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ABSTRACT

As supercomputers gain more parallelism at exponential rates, the storage

infrastructure performance is increasing at a significantly lower rate due to rela-

tively centralized management. This implies that the data management and data

flow between the storage and compute resources is becoming the new bottleneck for

large-scale applications. Similarly, cloud based distributed systems introduce other

challenges stemming from the dynamic nature of cloud applications. This dissertation

addresses several challenges on storage systems at extreme scales for supercomput-

ers and clouds by designing and implementing a zero-hop distributed NoSQL storage

system (ZHT), which has been tuned for the requirements of high-end computing

systems. ZHT aims to be a building block for scalable distributed systems. The goals

of ZHT are delivering high availability, good fault tolerance, light-weight design, per-

sistence, dynamic joins and leaves, high throughput, and low latencies, at extreme

scales (millions of nodes). We have evaluated ZHT’s performance under a variety of

systems, ranging from a Linux cluster with 64-nodes, an Amazon EC2 virtual cluster

up to 96-nodes, to an IBM Blue Gene/P supercomputer with 8K-nodes. This work

also presents several real systems that have adopted ZHT as well as other NoSQL

systems, namely ZHT/Q, FusionFS, IStore, MATRIX, Slurm++, Fabriq, FREIDA-

State, and WaggleDB, all of these real systems have been significantly simplified due

to NoSQL storage systems, and have been shown to outperform other leading systems

by orders of magnitude in some cases. Through our work, we have shown how NoSQL

storage systems can help on both performance and scalability at large scales in such

a variety of environments.

xi



1

CHAPTER 1

INTRODUCTION

Today’s science is generating datasets that are increasing exponentially in both

complexity and volume, making their analysis, archival, and sharing one of the grand

challenges of the 21st century. As supercomputers gain more parallelism at exponen-

tial rates, the storage infrastructure performance is increasing at a significantly lower

rate. This implies that the data management and data flow between the storage and

compute resources is becoming the new bottleneck for large-scale applications. The

support for data intensive computing is critical to advancing modern science as storage

systems have experienced a gap between capacity and bandwidth that increased more

than 10-fold over the last decade. There is an emerging need for advanced techniques

to manipulate, visualize and interpret large datasets. Many domains (e.g. astron-

omy, bioinformatics, and financial analysis) share these data management challenges,

strengthening the potential impact from generic solutions.

“A supercomputer is a device for turning compute-bound problems into I/O

bound problems” [1]. The quote from Ken Batcher reveals the essence of modern

high performance computing and implies an ever-growing shift in bottlenecks from

compute to I/O. For exascale computers, the challenges are even more radical [2], as

the only viable approaches in next decade to achieve exascale computing all involve

extremely high parallelism and concurrency. Up to 2015, some of the biggest systems

already have more than 3 million general-purpose cores that are connected with high

speed network such as torus [3] or fat tree [4]. Many experts predict that exascale

computing will be a reality by the end of the decade; an exascale system is expected

to have millions of nodes, billions of threads of execution, hundreds of petabytes of

memory, and exabyte of persistent storage [5].

In the current decades-old architecture of HPC systems, storage is completely
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segregated from the compute resources and are connected via a network intercon-

nect (e.g. parallel file systems running on network attached storage, such as GPFS

[6], PVFS [7] and Lustre [8]). This approach is not able to scale several orders of

magnitude in terms of concurrency and throughput, and will thus prevent the move

from petascale to exascale. If we do not solve the storage problem with new storage

architectures, it could be a “show-stopper” in building exascale systems. The need

for building e�cient and scalable distributed storage for high-end computing (HEC)

systems that will scale three to four orders of magnitude is on the horizon.

One of the major bottlenecks in current state-of-the-art storage systems is

metadata management. Metadata operations on parallel file systems can be ine�cient

at large scale. Experiments on the Blue Gene/P system at 16K-core scales show the

various costs (wall-clock time measured at remote processor) for file/directory create

on GPFS. Ideal performance would have been constant, but we see the cost of these

basic metadata operations (e.g. create file) growing from tens of milliseconds on a

single node (four-cores), to tens of seconds at 16K-core scales; at full machine scale of

160K-cores, we expect a file create to take over two minutes for the many directory

case, and over 10 minutes for the single directory case. Previous work shows these

times to be even worse, putting the full system scale metadata operations in the

hour range, but the test bed as well as GPFS might have been improved over the

last several years. Whether the time per metadata operation is minutes or hours on a

large-scale HEC system, the conclusion is that the distributed metadata management

in GPFS does not have enough degree of distribution, and not enough emphasis was

placed on avoiding lock contention. GPFS’s metadata performance degrades rapidly

under concurrent operations, reaching saturation at only 4 to 32 core scales (on a

160K-core machine).

Other distributed file systems (e.g. Google’s GFS and Yahoo’s HDFS for
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Hadoop) that have centralized metadata management make the problems observed

with GPFS even worse from the scalability perspective. Future storage systems

for high-end computing should support distributed metadata management, leverag-

ing distributed data-structure tailored for this environment. The distributed data-

structures share some characteristics with structured distributed hash tables, having

resilience in face of failures with high availability; however, they should support close

to constant time inserts/lookups/removes delivering the low latencies typically found

in centralized metadata management (under light load). Metadata should be reliable

and highly available, for which replication (a widely used mechanism) could be used.

HPC is not the only area that su↵ers the storage bottleneck. Similar with the

HPC scenarios, cloud based distributed systems also have to face storage bottleneck.

Furthermore, due to the dynamic nature of cloud applications, a suitable storage

system needs to satisfy more requirements.

As an attempt to meet these needs, we propose and build ZHT (zero-hop

distributed hash table [9, 10]), an instance of NoSQL database [11], which has been

tuned for the specific requirements of high-end computing (e.g. trustworthy/reliable

hardware, fast networks, non-existent “churn”, low latencies, and scientific computing

data-access patterns). ZHT aims to be a building block for future distributed sys-

tems, with the goal of delivering excellent availability, fault tolerance, high through-

put, scalability, persistence, and low latencies. ZHT has several important features

making it a better candidate than other distributed hash tables and key-value stores,

such as being light-weight, dynamically allowing nodes join and leave, fault tolerant

through replication and by handling failures gracefully and e�ciently propagating

events throughout the system, a customizable consistent hashing function, support-

ing persistence for better recoverability in case of faults, scalable, and supporting

unconventional operations such as append (providing lock-free concurrent key/value
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modifications) in addition to insert/lookup/remove. To provide ZHT a persistent back

end, we also created a fast persistent key-value store that could be easily integrated

and operated in lightweight Linux OS typically found on today’s supercomputers as

well as clouds. We have evaluated ZHT’s performance under a variety of systems,

ranging from a Linux cluster with 512-cores, to an IBM Blue Gene/P supercom-

puter with 160K-cores. Using micro-benchmarks, we scaled ZHT up to 32K-cores

with latencies of only 1.1ms and 18M operations/sec throughput. We compared ZHT

against two other systems, Cassandra [12] and Memcached [13] and found it to o↵er

superior performance for the features and portability it supports, at large scales up

to 16K-nodes. We also compared it to DynamoDB[14] in the Amazon AWS Cloud,

and found that ZHT o↵ers significantly better performance and economic cost than

DynamoDB.

This work also presents several real systems that have adopted ZHT as well as

other NoSQL systems, namely FusionFS [15] (distributed metadata management and

data provenance capture/query), ZHT/Q (a flexible QoS fortified distributed key-

value storage system for the cloud), IStore [16] (data chunk metadata management),

MATRIX (distributed scheduling), Slurm++ (distributed HPC job launch), Fqbriq

(distributed message queue management), FREIDA-State [17] (state management for

scientific applications on cloud), and WaggleDB [18] (a Cloud-based interactive data

infrastructure for sensor network applications); all of these real systems have been

simplified due to NoSQL storage systems, and have been shown to outperform other

leading systems by orders of magnitude in some cases. It’s important to highlight

that some of these systems are rooted in HPC systems from supercomputers, while

others are rooted in clouds and ad-hoc distributed systems; through our work, we have

shown how versatile NoSQL storage systems can be in such a variety of environments.

The contributions of this work are as follows:
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• Design and implementation of a NoSQL storage system named ZHT and opti-

mized for high-end computing; Verified ZHT’s scalability on 32K-cores scale;

• Design and implementation of ZHT/Q, a flexible QoS fortified distributed key-

value storage system based on ZHT. The new system is optimized to satisfy

QoS on latency while achieving high throughput;

• Application of ZHT in real systems, namely FusionFS, IStore, MATRIX, Slurm++,

Fabriq, Graph/Z;

• Design and implementation of FRIEDA-State, a NoSQL-based state manage-

ment system for scientific applications running in cloud environments, with

lightweight capturing, e�cient storage and vector clock-based event ordering;

• Design and implementation of WaggleDB, a NoSQL-based dynamically scalable

cloud data infrastructure for sensor networks;

• Both real systems and simulations were used to evaluate NoSQL at extreme

scales, up to thousands of real nodes, and millions of simulated nodes;

• Prove that Distributed NoSQL storage systems that are light-weight, dynamic,

resilient, portable, supporting both low latency and high throughput, are a

excellent and fundamental building block for more complex distributed systems;

These contributions have led to 15 peer reviewed publications, and one publi-

cations that is under review.

• Tonglin Li, Ke Wang, Shiva Srivastava, Dongfang Zhao, Kan Qiao, Iman

Sadooghi, Xiaobing Zhou, Ioan Raicu, A Flexible QoS Fortified Distributed Key-

Value Storage System for the Cloud, IEEE International Conference on Big Data

(IEEE BigData 2015)
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• Tonglin Li, Xiaobing Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi, Zhao

Zhang, Ioan Raicu, A Convergence of Distributed Key-Value Storage in Cloud

Computing and Supercomputing, Journal of Concurrency and Computation Prac-

tice and Experience (CCPE) 2015.

• Tonglin Li, Kate Keahey, Ke Wang, Dongfang Zhao, Ioan Raicu, A Dynam-

ically Scalable Cloud Data Infrastructure for Sensor Networks, ScienceCloud

2015

• Tonglin Li, Chaoqi Ma, Jiabao Li, Xiaobing Zhou, Ke Wang, Dongfang Zhao

and Ioan Raicu, GRAPH/Z: A Key-Value Store Based Scalable Graph Process-

ing System, IEEE Cluster 2015

• Tonglin Li, Ioan Raicu, Lavanya Ramakrishnan, Scalable State Management

for Scientific Applications in the Cloud, BigData 2014

• Tonglin Li, Kate Keahey, Rajesh Sankaran, Pete Beckman, Ioan Raicu, A

Cloud-based Interactive Data Infrastructure for Sensor Networks, ACM/IEEE

Supercomputing Conference Regular Research Poster, SC2014

• Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang,

Adithya Rajendran, Zhao Zhang, Ioan Raicu, ZHT: A Light-weight Reliable

Persistent Dynamic Scalable Zero-hop Distributed Hash Table, 27th IEEE In-

ternational Parallel & Distributed Processing Symposium (IPDPS), 2013.

• Tonglin Li, Raman Verma, Xi Duan, Hui Jin, Ioan Raicu. Exploring Dis-

tributed Hash Tables in High-End Computing, ACM SIGMETRICS Perfor-

mance Evaluation Review (PER), 2011

• Iman Sadooghi, Jess Hernndez Martin, Tonglin Li, Kevin Brandstatter, Ketan

Maheshwari, Tiago Pais Pitta de Lacerda Ruivo, Gabriele Garzoglio, Steven
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Timm, Yong Zhao, Ioan Raicu, Understanding the Performance and Potential

of Cloud Computing for Scientific Applications, IEEE Transactions on Cloud

Computing (TCC), 2015

• Ke Wang, Kan Qiao, Iman Sadooghi, Xiaobing Zhou, Tonglin Li, Michael

Lang, Ioan Raicu, Load-balanced and locality-aware scheduling for data-intensive

workloads at extreme scales, Journal of Concurrency and Computation Practice

and Experience (CCPE) 2015.

• Ke Wang, Ning Liu, Iman Sadooghi, Xi Yang, Xiaobing Zhou, Tonglin Li, M

Lang, Xian-He Sun, I Raicu, Overcoming Hadoop scaling limitations through

distributed task execution, IEEE Cluster 2015

• Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li, Ke Wang, Dries

Kimpe, Philip Carns, Robert Ross, and Ioan Raicu. FusionFS: Towards Sup-

porting Data-Intensive Scientific Applications on Extreme-Scale High-Performance

Computing Systems, IEEE International Conference on Big Data 2014

• Ke Wang, Xiaobing Zhou, Tonglin Li, Dongfang Zhao, Michael Lang, Ioan

Raicu, Optimizing Load Balancing and Data-Locality with Data-aware Schedul-

ing, IEEE International Conference on Big Data 2014

• Ke Wang, Kan Qiao, Iman Sadooghi, Xiaobing Zhou, Tonglin Li, Michael

Lang, Ioan Raicu, Loadbalanced and localityaware scheduling for dataintensive

workloads at extreme scales, Journal of Concurrency and Computation Practice

and Experience (CCPE) 2015.

• Iman Sadooghi, Ke Wang, Shiva Srivastava, Dharmit Patel, Dongfang Zhao,

Tonglin Li, Ioan Raicu, FaBRiQ: Leveraging Distributed Hash Tables towards

Distributed Publish-Subscribe Message Queues, IEEE/ACM International Sym-

posium on Big Data Computing (BDC) 2015
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These contributions have also lead to 13 additional [19–32] peer-reviewed pub-

lications which have used the work from this dissertation as a building block towards

more complex distributed systems.

The rest of this dissertation is organized as follows: chapter 2 describes ZHT,

a Light-weight reliable persistent dynamic Scalable zero-hop distributed key-value

store for supercomputers and clouds, and proved that distributed key-value storage

systems can be light-weight, dynamic, resilient, portable, supporting both low latency

and high throughput. Chapter 3 describes a series of real distributed systems that

have been built based on ZHT. Chapter 4 describes ZHT/Q, a flexible QoS (Quality

of Service) fortified distributed key-value storage system for clouds and data centers.

Chapter 5 describes two real cloud-based scientific application systems that used

NoSQL databases to boost the performance, scalability and to simplify the design.

Chapter 6 summaries the related work. Chapter 7 describes the conclustion and

future work.
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CHAPTER 2

KEY-VALUE STORAGE SYSTEM FOR SUPERCOMPUTERS AND CLOUDS

This chapter presents a convergence of distributed Key-Value storage systems

in supercomputers and clouds. It specifically presents ZHT, a zero-hop distributed

key-value store system, which has been tuned for the requirements of high-end com-

puting systems. ZHT aims to be a building block for future distributed systems, such

as parallel and distributed file systems, distributed job management systems, and

parallel programming systems. ZHT has some important properties, such as being

light-weight, dynamically allowing nodes join and leave, fault tolerant through replica-

tion, persistent, scalable, and supporting unconventional operations such as append,

compare and swap, callback in addition to the traditional insert/lookup/remove. We

have evaluated ZHT’s performance under a variety of systems, ranging from a Linux

cluster with 64-nodes, an Amazon EC2 virtual cluster up to 96-nodes, to an IBM Blue

Gene/P supercomputer with 8K-nodes. We compared ZHT against other key/value

stores and found it o↵ers superior performance for the features and portability it

supports. This chapter also presents several real systems that have adopted ZHT,

namely FusionFS (a distributed file system), IStore (a storage system with erasure

coding), MATRIX (distributed scheduling), Slurm++ (distributed HPC job launch),

Fabriq (distributed message queue management); all of these real systems have been

simplified due to Key-Value storage systems, and have been shown to outperform

other leading systems by orders of magnitude in some cases. It’s important to high-

light that some of these systems are rooted in HPC systems from supercomputers,

while others are rooted in clouds and ad-hoc distributed systems; through our work,

we have shown how versatile Key-Value storage systems can be in such a variety of

environments.

2.1 Introduction
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Today’s science is generating datasets that are increasing exponentially in both

complexity and volume, making their analysis, archival, and sharing one of the grand

challenges of the 21st century [33]. As supercomputers gain more parallelism at ex-

ponential rates, the storage infrastructure performance is increasing at a significantly

lower rate [34]. This implies that the data management and data flow between the

storage and compute resources is becoming the new bottleneck for large-scale appli-

cations. The support for data intensive computing is critical to advancing modern

science as storage systems have experienced a gap between capacity and bandwidth

that increased more than 10-fold over the last decade. There is an emerging need for

advanced techniques to manipulate, visualize and interpret large datasets. Many do-

mains (e.g. astronomy, bioinformatics [35], security [36–46], micro electro mechanical

systems [47–50], GIS(Geographic Information System) [51–55] and financial analysis)

share these data management challenges, strengthening the potential impact from

generic solutions.

“A supercomputer is a device for turning compute-bound problems into I/O

bound problems” [1]. The quote from Ken Batcher reveals the essence of modern

high performance computing and implies an ever-growing shift in bottlenecks from

compute to I/O. For exascale computers, the challenges are even more radical, as the

only viable approaches in the next decade to achieve exascale computing all involve

extremely high parallelism and concurrency [25]. Up to 2015, some of the biggest

systems already have more than 3 million general-purpose cores. Many experts predict

that exascale computing will be a reality by the end of the decade; an exascale system

is expected to have millions of nodes, billions of threads of execution, hundreds of

petabytes of memory, and exabyte of persistent storage.

In the current decades-old architecture of HPC systems, storage(e.g. parallel

file systems, such as GPFS [6], PVFS [7] and Lustre [8]) is completely separated from
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compute resources. The connection between them is a high speed network. This

approach is not able to scale several orders of magnitude in terms of concurrency

and throughput, and will thus prevent the move from petascale to exascale. The un-

scalable storage architecture could be a “show-stopper” in building exascale systems

[25]. Although there are works such as burst-bu↵er [56, 57] to alleviate the parallel

file system bottleneck, in the long run the need for building e�cient and scalable

distributed storage for high performance computing (HPC) systems that will scale

three to four orders of magnitude is on the horizon.

One of the major bottlenecks in current state-of-the-art storage systems is

metadata management. Metadata operations on most of parallel and distributed

file systems can be ine�cient at large scales. Our previous work(Fig.2.1) on a Blue

Gene/P supercomputer with 16K-cores shows the various costs for file/directory cre-

ating(metadata operation of file systems) on GPFS. GPFS’s metadata performance

degrades rapidly under concurrent operations, reaching saturation at only 4 to 32

core scales (on a 160K-core machine). Ideal performance would have been constant

at di↵erent scales, but we see the cost of these basic metadata operations (e.g. create

file) growing exponentially, from tens of milliseconds on a single node (four-cores), to

tens of seconds at 16K-core scales; at full machine scale of 160K-cores, we expect one

file creation to take over two minutes for the many directory case, and over 10 min-

utes for the single directory case. Previous work shows these times to be even worse,

putting the full system scale metadata operations in hours range, although GPFS

might have been improved over the last several years. On a large scale HPC system,

whether the time per metadata operation is minutes or hours, the conclusion is that

the metadata management in GPFS does not have enough degree of distribution, and

not enough emphasis was placed on avoiding lock contention.

Other parallel or distributed file systems (e.g. Google’s GFS and Yahoo’s
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Figure 2.1. Time per operation (touch) on GPFS on various numbers of processors
on a IBM Blue Gene/P

HDFS) that have centralized metadata management make the problems observed

with GPFS even worse from the scalability perspective. Future storage systems

for high-end computing should support distributed metadata management, leverag-

ing distributed data-structure tailored for this environment. The distributed data-

structures share some characteristics with structured distributed hash tables, having

resilience in face of failures with high availability; however, they should support close

to constant time operations and deliver the low latencies typically found in centralized

metadata management (under light load).

HPC storage is not the only area that su↵ers the storage bottleneck. Similar

with the HPC scenarios, cloud based distributed systems also have to face storage

bottleneck. Furthermore, due to the dynamic nature of cloud applications, a suitable

storage system needs to satisfy more requirements, such as being able to handle

dynamic nodes join and leave on the fly and the flexibility to run on di↵erent cloud

instance types simultaneously.

As an initial attempt to meet these needs, we propose and build ZHT(zero-
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hop distributed hash table [9, 10, 58, 59]), an instance of NoSQL database [11]. ZHT

has been tuned for the specific requirements of high-end computing (e.g. trustwor-

thy/reliable hardware, fast networks, non-existent “churn”, low latencies). ZHT aims

to be a building block for future distributed systems, with the goal of delivering ex-

cellent availability, fault tolerance, high throughput, scalability, persistence, and low

latencies. ZHT has several important features making it a better candidate than other

distributed hash tables and key-value stores. Highlighted features include being light-

weight, dynamically allowing nodes join and leave, fault tolerant through replication,

handling failures gracefully, e�ciently propagating events throughout the system, a

customized consistent hashing mechanism. Unlike conventional key-value store, ZHT

implemented new operations such as append,compare swap/ and state change call-

back in addition to insert/lookup/remove. To provide ZHT a persistent back end, we

also created a fast persistent single node data store that could be easily integrated and

operated in lightweight Linux OS typically found on today’s supercomputers as well

as clouds. We have evaluated ZHT’s performance under a variety of systems, ranging

from a Linux cluster with 512-cores, to an IBM Blue Gene/P supercomputer with

160K-cores. Using micro-benchmarks, we scaled ZHT up to 32K-cores with latencies

of only 1.1ms and 18M operations/sec throughput. We compared ZHT against two

other systems, Cassandra [12] and Memcached [13] and found it to o↵er superior per-

formance for the features and portability it supports, at large scales up to 16K-nodes.

We also compared it to DynamoDB [14] in the Amazon AWS Cloud, and found that

ZHT o↵ers significantly better performance and economic cost than DynamoDB.

It also covers five real systems (FusionFS, IStore, MATRIX, Slurm++, and

Fabriq) at a high-level. They have been integrated with ZHT, and evaluated at

modest scales. 1) ZHT is used in the FusionFS distributed file system to deliver dis-

tributed meta-data management and data provenance capture/query. On a 512-nodes

deployment at Los Alamos National Lab, FusionFS reached 509kops/s metadata per-
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formance. 2) ZHT is used in the IStore, an erasure coding enabled distributed object

storage system, to manage chunk locations delivering more than 500 chunks/sec at

32-nodes scales. 3) ZHT is also used as a building block to MATRIX, a distributed

task scheduling system, delivering 13k jobs/sec throughput at 4K-core scales. 4)

Slurm++, a distributed job launch system that avoids the centralized gateway nodes

in Slurm. 5) ZHT is used in Fabriq, a distributed message queue, to store messages

reliably, and load balance the resource requirements. All of these real systems have

been simplified due to NoSQL storage systems, and have been shown to outperform

other leading systems by orders of magnitude in some cases. It’s important to high-

light that some of these systems are rooted in HPC systems from supercomputers,

while others are rooted in clouds and ad-hoc distributed systems; through our work,

we have shown how versatile NoSQL storage systems can be in such a variety of

environments.

The contributions of the original conference paper [9] that chapter has ex-

tended are:

• Design and implementation of ZHT, a light-weight, high performance, fault tol-

erant, persistent, dynamic, and highly scalable distributed hash table, optimized

for supercomputers and clusters.

• Support for unconventional operations, such as append, in order to reduce lock

contention.

• Extensive system micro benchmarks conducted on up to 8K real nodes. Simula-

tions used to evaluate ZHT and some competitors at up to millions of simulated

nodes.

• Integration and evaluation with three real systems (FusionFS, IStore, and MA-

TRIX), managing distributed storage metadata and distributed job scheduling
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information.

This chapter has extended the original conference paper [9] through the fol-

lowing significant contributions:

• Prove that Distributed NoSQL key/value storage systems that are light-weight,

dynamic, resilient, portable, supporting both low latency and high throughput,

are a reality.

• Extended primitive operations with new operations(cswap and callback), which

can significantly simplify the design of upper level applications.

• Extended evaluations of ZHT to the Amazon AWS cloud for both performance

and economics.

• Showcased two new real system that have been built with ZHT, namely Slurm++

(HPC job launch system) and Fabriq(distributed message queue system)

2.2 ZHT Design and Implementation

Most high performance computing environments are batch oriented, in which

an allocation is configured in the beginning at run time. Such an allocation generally

has information about the available hardware and software resources, and the amount

of resources (e.g. number of nodes) generally would not change until the allocation is

terminated. The only possible reason to decrease the allocation is hardware(nodes,

hard drive or network) or low level software system (such as monitoring [60, 61] and

scheduling [?, 62, 63] systems)failure. Because nodes in HPC systems are generally

reliable and have predicable uptime (from the start of an allocation, to shut down

on de-allocation), it implies that node “churn” in HPC occurs much less frequently

than in traditional DHTs. In ZHT’s static membership (for HPC), every node at

bootstrap time knows how to contact each other.
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However in some dynamic environments, the system properties are di↵erent.

In dynamic environments such as clouds or data centers, nodes may join (for system

performance boosting) and leave (node failure or scheduled maintenance) at any time.

We believe that dynamic membership would be important for such environments,

especially for cloud computing systems, and hence have made e↵orts to support it

without a↵ecting primitive operations’ time complexity. This principle guided our

design of the proposed dynamic membership management in ZHT.

The node ID space and membership table are treated as a ring-shaped name

space. The node IDs in ZHT can be randomly distributed throughout the network.

The random distribution of the ID space has worked well up to 32K-cores. A hash

function maps arbitrarily long strings to index values, which can then be used to

e�ciently retrieve the communication address (e.g. host name, IP address, port,

MPI-rank) from a local in-memory membership table . Depending on the volume of

information that is stored, storing the entire membership table consumes only a small

(less than 1%) portion of available memory on each node.

With a 1K-nodes scale allocation on Intrepid, an IBM BlueGene/P supercom-

puter, one ZHT instance’s memory footprint is less than 8MB. The memory footprint

consists of ZHT server binary, membership table and ZHT server side socket connec-

tion bu↵ers. Among them, only membership table and socket bu↵ers will increase

with the scale of nodes. Entries in hash table will be flushed to disk periodically. The

membership table is very small, each entry(presenting a node) only takes 32 bytes, 1

million nodes only need 32 MB space. By tuning the number of key/value pairs that

are cached in memory, users can reach the balance between performance and memory

consumption.

2.2.1 Primitive operations. Similar to other key-value stores, ZHT o↵ers con-

ventional operations, namely insert, lookup and remove. These three operations
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are implemented e�ciently to achieve low latency. Based on the requirements that

we have faced during developing large-scale distributed systems, we abstract three

extra operations. These operations can significantly simplify the system design for

many scenarios.

insert operation. Insert a string type key-value pair into data store; return

execution status.

lookup operation. Lookup a given key string and return a value string, if

the key is ever modified by append operation, it will return a list of value.

remove operation. Remove a key-value pair and return execution status.

append operation. This allows user assigning multiple value to a same key

(algorithm 2.1). This is not a feature that many hash maps do, and is especially rare

in persistent ones as well. We found the append operation critical in supporting lock-

free concurrent modification in ZHT (eliminating the need for a distributed system

lock); using append, we were able to implement a highly e�cient metadata service

for a distributed file system, where certain metadata (e.g. directory lists) could be

concurrently modified across many clients. Consider a typical use case in distributed

and parallel file systems, creating 10K files from 10K processes in one directory;

the concurrent metadata modification occurs usually via distributed locks, which

is known to be ine�cient. Append primitive looks like multi-version concurrency

control (MVCC) appeared in some data stores like Voldemort, Riak and HBase, but

it’s implemented di↵erently for di↵erent purpose. In MVCC, only one version of data

is marked as current and active, while in append primitives all data fields are current

and are treated equally.

cswap (compare and swap) operation. In some applications when a client

reads a value and sets it to another value that depends on the read value, it will need
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to lock the keyvalue record. If another client wants to access the same key, there

comes the lock contention problem. A naive way to implement is to add a global

lock for each queried key in the key-value stores, which is apparently not scalable. A

better approach is used in ZHT to implement an atomic operation that is executed

on the key-value store server side, which finish the value update before return to the

client (algorithm 2.2). This primitive is similar with “Check-and-Set” in Memcached

and Couchbase Server [64].

callback operation. Callback operation is used to notify a client upon a

specified value change (algorithm 2.3). Sometimes an application (such as a state

machine) needs to wait on specific state change in the key-value store before moving

on. A simple way to do this is letting the client to pull the data server periodically

(e.g. every 1 sec) until the state changes, which brings too much unnecessary commu-

nication. To solve this problem, we move the value checking from the client side to

the server side and introduce a new operation called state change callback (abbre-

viated to callback). The data server creates a dedicated thread for all state change

callback requests, and the main thread keeps processing other requests. Within a

given period of time (time out), if the server finds the value being changed to ex-

pected value, it returns success signal to the client; otherwise returns failure signal to

the client.

2.2.2 Terminologies. In this section, we briefly introduce the terms used in the

this work.

Physical node. A physical node is an independent physical machine. Each

physical node may run several ZHT instances that are di↵erentiated with a combina-

tion of IP address and port.

Instance. A ZHT instance is a ZHT server process that handles the requests
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Algorithm 2.1 Append
1: procedure append client(key, appended value)

2: pack  pack(key, appended value)

3: send(serialize(pack))

4: end procedure

5: procedure append server response(key, appended value)

6: record p lookup(key) . return an entry pointer

7: while cursor p.value.next! = Null do

8: cursor p record p.value.next

9: end while

10: cursor p.next.value appended value

11: end procedure

Algorithm 2.2 Compare and swap
1: procedure compare swap server response(key, update())

2: record p lookup(key)

3: record p.lock()

4: seenV alue record p.value

5: newV alue update(seenV alue)

6: record p.value newV alue

7: record p.unlock()

8: end procedure
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Algorithm 2.3 Callback
1: procedure callback server response(key, expectedV alue)

2: while record p.value! = expectedV alue do

3: record p lookup(key)

4: record p record p.value.next

5: end while

6: notify client()

7: end procedure

from clients. Each instance takes care of some partitions. By adjusting the number

of instance per physical node, ZHT can fit in heterogeneous computing systems with

various storage capacities and performance. A ZHT instance can be identified by a

combination of IP address and port. Therefore the partitions can be many more than

the instances and physical nodes.

Partition. A partition is a contiguous range of the key address space; a file

on disk is associated with each partition for persistence. We developed a single-node

persistent key-value store (NoVoHT) as ZHT’s back-end, which also takes care of each

partition.

Manager. A Manager is a service process running on each physical node and

takes charge of starting and shutting down ZHT instances, managing membership

table and partition migration. As traditional consistent hashing does, initially we

assign each of the k physical nodes a manager and one or more ZHT instances, each

with a universal unique id (UUID) in the ring-shaped space. The entire name space N

(a 64-bit integer) is evenly distributed into n partitions where n is a fixed big number

indicating the maximal number of nodes that can be used in the system. It is worth

noting that while n (the number of partitions, also the maximal number of physical

nodes) cannot be changed without potentially rehashing all the key/value pairs stored
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in ZHT, i (the number of ZHT instances) as well as k (the number of physical nodes)

is changeable with changes only to the membership table. Each physical node has

one manager, holds n/k partitions, with each partition storing N/n key-value pairs

and i/k ZHT instances serving requests. Each partition (which can be persisted to

disk) can be moved across di↵erent physical nodes when nodes join, leave, or fail.

For example, in an initial system of 1000 ZHT instances (typically running on

1000 nodes), where each instance contains 1000 partitions, the overall system could

scale up to 1 million instances with 1 million physical nodes. Experiments validate

this approach by showing that there is little impact (0.73ms vs. 0.77ms per request

when scaling from 1 partition to 1000 partitions respectively) on the performance as

we increase the number of partitions per instance. This design allows us to avoid a

potentially expensive rehash of many key-value pairs when the need arises to migrate

partitions.

ZHT 
instance

ZHT 
Manager

Update

Response 
to request

Partition

ZHT 
instance

Partition

Response
to request

Physical node

Membership 
table

UUID(ZHT)
IP
Port
Capacity
workload

Broadcast

Figure 2.2. ZHT server single node architecture. Each physical can run multiple
ZHT instances, which further manages multiple partitions. Each partition stores
a contiguous key space.
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2.2.3 Membership management. ZHT supports both static and dynamic node

membership. In static membership, clients and servers fetch neighbor list from the

batch job scheduler or a given file during the bootstrapping phase. Once the mem-

bership is established, no new nodes is allowed to join. Nodes could leave the system

due to failures; we assume failed nodes do not recover. For the dynamic membership,

nodes are allowed to join and leave the system dynamically. Many DHTs and key-

value stores support dynamic membership, but typically deliver this through logarith-

mic routing. They use consistent hashing which sacrifices performance for scalability

under dynamic environment. We address this issue with an improved consistent hash-

ing mechanism that requires constant-number-hop (typically 1, at most 2) routing.

With this novel design, we o↵er the desired flexibility of dynamic membership while

maintaining very low latency through constant time routing.

Data migration and membership update. The design goal is to ensure

that only minimal impact on performance and scalability would be posed by adopting

dynamic membership. With dynamic membership, there comes the need to poten-

tially migrate data from one physical node to another. In order to achieve this,

ZHT organizes its data in partitions, and migrates a partition as a whole instead of

many individual key-value pairs. This avoids rehashing all e↵ected key-value pairs,

as most DHTs that adopt consistent hashing. Moving an partition altogether is re-

markably more e�cient than rehashing individual key/value pairs. When migration

is in progress, the partition state is locked. All incoming requests during this time

are queued, until the migration is completed. In the meanwhile because the partition

state won’t change, corresponding replicas also won’t change. This keeps the entire

system state consistent. If failure occurs during migration, simply don’t apply the

changes to corresponding partitions and replicas (discard the queued requests and

report error to clients and administrators), this will eventually bring the system to

roll back to a consistent earlier state.
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Node Joins. Upon a node joins the network, it firstly checks out a copy of

membership table from a ZHT Manager on a random physical node. Based on this

table, the new node can find the physical nodes with the most partitions, then join the

ring as one of the heavily loaded node’s neighbor and migrates some of the partitions

from the “busiest” node to itself. Migrating a partition is as easy as moving a file,

without having to rehash the key/value pairs in the partition.

Node departures. On planned node departures (e.g. during system mainte-

nance), the administrator fetches current membership table from a random physical

node, modify it accordingly, then broadcast the incremental table to other ZHT man-

agers to update their local tables. The departing managers firstly migrate their data

partitions to neighboring nodes, and then proceed to depart. For an unplanned de-

parture (e.g. due to a node failure), it will be firstly detected by the client that sends

a request and doesn’t get response within a given timeout, or due to another ZHT

instance initiates a server-to-server operation and fails (e.g. migration, replication,

etc.). Upon a certain number of try-and-fails on a certain server, the client marks

the corresponding physical node down on its local membership table and informs a

random ZHT manager about this failure. The client then sends the request to the

first available replica of the failed node. At the same time, the manager updates its

local membership table and broadcasts the change to the whole network, and initiates

a rebuilding of the replicas, specifically increasing replicas for all partitions that are

stored on the failed physical node in order to maintain the specified replication level.

Client Side State. In case that clients and servers are not on the same

physical nodes, it’s necessary to keep the client-side membership table updated. Since

the node joining and departure changes the number of partitions covered by a ZHT

server, clients might send requests to wrong nodes if it’s local membership table is

not updated. To address this issue, we lazily update clients’ membership table. Only
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when the requests are sent mistakenly, the ZHT server will send back a copy of latest

membership table to the clients.

2.2.4 Server architecture. We have explored various architectures for ZHT server.

Since typical Key-Value store operations are very small but frequent, we optimize ZHT

more for small requests. In early prototypes, we adopted a multi-threading design,

in which a server throw a thread for each request, but the overheads of starting,

switching, and tearing down threads was too high compare to the work to be done

for a request. We eventually converged on a notably more streamlined architecture,

an event-driven server architecture based on epoll [65]. The current epoll-based ZHT

outperforms the multithread version by at least 3X. We’ll discuss the performance

di↵erence in detail in the evaluation section.

2.2.5 Fault tolerance. ZHT handles failures gracefully by lazily tagging non-

responding nodes failed. ZHT uses replication to ensure data persistence in face of

failures. Newly inserted or modified key/value data will be replicated asynchronously

to secondary replicas that have closer hashed location. By communicating only with

near neighbors, this approach ensures that replicas only consume less network re-

sources when we succeed in implementing the topology-aware and locality-aware pro-

tocols (similar approach can be found in [66,67]). Despite the lack of topology-aware

in the current ZHT, the asynchronous replication only adds relatively small overhead

when adding more replicas at modest scales (up to 4K-cores).

ZHT is fully distributed, and single node failures do not a↵ect the functionality.

The key/value pairs that were stored on the failed node can be found on replica nodes.

Upon failures, the replicas answers the requests for data that were originally stored

on the failed node.

When ZHT is shut down due to hardware maintenance or system reboot pur-
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poses, the entire state of ZHT could be dumped to local persistent storage; note

that every change to the in-memory data structure is dumped to disk periodically,

ensuring the entire state of the data store can be recovered if needed. Considering

the increasing size of memory and SSDs, as well as I/O performance improvements

in the future, it is expected that a multi-gigabyte of state could be retrieved in just

seconds.

Once ZHT is bootstrapped, the system verification time should not be related

to the size of the system. In the event that a fresh new ZHT instance is to be boot-

strapped, the process is very e�cient with its current static membership table, as

there is no global communication required between nodes (see Fig.2.3). Nevertheless,

we expect the time to bootstrap ZHT to be insignificant compare to the batch sched-

uler’s overheads on a high-end computing system, which could potentially include

node provisioning, OS booting, starting of network services, and perhaps the mount-

ing of some parallel file systems. At 1K-node scale on IBM Blue/Gene machine, the

time to start the batch scheduled job is about 150 seconds, after which the ZHT

bootstrap takes another 8 seconds at 1K-node scale and 10 seconds to bootstrap it

at 8K-node scale. Fig.2.3 shows the bootstrap time increase with the scale.

Figure 2.3. ZHT Bootstrap time on Blue Gene/P from 64 to 8K nodes
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2.2.6 Socket level thread safety and connection caching. In a dynamic

network environment, many multi-threaded problems are related to socket. In other

words, if the sockets are thread safe, many message transferring out-of-order related

issues are smoothed away. The previous version of ZHT client is thread-safe in op-

eration level, such as insert, delete, etc. It relies on a shared mutex to avoid any

contention problem. This was not as e�cient as it could be. We have made ZHT

client as thread safe not only in operation level but also in socket level.

In ZHT client, sockets are stored in a LRU cache. The key is combination of

IP and port of ZHT server that client talks to. When the client needs to communicate

with a server it will first try to find the key as mentioned. If not found, the socket

is initialized and bound to IP and port of the server, and then put into the cache

for reuse. In the same time, a mutex is initialized for that socket for protection.

We removed the single mutex shared by ZHT API(s) and only rely on socket level

thread-safe to realize overall ZHT client thread-safe.

2.2.7 Consistency. ZHT uses replication to handle server failures. Current ver-

sion only allows clients interact with a single primary replica for write operations

(insert/remove/append). This decision is based on the fact that if we allowed multi-

ple replicas to be concurrently modified, a more complicated consistency mechanism

such as Paxos protocol has to be maintained, which may cause serious performance

loss. If enabling all replicas to accept read request, the read performance in terms

of throughput will gain some boost, however, to ensure consistent results for all read

requests to di↵erent replicas will need version checking and updating, which may

increase the request latency significantly. Upon a primary replica failure, a corre-

sponding secondary replica will take place of primary and directly talk to clients.

Strong consistency is maintained between ZHT primary and secondary replica, oper-

ation completion thus will be acknowledged to clients right after the second replica is
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updated. Other replicas are asynchronously updated after the secondary replica up-

dating is complete, bringing ZHT to eventual consistency. By this hybrid consistency

approach, ZHT attains high throughput, good availability and reasonable consistency

level at the same time.

2.2.8 Persistence. ZHT is a distributed in-memory data-structure. In order to

withstand failures and restarts, it also supports persistence. We designed and imple-

mented a Non-Volatile Hash Table (NoVoHT [68]) for ZHT, which uses a log-based

persistence mechanism with periodic checkpointing. We evaluated several existing

systems, such as KyotoCabinet HashDB and BerkeleyDB, but performance and miss-

ing features prompted us to implement our own solution.

NoVoHT is a custom-built lightweight hash table at the core, with added

features built on top. The design of the map structure is an array of linked lists. This

structure makes collision handling e�cient. Also, it helps lookup time, by eliminating

the worst case of iterating the entire array in the case of it being full. Finally, it allows

the application to overfill the map, with more keys than buckets. While this would

impact time of insert and remove, it keeps the space used for the array lower. It

also allows the key/value store to allow lock-free read operations. When a key/value

pair is inserted, it writes the key-value pair to the file specified, and records where

it was written with the key-value pair in the map. By recording the location in the

file, removal is e�cient. When an element is removed it removes the pair from the

map, and marks the spot in the file. By marking the file, if the application crashes,

that pair will not be inserted into the map when the file state is recovered. NoVoHT

allows a customized threshold, which determines how many removes to do before the

file is rewritten with the pairs in the map (e↵ectively eliminating the pairs that were

marked for removal from the file). NoVoHT also supports periodic garbage collection

to reclaim free space at timed intervals.
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2.2.9 Implementation. ZHT is implemented in C/C++, and has very few depen-

dencies. It consists of 14900 lines of code, and is an open source project accessible at

GitHub. The dependencies of ZHT are NoVoHT (discussed in the next section) and

Google Protocol Bu↵ers [69].

2.3 Performance Evaluation via Synthetic benchmarks

In this section, we evaluate ZHT’s performance, in terms of including request

latencies, system throughput, performance of hashing functions, persistence overhead,

and replication cost. Firstly we describe the configuration of test beds and benchmark

setup. Secondly we presented a comprehensive performance evaluation. Two popular

NoSQL systems (Memcached and Cassandra) that o↵er similar functionality or fea-

tures are compared against ZHT, along with a cloud database service, DynamoDB

on EC2 [70] cloud.

2.3.1 Testbeds, Metrics, and Workloads. We used several platforms to evaluate

ZHT’s performance.

• Kodiak, a Parallel Reconfigurable Observational Environment (PROBE) [71]

at Los Alamos National Laboratory, it has 1024 nodes, and each node has two

64-bit AMD Opteron processors at 2.6GHz and 8GB memory.

• Intrepid, an IBM Blue Gene/P [72] supercomputer at Argonne Leadership Com-

puting Facility [73]. 8K physical nodes (32K cores) are used, each of which has a

4-core PowerPC 450 processor and 2GB of RAM. Intrepid was used to compare

ZHT to Memcached. Note that this system does not have persistent local node

disks so the RAM-based disks were used as persistence option.

• HEC-Cluster, a 64-node (512-core) cluster at IIT, each node has two quad-core

processors, 8GB RAM, 200GB HDD, it’s used to compare ZHT to Cassandra.
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• DataSys, an 8-core x64 server at IIT. Two Intel Xeon quad-core processors with

HT, 48 GB RAM, used to compare KyotoCabinet, BerkeleyDB and NoVoHT.

• Fusion, a 48-core x64 server at IIT. Four AMD Opteron 12-core processors,

256GB RAM, used to compare KyotoCabinet, BerkeleyDB and NoVoHT.

• Amazon EC2 Cloud, up to 96 cc.8xlarge VMs.

On each node, one or more ZHT client-server pairs are deployed, namely ZHT

instances. Each instance is configured with one partition known as NoVoHT. Test

workload is a set of key-value pairs where the key is 15 bytes and value is 132 bytes.

Clients sequentially send all of the key-value pairs through a ZHT Client API for

insert, then lookup, and then remove. The additional operations such as append are

evaluated separately due to their di↵erent nature of the operation. Since the keys are

randomly generated, the communication pattern is All-to-All, with same number of

servers and clients.

The metrics measured and reported are:

• Latency. Latency presents the time taken from a request to be submitted from a

client to a response to be received by the client, measured in milliseconds (ms).

Since various operations (insert/lookup/remove) latencies are quite close, we use

average of the three operations to simplify the results presentation. Note that

the latency consists of round trip network communication, system processing,

and storage access time. Since Blue Gene/P doesn’t have persistent storage for

each work node, ram-disks are used for the experiment, while regular spinning

drives are used in experiments on cluster.

• Throughput. The number of operations (insert/lookup/remove) the system can

handle over some period of time, measured in Kilo Ops/s.
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• Ideal throughput. Measured throughput between two nodes times the number

of nodes.

• E�ciency. Ratio between measured throughput and ideal throughput.

2.3.2 Hash Functions. Similar with what we observed, the time spent on hashing

keys to nodes is not major of the total cost, but with the time passed, the accumulation

could be observed. We investigate some of the usual hash functions for figuring out

the trade-o↵ between performance and evenness.

As shown in Fig.2.4(a) that some hash functions are faster than others, but a

more important concern rather than performance is the evenness (Fig.2.4(b)). Since

the worst hash function we investigated has performance of 0.02ms/hash, and thus

negligible compared to other overhead. Meanwhile the evenness is essential to the

entire performance. An ideal hash function should be able to spread keys evenly do

as to provide a natural load balancing mechanism.
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Figure 2.4. Hash function comparison

2.3.3 Individual data store synthetic benchmark. We compared KyotoCabi-

net [74] to NoVoHT with persistence. We used identical workloads of 1M, 10M, and

100M operations (insert/get/remove), operating on fixed length key value pairs (see

Fig.2.5). When comparing NoVoHT with KyotoCabinet or BerkeleyDB, we observed
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significantly better capacity scalability on NoVoHT. Although BerkeleyDB has some

advantages such as memory usage, it does this at the cost of higher latency. When

comparing NoVoHT persistence to non-persistence, we noticed that most of the over-

head of the operations is on the hard disk I/O.
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Figure 2.5. Average latency of NoVoHT, KyotoCabinet and BerkeleyDB

2.3.4 System Latencies.

2.3.4.1 Synthetic benchmarks On Supercomputers and clusters. We

evaluated the latency on both the Blue Gene/P supercomputer and HEC-Cluster. We

evaluated di↵erent implementations of ZHT with various communication protocols,

such as UDP, TCP with connection caching, and compare them to Cassandra and

Memcached.

Since ZHT latency is mostly dominated by cross node communication over-

head, in-node operations mostly happened in memory, the latency di↵erence between

insert and lookup is minimal (Fig.2.6). Because of this performance characteristic

of ZHT, we use average latency of insert, lookup and remove operations to simplify

presentation of the figures in rest of the chapter.

ZHT shows great scalability at up to 8K-node scale. As shown in Fig.2.7, on
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Figure 2.6. Basic operation latency comparison on Blue Gene/P. Note that in-
sert/lookup operation latencies are extremely close, because majority of the latency
are communication overhead, which are same for insert and lookup.

single node, the latency of both TCP with connection caching and UDP are extremely

low (0.5ms). When scaling up, ZHT shows slowly increased latency, up to 1.1ms at

8K-node scales. We see that TCP with connection caching delivers practically same

performance of that of UDP, at all the scales we measured. Memcached scaled well

too, the latencies ranging from 1.1 ms to 1.4 ms from single node to 8K nodes (note

that this represents a 25% to 139% increased latency, depending on the scale, implying

some scalability issue). Note that IBM Blue Gene/P uses a 3D Torus network [75] for

communication, which means the routing needs increasing number of hops at larger

scales to send messages cross compute nodes. This also explains why the latency start

to increase on large scale – one rack of Blue Gene/P has 1024 nodes, any scale larger

than 1024 involves more than one rack. We found the network to scale very well up

to 32K-cores, but there is not much we can do about the multi-hop overheads across

racks. If running on a Fat-tree network [76], we expect more constant latency (before

the network is saturated) due to the constant routing hops.

The CDF plot (Fig.2.8) shows very similar trends for di↵erent scales that imply

excellent scalability. On 64 node-scale 90% requests finish in 853us and 99% requests
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finish in 1259us. When scaling up to 1024 node-scale, the latencies are only slightly

increased, 90% finishes in 1053us and 99% finishes in 3105us (table 2.1).

Figure 2.7. Performance evaluation of ZHT and Memcached plotting latency vs. scale
(1 to 8K nodes on the Blue Gene/P)

Figure 2.8. CDF of Benchmark on Blue Gene/P CDF

Because of Cassandra’s implementation in Java, and the the Blue Gene/P

machine lacks of support for Java , we evaluated Cassandra, Memcached, and ZHT

on a conventional Linux cluster, the HEC-Cluster. Not surprisingly, as shown in 2.9,

ZHT’s latency is notably lower than that of Cassandra. ZHT also shows superior

scalability over Cassandra. This is mainly because Cassandra adopts a logarithmic
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Table 2.1. ZHT Latencies ON Blue Gene/P in Microsecond

Scales 75% 90% 95% 99% Average Throughput

64 713 853 961 1259 676 90632

256 755 933 1097 1848 748 356137

1024 820 1053 1289 3105 1007 1316942

routing algorithm and ZHT uses constant routing. Interestingly, Memcached only

shows slightly better performance than ZHT at up to 64-node scales. We attributed

ZHT’s slight increment in latency to the fact that ZHT must write to disk, while

Memcached’s data stayed in memory completely.

Figure 2.9. Performance evaluation of ZHT, Memcached and Cassandra plotting
latency vs. scale (1 to 64 nodes on an AMD Cluster)

2.3.4.2 Synthetic benchmarks On Cloud. We conduct micro benchmark

on Amazon EC2 cloud as well to compare against Amazon DynamoDB. The EC2

instance type we used are m1.medium and cc2.8xlarge, the details are shown in table

2.2.

Di↵erent from the result that we got on supercomputers, the results on EC2

cloud reveal interesting inconsistency on various scales. Ideally the request latencies

on large scale should fall into a narrow window like they do on smaller scale. On

smaller instances such as m1.medium, ZHT latency CDF plots are quite di↵erent
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(Fig.2.10). Although 90% requests are still finished within similar time (600 to 800us),

99% requests latency doubled when scales increase by 4 times. In other words, on

EC2, latencies have much longer tails in larger scales than in smaller scales.

If the experiments are conducted on smaller instances, the long tail will be

even longer (see Fig.2.10(b)). On larger instances such as cc2.8xlarge, ZHT latency

CDF plots are closer than they are on smaller instances. Fig.2.10 shows that the la-

tency trends of 4, 16 and 64 nodes scales are quite similar. This di↵erence confirms a

fact that smaller EC2 instances (such as m1.medium) share more hardware resources

(include CPU and network bandwidth) than larger instances (like cc2.8xlarge). There-

fore small instances have more interference than large ones, so the application perfor-

mance will also be influenced. Because of the less shared resource, big EC2 instance

types may act more like regular cluster or supercomputer, since little interference

exists. Note that on each cc2.8xlarge instance we start 8 ZHT servers and clients to

better utilize the resource.

We also conducted micro benchmarks for Amazon DynamoDB as a compar-

ison. Since DynamoDB default maximum throughput is 10K/s, all benchmarks are

under that provision. There is no information released about how many nodes are

used to o↵er a specific throughput. Since we have observe that the latency of Dy-

namoDB doesn’t change much with scales, and the value is around 10ms, we have to

use many clients to saturate the capacity. We deployed clients for DynamoDB micro

benchmarks on cluster computing instance, namely cc2.8xlarge. 8 clients were started

on each instance.

As expected, DynamoDB has much longer latency on all scales. On 4-node

(32 clients) scale it is 22 times slower than ZHT. In the CDF comparison DynamoDB

shows that its 90% latencies fall into a 20x wider time window than ZHT. When we

ran 8 clients on 64 nodes, DynamoDB started to give errors that complain about



36

Table 2.2. Profile of EC2 Instances Used in Experiments

Instance type m1.medium cc2.8xlarge

CPU 2 EC2 Compute Unit 88 EC2 Compute Units

Memory 3.75GB 60.5

Storage 160GB 3370GB

I/O Performance Moderate High (10 Gb/s Ethernet)

Cost $0.112/hour $2.4/hour

Table 2.3. ZHT Latencies on cc2.8xlarge EC2 Instance in Microsecond

Scales 75% 90% 95% 99% Average Throughput

8 186 199 214 260 172 46421

32 509 603 681 1114 426 75080

128 588 717 844 2071 542 236065

512 574 708 865 3568 608 841040

(a) cc2.8xlarge instance (b) m1.medium instance

Figure 2.10. Latency distribution comparisons

over used throughput so we can’t continue to push experiments on larger scales. The

slowest 5% requests latency increased by 3 times.

It is worth noting that DynamoDB latencies don’t vary much with the system

scales. It seems to show an excellent scalability and a better aggregated-throughput.

However considering that Amazon only guarantees the limited maximum throughput,
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Table 2.4. ZHT Latencies on m1.medium EC2 Instance in Microsecond

Scales 75% 90% 95% 99% Average Throughput

1 142 146 154 4887 229 4892.4

4 591 680 767 12500 760 4978.5

16 369 452 482 556 388.3 11351

64 665 807 970 3880 711.5 91201

Table 2.5. DynamoDB Latencies With Clients ON EC2 cc2.8xlarge Instance, 8
Clients/Instance

Scales 75% 90% 95% 99% Average Throughput

8 11942 13794 20491 35358 12169 83.39

32 10081 11324 12448 34173 9515 3363.11

128 10735 12128 16091 37009 11104 11527

512 FAILED FAILED FAILED FAILED FAILED FAILED

instead of latency, users won’t get faster response when they only use low throughput.

In other words, DynamoDB with more clients doesn’t work as fast as it with fewer

clients; instead, with fewer clients it works as slow as with many clients. This charac-

teristic prevents the users from reaching the provisioned capacity by lowering down

the latency when they only have fewer clients. When we tried with scales larger than

128 clients for DynamoDB, more than half request failed, because the throughput

was beyond the provisioned one.

2.3.5 System Throughput.

2.3.5.1 Synthetic benchmarks On Supercomputers and clusters. We

conducted several experiments to measure the throughput. The throughput of ZHT

(TCP with connection caching) as well as that of Memcached increases near-linearly

with scaling, reaching nearly 7.4M ops/sec at 8K-node scale in both cases.

On the HEC-Cluster, ZHT has higher throughput than Cassandra as expected.

We expect the performance gap between Cassandra and ZHT to grow as system scales
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Figure 2.11. Latency comparison, ZHT v.s DynamoDB on EC2

grows due to ZHT’s faster routing algorithm. Fig.2.13 shows the nearly 7x throughput

di↵erence between Cassandra and ZHT. As expected, Memcached performed better

as well, with 27% higher total throughput.

Figure 2.12. Performance evaluation of ZHT and Memcached plotting throughput vs.
scale (1 to 8K nodes on the BLUE GENE/P)

2.3.5.2 Synthetic benchmarks On Cloud.

Throughput. In Fig.2.14, due to the interference between m1.medium in-

stances, ZHT shows mild fluctuation in throughput. On 2cc.8xlarge instances, the

fluctuation almost disappears and the throughput is close to linear. Although Dy-

namoDB seems to stay with a linear growth, the absolute throughput is quite low.
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Figure 2.13. Performance evaluation of ZHT, Memcached and Casandra plotting
throughput vs. scale (1 to 64 nodes on the HEC-Cluster)

Comparing with ZHT, DynamoDB was more than 20 times slower at all scales. For

di↵erent EC2 instance types, we tried with various numbers of ZHT servers and

clients on each instance so as to explore the aggregated throughput. In our experi-

ments, on larger instance type such 2cc.8xlarge, running multiple ZHT server/client

won’t influence latency. Thus the aggregated throughput may have a linear growth as

long as there is still CPU and network bandwidth resource. On 96 nodes scale with

2cc.8xlarge instance type, ZHT o↵ers 1215.0 K ops/s while DynamoDB failed the test

since it saturated the capacity. The measured maximum throughput of DynamoDB

is 11.5K ops/s that is found at 64-node scale. For a fair comparison, both DynamoDB

and ZHT have 8 clients per node.

It’s worth noting that DynamoDB has a maximum throughput that is provi-

sioned (namely capacity) by the users. When the throughput is beyond provisioned

capacity, DyndmoDB will saturate and give errors, requests start to fail.

Running Cost. When discussing cloud, the cost is always a big concern[77,

78]. We calculated hourly cost for both ZHT and DynamoDB on di↵erent scales.

We calculate the ideal cost for DynamoDB, assuming the user always provisions the

same throughput to fit their need, then according to Amazon’s pricing policy, for 1k
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Figure 2.14. Aggregated throughput of ZHT and DynamoDB on EC2

ops/sec throughput, the cost is 0.65 cents per hour.

On 2-node scale DynamoDB cost 65 times more than ZHT; on largest scale

that DynamoDB can support, it still cost 32 times more than ZHT for a same through-

put (Fig.2.15). Note the cost for DynamoDB doesn’t include the EC2 instances for

running clients, it will cost even more if include the client cost. These are huge cost

savings applications could have by running their NoSQL distributed key/value stores

on their own, at the expense of managing their own NoSQL setup.

Figure 2.15. Running cost comparison
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2.3.6 Scalability and e�ciency. Although the throughput achieved by ZHT is

impressive at many millions of ops/sec, it is important to investigate the e�ciency

of the system. E�ciency was computed by comparing ZHT and Memcached per-

formance against the ideal latency/throughput (which was taken to be the better

performer at 2-node scale, the smallest test that involving the network communi-

cation). In Fig.2.16, we show that Memcached and ZHT achieve di↵erent levels of

e�ciency at up to 8K-node scales. The reason why the performance over 1K-nodes

degrades more sharply is because on Blue Gene/P system, 1K-nodes form a rack,

and communication across the rack is more expensive (at least this is the case for

TCP/UDP.

Although we were not able to run experiments at more than 8K-node scales due

to time allocation on Intrepid, we have simulated ZHT on a PeerSim-based simulator.

It was interesting that the simulator results were able to closely match the results

up to 8K-node scales (where we achieved 8M ops/sec), giving on average only 3%

of di↵erence. The simulation showed e�ciency drop to 8% at exascale levels (1M

nodes). This sounds like ZHT would not scale to an exascale system, but a closer

look at what 8% really means is worthy. 100% e�ciency implies a latency of about

0.6ms per operation (ZHT latency at 2 node scales). 51% e�ciency means 1.1ms

latency (this is the performance of ZHT at 8K-node scales). 8% e�ciency means the

latency is as low as 7ms, at 1M node scales which is still extremely low. At 1M node

scales and with latencies of 7ms, ZHT would achieve 150M ops/sec throughput.

2.3.7 Aggregated performance. Each Blue Gene/P compute node has 4 cores,

to fully utilize the compute resource, we conduct experiments with various numbers

of ZHT instances on each node and measure the request throughput and latency. We

expect to achieve higher aggregate throughput by running multiple ZHT instances per

node. The experiment results implies that the best resource utilization and e�ciency
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Figure 2.16. Performance evaluation of ZHT plotting measured e�ciency and simu-
lated e�ciency vs. scale (1 to 8K nodes on the Blue Gene/P and 1 to 1M nodes
on PeerSim)

can be achieved by assigning one instance to each core. In a setting with up to 4

instances per node, the aggregated throughput is the compelling (16.1M ops/sec as

opposed to 7.3M ops/sec for 1 instance per node, a 2.2X increase), and the latency

is still extremely low (2.08ms on 8K-nodes scale with 32K-instances).

2.4 Summary

ZHT is optimized for high-end computing systems and is designed and imple-

mented to serve as a foundation to the development of fault-tolerant, high-performance,

and scalable storage systems. We have used mature technologies such as TCP, UDP,

and an epoll-based event-driven model, which makes it easier to deploy. It o↵ers per-

sistency with NoVoHT, a persistent high performance hash table. ZHT can survive

various failures while keeping overheads minimal. It’s also flexible, supporting dy-

namic nodes join and departure. We have shown ZHT’s performance and scalability

are excellent up to 8K-node and 32K instances. On the 32K-core scale we achieved

more than 18M operations/sec of throughput and 1.1ms of latency at 8K-node scale.

The experiments were conducted on various machines, from a single node server, to

a AMD Opteron cluster, an IBM BlueGene/P supercomputer, to the Amazon cloud.
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On all these platforms ZHT exhibits great potential to be an excellent distributed

key-value store, as well as a critical building block of large scale distributed systems,

such as job schedulers and file systems. In future work, we expect to extend the per-

formance evaluation to significantly larger scales, as well as involve more applications.

We believe that ZHT could transform the architecture of future storage sys-

tems in HPC, and open the door to a broader class of applications that would have

not normally been tractable. Furthermore, the concepts, data-structures, algorithms,

and implementations that underpin these ideas in resource management at the largest

scales, can be applied to emerging paradigms, such as Cloud Computing, Many-Task

Computing, and High-Performance Computing.
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CHAPTER 3

USING ZHT AS BUILDING BLOCKS FOR LARGE SCALE DISTRIBUTED
SYSTEMS

In the era of Big Data and Cloud, distributed key-value stores are increasingly

used as building blocks of large scale applications. Comparing to traditional relational

databases, key-value stores are particularly compelling due to their low latency and

excellent scalability. This section presents some real systems that have adopted ZHT

as a building block. It also lead to additional publications [17,18,31,79–84].

3.1 FusionFS: a Distributed File System with Distributed Metadata Man-
agement

We have an ongoing project to develop a new highly scalable distributed file

system, called FusionFS [15, 85, 86]. FusionFS is optimized for a subset of HPC and

many-task computing (MTC) workloads. In FusionFS, every compute node serves

all three roles: client, metadata server, and storage server. The metadata servers use

ZHT, which allows the metadata information to be dispersed throughout the system,

and allows metadata lookups to occur in constant time at extremely high concurrency.

Directories are considered as special files containing only metadata about the files in

the directory. FusionFS leverages the FUSE [87] kernel module to deliver a POSIX

compatible interface as a user space filesystem.

We compare the metadata performance between FusionFS and HDFS on Ko-

diak. Both storage systems have FUSE/POSIX disabled. We have each node create

(i.e. “touch”) a large number of empty files (with unique names), and we measure

the number of files created per second. In essence, each touched file indicates a meta-

data operation. The aggregate metadata throughput of di↵erent scales is reported

in Fig.3.1(a). The gap between FusionFS and HDFS is about more than 3 orders of

magnitude. Note that, HDFS starts to flatten out from 128 nodes, while FusionFS
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keeps doubling the throughput all the way to 512 nodes, ending up with almost 4

orders of magnitude speedup (509022 vs. 57).

We then compare the metadata performance between FusionFS and PVFS

on Intrepid. The result is reported in Fig.3.1(b). FusionFS outperforms PVFS on

a single node, which justifies that our metadata optimization for big directory (i.e.

append vs. update) is quite e�cient. FusionFS shows a linear scalability, where

PVFS is saturated at 32 nodes.

(a) Throughput on Kodiak (b) Throughput on Intrepid

Figure 3.1. FusionFS: metadata performance comparison

3.2 IStore: an Erasure Coding Distributed Storage System

IStore is a simple yet high-performance Information Dispersed Storage System

that makes use of erasure coding [88–90], and distributed metadata management with

ZHT. Fig.3.2 shows IStores’ metadata performance throughput on 8 to 32 nodes in

the HEC-Cluster. The workload consisted of 1024 files of di↵erent sizes ranging

from 10KB to 1GB. The workload performed read and write operations on these files

through the IStore. At each scale of N nodes, the IDA algorithm was configured to

chunk up files into N chunks, and storing this information in ZHT for later retrieval

and the N chunks would be sent to or read from N di↵erent nodes.

3.3 MATRIX: a Distributed Many-Task Computing Scheduling Frame-
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Figure 3.2. IStore metadata performance on HEC-Cluster

work

MATRIX [91,92] is a distributed many-task computing execution framework,

which utilizes the adaptive work stealing algorithm to achieve distributed load bal-

ancing, and uses ZHT to submit tasks and monitor the task execution progress by the

clients. Similar scheduling methods can be found in [93,94]. By using ZHT, the client

could submit tasks to arbitrary node, or to all the nodes in a balanced distribution.

The task status is distributed across all the compute nodes, and the client can look

up the status information by relying on ZHT.

We performed several synthetic benchmark experiments to evaluate the perfor-

mance of MATRIX, and how it compares to the state-of-the-art Falkon [95] lightweight

task execution framework. Fig.3.3 shows the results from a study of how e�cient we

can utilize up to 2K-cores with varying size tasks using both MATRIX and the dis-

tributed version of Falkon (which used a nave hierarchical distribution of tasks). We

see MATRIX outperform Falkon across the board with across all size tasks, achieving

e�ciencies starting at 92% up to 97%, while Falkon only achieved 18% to 82%.
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Figure 3.3. Comparison of MATRIX and Falkon average e�ciency (between 256 and
2048 cores) of 100K sleep tasks of di↵erent granularity (1 to 8 seconds)

3.4 Slurm++: a Distributed HPC Job Launch

We have developed a distributed job launch prototype, SLURM++ based on

SLURM [96], which serves as a core part for distributed job management system to do

resource allocation and job launching. We used the ZHT as the data storage system

to keep the job and resource metadata information in a globally accessible system.

We see that the average per-job ZHT message count shows decreasing trend

(from 30.1 messages / job at 50 nodes to 24.7 messages at 500 nodes) with respect

to the scale. This is likely because when adding more partitions, each job that needs

to steal resource would have higher chance to get resource, as there are more op-

tions. This gives us intuition about how promising the resource stealing and compare

and swap algorithms would solve the resource allocation and contention problems of

distributed job management system towards exascale ensemble computing.

3.5 Fabriq: a Distributed Message Queue

We propose Fast, Balanced and Reliable Distributed Message Queue (FaBRiQ

[97]), a persistent reliable message queue that aims to achieve high throughput and

low latency while keeping the near perfect load balance even on large scales. Fabriq
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Figure 3.4. Throughput comparison for Slurm and Slurm++

uses ZHT as its building block. Fabriq leverages ZHT components to support per-

sistence, consistency and reliable messaging. Another unique feature of Fabriq is the

guarantee of exactly once delivery. To our best knowledge, no other DMQ provides

such guarantee. Most of the DMQs either provide no delivery guarantee or at least

once delivery guarantee. The fact that Fabriq provides low latency makes it a good

fit for HPC and MTC workloads that are sensitive to latency and require high per-

formance. Furthermore, providing high throughput on larger scales and persistence

makes Fabriq a good option for HTC applications.

At 128 nodes scale, Fabriqs throughput was as high as 1.8 Gigabytes/sec for

1 Megabytes messages, and more than 90,000 messages/sec for 50 bytes messages.

At the same scale, Fabriqs latency was less than 1 millisecond. Our framework out-

performs other state of the art systems including Kafka and SQS in throughput and

latency. According to Fig.3.5(a), at the 50 percentile, the push latency of Fabriq,

Kafka, and SQS are respectively 0.42ms, 1.03ms, and 11ms. However, the problem

with the Kafka is having a long tail on latency. At the 90 percentile, the push latency

of Fabriq, Kafka, and SQS are respectively 0.89ms, 10.4ms, and 10.8ms. We can no-
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(a) CDF: push latency comparison (b) CDF: pop latency comparison

Figure 3.5. Comparison for Fabriq vs. SQS, IronMQ, HDMQ, and Windows Azure
Service Bus

tice that the range of latency on Fabriq significantly shorter than the Kafka. At the

99.9 percentile, the push latency of Fabriq, Kafka, and SQS are respectively 11.98ms,

543ms, and 202ms. Similarly, Fig.3.5(b) shows a long range on the pop operations

for Kafka and SQS. The maximum pop operation time on the on Fabriq, Kafka, and

SQS were respectively 25.5ms, 3221ms, and 512ms.
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CHAPTER 4

VERSATILITY & AND QOS IN KEY-VALUE STORAGE SYSTEM

4.1 Introduction

Distributed key-value stores are known for their ease of use and attractive

performance. Major technology companies such as Facebook, Amazon and Google

have built their data infrastructure with key-value stores to accommodate their fast

growing businesses. Due to the complexity of system design, deployment and mainte-

nance, along with the running cost, more and more companies choose to share a single

key-value storage system between di↵erent applications and services. Take Facebook

as an example, workloads from user accounts information, web-app object metadata

and system data on service location, etc., run on one Memcached deployment [98].

Most of applications have their unique performance requirements. Some applications

may prefer lowest latency, some prefer high total throughput, while others may like to

have a well-balanced performance profile. These potentially conflicting requirements

can be very di↵erent from the design goals of conventional key-value stores, which

mostly focus on low-latency.

How to choose a good solution that meets many applications’ needs is still

an open question. The choice is even not obvious for latency – one of the most

commonly used metrics. Di↵erent applications can tolerate very di↵erent latency

ranges. For example, a shopping cart application can satisfy customers with 50 ms

latency; instant messaging users are fine with 500 ms while a metadata service for

databases or file systems requires as low as possible latency, ideally no longer than

5 ms [99]. Giving all applications same e↵orts and optimizing on the same aspect

(single request latency) is not necessarily appropriate, as sometimes it might harm

the total throughput provision of the system, and lower the resource utilization. This

is especially true when key-value stores are delivered as cloud services that need to
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serve many di↵erent applications and users [100].

In this chapter we present ZHT/Q, a flexible QoS Fortified distributed key-

value storage system for Clouds. It enhances a high performance key/value store with

flexible QoS (Quality of Service) properties such that both configurable latency and

high aggregated throughput can be achieved. It satisfies di↵erent applications’ latency

requirements with QoS while improves the overall performance through dynamic and

adaptive request batching mechanisms. The system QoS provides guaranteed and

best-e↵ort service on latency for di↵erent scenarios. It also watches the performance

change and dynamically adjusts the batching strategy to alleviate performance degra-

dation upon tra�c.

The contributions of this work include:

• We design and implement a flexible QoS fortified distributed key-value storage

system on top of our previous plain key-value store [9]. The new system is

optimized to satisfy QoS on latency while achieving high throughput;

• Our system supports di↵erent QoS latency on a single deployment for multiple

concurrent applications, both guaranteed and best-e↵ort services are provided;

• Extensive performance evaluation is conducted through both real system micro

benchmarks (16 nodes) and simulations (512 nodes), and the comparisons show

the advantages and limitations of this design.

4.2 Design and implementation

In this section we firstly describe the challenges and considerations in our

design. Then we present the design and implementation of the system. Finally we

analyze and model the performance.

4.2.1 Challenges and design considerations.
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4.2.1.1 Configurable QoS on performance. Di↵erent applications have dif-

ferent performance requirements, some times even one application can have di↵erent

requirements when facing di↵erent scenarios. The first and most important question

we face when designing the system is how to support user-configurable QoS. For stor-

age systems, there are many ways to deliver di↵erent performance levels. Amazon

EC2 and Google Compute Engine use di↵erent hardware resource (such as SSD v.s.

HDD) and network bandwidth to o↵er di↵erent performance; some uses software-

defined network to manage performance [101], some uses di↵erent consistency model

in storage replication to provide di↵erent response time [100]. Many of these solu-

tions depend on special hardware and leave users few choice. We decide to use a pure

software solution, request batching, so as to avoid hardware dependency.

4.2.1.2 Batching strategy. Request batching is not a new method to achieve

better system e�ciency. By aggregating individual requests, a batching system can

reduce total number of messages and amortize service overhead. The key question

in request batching is when to send the batch. The situation is simple when there is

no time limit for request delivery (latency), within network bandwidth limits, bigger

batches generally bring better throughput and e�ciency. If there is an inviolate

request latency limit, the system designer has to give the latency limit a higher priority

over the system e�ciency and throughput. Various latency limits, which are usually

associated with di↵erent applications, make the situation even more complicated.

With this consideration, the design goal is to provide as high as possible throughput

without violating the request latency limits. Dynamic request batching is a real-time

scheduling problem [102]. Some theoretical works [103] have been done on various

aspects of request batching. We use a modified Earliest-Deadline First (EDF) [104]

algorithm in our dynamic batching mechanism.

4.2.1.3 Dynamic system performance tuning. In dynamic environments such
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as clouds and data centers, network and server workload may fluctuate all the time and

impact the system performance. When the network and servers are heavily loaded,

to keep trying sending more requests could make the situation worse. Therefore our

system needs to be smart enough to adjust the request sending rate according to

the network tra�c, which requires the network/server tra�c detection. Since the

dynamic nature makes it di�cult to predict a request latency, we design a history-

based heuristic approach to detect the tra�c and to tune system parameters.

4.2.2 System design. We design the new system based on our previous work,

ZHT [9, 10], a zero-hop distributed key-value store. ZHT follows a Memcached-like

network architecture, in which servers are organized in a logical ring and each houses a

contiguous key space. Clients have the knowledge of all servers and can send requests

to servers by hashing the given keys. As we observed in [9, 10], when a client is

sending requests in very high rate (e.g. in a tight loop), the bottleneck is actually on

the client side and is bounded by the ability to handle socket connections, which is

limited by kernel and CPU performance [105]. Thus in most of scenarios the servers

and network are not saturated. Additionally because the client-server communication

dominates round-trip latency, it would be desired to reduce message number between

clients and servers.

With these consideration in mind, we propose to add a proxy layer for dynamic

batching mechanism on the client side instead of server side. The client proxy works on

each client, collects and batches the requests that share a same destination server and

sends to the server. The destination server unpacks the batch with a parser, executes

the requests sequentially, packs the return status (including lookup results) in a batch

and send back. This keeps the communication and storage layers of architecture of

key-value store unchanged.

4.2.2.1 Client Proxy. The client proxy architecture is shown in Fig.4.2. The client
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Figure 4.1. Requests are batched on client side in a proxy, which controls how and
when to send a batch to a server. The servers parse batch and execute the requests
sequentially, and then send batched responses back to the client.

proxy API wrapper o↵ers the applications a set of interfaces that are compatible with

conventional APIs (put/get). At the same time it also provides advanced controls

to specify the working mode and QoS level so as to fine tune the performance.

The client proxy maintains a list of batch buckets, each of which is associated

to a destination server. When a request is submitted in single mode, the client proxy

sends it directly to the server like other key-value stores do. If the request mode

is batch, the request handler pushes it to the batch bucket that is associated to the

corresponding destination server. Then it updates the condition variables of the batch

bucket according to the new request. A batch monitor checks the condition variable

for each batch bucket and decide to send it or not. Apparently the condition value

is the key to the batching system. It is calculated through di↵erent batching policies

(Alg.4.1), which work as plugins in the client proxy. We implement multiple batching

policies and discuss them in section 4.2.3.

When a server receives a batch, it sequentially executes the requests and pack

the results into a new batch and then send back to the client. Note that any request
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Figure 4.2. Client proxy has a list of buckets (B1 to B
n

), each of which is dedicated
to one server. A monitor thread checks and sends a batch if the sending condition
is satisfied. Returned response batch is unpacked and stored in a local key-value
map in client proxy, the client will be notified upon the map change.
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batch and response batch only involves one client/server pair.

Table 4.1. Batch request data structure

Variable Name Description

Client IP For server returning results

Client Port Client listening port

Dest Server Destination server

Curr Deadline Current batch deadline; Condition var

Batch num item # of requests; Condition var

Batch num limit limit of requests #; given threshold

Batch Size Byte size in bytes; Condition var

Batch Size limit limit of size in bytes; given threshold

Data Requests List of single requests

4.2.2.2 Client APIs. Most of key-value stores’ client APIs work in a synchronous

manner, in which clients are blocked while waiting for the servers’ response. To min-

imize the application change, ZHT/Q supports both synchronous and asynchronous

APIs. Under the hood, in ZHT/Q’s client proxy, requests are handled in non-blocking

and asynchronous manner. All batch mode responses from servers are stored in a re-

sponse bu↵er, which is a local in-memory hash map in the proxy (Fig.4.2). In this

bu↵er map, keys and values are request keys and server responses respectively. For

applications that require asynchronous access, they simply check the hash map at

will, for example, to check after the QoS latency time. For synchronous applications,

a dedicated thread is created in the client proxy, which blocks the application and

checks the hash map within the specified QoS latency time. The application will

return until response is found or a given time-out is reached.

4.2.3 Batching strategies. A batching strategy is represented by a multi-

parameter trigger condition, based on which the client proxy (batcher) decides when

to send a batch. ZHT/Q provides several important strategies, each of them can
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work in two modes, static and dynamic. In static mode, the client proxy uses

policies with user specified or system initialized parameters and thus will not change.

In dynamic mode, the client proxy works with the same initial parameter set but it

dynamically adjusts parameters based on currently measured performance so as to

provide best-e↵ort service when network or servers are heavily loaded (Alg.4.3).

Some applications do not have explicit QoS requirement. This type of requests

can be sent in static mode with fixed batch size if the user specifies, which can fully

utilize the advantage of batching. If users do not specify, these requests will be

handled along with the QoS enforced requests by the system automatically with a

modified Earliest-Deadline First (EDF) strategy (Alg.4.2). This strategy considers

all three major parameters, namely batch latency limit (deadline), logical batch size

(number of requests in a batch) and physical batch size in bytes. The batch deadline

is calculated dynamically based on arrival time and QoS of every single request. The

threshold values for the other two variables are given by the system administrator. A

batch will be sent as soon as any one out of three conditions (batch deadline, logical

batch size and physical batch size) are satisfied. In other words, the deadline for a

batch is the closest deadline of all requests in that batch. EDF strategy works well to

satisfy various QoS requirements. However it has a potential problem when the QoS

range is very wide. The requests that have smaller QoS latency value can prevent

the batching mechanism from accumulating many requests, because the system has

to send batches more frequently to satisfy the smaller QoS latency.

4.2.4 QoS properties. In a request batching system, a potential problem is that a

request could wait in the batch queue for a long period of time if the sending condition

is not met. This could happen when the condition is not properly set or the request

arrival rate is low. We avoid this problem by fortifying all batch mode requests with

a maximal tolerable latency, called QoS latency, which can be defined in QoS or
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SLA and the system is supposed to return results before that. Requests in single

mode require as low as possible latency, thus they are always served immediately

with the lowest possible latency (best-e↵ort service) and no explicit QoS definition

needed. ZHT/Q o↵ers a guaranteed service when the network has no congestion and

a best-e↵ort service when network or servers are busy.

4.2.4.1 Guaranteed service. When the network and servers’ processing capability

are not saturated, the QoS on latency is guaranteed. Assuming a request i has a

di↵erent maximal tolerable latency, denoted as l qos
i

, the request is submitted at

time Tc
i

, then there is a deadline d
i

presented in POSIX time for the request. To

ensure that the QoS of all requests in a batch are satisfied, we define the deadline of a

batch d
B

to be the closest deadline to present (T
now

) in the batch. A given sys cost is

a threshold that is greater than the possible round-trip transferring time plus server

side execution. As long as the batch is sent before d
B

+ sys cost, the QoS of all

requests are satisfied. Then we have the lowest condition (formula 4.1) to decide

when to send a batch while keeping QoS.

d
i

= Tc
i

+ l qos
i

,

d
B

=
n

max
i=1

d
i

,

d
B

6 T
now

+ sys cost (4.1)

4.2.4.2 Best-e↵ort service with feedback based adjustment. When the net-

work or servers are heavily loaded, the client side measured performance can degrade

significantly. ZHT/Q uses passive latency detection to adjust batching parameters so

as to adapt to the dynamic network environment (Alg.4.3). Latency is measured on

clients for each request and compare it with an threshold value to judge if the system

is running normally. The threshold latency for single and batch request mode is set

in di↵erent ways. For single mode, it looks straightforward: just set to be slightly
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shorter than the QoS latency. However this can cause a serious problem. On one

hand, because of the delay between measured latency-based adjustment and measur-

able e↵ects, and the presence of network noise, if simply using the latest measured

latency as as the batching adjustment condition, the randomness of latency could lead

the system to jitter. On the other hand, since individual requests are generally very

small, the latency could fluctuate drastically due to the influence from client/server

CPU utilization and network noise. Thus the request latency would has larger stan-

dard deviation, especially in dynamic environments such as clouds. This means there

could always be a tiny part of requests are responded after the given threshold. This

makes it very di�cult to give a valid expected latency for threshold. To avoid this

problem, we use a weighted arithmetic mean (formula 4.2b) instead of the actually

measured latency, in which newer recorded latencies have higher weight. In this way,

newer measured latency always play more important roles while the older latency can

be used to balance the jitter.

lim
n!1

nX

i=1

1

2n
= 1

L̄
n

=
nX

i=1

L
i

2n
(4.2a)

¯L
n+1 = L1/2 + 1/2

nX

i=2

L
i

2n

= (L1 + L̄
n

)/2 (4.2b)

Note that L1 is the latest latency, L
n

is the oldest latency recorded and L̄
n

is the

weighted average latency for past n requests. When n is reasonablely big, the error

is negligible (L̄
n

/2n).

In batch mode, since there is no QoS latency for batches, and the time to send

a batch can not be determined before it meet the predefined sending condition, it is

hard to give a reasonable threshold based on given QoS. However we can still find if
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a batch is delayed. When a batch reaches the condition for sending, its physical size

and logical size are known. With these sizes, we can work out a expected latency, as

we have a batch latency model described in section 4.2.5.2, formula 4.7c. It is easy

to derive a expected latency that we need here (formula 4.3).

L
exp

= ↵
tr

⇤ S
req+res

+ n ⇤ C
exe

+ C2 (4.3)

From formula 4.3 we can see that the batch response time is a linear function

of two variables: request number (n) and total data size to transfer (S
req+res

, includ-

ing requests to and response from a server). Since the profiles from di↵erent network

environment are di↵erent, the parameters need to be determined for all ZHT/Q de-

ployments. Running a set of test requests with di↵erent sizes at the initial stage and

measure the latency, we can calculate these parameters through linear regression.

When the measured latency (from send batch to response received, Fig.4.3)

is longer than the expected duration, ZHT/Q will switch to best-e↵ort service mode

to ensure the QoS time l qos
i

is met if at all possible. In this mode, a compen-

satory mechanism is triggered to tune the current batching strategy to reduce latency

(Fig.4.4). The predefined system cost (sys delay) will be increased such that batches

are sent more frequently. Since reducing requests in batches will benefit latency, this

attempt is to sacrifice throughput for latency.

1st request 
put in batch

Closest request 
deadline

Send batch

Response 
received

sys_delay

Batch latency 

Batching time

Time

Figure 4.3. Batching events and time composition. sys delay is the reserved time
for batch transferring and can be automatically changed by the system to adapt
tra�c.
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Figure 4.4. Latency feedback based parameter tuning

4.2.5 Performance model and analysis. When considering the batching prob-

lem in a dynamic environment, batching interval is the most important parameter

that depends on many other parameters in the design space. It is important to un-

derstand the influence of di↵erent parameters on the system performance. For the

purpose of selecting the optimal parameters in design, we formulate a model to em-

ulate the latency and throughput for our key-value store system in both single and

batch mode.

4.2.5.1 Single request processing model. In most of existing works, when

running in the single request mode, each request is sent from a client to a server in a

synchronous manner. Although there are works allowing write operations (put and

remove) to be done in asynchronous ways, read operations (get or lookup) still need

to block the clients before the results are returned. Without loss of generality, we use

synchronous manner in our single request model.

The request latency consists of request and response transferring time and

server side execution time. Data transferring cost can be considered as a linear

function of transferring size:

t
trans

(S
trans

) = ↵
tr

⇤ S
trans

+ C
trans
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Table 4.2. Parameters in performance model

Parameters Description

t
trans

(size) data transferring cost, a linear function

↵
tr

factor of transferring cost function

t
exe

single request execution time on server

S
x

variables for sizes

C
x

for all kinds of constant values

L
s/b

single/batch mode latency

Th
s/b

single/batch mode throughput in ops/s

B
s/b

single/batch mode bandwidth in bytes/s

The total transferring time in a single latency is

t
trans

(S
req

+ S
res

) = ↵
tr

⇤ S
req+res

+ 2C
trans

Accessing server side local hash table is done in O(1), the request execution cost

(t
exe

) on the server side is considered as a linear function of request size (key-value

size in bytes). Considering the cost changes negligibly (in µs) with di↵erent request

size compare to the network communication overhead (in ms), the execution cost can

be considered as constant, denoted by C
exe

. Merging all constant variables to C
s

we

have the latency model:

L
s

= t
trans

(S
req+res

) + t
exe

(S
req

)

= ↵
tr

⇤ S
req+res

+ 2C
trans

+ C
exe

= ↵
tr

⇤ S
req+res

+ C
s

(4.4)

We further have single node throughput:

Th
s

= n
ops

/L
s

=
1

↵
tr

⇤ S
req+res

+ C
s

(4.5)

Similarly we have single node bandwidth:

B
s

= S
req+res

/L
s

=
(S

req+res

)

↵
tr

⇤ S
req+res

+ C
s

(4.6)
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4.2.5.2 Batch request processing model. We formulate the request batching

model based on our own system. In ZHT/Q, batching mechanism is on both client and

server side. The client proxy maintains a list of batches, each of which is associated to

a destination server. A request handler pushes requests to their batches according to

the destination. A batch monitor checks a condition value of each batch and decide

to send it or not. When a server receives a batch, it sequentially executes the requests

and pack the results into a new batch and then send back to the client. Apparently

the condition value is the key to the batching system.

Based on this logic, we formulate the request latency. Form formula 4.7c we

can see that the batch latency can be described as a linear function of two variables:

request number (n) and total data size to transfer (S
Batch

includes requests and

response from a server, formula 4.7a). t
r int

is the interval between each request

arrival. Batching time t
batching

is the time from the first request is submitted to the

batch is sent. Batch waiting time t
w

is the time from the last request is submitted

to batch to the batch is actually sent. By running a set of test batch requests with

di↵erent sizes and measuring the latency L
b

and batching time t
batching

, we can decide

factor ↵
tr

, C
exe

and C2 through linear regression.

S
AllBatch

=
nX

i=1

S(req+res) i

(4.7a)

t
batching

= (n� 1)t
r int

+ n ⇤ t
proc

+ t
w

(4.7b)

L
batch

= t
batching

+ t
trans

(S
AllBatch

)

+ (n� 1) ⇤ C
exe

+ C1

⇡ t
batching

+ ↵
tr

⇤ S
AllBatch

+ n ⇤ C
exe

+ C2 (4.7c)

Now we evaluate throughput. Di↵erent from single request mode, through-

put in batch mode only needs the batch latency. Then we have the batching mode
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throughput as follows. Note that the batching interval can be considered as a linear

function of batch size n, as the more requests in a batch, the longer the interval is.

The average arrival rate (in requests/second) is denoted by �.

Th
b

= n/L
batch

(4.8a)

=
1

t
r int

+ t
proc

+ ↵
tr

S
req+res

+ (t
w

+ C1)/n
(4.8b)

t
r int

= 1/� (4.8c)

It is easy to derive that in the ideal case the maximal throughput of a batching system

on client side is actually only related to the request arrival rate � and the network

transfer rate ↵
tr

(formula 4.9). This holds when the network and servers are not

saturated and becomes bottlenecks. This model is validated by our experiments in

section 4.3.3.

lim
n!1

Th
b

=
1

1/� + t
proc

+ ↵
tr

⇤ S
req+res

+ C
(4.9)

4.3 Performance Evaluation

In this section we evaluate the performance of our system with di↵erent batch-

ing policies and various workloads through micro benchmarks. We run real system

micro benchmarks on Amazon EC2 with moderate scales (up to 32 instances) and

simulations on large scales (up to 512 nodes) to measure the performance.

4.3.1 Workloads. For better coverage of di↵erent application scenarios, we define

3 types of workloads with various requirements. In all three workloads, requests are

sent from clients in tight loops. Like Facebook [98] and MICA’s [105] workloads, we

focus on small requests with fixed key (10 bytes) and value length (20 bytes), 95%

get and 5% put.

Workload with no explicit latency QoS. In this type of workload, appli-

cation requests are relatively less latency-sensitive and well tolerating a wide range
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of response latencies. This covers a category of applications that do not have a ex-

plicitly specified response time limit, such as logging and archiving systems. For this

scenario, logical batch size (the number of requests in a batch) is the only parameter,

meaning that setting a limit for batch size would work for most of cases.

Workload with single QoS latency. In this workload, key-value requests

in each experiment are given same QoS latency. Assuming one application only has

one QoS setting, this workload represents the scenario in which one application with

many clients is served by the data store. In the test data set, the QoS time varies

from 1 ms to 1000 ms.

Workload with multiple QoS latency. This workload simulates the sce-

nario that multiple di↵erent applications use a single deployment of key-value store as

a service. Note that applications in this case have various QoS latency time, ranging

from 1ms to 1000 ms. The workload is organized as shown in table 4.3. Requests

in workloads of pattern 1, 3 and 4 have more even QoS distribution, while pattern 2

represents a highly skewed workload.

Table 4.3. Workload with multiple QoS

QoS latency time 1ms 10ms 100ms 1000ms

Pattern 1 25% 25% 25% 25%

Pattern 2 4% 32% 32% 32%

Pattern 3 0% 33% 33% 33%

Pattern 4 0% 0% 50% 50%

4.3.2 Experiment setup and metrics. For detailed performance study, we

conduct real system micro benchmark on Amazon EC2 with 2 to 32 C3.large instances,

half as servers, half as clients. We separate servers from clients to avoid any local

communication. For better understanding the performance and scalability on large

scale deployments, we construct a PeerSim [20] based simulator. We use the data
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captured from real system to calibrate and validate our simulation results (section

4.3.6).

We focus on 3 metrics that accurately reflect batching performance, namely

individual request latency, batch latency and node throughput. Request latency

presents the duration from a request is submitted to the response is returned by a

server. Batch request presents the duration from the first request enter the batch,

to the batch response is returned by a server. node throughput presents the number

of finished requests in one second by the system. Please note that in individual

request mode, low latency directly means high throughput. But in batch mode, it is

a di↵erent story. Low average request latency imply a smaller batch size, which is

not likely to make good use of the system resource. On the contrary, longer average

request latency (while still within QoS) usually implies high throughput, due to the

system has longer time to accumulate requests.

4.3.3 Applications with no explicit QoS. There are also many applications

that have a response time expectation but do not have QoS options in their APIs,

we set a maximal time limit 1 second during the experiment, by then a batch will

be sent even if the batch size has not reached the threshold. The actual latency

distribution is shown in table 4.4. As expected, the throughput (Fig.4.6) increases

with the batch size. However it is worth to note that the throughput increasing rate

is much slower than that of batch size. This is because the batching cost and the

time for waiting requests are accumulated during batching. When the batch size is

n, it takes n ⇤ (t
c

+ t
cost

) time to wait and to push all the n requests into the batch,

where t
c

is the interval between 2 contiguously arrived requests, and t
cost

is the time

cost for processing a request in the batch. This implies a linear batching cost with

logical batch size. According to formula 4.7c in section 4.2.5.2, we have predicted

this overhead and the potential throughput degradation upon very large batch size.
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Under this workload, as expected, the batch latency is significantly longer with larger

batch size (Fig.4.5(c) and Fig.4.5(d)).

On throughput (Fig.4.6), unsurprisingly bigger batch sizes bring higher sin-

gle node throughput, but the increment is not proportional to the batch size due

to the accumulated batching overhead and increased data transferring cost. On dif-

ferent scales, the single node throughput stays consistent, which indicates excellent

scalability.

Table 4.4. Latency in ms: fixed batch size

Latency Percentage 75% 90% 99% Mean

Batch size = 1 0.871 0.874 0.880 0.869

Batch size = 10 1.484 1.803 1.850 1.087

Batch size = 100 16.18 17.93 35.196 12.252

Batch size = 1000 238.1 246.7 276.8 231.8

4.3.4 Single application with latency QoS. Typical applications with QoS

requirement usually specify only one QoS value. This experiment represents the use

case that multiple clients of single application access the data store. We can see that

more than 99% requests are satisfied within the QoS time, except for the workload

with very long QoS latency, in which 95% requests are satisfied. The throughput

increases with the QoS time (Fig.4.8). Due to the longer QoS time, each batch

can accumulate more requests before sending, which means larger batch size and

throughput. This is also the reason why the throughput shows similar pattern with

fixed size batching (Fig.4.6).

The measured batch latency is proportional to the specified QoS latency. Note

that higher batch latency (red line) is desired because it can accumulate more requests

and yield higher throughput (Fig.4.8). This also implies that if measured request

latency is much shorter than QoS, it causes waste to the system e�ciency. Thus



68

0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency in ms

Request latency
Batch latency

(a) Size = 1

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency in ms

Request latency
Batch latency

(b) Size = 10

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency in ms

Request latency
Batch latency

(c) Size = 100

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency in ms

Request latency
Batch latency

(d) Size = 1000

Figure 4.5. Batching with fixed batch size. Expected longer batch latency can be
observed in experiments wirh larger size (Fig.4.5(c) and Fig.4.5(d)). Note that
batch latency is proportional with batch size.
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Figure 4.6. Throughput with fixed batch size. Bigger batch sizes bring higher equiv-
alent throughput, but the increment is not linear due to accumulated batching and
data transferring cost.

a “lazy” but good enough (just to satisfy QoS) batching strategy is welcomed. On

throughput (Fig.4.8), similar to the trends shown in static batching (Fig.4.6), longer

QoS brings higher throughput.

4.3.5 Multiple applications with di↵erent latency QoS. The workload that

we use to test the system is organized as table 4.3. Requests have di↵erent QoS

latency requirements, and are submitted in random order. Although QoS latency are

mostly satisfied, the workload pattern has huge impact on throughput. In pattern

1, 3 and 4, requests QoS latencies appear with same probability, while pattern 2

presents a highly skewed workload. Similarly as the results shown in fixed batch

size experiments (Fig.4.6), longer QoS latency implies larger batch size, thus higher

throughput (Fig.4.10).

Interestingly we find workload pattern 2 and 3 only have 4% di↵erence, but the

throughput of workload pattern 3 is almost 3x higher (Fig.4.10), the measured batch

latency (Fig.4.9) also shows almost 10x di↵erence. On the contrary, performance

profiles of pattern 1 and 2 are similar, but the workload distributions are totally

di↵erent (Tab.4.3). The results shows how a small part of requests with low QoS
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Figure 4.7. Workload with single QoS latency represents single-application scenarios.
Higher batch latency (red line) is desired because it can accumulate more requests
and yield higher throughput (Fig.4.8). Batch latency is proportional to the QoS,
and is close to the single request QoS, implying that the system and network are
still far from being saturated.
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Figure 4.8. Throughput: batching with static QoS latency. Longer QoS latency
requests can wait longer in the batch, which allows the system to accumulate more
request thus higher throughput.

latency can significantly influence overall performance. It also remind us that EDF

batching strategy still has great potential to improve.

4.3.6 Throughput comparison on large scales. In this section we discuss the

experiments on large scale deployments with simulation results. We construct the

simulator on top of PeerSim [20].

4.3.6.1 Simulation Validation. We firstly validate the simulation with real exper-

imental results from fixed batch-size (Fig.4.11) and EDF dynamic batching (Fig.4.12)

on Amazon EC2 cloud. The result only shows less than 5% error between real test and

simulation result. This implies that the simulator can precisely predict the batching

mechanism and the simulated throughput result on large scale is validated.

4.3.6.2 Simulation Results. We conduct experiments to evaluate the system

scalability and total throughput with di↵erent batching mechanisms. Up to 512 nodes,

both fixed-size static batching (Fig.4.13) and EDF batching (Fig.4.14) with di↵erent

workloads show nearly constant single node throughput which demonstrate excellent

scalability.
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represent pattern 1 (black), pattern 2 (red), pattern 3 (blue) and pattern 4 (green)
respectively. The lines for pattern 1 and 2 are pretty close because they both
have some low QoS latency (1ms) requests, which significantly increases the batch
sending frequency. Corresponding throughput is shown in Fig.4.10.

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

1" 2" 4" 8" 16"

Si
ng
le
'n
od

e'
th
ro
ug
hp

ut
'in
'o
ps
/s
'

Number'of'nodes'

Pa*ern"1"

Pa*ern"2"

Pa*ern"3"

Pa*ern"4"

Figure 4.10. Throughput of batching with di↵erent workloads. Low QoS latency
(1ms) requests in pattern 1 and 2 significantly lower the total throughput, because
they force the system to send batches more frequently. Corresponding latency
distribution is shown in Fig.4.9.
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Figure 4.11. Simulation validation: batching with fixed batch size. The minimal
di↵erence between simulation result and real tested result from EC2 shows that
the simulation can precisely predicts the performance of batching mechanism.
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Figure 4.12. Simulation validation: EDF dynamic batching with workload pattern 1.
The data captured from EC2 cloud di↵erentiates slightly from simulation result,
meaning the system scalability character is well simulated.

4.4 Summary

Every application has its own performance requirement but most of current

key-value store systems are designed to serve every application request equally. In this

chapter we propose a flexible distributed key-value storage system which can be used

by cloud providers and data centers to satisfy various applications’ QoS requirement

concurrently. It uses dynamic and adaptive request batching mechanisms to achieve

both QoS on latency and high aggregated throughput. The experiment results show
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Figure 4.13. Throughput comparison on scales: fixed batch size.
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Figure 4.14. Throughput comparison on scales: workload patterns

that our new system delivers up to 28 times higher throughput than the base solution

while more than 99% of requests’ latency requirements are satisfied. The results also

remind us that wide range of latency requirements need to be handled carefully.
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Algorithm 4.1 Batch requests handling
1: procedure Thread RequestHandler

2: repeat

3: batch batch.addToBatch(newReq)

4: deadline
new

 time
newArrv

+QoS
new

5: num req
batch

 num req
batch

+ 1

6: size byte
batch

 size byte
batch

+ size
new

7: batch.mutex lock()

8: if deadline
batch

� deadline
new

then

9: deadline
batch

 deadline
new

10: end if

11: batch.mutex unlock()

12: until Terminated

13: end procedure

14:

15: procedure Thread Monitor

16: repeat

17: for all batch in BatchList do

18: batch.mutex lock()

19: if condition
send

(policy) = True then

20: sendBatch()

21: deadline
batch

 1

22: batch.requests �

23: end if

24: batch.mutex unlock()

25: end for

26: until Terminated

27: end procedure
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Algorithm 4.2 Earliest-Deadline First Batching
1: procedure condition

send

2: if dl
batch

 sys
delay

+ time
cur

knum req
batch

� max reqksize byte
batch

�

max size
batch

3: return True

4: else

5: deadline
batch

 1

6: batch.requests �

7: return False

8: endif

9: end procedure
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Algorithm 4.3 Dynamic parameter tuning
1: function ParameterTuner(L, size

n

, size
b

, sys delay)

2: if L > ExpectedLatency() then

3: size
n

 size
n

/2

4: size
b

 size
b

/2

5: sys delay  2 ⇤ sys delay

6: end if

7: end function

8: function ExpectedLatency(L
cur

, L̄)

9: if isIndividualRequest then

10: ExpectedLatency  WeightedAvgLatency()

11: else

12: ExpectedLatency  ExpectedBatchLatency()

13: end if

14: return ExpectedLatency

15: end function

16: function WeightedAvgLatency(L
cur

, L̄)

17: if L̄ = 0 then

18: L̄ L
cur

19: else

20: L̄ (L
cur

+ L̄)/2

21: end ifreturn L̄

22: end function
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CHAPTER 5

OTHER NOSQL DATABASES FOR LARGE SCALE APPLICATION SYSTEMS

5.1 Introduction

In the cloud era people are building increasingly bigger distributed applica-

tion systems for di↵erent purposes. In recent days complex distributed applications

can be developed and deployed more easily due to the presence of a wide variety of

components and frameworks, such as distributed data storage systems, distributed

message queues, publish-subscribe systems and so forth. Data storage is one of the

most important. This category covers a wide range of systems, such as file systems,

SQL databases, NoSQL databases, blob stores, object stores and so forth. They play

critical roles in stateful distributed system design and development, as most of such

systems need globally accessible storage, such as a database or a file system. Espe-

cially NoSQL databases, with their help, the users atop can write their applications or

upper layer easily while enjoy the advantages in performance, capacity and scalability.

In thie chapter, we discuss two systems that are designed and implemented

with another large category of scalable distributed NoSQL databases, called column-

oriented databases (or BigTable-like data stores), such as Cassandra [12] and BigTable

[106]. They provide richer features such as complex query and flexible schemes. As a

cost, their performance in terms of latency and throughput are generally not as good

as key-value store.

5.2 State Management for Scientific Applications on Cloud

The data generated by scientific simulations and experimental facilities is be-

ginning to revolutionize the infrastructure support needed by these applications. The

on-demand aspect and flexibility of cloud computing environments makes it an at-

tractive platform for data- intensive scientific applications. However, cloud computing
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poses unique challenges for these applications. For example, cloud computing environ-

ments are heterogeneous, dynamic and non-persistent which can make reproducibility

a challenge. The volume, velocity, variety, veracity and value of data combined with

the characteristics of cloud environment make it important to track the state of ex-

ecution data and application’s entire lifetime information to understand and ensure

reproducibility. This chapter proposes and implements a state management system

(FRIEDA-State) for high-throughput and data-intensive scientific applications run-

ning in cloud environments. Our design addresses the challenges of state manage-

ment in cloud environments and o↵ers various configurations. Our implementation

is built on top of FRIEDA (Flexible Robust Intelligent Elastic Data Management), a

data management and execution framework for cloud environments. Our experiment

results on two cloud test beds (FutureGrid and Amazon) show that the proposed

solution has a minimal overhead (1.2ms/operation at a scale of 64 virtual machines)

and is suitable for state management in cloud environments.

5.2.1 Introduction. Data analysis is central to next-generation scientific discover-

ies. Cloud is as an emerging platform and increasingly attractive to scientists due to

its flexibility and convenience. But cloud environments are typically transient. Vir-

tual machine instances are terminated after applications complete execution. Users

cannot leave data and/or revisit the resource setup to diagnose discrepancies. In

the cloud environment, users have the responsibility to capture everything before the

virtual machines are shutdown.

Big data scientific applications need to track every step of the scientific process,

data access and environment for lineage, reconstruction, validity and reproducibility

purposes. It is important to know the environment in which the applications run

(e.g., floating point operations could give di↵erent results on di↵erent machines).

Users might also wish to “rerun” some (e.g., only what failed) or all of the tasks.
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Provenance tools have tracked workflow and data lineage at various levels

(e.g., operating system [107], file systems[108], databases[109], and workflow tools

([95,110–112]. Many monitoring tools ([61,113–120]) have been developed to monitor

real-time system changes. These systems provide methods to collect, aggregate, and

query monitoring data. However, this data is often insu�cient for reproduction since

they do not capture human knowledge. Furthermore, state management in cloud

environments needs to tackle additional challenges due to its characteristics. First,

the transient nature of the environments makes it important to capture metadata

and state at various levels. Second, the performance and reliability characteristics

of virtual machines is important to consider in the design of the collection system.

Finally, di↵erent clock drifting rates on physical machines make it hard to have a

unified time view for the end-user to rebuild meaningful semantics.

In this chapter, we propose FRIEDA-State, a state management system for

cloud environments. We use the term state to represent the metadata from both

execution framework and applications. FRIEDA-State addresses the transient na-

ture, performance concerns and clock drifting issue[121] in its design. FRIEDA-State

is currently implemented atop of FRIEDA [122], a data management and execu-

tion framework for cloud environments, which supports a high-throughput and data-

intensive scientific applications,. We present a key-value based collection system to

manage state in dynamic transient environments. We design and implement a vector

clock[123] based event-ordering mechanism to address the clock drifting issue.

FRIEDA-State collects static and dynamic state data. Static state data is the

information that doesnt change when the system is running (e.g., CPU/Memory info,

environment variables and software stack information). Dynamic state data, on the

other hand, changes during application running, such as the information on details

of the input file that is processed, the time taken for a machine to finish execution or
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failure of jobs.

Specifically, the contributions of our work are:

• Design and implementation of FRIEDA-State, a state management system for

scientific applications running in cloud environments, with lightweight captur-

ing, e�cient storage and vector clock-based event ordering

• Evaluation on multiple platforms (FutureGrid and Amazon EC2) at scales of up

to 64 VMs; results show good e�ciency with minimal overhead (1.2ms/operation

at 64-node scales)

5.2.2 Use cases. Scientific applications need to track their scientific process

for a number of reasons including a) real-time monitoring b) tracking data lineage c)

validation of results d) reconstruction or repeating some or all of the experiments and,

e) reproducibility of research results. Users might want to track their configuration

and environment settings and repeat some or all of the experiment or validate a

certain result (e.g., floating point). The state information might also be used for

post-execution analysis. For example, the users might like to query job statistics and

understand why some jobs took longer than others. Users might want to rerun the

same experiment and/or run the same experiment with slightly di↵erent parameters.

5.2.3 Challenges. Next, we discuss the challenges on state collection, storage, and

event synchronization. State collection and storage: State information is generated

on each of VMs and multiple VMs are part of an application execution. High capture

latency may degrade the application performance. Thus, scalable collection of data is

important in the design of FRIEDA-State. Information aggregation and appropriate

storage mechanisms are also important and di↵erent solutions might have di↵erent

trade-o↵s. Centralized storage system (e.g., databases) could result in concurrent

read/write bottlenecks and be the source of single-point failures. Distributed solutions
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often su↵er from high operation latency and often require extra dedicated hardware.

Cloud environments are dynamic, virtual machines may not run on the same physical

machines. This implies that the physical time clocks may not run at exactly the same

speed because of the slight di↵erence between crystal oscillators on di↵erent machines

thus result in drifting [121]. With di↵erent drifting rates, at the end of a long run, the

base-time gap between each virtual machine could be big. The drifting issue is serious

in large-scale distributed systems and is even more serious due to transient nature

of clouds. Synchronized bootstrap time clocks may not be guaranteed in distributed

cloud environments. It is important that the events/states captured on the machines

is unified for the end-user to build meaningful semantics.

5.2.4 FRIEDA framework. Our state management system is built on top of

FRIEDA[122]. FRIEDA is a Flexible Robust Intelligent Elastic Data Management

framework. FRIEDA manages the lifecycle of data that includes storage planning

and provisioning, data placement and application execution of scientific applications

in cloud environments. Similar scientific application execution frameworks include

SciMATE and Smart [35, 124–128].

FRIEDA enables users to plug-in flexible data management strategies for dif-

ferent application patterns by separating data control from execution. FRIEDA

supports a Master-Worker execution model. There are three major components in

FRIEDA architecture, namely controller, master and workers. The controller takes

charge of environment setup and configurations for data management and application

execution. The master is responsible for managing application execution and data

distribution. The workers accept data and computation jobs from the master and

execute them locally. After all workers finish their jobs, the framework will collect

output data from all nodes. State management system collects information from the

resource provisioning and execution phases.
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5.2.5 System Design and Implementation. Figure 5.1 shows the system

architecture of the state management system (FRIEDA-State). FRIEDA-State has a

collection component in each of the main FRIEDA actors the controller, master and

worker. FRIEDA-State works in two phases: capturing and storage. It allows multiple

storage solutions to be plugged into the framework to meet di↵erent usage needs. The

runtime state capture component collects two types of state: static and dynamic. The

static states are collected mainly from a configuration YAML file, which is used in

FRIEDA to configure the virtual machines (e.g. it defines the roles and the setups

of the master and workers). The YAML file is populated in the state management

system from the controller node once the experiment starts. The remaining static

information (e.g. system information) is collected from the worker virtual machines

directly. Dynamic states are captured from the FRIEDA framework through built-in

functions. Once captured, states are encapsulated in key-value pairs and pushed to

one of three storage solutions that is selected by the user. FRIEDA-State currently

supports raw files, Cassandra or DynamoDB (on Amazon Web Services).

5.2.5.1 State Description. Each state in our system has the following fields. The

state name is used as the key and the rest are used as values.

State name. This is used to represent the type of event.

State information. This field captures the state content.

Role. This field captures the source of the event or the role of the host (i.e.,

master or worker),

Hostname/IP. This captures the identity of the host where the state was

collected.

Logical timestamp. We set a field for logical time for ordering the events

captured from distributed nodes. The logical timestamps is used as a part of vector
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Figure 5.1. FRIEDA-State system architecture. Capturing is the first layer. State col-
lector captures static states from two source, configuration YAML file and system
information. Dynamic states are captured from FRIEDA-State functions, which
are called in FRIEDA framework. Captured states are encapsulated into the form
of key-value pairs and pushed to one of three storage solutions as selected by the
user.

clock.

Local timestamp. The local timestamp is also captured that indicates the

time when the event is captured on a local host and be used to order events within a

virtual machine.

5.2.5.2 Static state capture. Static state represents the data that will not change

during application execution. In FRIEDA, most of the static states are covered in a

configuration YAML file. The YAML file includes platform name, image ID, instance

type, authentication information, application details. The YAML file allows users

to setup environment, software installation and the application running details. The

YAML file is loaded into memory and stored as structured data items and then

dumped into a data store or state file as a record. Other static states, such as

hardware info (CPUINFO/MEMINFO), software stack information and so on are

captured when the virtual machines are launched.
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5.2.5.3 Dynamic state capture. Dynamic state information represents the data

that changes during the run-time of applications. For example, the identification of

input files processed by a worker and the duration of the execution are captured by

FRIEDA-State. We capture two types of information a) communication events and

b) application execution details.

All communication events, such as connection made (and to which machine),

data received (and from where), etc., are captured. These events not only describe the

communication itself, but also carry vector clock information for later event reordering

(section III.F). Application execution and data flow details include the commands

executed on each worker, I/O operations and application execution time etc. This

can be used to track the application execution and to analyze run-time problems.

5.2.5.4 State Storage. The essence of state management is to capture data

in distributed environment and store for future queries. For designing such a scal-

able system with low latency, the major concern is storage architecture. The state

operation latency must be very low to prevent degradation of the application perfor-

mance. Scalability is also important since the storage system could be a bottleneck

when serving many clients for writing and/or query. FRIEDA-State currently sup-

ports three storage options: files, Cassandra data store and DynamoDB (on Amazon).

This allows users and applications to select the right storage while accounting for the

tradeo↵s for their needs.

Files. This mode uses files for capturing state. Captured states are first

written to files, which are later aggregated from all machines at the end of execution.

Files as a storage mechanism provides some advantages over key-value stores and

databases. First, simple memory-file operation is significantly faster than single node

key-value stores, due to the fact that memory-file operation executes sequential writes

while key-value stores execute writes randomly (hash table or B-Tree). Second, file-
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based mechanisms do not require any additional services and hence does not add any

overheads on the nodes. Third, merging files are simple and fast since the files are

already naturally ordered due to sequential writes on each node. Therefore sorting

the state files has a linear time complexity. Files are not good to query on, but they

are easy to manipulate and archive.

We capture states from all FRIEDA components on VMs and store them in

an in-memory cache before being flushed to disks. The cache size is customizable to

address the tradeo↵s between robustness and performance. If application fails, the

states can still be found on those VMs since they are flushed to disk. For even better

durability, it can write to a distributed file system or a block store that can survive

beyond the life of the virtual machine, based on the configuration. Finally all states

files are copied to a target machine for merging. If application fails, states are still

saved within the FRIEDA-State framework. But if VMs or FRIEDA fails during

execution, users might lose unsaved states.

Cassandra. We include Cassandra as one of the storage solutions[12], as

it provides rich features for managing semi-structured data. It is easy to plug-in

other NoSQL databases in FRIEDA-State. Users control the number of Cassandra

instances according to their performance and capacity needs. Cassandra could share

the virtual machines with the application or run on a separate cluster. Key-value

stores are known to work well when deployed on dedicated machines. Practically,

users can use a private cluster to host the Cassandra cluster. They can also setup a

dedicated virtual cluster on cloud to serve the requests. In this case, users will need

to periodically move state data to a more permanent storage.

DynamoDB. The third storage solution is based on DynamoDB, a NoSQL

database available on Amazon Web Services. With this type of cloud databases

services, users dont have to deploy a software stack to run and configure those data
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stores, but have to pay extra money for the service.

5.2.5.5 Storage architectures. FRIEDA-State supports multiple storage ar-

chitectures, namely centralized, distributed and local storage. This sub-section will

describe each of these architectures in detail.

Centralized Storage Solution. In our current implementation, centralized

solution is based on a single node key-value store or database. When all nodes in

the system generate states, collecting and storing can result in a storage bottleneck.

Depending on the application type, the rate of state generation can be di↵erent. If

the data generated is minimal and at a low rate, centralized storage solution will

work perfectly in practice. An important advantage of centralized solution is that all

events can be naturally ordered as they arrive at the storage server and assigned a

timestamp based on servers local time. The solution naturally provides persistence

of the state data beyond the lifetime of the virtual machines.

Distributed storage solution. Similar to centralized solution, FRIEDA-

State support distributed storage solution through NoSQL databases (e.g., Cassan-

dra). High write concurrency is a big challenge for all types of storage systems. Dis-

tributed storage solutions, such as distributed databases, key-value stores can serve

large amounts of write requests and spread them to many nodes to achieve scalable

performance and load balancing. In this type of solution, a group of dedicated data

storage servers will be started prior to application execution. States generated on any

node in the system will be written remotely to the data store. The latency of this

operation depends on the data store solution and could be up to a few milliseconds.

To deploy data stores on all the nodes that will generate states will not help much

on performance, because running the data stores consumes extra CPU and memory

resources, and messages still need to be sent between all VMs over the network.
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Local storage solution. We implemented this solution based on traditional

files. Local storage eliminates network latency (the major part of operation latency)..

Considering the data collected is likely to be queried after an application run, o✏ine

storage solutions are reasonable. Writing to local disk/memory is extremely fast com-

pared to remote access and no extra resources are consumed by data store programs

on VMs. The hard part of using local storage is aggregating data from many VMs

and to merge into a form that o↵ers a single query interface. File-based solution is

not perfect though. If users want to query the states during the system running,

extracting the desired records is complicated and slow.

5.2.5.6 Event reordering. Distributed event ordering is an important topic in

large-scale distributed system design. The goal is to keep a global logical order of

events based on timestamps. In FRIEDA-State, we use modified vector clock[123]

to maintain time order. FRIEDA-State uses 1-to-n communication pattern since

communication only happens between master and workers. We use the master node

clock as major clock and all workers logically synchronize to it using vector clock. By

comparing attached master clock value in communication messages, we can tell which

event happened earlier. If the master clock reads are same, then these events occurred

in the same machine. It is trivial to order events within one machine by sorting the

local timestamps. When using file-based storage solutions, events are sequentially

written to files and thus are naturally ordered. Each state record has two fields for

vector clock: one for local clock, another for master clock. Events on master node

have same values for both clocks.

In the beginning, all logical clocks are set to be 0. Once a new state is captured

and stored, the corresponding clock value is increased. The local clocks increase

naturally along with the events happening, and the master clock can only be updated

when a message is received that contains a new master clock value. Workers states
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collection can be divided into independent event groups by master clock value. In

each group, events are naturally ordered and do not interleave with those in other

groups. The possible causal relation between di↵erent groups, if exist, is determined

by master clock. Thus, the problem of reordering and merging di↵erent events is

reduced to sorting the event groups. Sorting groups is simple and has the same time

complexity as the merging phase in merge-sort, namely O(n), where n is number

of groups. For example, in 5.2, sorting by master clock M value, all the events are

divided into five groups. Each group presents an atomic sequence in a machine. Since

the inner events of a group are naturally ordered, the reordering is e�cient.

Figure 5.2. Event reordering example. Three machines have their local clock and
maintain a vector clock. Each event will increase the local clock value; each received
message will update others clock value in their local vector. The masters clock is
used to maintain the time order when reordering the events. Sorting by master
clock M value, all the events are divided into 5 groups. Just sort the groups will
order all the event.

5.2.6 Evaluation. In this section, we describe the performance of the state

management system, with di↵erent storage solutions.

5.2.6.1 Testbeds.

• FutureGrid Sierra, a research purpose public cloud, experiments used up to 16

virtual machines.
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• Amazon EC2 cloud, up to 128 c1.medium virtual machines, each has 2 virtual

CPU, 5 elastic compute units and 1.7GB memory.

• DataSys, an 8-core x64 server at IIT, dual Intel Xeon quad-core w/ HT proces-

sors, 48 GB RAM. This machine is used for experiment to study the merging

overhead.

5.2.6.2 Scientific Workloads. We use two applications that are representatives

of scientific workloads using cloud environments: Image Comparison and Event Pro-

cessing. Image Comparison compares an image with other images in the set to find

similarities. These applications are representative of typical data processing scientific

workflows.

5.2.6.3 Experiment Setup. We use the same workload for three storage solutions,

respectively based on files, Cassandra and DynamoDB. For synthetic benchmarks, on

each state client, we send 10K requests in a tight loop to simulate an extremely

operation-intensive scenario. Each request consists of 20 bytes key and 80 bytes

value. Both key and value are randomly generated.

File-based solution. For file-based solution, the key-value pairs are saved to

a local file on each client. Next, all these files are copied to a shared NFS directory,

located on a dedicated VM where the files are merged. This is a simple solution for

demonstrating state aggregation. Apparently its vulnerability to single point failures

and the bottleneck can be addressed by well-known techniques such as mirroring or

parallel file systems. We measure the time of writing to files, moving files to NFS

server and merging events. We amortize the cost of file moving to state storage to

get the average equivalent latency per state.

Cassandra-based solution. We use 1 to 8 Cassandra servers on dedicated

VMs, and send requests from 1 to 128 state clients on VMs.
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DynamoDB-based solution. DynamoDB is a service provided by Ama-

zon. The data servers dont need to be deployed on the VMs. The VMs only need

to communicate to the remote Amazon data stores and this has a minimal perfor-

mance impact on local VMs. We provision the maximum available throughput for

DynamoDB, which is 10K ops/sec. Up to 128 VMs on Amazon EC2 are used as state

clients to send requests.

5.2.6.4 Metrics. The metrics measured and reported are average latency and

throughput.

Average Latency. We consider the average latency as per request to write

a state to data stores, measured in microseconds. Note that the latency includes the

round trip communication and storage access time. Measuring latency for Cassandra

and DynamoDB is straightforward, but file-based solution needs more care. We

use the formula below to calculate the average equivalent latency t
ave

for file-based

solution, where t
w

is the average file write latency, T
moving

and T
merging

are the total

time spent on moving and merging respectively, n is the total number of operations:

t
ave

= t
w

+ (T
moving

+ T
merging

)/n

Throughput. The number of operations the system can handle over some

period of time, measured in Operations per seconds (Ops per second).

5.2.6.5 Synthetic benchmark.

Capture overhead. We conduct micro benchmarks on scales of up to 128

VMs. Note that the latency of file-based state management includes amortized cost

for file moving, reordering and merging. Cassandra data stores crashed frequently and

cannot serve requests at a scale of 8 servers with 128 clients. Similarly, DynamoDBs

maximal throughput is reached at this scale and started to give errors, thus we only

show results at a scale of 64 clients. Figure 5.3 shows that file-based state solution
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has significant advantage over other two capture methods. When clients number in-

creases, moving files to a single server causes contention. But this cost gets amortized

across all requests. A single node Cassandra is saturated with 8 clients. On larger

scales, multiple servers show some benefits but it is still limited, compared to the file

based approach. DynamoDB shows very stable performance when facing di↵erent

client request pressure before it is saturated, but its at least three times slower than

Cassandra at most scales.

Similar to the latencies, file-based solution delivers significantly higher through-

put than other two. At 64 nodes, file-based solution achieves 52K ops/s, which is five

times faster than a dedicated eight nodes Cassandra cluster and 18 times faster than

DynamoDB based solution.

Events reordering and file merging overhead. On an 8-core Xeon server,

we generate up to 512 state files. Each state file contains 10000 state records. Using

a simple single thread merging program, 4 files cost 16ms, and 512 files cost 8209

ms. This can be further improved with more sophisticated merging algorithms in the

future.

File-based state management. We measured the time for capturing state

and writing to file, moving and merging files respectively. We set an in-memory cache

to boost the disk write performance. As shown in Figure 5.6 a full-size cache setting

brings around 10% performance increase.

Since the state capturing on a local machine doesnt involve any contention, the

latency is actually constant, around 500us. Simultaneously moving a large number of

files can cause contention, either on network or disks. The time spent on moving files

keeps increasing even when the time is amortized. Better methods to aggregate data

will be needed when running at larger scales. Merging overhead increases as well, but
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still negligible compare to other two overheads.

Figure 5.3. File-based solution has lower average latency. Cassandra performance
decreases with the scale. DynomoDB latency doesnt change much with scale, but
failed 128 clients test.

Figure 5.4. System throughput comparison. File-based solution obtains the maximum
aggregated performance increases with scale.

5.2.6.6 Scientific applications. With integrated state management system in

FRIEDA, we run two scientific applications (Image Comparison and Event Process-

ing) to evaluate the overall performance impact of state collecting on real applications.

Both applications are evaluated on FutureGrid [129] system.

Although in synthetic benchmarks we observed huge di↵erence of performance

among di↵erent storage solutions, in application tests, we see no significant di↵erence
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Figure 5.5. File merging time becomes longer with number of files.

Figure 5.6. File write operation scales well. Full-size cache brings around 10% per-
formance gains

(state-introduced overhead is less than 5%). This is mainly because the micro bench-

mark tests execute operations in a tight loop while real applications have sparser and

random patterns, so the total time spent on state management is very low compared

to the application running time.

5.2.7 Summary. Scientific applications are increasingly using cloud environments

and need a way to track the applications entire lifetime information both for moni-

toring and ensuring reproducibility. We propose and implement a state management

system (FRIEDA-State) for a broad type of scientific applications running in cloud
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Figure 5.7. File-based storage write latency is constant while merging time is increas-
ing slightly. The amortized moving time increases exponentially.

environments. FRIEDA-State has an innovative design that allows various storage

mechanisms to be plugged-in while providing di↵erent trade-o↵s in durability, per-

formance and usability. In this section, we discussed our implementations based on

files, Cassandra and DynamoDB respectively and evaluated them on two cloud plat-

forms. The evaluation showed that FRIEDAState has very low overhead even when

running at a scale of 64 virtual machines. File-based storage solution o↵ers signifi-

cantly better performance than key-value stores (e.g. Cassandra) on moderate scales.

Furthermore, in some conditions, file-based storage is better than cloud databases

services (e.g. DynamoDB) as well, in terms of latency and aggregated throughput.

The major part of overhead of file-based storage solution is file moving, when using

a centralized data server. Further scalability can be achieved with better merging

algorithms for file-based systems or deploying larger number of NoSQL data nodes.

We expect that as we increase scale into 100s and 1000s of VMs, that the centralized

data server will become a bottleneck, and distributed key-value stores would begin to

o↵er better performance.

5.3 Scalable Cloud Data Infrastructure for Sensor Networks
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Figure 5.8. Application: image comparison

Figure 5.9. Application: event processing

As small, specialized sensor devices become more ubiquitous, reliable, and

cheap, increasingly more domain sciences are creating “instruments at large” - dy-

namic, often self-organizing, groups of sensors whose outputs are capable of being

aggregated and correlated to support experiments organized around specific ques-

tions. This calls for an infrastructure able to collect, store, query, and process data

set from sensor networks. The design and development of such infrastructure faces

several challenges. The challenges reflect the need to interact with and administer

the sensors remotely. The sensors may be deployed in inaccessible places and have

only intermittent network connectivity due to power conservation and other factors.
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This requires communication protocols that can withstand unreliable networks as

well as an administrative interface to sensor controller. Further, the system has to

be scalable, i.e., capable of ultimately dealing with potentially large numbers of data

producing sensors. It also needs to be able to organize many di↵erent data types

e�ciently. And finally, it also needs to scale in the number of queries and processing

requests. In this work we present a set of protocols and a cloud-based data streaming

infrastructure called WaggleDB that address those challenges. The system e�ciently

aggregates and stores data from sensor networks and enables the users to query those

data sets. It address the challenges above with a scalable multi-tier architecture,

which is designed in such way that each tier can be scaled by adding more indepen-

dent resources provisioned on-demand in the cloud.

5.3.1 Introduction. The last several years have seen a raise in the use of sensors,

actuators and their networks for sensing, monitoring and interacting with the envi-

ronment. There is a proliferation of small, cheap and robust sensors for measuring

various physical, chemical and biological characteristics of the environment that open

up novel and reliable methods for monitoring qualities ranging from the geophysical

variables, soil conditions, air and water quality monitoring to growth and decay of veg-

etation. Structured deployments, such as the global network of flux towers, are being

augmented by innovative use of personal mobile devices [130–143], use of data from so-

cial networks, and even citizen science. In other words, rather than construct a single

instrument comprised of millions of sensors, a “virtual instrument” might comprise

dynamic, potentially ad hoc groups of sensors capable of operating independently

but also capable of being combined to answer targeted questions. Projects organized

around this approach represent important areas ranging from ocean sciences, ecology,

urban construction and research, to hydrology. This calls for an infrastructure able

to collect, store, query, and process data set from sensor networks. The design and

development of such infrastructure faces several challenges. The first group of chal-
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lenges reflects the need to interact with and administer the sensors remotely. The

sensors may be deployed in inaccessible places and have only intermittent network

connectivity due to power conservation and other factors. This requires communi-

cation protocols that can withstand unreliable networks as well as an administrative

interface to sensor controller. Further, the system has to be scalable, i.e., capable of

ultimately dealing with potentially large numbers of data producing sensors. It also

needs to be able to organize many di↵erent data types e�ciently. And finally, it also

needs to scale in the number of queries and processing requests. In this section we

present a set of protocols and a cloud-based data store called WaggleDB that address

those challenges. The system e�ciently aggregates and stores data from sensor net-

works and enables the users to query those data sets. It address the challenges above

with a scalable multi-tier architecture, which is designed in such way that each tier

can be scaled by adding more independent resources provisioned on-demand in the

cloud.

5.3.2 Design and implementation.

5.3.2.1 Design considerations.

Write scalability and availability. The system needs to support many

concurrent writes from a large sensor network, which continuously captures data and

sends it to the cloud storage. The system should be always available for writing. For

achieving these goals, we propose to use a multi-layer architecture. A high perfor-

mance load balancer is used as the first layer to accept and forward all write requests

from sensor controller nodes evenly to a distributed message queue, which works as a

write bu↵er and handles requests asynchronously. A possible alternative to the load

balancer a dynamic scheduler such as MATRIX [92]. A separate distributed Data

Agent service keeps pulling messages from the queue, preprocess it and then write to

the data store.
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The capability to present various data types. There can be many di↵er-

ent kinds of sensors in a sensor network, each of them can read di↵erent number and

types of values. There is no fixed scheme for data formats from the di↵erent types of

sensors. Therefore we need a flexible data schema so to enable a unified API to collect

and store the data, and to organize data in a scalable way for further use query and

analytics. To address this issue, we design a flexible message data structure that eas-

ily fits into a large category of scalable distributed databases, called column-oriented

databases (or BigTable-like data stores). This design enables us to elevate the rich

features, performance advantage and scalability from column-oriented databases, as

well as to define a unified data access API.

5.3.2.2 Architecture. We design a loosely coupled multi-layer architecture to

boost the scalability while maintaining good performance. As shown in fig 5.10, the

system is composed of a sensor controller node and a data server that is both written

to by the sensors and read from by the clients. On the server side, there are 5 layers

of components, namely load balancer, message queue, Data Agent, database, and

query execution engine. Each layer can be deployed on a dedicated or shared virtual

cluster. If any layer becomes bottleneck, it can be scaled easily by simply adding

more resource.

Sensor Controller Node. The sensor controller node accepts data captured

from sensors and wraps into a basic message. The client can also send multiple

messages in batch through a single transfer as needed. When the clients need to

send a big file such as an image by a full-spectrum camera, it will first send the

blob through our API to the cloud blob store(such as Amazon S3) or our own file-

based blob storage system, and then send a reference message to the database. This

reference message is organized in the same way as the basic message, which contains

all the metadata, but in the data field, it holds a URL link or a pointer to that file.
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Figure 5.10. System architecture. Sensor controller nodes send messages and blobs
to the cloud storage through APIs. Load balancer forwards client requests to data
streaming layer. Nimbus Phantom controls dynamic scaling of queue servers and
data agent servers.
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All these communication are enhanced by our transactional transferring mechanism.

Designing dynamic scalable services. On clouds, most resources are vir-

tually unlimited [77]. All component layers in our system are organized as scalable

services, most of which can scale in a dynamic and automatic manner. To allow

them to do so, a couple of requirements have to be satisfied [144]. First, the parallel

instances of a service can run on multiple machines independently. This ensures a

service can be scaled out. Second, a new instance of the service should be able to

discover and join a running service. This ensures live scaling of a service, which means

the service can scale any time on demand without halting.

Load balancer service. A load balancer is used on top of the whole ar-

chitecture. The load balancer does not only balance the workload, but also o↵ers a

single access point to the clients so as to hide the potential change (such as scaling or

failure) in the message queue layer. Load balancer is setup on a big virtual machine.

Message queue service. The message queue service is asynchronously repli-

cated across multiple VMs, which ideally are located close to each other. We choose

Availability and Partition tolerance from the CAP theorem [145] and assume that

the connection between the VMs is reliable, which is reasonable within a single cloud

provider. In this way, any single failed queue won’t cause any data loss. A new

message queue server can join a cluster easily. We used a simple script to setup and

start new message queue service, join the cluster and update the load balancer config

file, and then run a reload on load balancer server to finish the system scaling.

Data Agent service. The only job that a Data Agent does is pull messages

from message queues, preprocess them, and then push to the storage service. There

is no communication and dependency between any two Data Agents. For adding new

Data Agents, users only need to tell the new agent where to pull messages and where
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to push to, which can easily been set as start parameters. Thus both requirements

are satisfied.

Storage service. To meet the various needs of sensor network applications,

we design a hybrid storage service that combines a column-oriented database[106]

and a blob store. Most of sensor readings are small, and can be put into the database

while big files are send to the blob store. For each blob in the blob store, there is a

tuple in the database, through which the blob is presented as a regular sensor reading.

Thus users can access the data via a unified API.

Design discussion. In This work we use dedicated message queue service

(RabbitMQ) and data storage (Cassandra) in order to provide best response time(or

latency). One possible alternative solution is to use cloud services such as Amazon

SQS and DynamoDB respectively. Uses of cloud service can simplify the system

implementation and deployment. However this convenience is at no cost. As we

observed before, the response time of both SQS and DynamoDB are multiple times

slower than most of user deployed software services. Economic cost is also a big

concern.

5.3.2.3 Transactional command execution. In sensor networks, administrators

often need to carry out diagnosis and system maintenance by running a series of

commands remotely. Conventional remote login such as SSH or Telnet won’t work as

desired because of the unreliable communication channels. The command execution

subsystem must be able to recover from most of the interruptions and communication

failures. For solving this problem, we designed and implemented a transactional

protocol and stateful data middleware to track the command execution sessions and

to persist the results. When a user needs to execute a series of command, s/he firstly

sends an execution request to the middleware, which assigns an incremental session ID

to the request and then forwards the request to a dedicated database table on cloud.
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The commands will not be executed immediately. Instead, controllers check out the

available commands from database periodically and then execute them sequentially.

We use pull method on controllers instead of opposite, because the cloud side doesn’t

know if and when a usable network connection is available, so it must be the controller

that starts a communication and get the commands. If a controller finds more than

one sessions in the database, it will firstly execute the session that with a smallest

ID. As the commands are executed on a controller, the results are given a sequence

number and push to the database. The user can query the database any time to see

if there is any result available. Since both commands and results are persisted in the

database, the data lose caused by connection failure is minimized.

5.3.2.4 Implementation. We have implemented the sensor controller client, user

query client, administration client, data agent servers and all the adaptors between

components in Python [18]. We choose RabbitMQ as message queue server, and Cas-

sandra [12] as the column-oriented database for storage backend. For dynamic scaling

on various tiers of the system, we adopted Nimbus Phantom [144], an automatic cloud

resource manager and monitoring platform, which enable us manage each tier inde-

pendently. This work has been integrated into its ongoing parent project, Waggle,

at Argonne National Laboratory. The whole system is currently running with real

sensors and collecting environmental data.

5.3.3 Experimental Results. As we writing this section, the Waggle sensor

network is still in development and doesn’t have many sensor controllers. So we used

synthetic benchmarks to evaluate our system’s performance and functionality on a

public science cloud, FutureGrid. This method actually simulated the worst case of

the real-world scenario: all sensor controllers happen to send data at the same time,

while the normal case is that they send data in a random manner. We claimed that

WaggleDB can handle highly concurrent write requests and provide high scalability.
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To demonstrate this we evaluated the system with up to 8 servers and 128 clients, in

terms of latency, bandwidth, client/server-side scalability and dynamic scaling. We

used Tsung benchmarking tool to generate 128 clients on up to 16 virtual machines,

and ran up to 8 servers on other virtual machines. We sent 10,000 write requests in

a tight loop from each client to the load balancer, which then forwarded requests to

queue servers concurrently. Each request was a fixed-length string message.

5.3.3.1 Concurrency and client-side scalability. To determine the capability

of handling concurrency and client-side scalability of WaggleDB system, we measured

average latency, aggregated data bandwidth and throughput with 1 server. The re-

quest latency consists of the time spent on data transferring and request processing.

To understand the latency composition better, we measured the latencies with dif-

ferent message sizes, from 10 bytes to 10k bytes. Figure 5.11 shows that while the

client scale increased by 32 times, the average latency only increased by 2.2 times.

This implied great potential of client-side scalability. Note that the experiments were

conducted with client-side tight loops that were only bounded by CPU performance

and network bandwidth. Since the real-world clients in sensor networks generally

only contact servers occasionally, it’s safe to claim that the single-server system can

handle many more than 32 real clients. It’s worth noting that the latency di↵erences

between 10 to 10k bytes message sizes were very small (less than 20%). Within mea-

sured message size range, latency was not sensitive to message size. This implied that

request processing (open/close socket, acknowledgement) takes more time than data

transferring within 10k bytes range.

5.3.3.2 Concurrency and server-side scalability. To determine the server-side

scalability and measure the overall performance, we fixed the message size to 1000

bytes and performed similar experiment with up to 128 clients and 8 servers. As more

clients joined, the latencies of all server scales increased as shown in figure 5.12. The
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Figure 5.11. Average latency only slowly increased with client number.

more the servers were used, the less the latency increased. On the single-node system,

latency started to increase rapidly on 32-client scale and above. This suggested that

single server got saturated when serving more than 32 clients.
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Figure 5.12. Latency comparison. The more the servers were used, the less the latency
increased.

5.3.3.3 Dynamic scaling. To verify the functionality and performance impact of

dynamic scaling, we measure the latency while scaling queue server and Data Agent

server layers on the fly. We firstly tested queue server layer. We fixed the number

of clients to 128, started the experiment with single-queue server, ran 30 seconds,

doubled the queue servers, and repeated. Eventually we scaled queue server layer

to 8 nodes. In figure 5.13, the column chart shows the average latency decreased

significantly. Take single-server system as a baseline, scaling to 2, 4 and 8 server

brought 36%, 55% and 64% performance gain respectively. The curve chart shows

the real-time latency in logarithmic scale. The three high peaks were caused by the

load balancer configuration reloading (new list of servers).When adding more than 4

queue servers, the latency decreased slower, because it already close to the ideal value

and system was nearly idle.

5.3.4 Summary. In this work we present a set of protocols and a cloud-based data

streaming infrastructure called WaggleDB that address those challenges. The system

e�ciently aggregates and stores data from sensor networks and enables the users to

query those data sets. It address the challenges for accommodating sensor network
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Figure 5.13. Real-time and average latency on dynamic scaling queue servers.

data streams in cloud with a scalable multi-tier architecture, which is designed in such

way that each tier can be scaled by adding more independent resources provisioned

on-demand in the cloud. The featured high availability and scalability, flexible data

scheme and transactional command execution make it a good candidate for sensor

network data infrastructure in cloud era.
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CHAPTER 6

RELATED WORK

6.1 NoSQL Storage Systmes

In this section we introduce some existing works on NoSQL storage systems

related to this dissertation, including distributed hash tables, key-value stores and

column-oriented data stores, because they play critical roles in building scalable dis-

tributed systems. Numerous distributed NoSQL data stores have been proposed

and implemented over the years. Some widely cited and discussed projects and so-

lutions (including Chord [146], CAN [147], Pastry [148], Kademlia [149], Tapestry

[150], RIAK [151] and Cassandra [12]) adopt logarithmic routing algorithms, resulted

in increased latency with systems scale. Some other works such as Dynamo [152]

and Memcached [13] , use constant routing algorithms to achieve a nearly constant

latencies like ZHT. Amazon’s Dynamo is a key-value storage system that Dynamo

hosts some of Amazon’s core services. It inspired many similar projects and started

a NoSQL trend in both academia and industries. The major focus of Dynamo is to

provide an “always-on” experience to it’s upper level applications. Dynamo claim

to be a zero-hop DHT, where each server has enough routing information locally to

route requests to the appropriate target server directly. Memcached is a simple but

e�cient in-memory a key-value store. It was designed as a cache to speed up dis-

tributed data access such as web page caches. Due to it’s specific purpose, Memcached

doesn’t support dynamic membership, replication and persistence. The length of the

keys and values are strictly limited to 250 and 1M bytes respectively. Cassandra is

firstly inspired by Amazon’s Dynamo, strives to be an “always writable” system. In

later implementations, it’s more considered as a column-family store, like Google’s

BigTable [106], although it still support key-value interfaces. Cassandra is very pop-

ular in industries, but it gets little use in high performance computing areas many
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supercomputers don’t have good support on Java stack. Another drawback of Cas-

sandra is its logarithmic routing strategy, which makes the performance scalability a

big issue.

Some recent key-value store projects generally focus on providing new features

or exploring new approaches to boost performance. HyperDex [153] is a distributed

key-value store that provides a search primitive that enables queries on secondary

attributes. Some adopt new storage backend technology to boost the performance,

such as SkimpyStash [154]. SkimpyStash uses a hash table directory in RAM to in-

dex key-value pairs stored in a log-structured manner on flash. Due to the relatively

simple yet complete basic functionality of key-value stores, there are also many re-

search projects use them as demonstrative prototypes to verify their designs. For

example Pileus [100] is a replicated key-value store that allows applications to declare

their consistency and latency priorities via consistency-based service level agreements

(SLAs). MICA [105] is another scalable key value store that can handle millions of

operations per second using single general multi purpose core system. MICA achieved

this by encompassing all aspects of request handling by enabling parallel access to

data, network request handling, and data structure design. SPANStore [155] presents

a key value store that exports a unified view of storage services in geographically

distributed data centers. SPANStore combines three main principles, span multiple

cloud providers to minimize cost, estimating application workload at the right granu-

larity and finally minimizing use of compute resources. SPANStore in some scenarios

was able to lower cost by 10X. Masstree [156] presents anther key value store designed

for SMP machines. Masstree functions by keeping all data in memory in a form of

concatenated B+ trees. Lookups use optimistic concurrency control, a read-copy-

update like technique but no writing on shared data. With these techniques Masstree

is able to execute more than six million simple queries per second. For enabling

NoSQL databases to handle highly concurrent distributed transactions, Claret [157]
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is recently proposed. It utilizes abstract data type (ADT) semantics in databases to

provide a safe and scalable programming model for NoSQL databases. LOCS [158] is

system equipped with customized SSD design, which exposes its internal flash chan-

nels to applications, to work with LSM-tree based KV store, specifically LevelDB in

LOCS. Main motivation of LOCS was to overcome ine�ciencies to naively combining

LSM-tree based KV stores with SSD. They were able to show 4X increase in storage

throughput after applying the proposed optimization techniques. Small Index Large

Table (SILT) [159] presents a memory e�cient high performance key value store sys-

tem based on flash storage that can scale to serve billions of key value items on a

single node. SILT focuses on using algorithmic and systemic techniques to balance

the use of memory, storage and computation.

6.2 Boosting performance of distributed storage systems

To achieve high throughput, low latency and better scalability in distributed

storage systems on clouds, numerous works have been done in many aspects. Some

focus on optimizing network communication. Kielmann’s work [160] adopts dynamic

load balanced multicast to o↵er more e�cient communication for data-intensive ap-

plication. Sata developed a model-based algorithm [161] for optimizing I/O intensive

applications in clouds through VM layer coordination. Wolf’s work [162] attempts

to optimize massively parallel I/O and data locality. Some are trying to exploit new

hardware, such as NV-RAM. Panda’s team, in another hand, proposed new storage

primitive [163] for emerging storage hardware. For large-scale storage-class memory

systems, Jung [164] attempts to utilize Resistive Random Access Memory (RRAM),

another promising memory technology to o↵er higher bandwidth and lower latency.

There are also works done on parallel SQL databases, such as ParaLite [165], which

supports collective queries to parallelize User-Defined Executables (EDU).

6.3 Request batching and QoS in key-value stores
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For performance improvement, request batching are already used in some pro-

duction systems, such as Facebook Memcached [13] and Amazon DynamoDB [14]. In

these systems, users explicitly wrap requests into batches. Memcached allows users

to call a multiget API to submit a batch of get requests. Note that the batch con-

tains requests that will go to multiple servers. Then the server that initially received

the multiget request will have to communicate to many other servers, which may

increase the actual latency. Adding more servers will not help this case because the

busy server is CPU bounded. This problem is now known as Multiget Hole [166].

In ZHT/Q, batching works in the background and users do not know any details.

Multiget Hole problem is avoided by making the requests in a batches have a same

destination server. DynamoDB has a similar mechanism for request batching. An-

other issue with these solutions is that an user must have all the requests ready by

hand and then pack them in batches. This requires users to use a very di↵erent set

of APIs, thus some times change the applications’ logic.

Request batching is also used to reduce power consumption. In [167] Cheng

used a request batcher on server side to bu↵er requests so to keep the CPU in idle

mode for longer time to save energy. In [168] Wang proposed a batching technique

with DVFS for virtual machines to save power. But neither focuses on performance

perspective and multiple QoS requirements. Similar ideas are also used in collective

I/O [169–171] for storage performance optimization.

There are couple of key-value store projects support QoS or SLA (service level

agreement). Pileus [100] is a key-value store that allows applications to declare their

consistency and latency requirements. The performance di↵erence is implemented

via choosing di↵erent consistency level and replication options. Zoolander [172] is a

key value store that supports latency SLAs. Similar with Pileus, Zoolander makes

use of systems data and workload conditions along with di↵erent replication options
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to deliver di↵erent performance level.

6.4 Provenance

Traditional data provenance represents the change history of data objects.

Previous works on data provenance [173] have addressed di↵erent aspects, from op-

erating system [107] to file systems [108] to from databases [109]. In our previous

work [9], we have shown that distributed key-value stores can boost performance.

Karma [174] provenance framework gives a set of tools for collecting provenance from

workflow and process. Milieu [175] focuses on provenance collection for scientific

experiments in HPC systems.

6.5 System Monitoring

Monitoring gives users a perspective that combines resource utilization, cost

e�ciency and performance. Previous work has focused on runtime model and attempt

to reach the balance between runtime overhead and monitoring capability [113]. Ear-

lier works include Ganglia [114], a distributed monitoring system for clusters and

grid systems. FRIEDA-State is event-driven i.e., it does not proactively go to fetch

information, and hence is more e�cient.

6.6 Unsynchronized Time Clocks and Event Ordering

In large scale distributed systems, unsynchronized clocks and drifting issue are

inevitable. Based on di↵erent time baselines, its hard to build meaningful semantics

from distributed events or logs without synchronization or logical clock mechanisms.

Synchronization to a standard time source (atomic clock or GPS clock) is simpler.

Typical cases are Precision Time Protocol [176] and NTP [177]. In recent projects,

Google Spanner [99] adopts similar way to o↵er a synchronized clock to global scale

databases and o↵ers 5ms accuracy in global scales. Many works have been done for

distributed event ordering. Beside Lamports timestamp [178], Vector Clock [123] is
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another popular approach in todays systems.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Today NoSQL databases are increasingly used as building blocks of large scale

applications on cloud. But in high performance computing areas, they just start to

catch attention. This dissertation firstly addresses several challenges on storage sys-

tems at extreme scales for supercomputers and clouds by designing, implementing and

applying a zero-hop distributed NoSQL storage system (ZHT). ZHT has been tuned

for HPC systems first, then more optimizations are applied to make it a good candi-

date building block for cloud based applications. This work brings the convergence of

NoSQL databases on clouds and supercomputers, it also explores many opportunities

in large system design and implementation. At the time of writing this dissertation,

ZHT has been adopted in some real systems for supercomputers and clouds.

Then we build a new NoSQL storage system based on ZHT and optimize it

to satisfy QoS on latency while achieving high throughput. It supports di↵erent QoS

latency on a single deployment for multiple concurrent applications, which is a real

challenge faced by may big companies and institutions that run NoSQL storage on

clouds.

Beside ZHT, we have also explored other NoSQL families, especially column-

oriented databases, which provide richer features such as complex query and flexi-

ble schemes. Having collaborated with Argonne National Laboratory and Lawrence

Berkeley National Laboratory, we have designed and implemented two cloud based

systems for their scientific applications based on column-oriented databases.

Based on these experiences we believe that NoSQL storage could transform

the architecture of future storage systems in both HPC and clouds, and open the
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door to a broader class of applications that would have not normally been tractable.

Furthermore, the concepts, data-structures, algorithms, and implementations that

underpin these ideas at the largest scales, can be applied to emerging paradigms, such

as Cloud Computing, Many-Task Computing, and High-Performance Computing.

7.2 Future Work

Based on ZHT, we have many ideas for future work. There are also many

possible use cases where ZHT could make a significant contribution in performance

or scalability. Among them, we plan to extend our current work into the following

projects.

Key-value store based graph processing system. The emerging appli-

cations in big data and social networks issue rapidly increasing demands on graph

processing. Graph query operations that involve a large number of vertices and edges

can be tremendously slow on traditional databases. We are working on designing

and implementing of a new Bulk Synchronous Parallel (BSP) model based graph

processing system based on ZHT. The new system is named Graph/Z [82], which

can be considered as another Pregel-liked graph processing system, but it inherits

some important features from ZHT, a distributed key-value store, which di↵eren-

tiate Graph/Z from other systems. ZHT is a zero-hop distributed key-value store

featured with high scalability, persistency and fault tolerance. By leveraging ZHT’s

persistency, Graph/Z can run with a much larger working dataset.

Integrate ZHT with Swift parallel scripting language. Swift is a system

for the rapid and reliable specification, execution, and management of large-scale

science and engineering workflows. It supports applications that execute many tasks

coupled by disk-resident datasets - as is common, for example, when analyzing large

quantities of data or performing parameter studies or ensemble simulations. We re



116

closely working with Argonne National Lab on MTC (Many Task Computing) Swift

so as to boost its performance and scalability through ZHT.
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