, 2015. Big Data, Analytics, and High-
Performance Computing.

[3] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, and I. Raicu, “Fusionfs:
Towards supporting data-intensive scientific applications on extreme-scale high-performance com-
puting systems,” in Big Data, 2014 IEEE International Conference on.

[4] X. Yang, Y. Yin, H. Jin, and X.-H. Sun, “Scaler: Scalable parallel file write in hdfs,” in Proc. of
IEEE International Conference on Cluster Computing (CLUSTER), pp. 203–211, IEEE, 2014.

[5] N. Liu, X. Yang, X.-H. Sun, J. Jenkins, and R. Ross, “Yarnsim: Simulating hadoop yarn,” 2015.
[6] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang, and I. Raicu, “ZHT: A

light-weight reliable persistent dynamic scalable zero-hop distributed hash table,” IPDPS ’13.
[7] T. Li, R. Verma, X. Duan, H. Jin, and I. Raicu, “Exploring distributed hash tables in highend

computing,” SIGMETRICS Performance Evaluation Review, 2011.
[8] K. Feng, Y. Yin, C. Chen, H. Eslami, X.-H. Sun, Y. Chen, R. Thakur, and W. Gropp, “Runtime

system design of decoupled execution paradigm for data-intensive high-end computing,” in 2013
IEEE International Conference on Cluster Computing (CLUSTER), pp. 1–1, IEEE, sep 2013.

[9] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski, “Pregel:
A system for large-scale graph processing,” SIGMOD ’10, 2010.

[10] T. Li, I. Raicu, and L. Ramakrishnan, “Scalable state management for scientific applications in the
cloud,” BigData Congress ’14.

[11] T. Li, X. Zhou, K. Wang, D. Zhao, I. Sadooghi, Z. Zhang, and I. Raicu, “A convergence of key-value
storage systems from clouds to supercomputers,” Concurr. Comput. : Pract. Exper.(CCPE), 2015.

[12] T. Li, K. Keahey, R. Sankaran, P. Beckman, and I. Raicu, “A cloud-based interactive data infrastruc-
ture for sensor networks,” IEEE/ACM Supercomputing/SC’14.

[13] T. Li, K. Keahey, K. Wang, D. Zhao, and I. Raicu, “A dynamically scalable cloud data infrastructure
for sensor networks,” ACM ScienceCloud 15.

[14] T. Li, C. Ma, J. Li, X. Zhou, K. Wang, D. Zhao, I. Sadooghi, and I. Raicu, “GRAPH/Z: A key-value
store based scalable graph processing system,” Cluster’15.

[15] K. Wang, X. Zhou, T. Li, M. Lang, and I. Raicu, “Optimizing load balancing and data-locality with
data-aware scheduling,” IEEE BigData’14.

[16] I. Sadooghi, J. Hernandez Martin, T. Li, K. Brandstatter, Y. Zhao, K. Maheshwari, T. Pais Pitta de
Lacerda Ruivo, S. Timm, G. Garzoglio, and I. Raicu, “Understanding the performance and potential
of cloud computing for scientific applications,” 2015.

[17] K. Wang, N. Liu, I. Sadooghi, X. Yang, X. Zhou, T. Li, M. Lang, X.-H. Sun, and I. Raicu,
“Overcoming Hadoop scaling limitations through distributed task execution,” IEEE Cluster’15,
2015.

[18] I. Sadooghi, S. Palur, A. Anthony, I. Kapur, K. Belagodu, P. Purandare, K. Ramamurty, K. Wang, and
I. Raicu, “Achieving efficient distributed scheduling with message queues in the cloud for many-task
computing and high-performance computing,” CCGrid’14, 2014.

[19] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu, “Using simulation to explore distributed
key-value stores for extreme-scale system services,” SC ’13, 2013.

[20] K. Wang, X. Zhou, H. Chen, M. Lang, and I. Raicu, “Next generation job management systems for
extreme-scale ensemble computing,” HPDC ’14, 2014.

[21] D. Zhao, C. Shou, T. Malik, and I. Raicu, “Distributed data provenance for large-scale data-intensive
computing,” CLUSTER, 2013.

[22] C. Shou, D. Zhao, T. Malik, and I. Raicu, “Towards a provenance-aware a distributed file system,”
TaPP13, 2013.

[23] K. Wang, A. Rajendran, K. Brandstatter, Z. Zhang, and I. Raicu, “Paving the road to exascale with
many-task computing,” SC’12 Poster, 2012.

[24] I. Raicu, I. T. Foster, and P. Beckman, “Making a case for distributed file systems at exascale,” LSAP
’11, 2011.

[25] D. Zhao, D. Zhang, K. Wang, and I. Raicu, “Exploring reliability of exascale systems through
simulations,” HPC ’13, pp. 1:1–1:9, 2013.

[26] K. Wang, K. Brandstatter, and I. Raicu, “Simmatrix: Simulator for manytask computing execution
fabric at exascales,” HPC, 2013.

[27] D. Patel, F. Khasib, I. Sadooghi, and I. Raicu, “Towards In-Order and Exactly-Once Delivery using
Hierarchical Distributed Message Queues,” SCRAMBL’14, 2014.

[28] D. Zhao, K. Qiao, and I. Raicu, “Hycache+: Towards scalable high-performance caching middle-
ware for parallel file systems,” 2014.

[29] D. Zhao, J. Yin, K. Qiao, and I. Raicu, “Virtual chunks: On supporting random accesses to scientific
data in compressible storage systems,” IEEE BigData’14, 2014.

[30] A. Rajendran and I. Raicu, “Matrix: Many-task computing execution fabric for extreme scales,”
2013.


