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Abstract 
The exponential growth of data and application complexity has brought new challenges in the 

distributed computing field. Scientific applications are growing more diverse with various workloads, 
including traditional MPI high performance computing (HPC) to fine-grained loosely coupled many-task 
computing (MTC). Traditionally, these workloads have been shown to run well on supercomputers and 
highly-tuned HPC Clusters. The advent of Cloud computing has brought the attention of scientists to 
exploit these resources for scientific applications at a potentially lower cost. We investigate the nature of 
the cloud and its ability to run scientific applications efficiently. Delivering high throughput and low 
latency for the various types of workloads at large scales has driven us to design and implement new job 
scheduling and execution systems that are fully distributed and have the ability to run in public clouds. We 
discuss the design and implementation of a job scheduling and execution system (CloudKon) that has three 
major features: 1) it is optimized to exploit the cloud resources efficiently through a variety of cloud 
services (Amazon SQS and DynamoDB) in order to get the best performance and utilization; 2) it is fully 
distributed and it is able to run large scale applications; 3) it supports various workloads including MTC 
and HPC applications concurrently. To further improve the performance and the flexibility of CloudKon, 
we designed and implemented a fully distributed message queue (Fabriq) that delivers an order of 
magnitude better performance than the Amazon Simple Queuing System (SQS). Designing Fabriq helped 
us expand our scheduling system to many other distributed system including non-Amazon clouds. We 
evaluated CloudKon with synthetic MTC workloads, synthetic HPC workloads, and synthetic MapReduce 
applications on the Amazon AWS cloud with up to 1K instances. Fabriq was also evaluated with synthetic 
workloads on Amazon AWS cloud with up to 128 instances. 
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1.! Introduction 

The advent of Big Data and the Exascale computing has changed many paradigms in the computing 
science area. More than 2.5 exabytes of data is generated every day, and more than 70% of it is 
unstructured [1]. Various organizations including governments and big companies generate massive 
amounts of data in different formats including logs, and other unstructured raw data every day. Experts 
predict that by the end of 2018, the exascale (1018 FLOPS) computers will start to work [2]. Other 
predictions suggest that by the end of this decade, distributed systems will reach this scale with millions of 
nodes running billions of threads [3]. Many science domains (e.g. bio-informatics, drug discovery, energy, 
weather modeling, global warming, etc.) will achieve significant advancements due to exascale computing. 
However, running applications in such scales poses new scheduling and resource management challenges. 
One cannot expect to get satisfactory performance, efficiency and utilization by approaching the exascale 
systems with the traditional solutions. It is unlikely for the traditional centralized variations of the 
scheduling systems to be able to handle exascales [111]. Such systems are likely to get saturated at smaller 
scales. Therefore, there is emergent need for new scheduling systems that can provide acceptable 
performance on such scales without possessing significant overheads [110]. This has driven us to design 
and implement new job scheduling systems for the next generation distributed systems, specifically clouds. 
We have chosen to approach cloud environment as an alternative resource for scientific applications. Cloud 
computing has gained the attention of scientists as a competitive resource to run HPC applications at a 
potentially lower cost. Thus, we have chosen to provide job scheduling solutions for large scale scientific 
computing on cloud environment. From this point, the terms of resource management system, resource 
manager, job scheduling system and job scheduler are used interchangeably. Also, the terms of job and task 
would be used interchangeably. 

Traditionally, scientific applications have been shown to run well on supercomputers and highly-tuned 
HPC Clusters. Scientific applications usually require significant resources, however not all scientists have 
access to sufficient high-end computing systems. The idea of using clouds for scientific applications has 
been around for several years, but it has not gained traction primarily due to many issues such as lower 
network bandwidth or poor and unstable performance. Scientific applications often rely on access to large 
legacy data sets and pre-tuned application software libraries. These applications today run in HPC 
environments with low latency interconnect and rely on parallel file systems. They often require high 
performance systems that have high I/O and network bandwidth. Using commercial clouds gives scientists 
opportunity to use the larger resources on-demand. However, there is an uncertainty about the capability 
and performance of clouds to run scientific applications because of their different nature. Clouds have a 
heterogeneous infrastructure compared with homogenous high-end computing systems (e.g. 
supercomputers). The design goal of the clouds was to provide shared resources to multi-tenants and 
optimize the cost and efficiency. On the other hand, supercomputers are designed to optimize the 
performance and minimize latency. Before choosing the cloud environment as an eligible competitive 
resource to run scientific applications, we need to assess its abilities and make sure it is capable to provide 
comparable performance. The first part of our research is to evaluate the capabilities of the cloud. 

We chose Amazon AWS cloud as our main benchmarking target. The reason for this decision is that (1) 
it is the most commonly used public cloud (2) it is used by our job scheduling system, CloudKon. We first 
analyze the potentials of the cloud by evaluating the raw performance of different services of AWS such as 
compute, memory, network and I/O. Based on the findings on the raw performance, we then evaluate the 
performance of the scientific applications running in the cloud. Finally, we compare the performance of 
AWS with a private cloud, in order to find the root cause of its limitations while running scientific 
applications. We assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud 
in terms of both raw performance and scientific applications performance. Furthermore, we evaluate other 
services including S3, EBS and DynamoDB among many AWS services in order to assess the abilities of 
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those to be used by scientific applications and frameworks. We also evaluate a real scientific computing 
application through the Swift parallel scripting system at scale. 

Cloud computing has become a popular resource to host data-analytics workloads. Hadoop is a good 
data-analytics example for an application that could majorly benefit from running on cloud environments. 
Features such as reliability of the Hadoop framework enables it to fit well within the commodity resources 
of the cloud. However, exploiting the cloud resources efficiently at larger scales remains a major concern. 
There is need for resource management and job scheduling systems that could manage cloud resources and 
distribute Hadoop jobs efficiently on those. This has been one of the main motivations of our work. The 
main goal of this work is to design and implement a distributed job scheduling system for scientific and 
data-analytics applications that could exploit the cloud environment resources efficiently, and also scale 
well on larger scales. The function of a job scheduling system is to efficiently manage the distributed 
computing power of workstations, servers, and supercomputers in order to maximize job throughput and 
system utilization. With the dramatic increase of the scales of today’s distributed systems, it is urgent to 
develop efficient job schedulers. Unfortunately, today’s schedulers have centralized Master/Slaves 
architecture (e.g. Slurm [4], Condor [5][6], PBS [7], SGE [8]), where a centralized server is in charge of the 
resource provisioning and job execution. This architecture has worked well in grid computing scales and 
coarse granular workloads [9], but it has poor scalability at the extreme scales of petascale systems with 
fine-granular workloads [10][11]. The solution to this problem is to move to the decentralized architectures 
that avoid using a single component as a manager. Distributed schedulers are normally implemented in 
either hierarchical [12] or fully distributed architectures [13] to address the scalability issue. Using new 
architectures can address the potential single point of failure and improve the overall performance of the 
system up to a certain level, but issues can arise in distributing the tasks and load balancing among the 
nodes [14].  

Having extensive resources, public clouds could be exploited for executing tasks in extreme scales in a 
distributed fashion. In this project, we provide a compact and lightweight distributed task execution 
framework that runs on the Amazon Elastic Compute Cloud (EC2) [15], by leveraging complex distributed 
building blocks such as the Amazon Simple Queuing Service (SQS) and the Amazon distributed NoSQL 
key/value store (DynamoDB) [17]. 

There have been many research works about utilizing public cloud environment on scientific computing 
and High Performance Computing (HPC). Most of these works show that cloud was not able to perform 
well running scientific applications. Most of the existing research works have taken the approach of 
exploiting the public cloud using as a similar resource to traditional clusters and super computers. Using 
shared resources and virtualization technology makes public clouds totally different than the traditional 
HPC systems. Instead of running the same traditional applications on a different infrastructure, we are 
proposing to use the public cloud service based applications that are highly optimized on cloud 
environment. Using public clouds like Amazon as a job execution resource could be complex for end-users 
if it only provided raw Infrastructure as a Service (IaaS) [22]. It would be very useful if users could only 
login to their system and submit jobs without worrying about the resource management.  

Another benefit of the cloud services is that using those services, users can implement relatively 
complicated systems with a very short code base in a short period of time. Our scheduler is a working 
evidence that shows using these services we are able to provide a system that provides high quality service 
that is on par with the state of the art systems in with a significantly smaller code base. We design and 
implement a scalable task execution framework on Amazon cloud using different AWS cloud services, and 
aimed it at supporting both many-task computing and high-performance workloads.  

The most important component of our system is Amazon Simple Queuing Service (SQS) which acts as 
a content delivery service for the tasks, allowing clients to communicate with workers efficiently, 
asynchronously, and in a scalable manner. Amazon DynamoDB is another cloud service that is used to 
make sure that the tasks are executed exactly once (this is needed as Amazon SQS does not guarantee 
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exactly-once delivery semantics). We also leverage the Amazon Elastic Compute Cloud (EC2) to manage 
virtual resources. With SQS being able to deliver extremely large number of messages to large number of 
users simultaneously, the scheduling system can provide high throughput even in larger scales. 

CloudKon is able to achieve great scalability while outperforming other state of the art scheduling 
systems like Sparrow [14]. However it has some limitations. Due to using SQS, CloudKon is locked down 
to Amazon EC2 cloud. That means users can only use it on AWS resources. That prevents us from testing 
our prototype on other environments such as other public/private cloud, or HPC resources. Moreover, due 
to running on a stand-alone separate server, SQS is not able to run internally on CloudKon. That adds 
significant overhead to the system that cannot be prevented. An open-sourced solution that could be 
integrated within the job scheduling system would suite it better. We investigated the available open-
sourced options. The available options do not fit the CloudKon requirements well. Some queuing services 
add significant overhead to the system while others cannot scale well to large scales. In order to further 
improve the performance and the flexibility of the CloudKon. That drove us to design and implement our 
own distributed message queue. 

A Distributed Message Queue (DMQ) could be an important building block for a reliable distributed 
system. Message Queues could be useful in various data movement and communication scenarios. In High 
Throughput Computing (HTC), message queues can help decouple different components of a bigger system 
that aims to run in larger scales. Using distributed queues, different components can communicate without 
dealing with the blocking calls and tightly coupled communication.  

We propose Fast, Balanced and Reliable Distributed Message Queue (Fabriq), a persistent reliable 
message queue that aims to achieve high throughput and low latency while keeping the near perfect load 
balance even on large scales. Fabriq uses ZHT as its building block. ZHT is a persistent distributed hash 
table that allows low latency operations and is able to scale up to more than 8k-nodes [23][107]. Fabriq 
leverages ZHT components to support persistence, consistency and reliable messaging.   

Among the various DMQs, Fabriq and Kafka are the only alternatives that can provide the acceptable 
performance at larger scales required by CloudKon. Kafka is mainly optimized for large scale log delivery. 
It does not support multiple clients read from one broker at the same time. Moreover, it does not have a 
notion of independent messages or tasks. These limitations can significantly degrade the performance of 
CloudKon. Fabriq has none of those limitations. Leveraging Fabriq, CloudKon can run independently on 
any generic distributed system without being tied to SQS, DynamoDB, or the Amazon AWS Cloud in 
general. Moreover, our results show that Fabriq provides a much higher throughput and much lower latency 
than SQS. According to our comparison results between SQS and Fabriq, and based on the fact that the 
future version of CloudKon will not have the overhead of DynamoDB, we expect about a 20X performance 
improvement (13X for using Fabriq and 1.5X for not using DynamoDB) on future version of CloudKon. 

This work motivates the usage of the cloud environment for scientific applications. In order to assess 
the ability of cloud to run scientific applications, we design a methodology to evaluate the 
capabilities/ability of the cloud in both raw performance and the real applications performance. Then, we 
evaluate the performance of the Amazon AWS cloud as a pioneer public cloud. 

After assessing the abilities of the cloud, we design and implement a distributed job scheduling system 
that runs on Amazon EC2. We propose CloudKon as a job management system that achieves good load 
balancing and high system utilization at large scales. Using CloudKon lets scientific applications exploit 
the distributed computing resources in any required scale in an on-demand fashion. Using cloud services 
such as Amazon SQS and DynamoDB that are integrated within the AWS software stack, our scheduler can 
optimally utilize cloud resources and achieve better performance. CloudKon uses a fully distributed 
queuing service (SQS) as its building block. Taking this approach, the system components are loosely 
coupled to each other. Therefore the system will be highly scalable, robust, and easy to upgrade. Although 
the motivation of CloudKon is to support MTC tasks, it also provides support for distributed HPC 
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scheduling. This enables CloudKon to be even more flexible running different type of workloads at the 
same time. The results show that CloudKon delivers better scalability compared to other state-of-the-art 
systems for some metrics – all with a significantly smaller code-base (5%). 

To further improve the performance and flexibility of CloudKon, we design and implement a 
distributed queuing service. We propose Fabriq, a distributed message queue that runs on top of a 
Distributed Hash Table. The design goal of Fabriq is to achieve lower latency and higher efficiency while 
being able to handle large scales. Moreover, Fabriq is persistent, reliable and consistent. 

The results show that Fabriq was able to achieve high throughput in both small and large messages. At 
the scale of 128 nodes, Fabriq’s throughput was as high as 1.8 Gigabytes/sec for 1 Megabytes messages, 
and more than 90,000 messages/sec for 50 bytes messages. At the same scale, Fabriq’s latency was less 
than 1 millisecond. Our framework outperforms other state of the art systems including Kafka and SQS in 
throughput and latency. Furthermore, our experiments show that Fabriq provides a significantly better load 
balancing than Kafka. The load difference between Fabriq servers was less than 9.5% (compared to the 
even share), while in Kafka this difference was 100%, meaning that some servers did not receive any 
messages and remained idle. 

In summary, the main contributions of this work are as follows: 

(1)! A comprehensive study on scientific applications characteristics and evaluation of their 
performance on clouds. The study analyzes the potentials of the cloud as an alternative 
environment for scientific computing [102]. 

(2)! A distributed job scheduling system (CloudKon) design that suites the cloud’s characteristics. A 
system that is able to support HPC and MTC workloads. We conduct a performance evaluation up 
to 1024 instances scale. [46] 

(3)! A distributed message queuing (Fabriq) system that is scalable and provides ultra low latency. 
Fabriq exploits distributed hash tables as a building block to deliver a highly scalable solution. 
The proposed system is able to achieve near perfect load balancing and sub-milliseconds 
distribution latency. Fabriq offers support for substantial features such as persistence, consistency, 
reliability, dynamic scalability, and message delivery guarantees. [103] 

2.! Understanding the Performance and Potential of Cloud Computing for Scientific 
Applications  

As we explained previously, before choosing to exploit the public cloud for scientific computing, we 
need to assess its abilities in different aspects. In this chapter, we provide a comprehensive evaluation of 
EC2 cloud in different aspects. 

2.1! Background and Motivation  

Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications 
usually require significant resources, however not all scientists have access to sufficient high-end 
computing systems. Cloud computing has gained the attention of scientists as a competitive resource to run 
HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds 
are capable of running scientific applications with a reasonable performance per money spent. Moreover, 
clouds are usually comprised of heterogeneous resources as opposed to the homogenous HPC resources. 
The architecture of the cloud is optimized to provide resource sharing among various users. On the other 
hand, supercomputers were designed to provide dedicated resources with optimum performance and 
minimum latency. 
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Clouds have some benefits over supercomputers. They offer more flexibility in their environment. 
Scientific applications often have dependencies on unique libraries and platforms. It is difficult to run these 
applications on supercomputers that have shared resources with pre-determined software stack and 
platform, while cloud environments also have the ability to set up a customized virtual machine image with 
specific platform and user libraries. This makes it very easy for legacy applications that require certain 
specifications to be able to run. Setting up cloud environments is significantly easier compared to 
supercomputers, as users often only need to set up a virtual machine once and deploy it on multiple 
instances. Furthermore, with virtual machines, users have no issues with custom kernels and root 
permissions (within the virtual machine), both significant issues in non-virtualized high-end computing 
systems.  

There are some other issues with clouds that make them challenging to be used for scientific computing. 
The network bandwidth in commercial clouds is significantly lower (and less predictable) than what is 
available in supercomputers. Network bandwidth and latency are two of the major issues that cloud 
environments have for high-performance computing. Most of the cloud resources use commodity network 
with significantly lower bandwidth than supercomputers [33]. 

The virtualization overhead is also another issue that leads to variable compute and memory 
performance. I/O is yet another factor that has been one of the main issues on application performance. 
Over the last decade the compute performance of cutting edge systems has improved in much faster speed 
than their storage and I/O performance. I/O on parallel computers has always been slow compared with 
computation and communication. This remains to be an issue for the cloud environment as well. 

Finally, the performance of parallel systems including networked storage systems such as Amazon S3 
needs to be evaluated in order to verify if they are capable of running scientific applications. All of the 
above mentioned issues raise uncertainty for the ability of clouds to effectively support HPC applications. 
Thus it is important to study the capability and performance of clouds in support of scientific applications. 
Although there have been early endeavors in this aspect [19][34][21]Error! Reference source not 
found.[38][40], we develop a more comprehensive set of evaluation. In some of these works, the 
experiments were mostly run on limited types and number of instances [34][21]Error! Reference source 
not found.[35]. Only a few of the researches have used the new Amazon EC2 cluster instances that we 
have tested [19][38][41]. However the performance metrics in those works are very limited. This chapter 
covers a thorough evaluation covering major performance metrics and compares a much larger set of EC2 
instance types and the commonly used Amazon Cloud Services. Most of the aforementioned above 
mentioned works lack the cost evaluation and analysis of the cloud. Our work analyses the cost of the cloud 
on different instance types.  

The main goal of this chapter is to evaluate the performance of the Amazon public cloud as the most 
popular commercial cloud available, as well as to offer some context for comparison against a private 
cloud solution. We run micro benchmarks and real applications on Amazon AWS to evaluate its 
performance on critical metrics including throughput, bandwidth and latency of processor, network, 
memory and storage [15]. Then, we evaluate the performance of HPC applications on EC2 and compare it 
with a private cloud solution [29]. This way we will be able to better identify the advantages and limitations 
of AWS on the scientific computing area. 

Over the past few years, some of the scientific frameworks and applications have approached using 
cloud services as their building blocks to alleviate their computation processes [32][46]. We evaluate the 
performance of some of the AWS services such as S3 and DynamoDB to investigate their abilities on 
scientific computing area. 

Finally, this work performs a detailed price/cost analysis of cloud instances to better understand the 
upper and lower bounds of cloud costs. Armed with both detailed benchmarks to gauge expected 
performance and a detailed monetary cost analysis, we expect this chapter will be a recipe cookbook for 
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scientists to help them decide where to deploy and run their scientific applications between public clouds, 
private clouds, or hybrid clouds.  

The rest of this chapter is organized as follows: Section 2.2 provides the evaluation of the EC2, S3 and 
DynamoDB performance on different service alternatives of Amazon AWS. We provide an evaluation 
methodology. Then we present the benchmarking tools and the environment settings of the testbed in this 
project. Section 2.2.4 presents the benchmarking results and analyzes the performance. On 2.2.5 we 
compare the performance of EC2 with FermiCloud on HPL application. Section 2.3 analyzes the cost of the 
EC2 cloud based on its performance on different aspects. Section 2.4 summarizes this chapter and discusses 
future work. 

2.2! Performance Evaluation 

In this section we provide a comprehensive evaluation of the Amazon AWS technologies. We evaluate 
the performance of Amazon EC2 and storage services such as S3 and EBS. We also compare the Amazon 
AWS public cloud to the FermiCloud private cloud.   

2.2.1! Methodology 
We design a performance evaluation method to measure the capability of different instance types of 

Amazon EC2 cloud and to evaluate the cost of cloud computing for scientific computing. As mentioned, 
the goal is to evaluate the performance of the EC2 on scientific applications. To achieve this goal, we first 
measure the raw performance of EC2. We run micro benchmarks to measure the raw performance of 
different instance types, compared with the theoretical performance peak claimed by the resource provider. 
We also compare the actual performance with a typical non-virtualized system to better understand the 
effect of virtualization. Having the raw performance we will be able to predict the performance of different 
applications based on their requirements on different metrics. Then we compare the performance of a 
virtual cluster of multiple instances running HPL application on both Amazon EC2 and the FermiCloud. 
Comparing the performance of EC2, which we do not have much information about its underlying 
resources with the FermiCloud, which we know the details about, we will be able to come up with a better 
conclusion about the weaknesses of the EC2. On the following sections we try to evaluate the performance 
of the other popular services of Amazon AWS by comparing them to the similar open source services. 

Finally, we analyze the cost of the cloud computing based on different performance metrics from the 
previous part. Using the actual performance results provides more accurate analysis of the cost of cloud 
computing while being used in different scenarios and for different purposes.  

The performance metrics for the experiments are based on the critical requirements of scientific 
applications. Different scientific applications have different priorities. We need to know about the compute 
performance of the instances in case of running compute intensive applications. We also need to measure 
the memory performance, as memory is usually being heavily used by scientific applications. We also 
measure the network performance which is an important factor on the performance of scientific 
applications.  

2.2.2! Benchmarking tools and applications 
It is important for us to use wide-spread benchmarking tools that are used by the scientific community. 

Specifically in Cloud Computing area, the benchmarks should have the ability to run over multiple 
machines and provide accurate aggregate results.  

For memory we use CacheBench. We perform read and write benchmarks on single instances. For 
network bandwidth, we use Iperf [26]. For network latency and hop distance between the instances, we use 
ping and traceroute. For CPU benchmarking we have chosen HPL benchmark [27]. It provides the results 
in floating-point operations per second (FLOPS). 
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In order to benchmark S3, we had to develop our own benchmark suite, since none of the widespread 
benchmarking tools can be used to test storage like this. We have also developed a tool for configuring a 
fully working virtual cluster with support for some specific file systems.  

2.2.3! Parameter space and testbed 
In order to better show the capability of Amazon EC2 on running scientific applications we have used 

two different cloud infrastructures: (1) Amazon AWS Cloud, and (2) FermiCloud. Amazon AWS is a 
public cloud with many datacenters all around the world. FermiCloud is a private Cloud which is used for 
internal use in Fermi National Laboratory. 

In order to compare the virtualization effect on the performance we have also included two local 
systems on our tests: (1) A 6-core CPU and 16 Gigabytes of memory system (DataSys), and (2) a 48-cores 
and 256 Gigabytes memory system (Fusion). 

a.! Amazon EC2 

The experiments were executed on three Amazon cloud data centers: US East (Northern Virginia), US 
West (Oregon) and US West (Northern California). We cover all of the different instance types in our 
evaluations. 

The operating system on all of the US West instances and the local systems is a 64bits distribution of 
Ubuntu. The US East instances use 64 bits CentOS operating system. The US West instances use Para-
virtualization technique on their hypervisor. But the HPC instances on the US East cloud center use 
Hardware-Assisted Virtualization (HVM) [29]. HVM techniques use the features of the new hardware to 
avoid handling all of the virtualization tasks like context switching or providing direct access to different 
devices at the software level. Using HVM, Virtual Machines can have direct access to hardware with the 
minimal overhead. 

We have included different instances as well as a non-virtualized machine. The m1.small instance is a 
single core instance with low compute and network performance. M1.medium is a single core system with 
3.75 GB of memory. C1.xlarge instance is a compute optimized with 8 cores and 7 GB of memory. 
M2.4xlarge is a memory optimized instances and is supposed to have high memory performance. 
Hi1.4xlarge is a storage optimized instace with 2 SSD drives. Finally cc1.4xlarge and cc2.8xlarge as cluster 
compute instances, and c3.8xlarge as the new generation of HPC instances have 16 and 32 cores and more 
than 40 GB memory. These instances are optimized for HPC workloads. 

b.! FermiCloud 

FermiCloud is a private cloud providing Infrastructure-as-a-Service services internal use. It manages 
dynamically allocated services for both interactive and batch processing. As part of a national laboratory, 
one of the main goals FermiCloud is being able to run scientific applications and models. FermiCloud uses 
OpenNebula Cloud Manager for the purpose of managing and launching the Virtual Machines [43]. It uses 
KVM hypervisor that uses both para-virtualization and full virtualization techniques [48].  The FermiCloud 
Infrastructure is enabled with 4X DDR Infiniband network adapters. The main challenge to overcome in 
the deployment of the network is introduced when virtualizing the hardware of a machine to be used (and 
shared) by the VMs. This overhead slows drastically the data rate reducing the efficiency of using a faster 
technology like Infiniband. To overcome the virtualization overhead they use a technique called Single 
Root Input/output Virtualization (SRIOV) that achieves device virtualization without using device 
emulation by enabling a device to be shared by multiple virtual machines. The technique involves with 
modifications to the Linux’s Hypervisor as well as the OpenNebula manager [47]. 

Each server is enabled with a 4x (4 links) Infiniband card with a DDR data rate for a total theoretical 
speed of up to 20 Gb/s and after the 8b/10b codification 16 Gb/s. Network latency is 1 �s when used with 
MPI [28]. Each card has 8 virtual lanes that can create 1 physical function and 7 virtual functions via SR-
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IOV. The servers are enabled with 2 quad core 2.66 GHz Intel processors, 48Gb of RAM and 600Gb of 
SAS Disk, 12TB of SATA, and 8 port RAID Controller [47]. 

c.! Performance Evaluation of AWS Memory hierarchy performance 

This section presents the memory benchmark results. We sufficed to run read and write benchmarks. 
The experiments for each instance were repeated three times.  

Memory bandwidth is a critical factor in scientific applications performance. Many Scientific 
applications like GAMESS, IMPACT-T and MILC are very sensitive to memory bandwidth [30]. Amazon 
has not included the memory bandwidth of the instances. It has only listed their memory size. We also 
measure the memory bandwidth of each instance. 

Figure 1 shows the system memory read bandwidth in different memory hierarchy levels. The 
horizontal axis shows the cache size. The bandwidth is very stable up to a certain cache size. The 
bandwidth starts to drop after a certain size. The reason for the drop off is surpassing the memory cache 
size at a certain hierarchy level.  

Memory performance of the m1.small instance is significantly lower than other instances. The low 
memory bandwidth cannot be only attributed to the virtualization overhead. We believe the main reason is 
memory throttling imposed based on the SLA of those instances. 

 
Figure 1. CacheBench Read benchmark results, one benchmark process per instance 

Another noticeable point is the low bandwidth of the cc2.8xlarge and c3.8xlarge. These instances have 
similar performance that is much lower than other instances. A reason for that can be the result of the 
different virtual memory allocation on the VMs by HVM virtualization on these instances. We have 
however observed an effect in large hardware-assisted virtual machines such as those on FermiCloud. In 
such machines, it will take a while for the system to balance the memory out to its full size at the first 
launch of the VM. 
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After all, the results show that the memory bandwidth for read operation in the larger instances is close 
to the local non-virtualized system. We can conclude that the virtualization effect on the memory is low, 
which is a good sign for scientific applications that are mostly sensitive to the memory performance. 

Figure 2 shows the write performance of different cloud instances and the local system. The write 
performance shows different results from the read benchmark. As in write, the c3.8xlarge instance has the 
best performance next to the non-virtualized local system.  

For each instance we can notice two or three major drop-offs in bandwidth. These drop-offs show 
different memory hierarchies. For example on the c3.8xlarge instance we can notice that the memory 
bandwidth drops at 24 Kbytes. We can also observe that the write throughputs for different memory 
hierarchies are different. These data points likely represent the different caches on the processor (e.g. L1, 
L2, L3 caches).  

Comparing the cluster instance with the local system, we observe that on smaller buffer sizes, the local 
system performs better. But cloud instance outperforms the local system on larger cache sizes. The reason 
for that could be the cloud instances residing on more powerful physical nodes with higher bandwidths. We 
can observe that the write bandwidth on the cloud instances drops off at certain buffer sizes. That shows the 
memory hierarchy effects on the write operation.   

Users can choose the best transfer size for write operation based on the performance peaks of each 
instance type to get the best performance. This would optimize a scientific application write bandwidth. 

 
Figure 2. CacheBench write benchmark results, one benchmark process per instance 

d.! Network performance 

We have run many experiments on network performance of Amazon cloud. The experiments test the 
network performance including bandwidth and latency.  

We first test the local network bandwidth between the same types of instances. Figure 3 shows the 
network performance of different types of nodes. In each case both of the instances were inside the same 
datacenter. The network bandwidth for most of the instances were as expected except for two instances.   
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Figure 3. iPerf benchmark results. Network bandwidth in a single client and server connection, 

internal network. 

The lowest performance belongs to the t1.micro and m1.small instances. These two instances use the 
same 1 Gb/s network cards used by other instances. But they have much lower bandwidth. We believe that 
the reason is sharing the CPU cores and not having a dedicated core. This can affect network performance 
significantly as the CPU is shared and many network requests cannot be handled while the instance is on its 
idle time. During the idle time of the instance, the virtual system calls to the VMM will not be processed 
and will be saved in the queue until the idle time is over. The network performance is highly affected by 
processor sharing techniques. Other works had the same observations and conclusions about the network 
performance in these two instance types [18]. Another reason for the low performance of the m1.small and 
t1.micro instances could be throttling the network bandwidth by EC2. The Xen hypervisor has the ability of 
network throttling if needed. 

Among the instances that use the slower network cards the m1.medium instance has the best 
performance. We did not find a technical reason for that. The m1.medium instances use the same network 
card as other instances and does not have any advantage on system configuration over other instance types. 
We assume the reason for that is the administrative decision on hypervisor level due to their popularity 
among different instance types. 

Another odd result is for m1.medium instance. The bandwidth in medium instance exceeds 1 Gb/Sec, 
which is the specified network bandwidth of these. m1.medium instance bandwidth achieves up to 1.09 
Gb/sec. That is theoretically not possible for a connection between two physical nodes with 1 Gb/s network 
cards. We believe the reason is that both of the VMs reside in the same physical node or the same cluster. 
In case of residing on the same node, the packets stay in the memory. Therefore the connection bandwidth 
is not limited to the network bandwidth. We can also assume that not necessarily the instances have 1 Gb/s 
network cards. In fact the nodes that run medium instances may have more powerful network cards in order 
to provide better network performance for these popular instances. 

The HPC instances have the best network bandwidth among the instances. They use 10 Gb/sec network 
switches. The results show that the network virtualization overhead in these instances is very low. The 
performance gets as high as 97% of ideal performance.  
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We also measure the network connection latency and the hop distance between instances inside the 
Oregon datacenter of Amazon EC2. We run this experiment to find out about the correlation of connection 
latency and the hop distance. We also want to find the connection latency range inside a datacenter. We 
measure the latency and the hop distance on 1225 combinations of m1.small instances. Figure 4 shows the 
network latency distribution of EC2 m1.small instances. It also plots the hop distance of two instances. The 
network latency in this experiment varies between 0.006 ms and 394 ms, an arguably very large variation.  

We can observe from the results that: (1) 99% of the instances which have the transmission latency of 
0.24 to 0.99 ms are 4 or 6 hops far from each other. So we can claim that if the latency is between 0.24 to 
0.99 ms the distance between the instances is 4 to 6 hops with the probability of 99%. (2) More than 94% 
of the allocated instances to a user are 4-6 percent far from each other. In other words the hop distance is 4-
6 instances with the probability of more than 94%. 

We can predict the connection latency based on the hop distance of instances. We have run the latency 
test for other instance types. The results do not seem to be dependent on instance type for the instances with 
the same network interconnect. The latency variance of Amazon instances is much higher than the variance 
in a HPC system. The high latency variance is not desirable for scientific applications. In case of HPC 
instances which have the 10 Gigabit Ethernet cards, the latency ranges from 0.19ms to 0.255ms which 
shows a smaller variance and more stable network performance. 

 
Figure 4. Cumulative Distribution Function and Hop distance of connection latency between 

instances inside a datacenter. 

Other researches have compared the latency of EC2 HPC instances with HPC systems. The latency of 
the HPC instance on EC2 is reported to be 3 to 40 times higher than a HPC machine with a 23 Gb/s 
network card [19]. The latency variance is also much higher.  

e.! Compute Performance 

In this section we evaluate the compute performance of EC2 instances.  Figure 5 shows the compute 
performance of each instance using HPL as well as the ideal performance claimed by Amazon. It also 
shows the performance variance of instances. 
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Figure 5. HPL benchmark results: compute performance of single instances comparing with their 

ideal performance. 

Among the Amazon instances, the c3.8xlarge has the best compute performance. The t1.micro instance 
shows the lowest performance. The figure also shows the performance variance for each instance. The 
performance variance of the instances is low in most of the instance types. Providing a consistent 
performance is an advantage for cloud instances. 

Among all of the instances, the c3.8xlarge and the non-virtualized node achieve the best efficiency. 
Overall we can observe that the efficiency of non-HPC instances is relatively low. Other papers have 
suggested the low performance of HPL application while running on virtualized environments [31][34]. 
However, noticing the fact that the HPC instances were as efficient as the non-virtualized node, and the fact 
that there is no other factor (e.g. network latency) affecting the benchmark, can imply that the virtualization 
overhead has no major effect on this program on a single node scale. 

f.! I/O Performance 

In this section we evaluate the I/O performance of the EBS volume and local storage of each instance. 
The following charts show the results obtained after running IOR on the local storage and EBS volume 
storage of each of the instances with different transfer sizes and storage devices. Figure 6 shows the 
performance of POSIX read operation on different instances. Except for the hi1.4xlarge, which is equipped 
with SSDs, the throughput among other instances does not vary greatly from one another. For most of the 
instances the throughput is close to a non-virtualized system with a normal spinning HDD. 
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Figure 6. Local POSIX read benchmark results on all instances 

Figure 7 shows the maximum write and read throughput on each instance on both EBS volumes and 
local storage devices. Comparing with local storage, EBS volumes show a very poor performance, which is 
the result of the remote access delay over the network. 

 
Figure 7. Maximum write/read throughput on different instances 

Finally, to complete these micro-benchmarks, we set up a software RAID-0 with EBS volumes, varying 
the number of volumes from 1 to 8. We ran the same benchmark on a c1.medium instance. Figure 8 shows 
the write performance on RAID-0 on different number of EBS volumes. Looking at the write throughput, 
we can observe that the throughput does not vary a lot and is almost constant as the transfer size increases. 
That shows a stable write throughput on EBS drives. The write throughput on the RAID-0 increases with 
the number of drives. The reason for that is that the data will be spread among the drives and is written in 
parallel to all of the drives. That increases the write throughput because of having parallel write instead of 
serial write. Oddly, the performance does not improve as the number of drives increases from 1 to 2 drives. 
The reason for that is moving from the local writes to network. Therefore the throughput stays the same. 
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For 4 EBS volumes, we can observe a 4x increase on the throughput. In case of 8 EBS volumes we expect a 
2x speed up comparing with the 4 EBS experiment. However the write throughput cannot scale better 
because of the limitation of the network bandwidth. The maximum achievable throughput is around 
120MB/s, which is bound to the network bandwidth of the instances that is 1 Gb/s. so we can conclude that 
the RAID throughput will not exceed 120 MB/s if we add more EBS volumes. 

 
Figure 8. RAID0 Setup benchmark for different transfer sizes – write 

g.! S3 and PVFS Performance 

In this section we evaluate and compare the performance of  S3 and PVFS. S3 is a highly scalable 
storage service from Amazon that could be used on multinode applications. Also, a very important 
requirement for most of the scientific applications is a parallel file system shared among all of the 
computing nodes. We have also included the NFS as a centralized file system to show how it performs on 
smaller scales. 

 
Figure 9. S3 performance, maximum read and write throughput 

First we evaluate the s3 performance on read and write operations. Figure 9 shows the maximum read 
and write throughput on S3 accessed by different instance types. Leaving aside the small instances, there is 
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not much difference between the maximum read/write throughput across instances. The reason is that these 
values are implicitly limited by either the network capabilities or S3 itself.  

Next, We compare the performance of the S3 and PVFS as two possible options to use for scientific 
applications. PVFS is commonly used in scientific applications on HPC environments. On the other hand, 
S3 is commonly used on the multi-node applications that run on cloud environment. We have only included 
the read performance in this chapter. The experiment runs on m1.medium instances. Figure 10 shows that 
the read throughput of the S3 is much lower compared to PVFS on small scales. This results from the fact 
that the S3 is a remote network storage while PVFS is installed and is spread over each instance. As The 
number of the instances increase, PVFS cannot scale as well as the S3 and the performance of the two 
systems get closer to each other up to a scale that S3 slightly performs better than the PVFS. Therefore it is 
better to choose S3 if we are using more than 96 instances for the application.  

 
Figure 10. Comparing the read throughput of S3 and PVFS on different scales 

Next, we evaluate the performance of PVFS2 for the scales of 1 to 64 as we found out that it performs 
better than S3 in smaller scales. To benchmark PVFS2 for the following experiments we use the MPIIO 
interface instead of POSIX. In the configuration that we used, every node in the cluster serves both as an 
I/O and metadata server. Figure 11 shows the read operation throughput of PVFS2 on local storage with 
different number of instances and variable transfer size. The effect of having a small transfer size is 
significant, where we see that the throughput increases as we make the transfer size bigger. Again, this fact 
is due to the overhead added by the I/O transaction. 
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Figure 11. PVFS read on different transfer sizes over instance storage 

Finally, Figure 12, shows the performance of PVFS2 and NFS on memory through the POSIX interface. 
The results show that the NFS cluster does not scale very well and the throughput does not increase as we 
increase the number of nodes. It basically bottlenecks at the 1Gb/s which is the network bandwidth of a 
single instance. PVFS2 performs better as it can scale very well on 64 nodes on memory. But as we have 
shown above, it will not scale on larger scales.  

 
Figure 12. Scalability of PVFS2 and NFS in read/write throughput using memory as storage 

h.! DynamoDB performance 

In this section we are evaluating the performance of Amazon DynamoDB. DynamoDB is a commonly 
used NoSql database used by commercial and scientific applications [17]. We conduct micro benchmarks 
to measure the throughput and latency of insert and look up calls scaling from 1 to 96 instances with total 
number of calls scaling from 10000 to 960000 calls. We conduct the benchmarks on both m1.medium and 
cc2.8xlarge instances. The provision capacity for the benchmarks is 10K operations/s which is the 
maximum default capacity available. There is no information released about how many nodes are used to 
offer a specific throughput. We have observed that the latency of DynamoDB doesn’t change much with 
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scales, and the value is around 10ms. This shows that DynamoDB is highly scalable. Figure 13 shows the 
latency of look up and insert calls made from 96 cc2.8xxlarge instances. The average latency for insert and 
look up are respectively 10 ms and 8.7 ms. 90% of the calls had a latency of less than 12 ms for insert and 
10.5 ms for look up.  

 
Figure 13. CDF plot for insert and look up latency on 96 8xxl instances 

We compare the throughput of DynamoDB with ZHT on EC2 Error! Reference source not found.. 
ZHT is an open source consistent NoSql database providing a service which is comparable to DynamoDB 
in functionality. We conduct this experiment to better understand the available options for having a scalable 
key-value store. We use both m1.medium and cc2.8xlarge instances to run ZHT. On 96 nodes scale with 
2cc.8xlarge instance type, ZHT offers 1215.0 K ops/s while DynamoDB failed the test since it saturated the 
capacity. The maximum measured throughput of DynamoDB was 11.5K ops/s which is found at 64 
cc2.8xlarge instance scale. For a fair comparison, both DynamoDB and ZHT have 8 clients per node. 

Figure 14 shows that the throughput of ZHT on m1.medium and cc2.8xlarge instances are respectively 
59x and 559x higher than DynamoDB on 1 instance scale. On the 96 instance scale they are 20x and 134x 
higher than the DynamoDB.  
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Figure 14. Throughput comparison of DynamoDB with ZHT running on m1.medium and 

cc2.8xlarge instances on different scales. 

i.! Workflow Application Performance  

In this section we analyze the performance of a complex scientific computing application on the 
Amazon EC2 cloud. The application investigated is Power Locational Marginal Price Simulation (LMPS), 
and it is coordinated and run through the Swift parallel programming system [32]. Optimal power flow 
studies are crucial in understanding the flow and price patterns in electricity under different demand and 
network conditions. A big computational challenge arising in power grid analysis is that simulations need 
to be run at high time resolutions in order to capture effect occurring at multiple time scales. For instance, 
power flows tend to be more constrained at certain times of the day and of the year, and these need to be 
identified. 

 
Figure 15. The LMPS application tasks time distributions. 
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The power flow simulation application under study analyzes historical conditions in the Illinois grid to 
simulate instant power prices on an hourly basis. The application runs linear programming solvers invoked 
via an AMPL (A Mathematical Programming Language) representation and collects flow, generation, and 
price data with attached geographical coordinates [42]. A typical application consists of running the model 
in 8760 independent executions corresponding to each hour of the year. Each application task execution 
spans in the range between 25 and 80 seconds as shown in the application tasks time distribution graph in 
Figure 15. A snapshot of one such result prices plotted over the map of Illinois is shown in Figure 16. The 
prices are in US dollars per Megawatt-hour shown as interpolated contour plots across the areas connected 
by transmission lines and generation stations shown as lines and circles respectively. A series of such plots 
could be post processed to give an animated visualization for further analysis in trends etc.  

 
Figure 16. A contour plot snapshot of the power prices in $/MWh across the state of Illinois for an 

instance in July 2000 

The execution of the application was performed on an increasing number of m1.large instances (see 
Figure 17).  
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Figure 17. The runtime of LMPS on m1.large instances in different scales. 

For data storage, we use S3. Given that the application scales well to 80 instances, but not beyond that. 
The performance saturation is a salient point that comes out of Figure 17. With S3 object store being 
remote, at 100 VMs it takes long enough to fetch the data that it is dominating execution time. More 
scalable distributed storage subsystem should be investigated that is geared towards scientific computing, 
such as PVFS, Lustre, or GPFS. 

2.2.4! Performance Comparison of EC2 vs. FermiCloud 
In this section we compare the performance of the EC2 as a public cloud with FermiCloud as a private 

cloud on HPL benchmark which is a real HPC application. Before comparing the performance of Amazon 
on real Applications, we need to compare the raw performance of the two resources.  

a.! Raw performance comparison 

Before comparing the performance of the two infrastructures on real applications like HPL, we need to 
compare their raw performance on the essential metrics in order to find the root causes of their performance 
differences. The most effective factors on HPL performance are compute power, and Network latency and 
bandwidth. We need to compare these factors on the instances with similar functionalities. 

On both of the Clouds, we chose the instances that can achieve the highest performance on HPL 
applications. On EC2, we use c3.8xlarge instances that are enabled with Intel Xeon E5-2680 v2 (Ivy Bridge) 
Processors and a 10 Gigabits network adapter with SRIOV technology. On FermiCloud, each server 
machine is enabled with 2 quad core 2.66 GHz Intel processors, and 8 port RAID Controller. On 
FermiCloud machines are backed by (16 Gigabits effective) Infiniband network adapters. 

The CPU efficiency is defined as the performance of the VM running HPL on a single VM with no 
network connectivity, divided by the theoretical peak performance of the CPU. Figure 18 compares the 
raw performance of the Amazon EC2 with FermiCloud on CPU and network performance. The results 
show that the virtualization overhead on FermiCloud instances are slightly lower than the EC2 instances. 
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Figure 18. Raw performance comparison overview of EC2 vs. FermiCloud 

The significant difference of the two infrastructures is on the network adapters. The FermiCloud 
instances are enabled with InfiniBand network adapters and are able to provide higher performance 
compared to the EC2 instances that have 10 Gigabit network cards. The efficiency of both of the systems 
on network throughput is high. The network throughput efficiency is defined as the VM network 
performance divided by the theoretical peak of the device. FermiCloud and EC2 network adapters 
respectively achieve 97.9% and 97.4% efficiency. We used MPIbench to calculate the network latency. 
There is a 6x difference between the network latency of the two clouds. The latency of the FermiCloud 
instance is 2.2 us as compared to the latency of EC2 instance which is 13 us. Another important factor is 
the latency variance. The latency variance on both systems is within 20% which is stable. HPL application 
uses MPI for communication among the nodes. The network latency can decrease the performance of the 
application by affecting the MPI performance. 

b.! HPL performance comparison 

In this section we evaluate the performance of HPL application on both on a virtual cluster on both 
FermiCloud and EC2. The main difference on the two infrastructures is on their virtualization layer and the 
network performance. FermiCloud uses KVM and is enabled with InfiniBand network adapters. EC2 uses 
its own type of virtualization which is based on Xen hypervisor and has 10 Gigabit network adapters. 

The best way to measure the efficiency of a virtual cluster on a cloud environment is defining it as the 
performance of the VM which include the virtualization overhead divided by the host performance that 
doesn’t include virtualization overhead. We can measure the efficiency as defined for FermiCloud since we 
have access to the host machines. But that is not possible for EC2 since we do not have access to the 
physical host machines. Therefore we compare the scalability efficiency of the two clouds which is defined 
as the overhead of the application performance as we scale up the number of cloud instances. 

 

Figure 19 compares the efficiency of EC2 and FermiCloud running HPL application on a virtual cluster. 
Due to budget limitations we run the experiment up to 32 instances scale.  
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Figure 19. Efficiency comparison of EC2 and FermiCloud running HPL application on a virtual 

cluster. 

The results show that the efficiency is dependent on the network latency. On the 2 instances scale, both 
clouds show good efficiency. They only lose 10% efficiency that is due to the MPI communications latency 
added between the instances. Since both of the clouds have relatively powerful network adapters, the 
communication overhead is still not a bottleneck on 2 instances scale. As the number of instances increase, 
the applications processes make more MPI calls to each other and start saturating the network bandwidth. 
Having InfiniBand network, the FermiCloud loses less efficiency than the EC2. The efficiency of EC2 
drops to 82% and the efficiency of the FermiCloud drops to 87%. The only major difference between the 
instances of private and public cloud is on their network latency. As a result, we can see that they provide 
similar efficiency with the private cloud instance being roughly about 5-8% more efficient on different 
scales. 

2.3! Cost analysis 

In this section we analyze the cost of the Amazon EC2 cloud from different aspects. We analyze the 
cost of in-stances for compute intensive applications as well as for data intensive applications. Our analysis 
provides suggestions to different cloud users to find the instance type that fits best for certain application 
with specific requirements. Next section compares the instances based on their memory capacity and 
performance. 

2.3.1! Memory Cost 

This section compares the cost of the memory on Amazon EC2 instances. Figure 20 compares the cost 
of instances based on their memory capacity and bandwidth. The GB/Dollar metric on the left hand side 
shows the capacity cost effectiveness of the instances. The most cost effective instances for memory 
capacity are the high memory (m2.2xlarge & m2.4xlarge) instances. But looking at the cost of the memory 
bandwidth, we can observe that these instances do not have the best memory bandwidth efficiency. The 
most cost effective instances based on the memory bandwidth efficiency are the m1.small and m1.medium 
instances. 



I. Sadooghi, Dissertation Proposal  Pages 24 of 74 
 

 

 

 

 

 
Figure 20. Memory capacity and memory bandwidth cost. 

2.3.2! CPU Cost 

In this section we analyze the cost-effectiveness of in-stances based on the performance of the instances 
while running compute intensive applications. The metric for our analysis is GFLOPS/Dollar.  

Figure 21 compares the ideal performance cost of the in-stances based on Amazon claims with their 
actual performance while running HPL benchmark. The results show that the most cost-effective instance is 
c3.8xlarge. 

 
Figure 21. CPU performance cost of instances 

2.3.3! Cluster Cost 
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We analyze the cost of the virtual clusters set up by m1.medium and cc1.4xlarge instances in different 
sizes. Figure 22 compares the cost of the virtual clusters based on their compute performance. 

 
Figure 22. Cost of virtual cluster of m1.medium and cc1.4xlarge. 

2.3.4! DynamoDB Cost 

Finally in this section we evaluate the cost of DynamoDB. In order to better understand the value of 
offered service, we compare the cost with the cost of running ZHT on EC2 on different instance types. 

Figure 23 shows the hourly cost of 1000 ops/s capacity offered by DynamoDB compared to the equal 
capacity provided by ZHT from the user point of view.  

 
Figure 23. Cost Comparison of DynamoDB with ZHT 

We are comparing the two different scenarios of cost of using a free application on rented EC2 
instances versus getting the service from DynamoDB. In case of DynamoDB, since the users pays for the 
capacity that they get, the number of instances doesn’t affect the cost. That’s why the cost of DynamoDB is 
always constant. For ZHT, the system efficiency and performance varies on different scales hence the 
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variation in costs for ZHT at different scales. Since the cc2.8xlarge instances provide much better 
performance per money spent, the cost per operation is as good as 65X lower than DynamoDB. However, 
the better costs come at the complexity of managing a virtual cluster of machines to operate ZHT. It is 
likely that for low loads including sporadic requirements for DynamoDB, it makes financial sense to run on 
Amazon AWS services, but for higher performance requirements it is much more beneficial to simply 
operate a dedicated ZHT system over EC2 resources.  

2.3.5! Performance and Cost Summary 

This section summarizes the performance and the cost efficiency of Amazon EC2 and other services of 
AWS. Table 1 shows the performance overview of the different instance types on EC2. The performance 
results of the instances mostly match with the prediction based on the claims of Amazon. There have been 
anomalies in some of the specific instance types. Instances like m1.xlarge have average performance while 
m1.medium instance has shown a performance that was higher than expected. 

Table 1: Performance summary of EC2 instances 

!
CPU!
bw!

Mem.!
bw!

Net.!
bw!

Disk!
I/O!

m1.small! Low! Low! Low! Low!
m1.med! Low! Avg! Avg! Low!
m1.lrg! Avg! Avg! Avg! Avg!
m1.xlrg! Avg! Avg! Avg! Avg!
c1.med! Avg! Avg! Avg! Low!
c1.xlrg! Avg! High! Avg! Avg!
m2.2xlrg! High! High! Avg! Avg!
cc1.4xlrg! High! High! High! Avg!
cc2.8xlrg! High! High! High! Avg!
c3.8xlrg! High! High! High! High!
hi1.lrg! High! Avg! High! High!

  

Table 2 summarizes the cost-efficiency of instance types of EC2. The compute optimized instances 
show better cost efficiency. Finally table 3 summarizes the performance of S3 and DynamoDB. 

Table 2: Cost-efficiency summary of EC2 instances 

!
CPU!
bw!

Mem.!
Cap.!

Mem.!
bw!

Net.!
bw!

m1.small! Avg! Avg! High! High!
m1.med! Avg! Avg! High! High!
m1.lrg! Avg! Avg! Avg! Avg!
m1.xlrg! Avg! Avg! Low! Low!
c1.med! High! Low! High! Low!
c1.xlrg! High! Low! Low! Low!
m2.2xlrg! Avg! High! Low! Low!
cc1.4xlrg! Avg! Avg! Low! Low!
cc2.8xlrg! High! Avg! Low! Avg!
c3.8xlrg! High! Avg! Low! Avg!
hi1.lrg! Low! Low! Low! Low!

!
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Table 3: Performance and Cost-efficiency summary of AWS services 

! Scalability!
CostI

efficiency!
Data!Granularity!

S3! High! High! Large!data!
DynamoDB! High! Low! Small!data!

 

2.4! Summary 

In this chapter, we present a comprehensive, quantitative study to evaluate the performance of the 
Amazon EC2 for the goal of running scientific applications. We first evaluate the performance of various 
instance types by running micro benchmarks on memory, compute, network and storage. In most of the 
cases, the actual performance of the instances is lower than the expected performance that is claimed by 
Amazon. The network bandwidth is relatively stable. The network latency is higher and less stable than 
what is available on the supercomputers. Next, based on the performance of instances on micro-
benchmarks, we run scientific applications on certain instances. We finally compare the performance of 
EC2 as a commonly used public cloud with FermiCloud, which is a higher-end private cloud that is tailored 
for scientific for scientific computing.  

We compare the raw performance as well as the performance of the real applications on virtual clusters 
with multiple HPC instances.  The performance and efficiency of the two infrastructures is quite similar. 
Their only difference that affects their efficiency on scientific applications is the network bandwidth and 
latency which is higher on FermiCloud. FermiCloud achieves higher performance and efficiency due to 
having InfiniBand network cards. We can conclude that there is need for cloud infrastructures with more 
powerful network capacity that are more suitable to run scientific applications. 

We evaluated the I/O performance of Amazon instances and storage services like EBS and S3. The I/O 
performance of the instances is lower than performance of dedicated resources. The only instance type that 
shows promising results is the high-IO instances that have SSD drives on them. The performance of 
different parallel file systems is lower than performance of them on dedicated clusters. The read and write 
throughput of S3 is lower than a local storage. Therefore it could not be a suitable option for scientific 
applications. However it shows promising scalability that makes it a better option on larger scale 
computations. The performance of PVFS2 over EC2 is convincible for using in scientific applications that 
require a parallel file system. 

Amazon EC2 provides powerful instances that are capable of running HPC applications. However, the 
performance a major portion of the HPC applications are heavily dependent on network bandwidth, and the 
network performance of Amazon EC2 instances cannot keep up with their compute performance while 
running HPC applications and become a major bottleneck. Moreover, having the TCP network protocol as 
the main network protocol, all of the MPI calls on HPC applications are made on top of TCP protocol. That 
would add a significant overhead to the network performance. Although the new HPC instances have 
higher network bandwidth, they are still not on par with the non-virtualized HPC systems with high-end 
network topologies. The cloud instances have shown to be performing very well, while running 
embarrassingly parallel programs that have minimal interaction between the nodes [19]. The performance 
of embarrassingly parallel application with minimal communication on Amazon EC2 instances is reported 
to be comparable with non-virtualized environments [37][39]. Armed with both detailed benchmarks to 
gauge expected performance and a detailed price/cost analysis, we expect that this chapter will be a recipe 
cookbook for scientists to help them decide between dedicated resources, cloud resources, or some 
combination, for their particular scientific computing workload.    
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3.! Achieving Efficient Distributed Scheduling with Message Queues in the Cloud 
for Many-Task Computing and High-Performance Computing 

Task scheduling and execution over large scale, distributed systems plays an important role on 
achieving good performance and high system utilization. Due to the explosion of parallelism found in 
today’s hardware, applications need to perform over-decomposition to deliver good performance; this over-
decomposition is driving job management systems’ requirements to support applications with a growing 
number of tasks with finer granularity. In this chapter, we design a compact, light-weight, scalable, and 
distributed task execution framework (CloudKon) that builds upon cloud computing building blocks 
(Amazon EC2, SQS, and DynamoDB). 

3.1! Background and Motivation 

The goal of a job scheduling system is to efficiently manage the distributed computing power of 
workstations, servers, and supercomputers in order to maximize job throughput and system utilization. 
With the dramatic increase of the scales of today’s distributed systems, it is urgent to develop efficient job 
schedulers.  

The architecture of commonly used schedulers have a centralized manager (e.g. Slurm [4], Condor [6]), 
with a central server that is responsible for resource management and the job allocation. This architecture 
seems to be working fine with today’s infrastructure scales. However, this trend is less likely to continue 
like this. The centralized architecture cannot scale well with the next generation distributed systems. Also, 
having a central controller could become a single point of failure.  To solve this problem decentralized 
architectures have been proposed. Distributed schedulers are normally implemented in either hierarchical 
[20] or fully distributed architectures [19] to address the scalability issue. Those solutions can solve the 
problem of the single point of failure. But more problems arise in load balancing, resource utilization and 
the information synchronization.  

The idea of using cloud computing for scientific applications have been explored in other research 
works. However, most of these works have approached the cloud as yet another distributed resource with 
similar characteristics with traditional resources [21]Error! Reference source not found.[53][15]. Sharing 
its physical resources and using virtualization makes public clouds totally different than the traditional HPC 
systems. The uniqueness of our work is in proposing a new approach. We offer to utilize public cloud’s 
native integrated resources for more efficient performance. Moreover, using cloud services enables 
programmers to create fairly complicated systems with a shorter code base and in a shorter period of time. 
In this chapter, we design and implement a scalable task execution framework on Amazon cloud using 
different AWS cloud services, and aimed it at supporting both many-task computing and high-
performance workloads.  

Today’s data analytics are moving towards interactive shorter jobs with higher throughput and shorter 
latency [20][69]. More applications are moving towards running higher number of jobs in order to improve 
the application throughput and performance. A good example for this type of applications is Many Task 
Computing (MTC) [16]. MTC applications often demand a short time to solution and may be 
communication intensive or data intensive [71].  

As we mentioned above, running jobs in extreme scales is starting to be a challenge for current state of 
the art job management systems that have centralized architecture. On the other hand, the distributed job 
management systems have the problem of low utilization because of their poor load balancing strategies. 
We propose CloudKon as a job management system that achieves good load balancing and high system 
utilization at large scales. Instead of using techniques such as random sampling, CloudKon uses 
distributed queues to deliver the tasks fairly to the workers without any need for the system to choose 
between the nodes. The distributed queue serves as a big pool of tasks that is highly available. The worker 
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gets to decide when to pick up a new task from the pool. This approach brings design simplicity and 
efficiency. Moreover, taking this approach, the system components are loosely coupled to each other. 
Therefore the system will be highly scalable, robust, and easy to upgrade. Although the motivation of this 
work is to support MTC tasks, it also provides support for distributed HPC scheduling. This enables 
CloudKon to be even more flexible running different type of workloads at the same time. 

The main contributions of this work are: 

1.! Design and implement a simple light-weight task execution framework using Amazon Cloud 
services (EC2, SQS, and DynamoDB) that supports both MTC and HPC workloads  

2.! Deliver good performance with <5% codebase: CloudKon is able to perform up to 1.77x better 
than MATRIX and Sparrow with less than 5% codebase.  

3.! Performance evaluation up to 1024 instance scale comparing against Sparrow and MATRIX: 
CloudKon is able to outperform the other two systems after 64 instances scale in terms of 
throughput and efficiency. 

The remaining sections of this chapter are as follows. Section 3.2 discusses about the design and 
implementation details of CloudKon. Section 3.3 evaluates the performance of the CloudKon in different 
aspects using different metrics. Finally section 3.4 discusses about the limitations of the current work, and 
covers the future directions of this work. 

3.2! Design and Implementation of CloudKon 

The goal of this work is to implement a job scheduling/management system that satisfies four major 
objectives:  

•! Scale: Offer increasing throughput with larger scales through distributed services 
•! Load Balance: Offer good load balancing at large scale with heterogeneous workloads  
•! Light-weight: The system should add minimal overhead even at fine granular workloads 
•! Loosely Coupled: Critical towards making the system fault tolerant and easy to maintain 

In order the achieve scalability, CloudKon uses SQS which is distributed and highly scalable. As a 
building block of CloudKon, SQS can upload and download large number of messages simultaneously. The 
independency of the workers and clients makes the framework perform well on larger scales. In order to 
provide other functionalities such as monitoring or task execution consistency, CloudKon also uses cloud 
services such as DynamoDB that are all fully distributed and highly scalable.   

Using SQS as a distributed queue enables us to use pulling for load balancing and task distribution. 
Instead of having an administrator component (often times centralized) to decide how to distribute the jobs 
between the worker nodes, the worker nodes decide when to pull the jobs and run them. This would 
distribute the decision making role from one central node to all of the workers. Moreover, it reduces the 
communication overhead. In the pushing approach the decision maker has to communicate with the 
workers periodically to update their status and make decisions as well as distributing the jobs to among the 
workers. On pulling approach the only communication required is pulling the jobs. Using this approach can 
deliver good load balancing on worker nodes.  
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Figure 24. CloudKon architecture overview 

Due to using cloud services, the CloudKon processing overhead is very low. Many of the program calls 
in CloudKon are the calls to the cloud services. Having totally independent workers and clients, CloudKon 
does not need to keep any information of its nodes such as the IP address or any other state of its nodes.  

CloudKon components can operate independently with the SQS component in the middle to decouple 
different parts of the framework from each other. That makes our design compact, robust and easily 
extendable. 

The scheduler can work in a cross-platform system with ability to serve on a heterogeneous 
environment that has systems with various types of nodes with different platforms and configurations. 
Using distributed queues also helps reducing the dependency between clients and the workers. The clients 
and workers can modify their pushing/pulling rate independently without any change to the system. 

All of the advantages mentioned above rely on a distributed queue that could provide good performance 
in any scale. Amazon SQS is a highly scalable cloud service that can provide all of the features required to 
implement a scalable job scheduling system. Using this service, we can achieve the goal of having a system 
that perfectly fits in the public cloud environment and runs on its resources optimally.  

The system makes it easy for the users to run their jobs over the cloud resources in a distributed fashion 
just using a client front end without the need to know about the details of the underlying resources and need 
to set up and configure a cluster. 

3.2.1! Architecture 

This section explains about the system design of CloudKon. We have used a component based design 
on this project for two reasons. (1) A component based design fits better in the cloud environment. It also 
helps designing the project in a loosely-coupled fashion. (2) It will be easier to improve the implementation 
in the future.  

The following sections explain the system architecture for both MTC and HPC workloads. CloudKon 
has the ability to run workloads with a mixture of both task types.  The first section shows the system 
architecture in case of solely running MTC tasks. The second section describes the process in case of 
running HPC tasks. 
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a.! MTC task management 

Figure 24 shows the different components of CloudKon that are only involved with running MTC tasks. 
An MTC task is defined to be a task that requires computational resources that can be satisfied by a single 
worker (e.g. where the worker manages either a core or a node). The client node works as a front end to the 
users to submit their tasks. SQS has a limit of 256 KB for the size of the messages which is sufficient for 
CloudKon Task lengths. In order to send tasks via SQS we need to use an efficient serialization protocol 
with low processing overhead. We use Google Protocol buffer for this reason. The Task saves the system 
log during the process while passing different components. Thus we can have a complete understanding of 
the different components using the detailed logs. 

The main components of the CloudKon for running MTC jobs are Client, Worker, Global Request 
Queue and the Client Response Queues. The system also has a Dynamic Provisioner to handle the resource 
management. It also uses DynamoDB to provide monitoring. There is a monitoring thread running on each 
worker that periodically reports utilization of each worker to the DynamoDB key value store. 

The Client component is independent of other parts of the system. It can start running and submitting 
tasks without the need to register itself into the system. Having the Global Queue address is sufficient for a 
Client component to join the system. The Client program is multithreaded. So it can submit multiple tasks 
in parallel. Before sending any tasks, the Client creates a response queue for itself. All of the submitted 
tasks carry the address of the Client response queue. The Client has also the ability to use task bundling to 
reduce the communication overhead. 

In order to improve the system performance and efficiency, we decided to put two modes. If the system 
is running MTC tasks, all of the workers work as normal task running workers. But in case of running HPC 
workloads or workloads with the combination of HPC and MTC tasks, other than the normal workers the 
workers could also become either worker managers that manage the HPC jobs or sub-workers that run the 
HPC tasks.  

Similar to the Client component, the Worker component runs independently in the system. For MTC 
support, the worker functionality is relatively simple and straight forward. Having the Global request queue, 
the Workers can join and leave the system any time during the execution. The Global Request Queue acts 
as a big pool of Tasks. Clients can submit their Tasks to this queue and Workers can pull Tasks from it. 
Using this approach, the scalability of the system is only dependent on the scalability of the Global Queue 
and it will not put extra load on workers on larger scales. Worker code is also multithreaded and is able to 
receive multiple tasks in parallel. Each thread can pull up to 10 bundled tasks together. Again, this feature 
is enabled to reduce the large communication overhead. After receiving a task, the worker thread verifies 
the task duplication and then checks for the task type. In case of running MTC tasks, it will run it right 
away. Then it puts the results into the task and using the pre-specified address inside the task, it sends back 
the task to the Client respond queue. As soon as response queue receives a task, the corresponding client 
thread pulls the results. The process ends when the Client receives all of its task results. 

b.! HPC task management  

Figure 25 shows the extra components to run HPC jobs. As mentioned above, in case of running 
combination of HPC and MTC jobs, each worker can have different roles. In case of receiving a MTC task 
the worker proceeds with doing the task by itself. DynamoDB is used to maintain the status of the system 
so that the workers can decide on the viability of executing a HPC task. In essence, in DynamoDB, we 
store the current number of running managers and the sub workers that are busy executing HPC tasks, 
which gives other workers insight about how many available resources exist. 

If worker receives a HPC job, DynamoDB is checked to make sure that there are enough available 
nodes running in the system for the HPC task execution. If this is satisfied, the worker (now called as 
worker manager) puts n messages in a second SQS (HPC Task Queue). n is the number of workers needed 
by the worker manager to execute the task. If there are no enough available resources, the node is not 
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allowed to carry on as worker manager; instead this node will check the HPC Task Queue and act as a sub 
worker. If there are messages in the HPC queue, the sub-worker will notify the manager using the worker 
managers IP address. The worker manager and sub-worker use RMI for communication. Worker Manager 
holds onto all of its sub-workers until it has enough to start the execution. After the execution, the worker 
manager sends the result to the response queue to be picked up by the client. 

 
Figure 25. CloudKon-HPC architecture overview 

3.2.2! Task Execution Consistency Issues 

A major limitation of SQS is that it does not guarantee delivering the messages exactly once. It 
guarantees delivery of the message at least once. That means there might be duplicate messages delivered 
to the workers. The existence of the duplicate messages comes from the fact that these messages are copied 
to multiple servers in order to provide high availability and increase the ability of parallel access. We need 
to provide a technique to prevent running the duplicate tasks delivered by SQS. In many types of workloads 
running a task more than once is not acceptable. In order to be compatible for these types of applications 
CloudKon needs to guarantee the exactly once execution of the tasks.  

In order to be able to verify the duplication we use DynamoDB. DynamoDB is a fast and scalable key-
value store. After receiving a task, the worker thread verifies that if this is the first time that the task is 
going to run. The worker thread makes a conditional write to the DynamoDB table adding the unique 
identifier of the task which is a combination of the Task ID and the Client ID. The operation succeeds if the 
Identifier has not been written before. Otherwise the service throws an exception to the worker and the 
worker drops the duplicate task without running it. This operation is an atomic operation. Using this 
technique we have minimized the number of communications between the worker and DynamoDB. 

As we mentioned above, exactly once delivery is necessary for many type of applications such as 
scientific applications. But there are some applications that have more relaxed consistency requirements 
and can still function without this requirement. Our program has ability to disable this feature for these 
applications to reduce the latency and increase the total performance. We will study the overhead of this 
feature on the total performance of the system in the evaluation section. 

3.2.3! Dynamic Provisioning 

One of the main goals in the public cloud environment is the cost-effectiveness. The affordable cost of 
the resources is one of the major features of the public cloud to attract users. It is very important for a 
Cloud-enabled system like this to keep the costs at the lowest possible rate. In order to achieve the cost-
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effectiveness we have implemented the dynamic provisioning system [77]. Dynamic provisioner is 
responsible for assigning and launching new workers to the system in order to keep up with the incoming 
workload. 

The dynamic provisioner component is responsible for launching new worker instances in case of 
resource shortage. The application checks the queue length of the global request queue periodically and 
compares the queue length with its previous size. If the increase rate is more than the allowed threshold, it 
launches a new Worker. As soon as being launched, the Worker automatically joins the system. Both 
checking interval and the size threshold are configurable by the user. 

In order to provide a solution for dynamically decreasing the system scale to keep the costs low, we 
have added a program to the workers that is able to terminate the instance if two conditions hold. That only 
happens if the worker goes to the idle state for a while and also if the instance is getting close to its lease 
renewal. The instances in Amazon EC2 are charged on hourly basis and will get renewed every hour of the 
user don’t shut them down. This mechanism helps our system scale down automatically without the need to 
get any request from a component. Using these mechanisms, the system is able to dynamically scale up and 
down. 

 
Figure 26. Communication Cost 

3.2.4! Communication Costs 

The network latency between the instances in the public Cloud is relatively high compared to HPC 
systems[70][71]. In order to achieve reasonable throughput and latency we need to minimize the 
communication overhead between the different components of the system. Figure 26 shows the number of 
communications required to finish a complete cycle of running a task. There are 5 steps of communication 
to execute a task. CloudKon also provides task bundling during the communication steps. Client can send 
multiple tasks together. The maximum message batch size in SQS is 256 KB or 10 messages.  

3.2.5! Security and Reliability 

For the system security of CloudKon, we rely on the security of the SQS. SQS provides a highly secure 
system using authentication mechanism. Only authorized users can access to the contents of the Queues. In 
order to keep the latency low, we don’t add any encryption to the messages. SQS provides reliability by 
storing the messages redundantly on multiple servers and in multiple data centers [56].  

3.2.6! Implementation Details 
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We have implemented all of the CloudKon components in Java. Our implementation is multithreaded in 
both Client and Worker component codes. Many of the features in both of these systems such as 
Monitoring, Consistency, number of threads and the Task bundling size is configurable as a program input 
argument. 

Taking advantage of AWS service building blocks, our system has a short and simple code base. The 
code base of CloudKon is significantly shorter than other common task execution systems like Sparrow or 
MATRIX. CloudKon code has about 1000 lines of code, while Sparrow has 24000+ lines of code, and 
MATRIX has 10500+ lines of code. This can highlight the potential benefits of the public cloud services. 
We were able to create a fairly complicated and scalable system by re-using scalable building blocks in the 
cloud. 

3.3! Performance Evaluation 

We evaluate the performance of the CloudKon and compare it with two other distributed job 
management systems, namely Sparrow and MATRIX. First we discuss their high level features and major 
differences. Then we compare their performance in terms of throughput and efficiency. We also evaluate 
the latency of CloudKon. 

3.3.1! CloudKon vs. Other Scheduling Systems 

We sufficed to compare our system with Sparrow and MATRIX as these two systems represent the 
best-of-breed open source distributed task management systems. 

Sparrow was designed to achieve the goal of managing milliseconds jobs on a large scale distributed 
system. It uses a decentralized, randomized sampling approach to schedule jobs on worker nodes. The 
system has multiple schedulers that each have a list of workers and distributed the jobs among the workers 
deciding based on the worker’s job queue length. Sparrow was tested on up to hundred nodes on the 
original paper.  

MATRIX is a fully distributed MTC task execution fabric that applies work stealing technique to 
achieve distributed load balancing, and a DKVS, ZHT, to keep task metadata [106]. In MATRIX, each 
computer node runs a scheduler, an executor and a ZHT server. The executor could be a separate thread in 
the scheduler. All the schedulers are fully-connected with each one knowing all of others. The client is a 
bench marking tool that issues request to generate a set of tasks, and submits the tasks to any scheduler. 
The executor keeps executing tasks of a scheduler. Whenever a scheduler has no more tasks to be executed, 
it initials the adaptive work stealing algorithm to steal tasks from candidate neighbor schedulers. ZHT is a 
DKVS that is used to keep the task meta-data in a distributed, scalable, and fault tolerant way.  

One of the main differences between Sparrow and CloudKon or MATRIX is that Sparrow distributes 
the tasks by pushing them to the workers, while CloudKon and MATRIX use pulling approach. Also, in 
CloudKon, the system sends back the task execution results to the clients. But in both Sparrow and 
MATRIX, the system doesn’t send any type of notifications back to the clients. That could allow Sparrow 
and MATRIX to perform faster, since it is avoiding one more communication step, but it also makes it 
harder for clients to find out if their tasks were successfully executed. 

3.3.2! Testbed 

We deploy and run all of the three systems on Amazon EC2. We have used m1.medium instances on 
Amazon EC2. We have run all of our experiments on us.east.1 datacenter of Amazon. We have scaled the 
experiments up to 1024 nodes. In order to make the experiments efficient, client and worker nodes both run 
on each node. All of the instances had Linux Operating Systems. Our framework should work on any OS 
that has a JRE 1.7, including Windows and Mac OSX. 

3.3.3! Throughput 
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MTC Tasks 
In order to measure the throughput of our system we run sleep 0 tasks. We have also compared the 

throughput of CloudKon with Sparrow and MATRIX. There are 2 client threads and 4 worker threads 
running on each instance. Each instance submits 16000 tasks. Figure 27 compares the throughput of 
CloudKon with Sparrow and MATRIX on different scales. Each instance submits 16000 tasks aggregating 
to 16.38 million tasks on the largest scale.  

The throughput of MATRIX is significantly higher than the CloudKon and Sparrow on 1 instances 
scale. The reason is that MATRIX runs locally without adding any scheduling or network overhead. But on 
CloudKon the tasks go through the network even if there is one node running on the system. The gap 
between the throughputs of the systems gets smaller as the network overhead adds up to the other two 
systems. MATRIX schedulers synchronize with each other using all-to-all synchronization method. Having 
too many open TCP connections by workers and schedulers on 256 instances scale leads MATRIX to crash. 
We were not able to run MATRIX on 256 instances. The network performance on EC2 cloud is 
significantly lower than that of HPC systems, where MATRIX has successfully been run at 1024-node 
scales. 

 
Figure 27. Throughput of CloudKon, Sparrow and MATRIX (MTC tasks) 

Sparrow is the slowest among the three systems in terms of throughput. It shows a stable throughput 
with almost linear speedup up to 64 instances. As the number of instances increases more than 64, the list 
of instances to choose from for each scheduler on Sparrow increases. Therefore many workers remain idle 
and the throughput will not increase as expected. We were not able to run Sparrow on 128 or 256 instances 
scale as there were too many sockets open on schedulers resulting into system crash. 

CloudKon achieves good 500X speedup starting from 238 tasks per second on 1 instance to 119K tasks 
per second on 1024 instances. Unlike the other two systems, the scheduling process on CloudKon is not 
done by the instances. Since the job management is handled by SQS, the performance of the system is 
mainly dependent of this service. We predict that the throughput would continue to scale until it reaches the 
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SQS performance limits (which we were not able to reach up to 1024 instances). Due to the budget 
limitations, we were not able to expand our scale beyond 1024 instances, although we plan to apply for 
additional Amazon AWS credits and to push our evaluation to 10K instance scales, the largest allowable 
number of instances per user without advanced reservation. 

HPC Tasks 

In This section we show the throughput of the CloudKon running HPC tasks workloads. Running HPC 
tasks adds more overhead to the system as there will be more steps to run the tasks. Instead of running the 
job right away, the worker manager needs to go over a few steps and wait to get enough resources to run 
the job. This would slow down the system and lowers the system efficiency. But it doesn’t affect the 
scalability. Using CloudKon can majorly improve the run time of HPC workloads by parallelizing the task 
execution that is normally done in a sequential fashion. We have chosen jobs with 4, 8 and 16 tasks. There 
are 4 worker threads running on each instance. The number of executed tasks on each scale for different 
workers is equal.  

Figure 28 compares the system throughput in case of running HPC jobs with different number of tasks 
per job. The results show that the throughput of running jobs with more number of tasks per job is lower. 
The jobs with more tasks need to wait for more sub-workers to start the process. That adds more latency 
and slows down the system. We can see that CloudKon is able to achieve a high throughput of 205 jobs per 
second which is already much higher than what Slurm can achieve. The results also show good scalability 
as we add more instances. 

 
Figure 28. Throughput of CloudKon (HPC tasks) 

3.3.4! Latency 

In order to measure latency accurately, the system has to record the request and respond timestamps of 
each task. The problem with Sparrow and MATRIX is that on their execution process workers don’t send 
notifications to the clients. Therefore it is not possible to measure the latency of each task comparing 
timestamps from different nodes. In this section we have measured the latency of CloudKon and analyzed 
the latency of different steps of the process.  
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Figure 29 shows the latency of CloudKon for sleep 0 ms scaling from 1 to 1024 instances. Each 
instance is running 1 client thread and 2 worker threads and sending 16000 tasks per instance. 

 
Figure 29. Latency of CloudKon sleep 0 ms tasks 

The latency of the system at 1 node is relatively high showing 95 ms overhead added by the system. But 
this will be acceptable on larger scales. The fact that the latency doesn’t increase more than 10 ms while 
increasing the number of instances from 1 instance to 1024 instance shows that CloudKon is stable. SQS as 
the task pool is a highly scalable service being backed up with multiple servers keeping the service very 
scalable. Thus scaling up the system by adding threads and increasing the number of tasks doesn’t affect 
the SQS performance. The client and worker nodes always handle the same number of tasks on different 
scales. Therefore scaling up doesn’t affect the instances. CloudKon includes multiple components and its 
performance and latency depends on its different components. The latency result on Figure 29 does not 
show us any details about the system performance. In order to analyze the performance of the different 
components we measure the time that each task spends on different components of the system by recording 
the time during the execution process.  

Figure 30, Figure 31, and Figure 32 respectively show the cumulative distribution of deliver-task stage, 
deliver-result stage, and the execute-task stage of the tasks on CloudKon. Each communication stage has 
three steps: sending, Queuing and receiving. The latency of the SQS API calls including send-task and 
receive-task on both are quite high compared to the execution time of the tasks on CloudKon. The reason 
for that is the expensive Web Service API call cost that uses XML format for communication. The worker 
takes 16ms on more than 50% of the times. This includes the DynamoDB that takes 8ms on more than 50% 
of the times. This shows us that hypothetically CloudKon latency can improve significantly if we use a low 
overhead distributed message queue that could guarantee the exactly once delivery of the tasks. We will 
cover this more in the future work section. 
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Figure 30. Cumulative Distribution of the latency on the task execution step 

 
Figure 31. Cumulative Distribution of the latency on the task submit step 

Another notable point is the difference between the deliver-task and deliver-result time in both Queuing 
and receiving back, even though they have the same API calls. The time that the tasks spend on the 
response-queue is much longer than the time it spends on request-queue. The reason for that is there are 
two worker threads and only one client thread on each instance. Therefore the frequency of pulling tasks is 
higher when the tasks are pulled by the worker threads. 
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Figure 32. Cumulative Distribution of the latency on the result delivery step 

3.3.5! Efficiency of CloudKon 

It is very important for the system to manage the systems efficiently. Achieving high efficiency on 
distributed job scheduling systems is not trivial. It is hard to fairly distribute the workload on all of the 
workers and keep all of the nodes busy during the execution on larger scales.   

In order to show the system efficiency we have designed two sets of experiments. We test the system 
efficiency in case of homogeneous and heterogeneous tasks. The homogeneous tasks have a certain task 
duration length. Therefore it is easier to distribute them since the scheduler assumes it takes the same time 
to run them. This could give us a good feedback about the efficiency of the system in case of running 
different task types with different granularity. We can also assess the ability of the system to run the very 
shot length tasks. A problem with the first experiment is that not all of the tasks take the same amount of 
time to run. This can hugely affect the system efficiency if the scheduler is not taking the tasks length into 
the consideration. Having a random workload can show how a scheduler will work in case of running real 
applications.   

Homogeneous Workloads 

In this section we compare the efficiency of CloudKon with Sparrow and MATRIX on sub second tasks.  
Figure 33 shows the efficiency of 1, 16 and 128ms tasks on the systems. The efficiency of CloudKon is on 
1ms tasks is lower than then other two systems. As we mentioned before, the latency of CloudKon is large 
for very short tasks because of the significant network latency overhead added on the execution cycle. 
Matrix has a better efficiency on smaller scales but as the trend shows, the efficiency drops tremendously 
until the system crashes because of too many TCP connections on scales of 128 instances or more. On sleep 
16ms tasks, the efficiency of CloudKon is around 40% which is low (compared to the other systems). The 
efficiency of MATRIX starts with more than 93% on one instance but again it drops to a lower efficiency 
than the CloudKon on larger number of instances. We can notice that the efficiency of CloudKon is very 
stable compared to the other two systems on different scales. That shows that CloudKon achieves a better 
scalability. On sleep 128 ms tasks, the efficiency of CloudKon is as high as 88%. Again, the results show 
that the efficiency of MATRIX drops on larger scales. 

Sparrow shows very good and stable efficiency running homogenous tasks up to 64 instances. The 
efficiency drops after this scale for shorter tasks. Having too many workers for task distribution, the 
scheduler cannot have a perfect load balance and some workers remain idle. Therefore the system will be 
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under-utilized and the efficiency drops. The system crashes on scales of 128 scales or larger because of 
maintaining too many sockets in schedulers. 

 
Figure 33. Efficiency of CloudKon, Sparrow and MATRIX running homogenous workloads of 

different task lengths (1, 16, 128ms tasks) 

Heterogeneous Workloads 

In order to measure efficiency, we investigated the largest available trace of real MTC workloads [72], 
and filtered out the logs to isolate only the sub-second tasks, which netted about 2.07M tasks with the 
runtime range of 1 milliseconds to 1 seconds. The tasks were submitted in a random fashion. The average 
task lengths of different instances are different from each other.  

Each instance runs 2K tasks on average. The efficiency comparison on Figure 34 shows similar trends 
for CloudKon and MATRIX. On both systems the worker pulls a task only when it has available resources 
to run the task. Therefore the fact that the execution duration of the tasks is different does not affect the 
efficiency of the system. On the other hand on Sparrow, the scheduler distributes the tasks by pushing them 
to the workers that have less number of tasks to be executed in their queue. The fact that the tasks have 
different run time is going to affect the system efficiency. Some of the workers may have multiple long 
tasks and many other workers may have short tasks to run. Thus there will be a big imbalance among the 
workers with some of the being loaded with big tasks and the rest being under-utilized and the system run 
time will be bound to the run time of the workers with longer jobs to run. 

Being under-utilized, the efficiency of Sparrow has the largest drop from 1 instance to 64 instances. The 
system was not functional on 128 instances or more. Similarly, the efficiency of MATRIX started with a 
high efficiency, but started to drop significantly because of too many open sockets on TCP connections. 
The efficiency of CloudKon is not as high as the other two systems, but it is more stable as it only drops 6% 
from 1 to 64 instances compared to MATRIX that drops 19% and Sparrow that drops 23%. Again, 
CloudKon was the only functional system on 256 instances with 77% efficiency.  
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Figure 34. Efficiency of the systems running heterogeneous workloads. 

3.3.6! The Overhead of Consistency 

In this section we evaluate effect of tasks execution consistency on CloudKon. Figure 35 shows the 
system run-time for sleep 16ms with the duplication controller enabled and disabled. The overhead for 
other sleep tasks were similar to this experiment. So we have only included one of the experiments in this 
chapter.   

 
Figure 35. The overhead of task execution consistency on CloudKon 
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The consistency overhead increases with the scale. The inconsistency on different scales is the result of 
the variable number of duplicate messages on each run. That results in more random system performance 
on different experiments. In general the overhead on scale of less than 10 is less than 15%. This overhead is 
mostly for the successful write operations on DynamoDB. The probability of getting duplicate tasks 
increases on larger scales. Therefore there will be more exceptions. That leads to a higher overhead. The 
overhead on larger scales goes up to 35%. However, the overhead rate is stable and does not pass this rate. 
Using a distributed message queue that guarantees exactly-once delivery can improve the performance 
significantly. 

3.4! Summary  

Large scale distributed systems require efficient job scheduling system to achieve high throughput and 
system utilization. It is important for the scheduling system to provide high throughput and low latency on 
the larger scales and add minimal overhead to the workflow. CloudKon is a Cloud enabled distributed task 
execution framework that runs on Amazon AWS cloud. It is a unique system in terms of running both HPC 
and MTC workloads on public cloud environment. Using SQS service gives CloudKon the benefit of 
scalability. The evaluation of the CloudKon proves that it is highly scalable and achieves a stable 
performance over different scales. We have tested our system up to 1024 instances. CloudKon was able to 
outperform other systems like Sparrow and MATRIX on scales of 128 instances or more in terms of 
throughput. CloudKon achieves up to 87% efficiency running homogeneous and heterogeneous fine 
granular sub-second tasks. Compared to the other systems like Sparrow, it provides lower efficiency on 
smaller scales. But on larger scales, it achieves a significantly higher efficiency. 

There are many directions for the future work. One direction is to make the system fully independent 
and test it on different public and private clouds. We are going to implement a SQS like service with high 
throughput at the larger access scales. With help from other systems such as ZHT distributed hash table 
[22], we will be able implement such a service. Another future direction of this work is to implement a 
more tightly coupled version of CloudKon and test it on supercomputers and HPC environments while 
running HPC jobs in a distributed fashion, and to compare it directly with Slurm and Slurm++ in the same 
environment. We also plan to explore porting some real programming frameworks, such as the Swift 
parallel programming system or the Hadoop MapReduce framework, which could both benefit from a 
distributed scheduling run-time system.  This work could also expand to run on heterogeneous 
environments including different public and private clouds. In that case, the system can choose among 
different resources based on the resource cost and performance and provide optimized performance with 
the minimum cost. 

4.! FaBRiQ: Leveraging Distributed Hash Tables towards Distributed Publish-
Subscribe Message Queues 

CloudKon was able to achieve good performance scalability compared to other state of the art works. 
However it has its own limitations. CloudKon uses SQS as its building block. Therefore, it is not possible 
to use CloudKon in other distributed resources. That has driven us to design and implement a fully 
distributed message queuing service. That enables us to run CloudKon in other environments including 
private clouds, other public clouds, and even HPC resources. Moreover, we can integrate this queue within 
the CloudKon and achieve significant improvement over latency and efficiency. In this chapter, we propose 
Fabriq, a distributed message queue that runs on top of a Distributed Hash Table. The design goal of Fabriq 
is to achieve lower latency and higher efficiency while being able to handle large scales. 
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4.1! Background and Motivation 

With the growth of the data at the current rate, it is unlikely for the traditional data processing systems 
that usually tend to structure the data, to be able to handle the requirement of Big Data processing. There is 
a need to reinvent the wheel instead of using the traditional systems. Traditional data processing 
middleware and tools such as SQL databases and file system are being replaced by No-SQL data-stores and 
key-value storage systems in order to be able to handle the data processing at the current scale. Another key 
tool that is getting more attention from the industry is distributed queuing service [104][108][109].  

A Distributed Message Queue could play an important role as a middleware for today’s Big Data 
requirements. A message queue could be a key part of a loosely coupled distributed application. Over the 
past few years, distributed queuing services have been used in both industrial and scientific applications 
and frameworks [75][46][2][88][92]. SQS is a distributed queue service by Amazon AWS, which is being 
leveraged by various commercial applications. Some systems have used SQS as a buffer for their server to 
handle massive number of requests. Other applications have used SQS in monitoring, workflow 
applications, big data analytics, log processing and many other distributed systems scenarios [105][75][89].  

The large scale log generation and processing is another example that has become a major challenge on 
companies that have to deal with the big data. Many companies have chosen to use distributed queue 
services to address this challenge. Companies like LinkedIn, Facebook [79], Cloudera [77]!and Yahoo have 
developed similar queuing solutions to handle gathering and processing of terabytes of log data on their 
servers [78]. For example LinkedIn’s Kafka [76] feeds hundreds of gigabytes of data into Hadoop [91] 
clusters and other servers every day.  

Distributed Queues can play an important role in Many Task Computing (MTC) [53] and High 
Performance Computing (HPC). Modern Distributed Queues can handle data movement on HPC and MTC 
workloads in larger scales without adding significant overhead to the execution [80].  

CloudKon is a Distributed Job Scheduling system that is optimized to handle MTC and HPC jobs. It 
leverages SQS as a task delivery fabric that could be accessed simultaneously and achieve load balancing at 
scale [46]. CloudKon has proved to outperform other state-of-the-art schedulers like Sparrow [14] by more 
than 2X in throughput. One of the main motivations of this work is to provide a DMQ that can replace SQS 
in future versions of the CloudKon. There are a few limitations with SQS including having duplicate 
messages, and getting the system tied to AWS cloud environment. CloudKon uses DynamoDB [75] to filter 
out the duplicate messages.  

There are various commercial and open sourced queuing services available [81][82][83][84]. However, 
they have many limitations. Traditional queue services usually have centralized architecture and cannot 
scale well to handle today’s big data requirements. Providing features such as transactional support or 
consumption acknowledgement makes it almost impossible for these queues to achieve low latency. 
Another important feature is persistence. Many of the currently available options are in memory queues and 
cannot guarantee persistence. There are only a few DMQs that can scale to today’s data analytics 
requirement. Kafka is one of those that provides large scale message delivery with high throughput. 
However, as it is shown in Figure 31 and Figure 32, Kafka has a long message delivery latency range. 
Moreover, as we have shown in Figure 29, Kafka cannot provide a good load balance among its nodes. 
That could cause Kafka to perform inefficiently in larger scales. 

Today’s data analytics applications have moved from coarse granular tasks to fine granular tasks which 
are shorter in duration and much more in number [14]. Such applications cannot tolerate a data delivery 
middleware with an overhead in the order of seconds. It is necessary for a DMQ to be as efficient as 
possible without adding substantial overhead to the workflow. 

We propose Fast, Balanced and Reliable Distributed Message Queue (Fabriq), a persistent reliable 
message queue that aims to achieve high throughput and low latency while keeping the near perfect load 
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balance even on large scales. Fabriq uses ZHT as its building block. ZHT is a persistent distributed hash 
table that allows low latency operations and is able to scale up to more than 8k-nodes [23]. Fabriq leverages 
ZHT components to support persistence, consistency and reliable messaging.  Message delivery guarantee 
is a necessity for a DMQ. This requirement becomes a challenge for the systems that aim to support large 
scale delivery. A common practice is to keep multiple copies of the message on multiple servers of a DMQ. 
Once the message gets delivered by a server, it will asynchronously inform other servers to remove their 
local copies. However, since the informing process is asynchronous, there is a change of having a message 
delivered to multiple clients before getting removed from the servers. Hence, the systems with such 
procedure can generate duplicate messages.  

The fact that Fabriq provides low latency makes it a good fit for HPC and MTC workloads that are 
sensitive to latency and require high performance. Also, unlike the other compared systems (Figure 31 and 
Figure 32), Fabriq provides a very stable delivery in terms of latency variance. Providing a stable latency 
could be substantial for MTC applications, as well as towards having predictable performance. Finally, 
Fabriq supports dynamic scale up/down during the operation. In summary, the contributions of Fabriq are: 

•! It uses ZHT as its building block to implement a scalable DMQ. 
•! Leveraging ZHT components, it supports persistence, consistency, reliable messaging and 

dynamic scalability. 
•! It guarantees the at least once delivery of the messages. 
•! It achieves a near perfect load balance among its servers. 
•! It provides high throughput and low latency outperforming Kafka and SQS. It also provides a 

shorter latency variance than the other two systems. 
•! It could be used on HPC environments that do not support Java (e.g. Blue Gene L/P 

supercomputers). 

The rest of this chapter is organized as follows. Section 4.2 discusses the Fabriq’s architecture. We first 
briefly go over the architecture of ZHT and explain how Fabriq leverages ZHT to provide an efficient and 
scalable DMQ. Later on section 4.3, we analyze the communication costs on Fabriq. Section 4.4 evaluates 
the performance of the Fabriq in different metrics. Finally, section 4.5 summarizes this chapter and 
discusses about the future work. 

4.2! Fabriq Architecture and Design Principles 

This section discusses the Fabriq design goals and demonstrates its architecture. As we discussed in the 
previous section, many of the available alternative solutions do not guarantee persistence and reliability. 
There are many ways to implement a distributed queue. A distributed queue should be able to guarantee 
message delivery. It should also be reliable. Finally, a distributed queue has to be highly scalable. Most of 
the straight forward design options include centralized manager component that limit the scalability. 
Depending on the architecture, a Distributed Hash Table (DHT) could achieve high scalability as well as 
maintaining other benefits. Fabriq uses a DHT as its building block of our queuing services. The simple put 
and get methods of a DHT could be similar to the push and pop methods on a DMQ. We chose to use ZHT 
which is a low overhead and low latency DHT, and has a constant routing time. It also supports persistence. 
Before discussing the design details of Fabriq, we briefly review the architecture and the key features of 
ZHT.  

4.2.1! ZHT Overview 

ZHT has a simple API with 4 major methods: 1. insert(key, value); 2. lookup(key); 3. remove(key), and 
4. append(key,value). The key in ZHT is a simple ASCII character string, and the value can be a complex 
object. A key look up in ZHT can take from 0 (if the key exists in the local server) to 2 network 
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communications. This helps providing the fastest possible look up in a scalable DHT. The following 
sections discuss main features of ZHT. 

a.! Network Communication 

ZHT supports both TCP and UDP protocols. In order to optimize the communication speed, the TCP 
connections will be cached by a LRU cache. That will make TCP connections almost as fast as UDP. In 
Fabriq, we rely on the ZHT for the network communications. Having optimized TCP communications 
enables Fabriq to achieve low latency on its operations. 

b.! Consistency 

ZHT supports replication to provide a reliable service. In order to achieve high throughput ZHT follows 
a weak consistency model. The first two replications for each dataset are strongly consistent. That means 
the data will be written to the primary and the secondary replicas. After completion of the write on the 
secondary replica, the replication to the following replicas happens in an asynchronous fashion.  

c.! Fault Tolerance 

ZHT supports fault tolerance by lazily tagging the servers that are not being responsive. In case of 
failure, the secondary replica will take the place of the primary replica. Since each ZHT server operates 
independently from the other servers, the failure of a single server does not affect the system performance. 
Every change to the in-memory DHT data is also written to the disk. Therefore, in case of system shut 
down (e.g. reboot, power outage, maintenance, etc.) the entire data could be retrieved from the local disk of 
the servers.  

d.! Persistence 

ZHT is an in-memory data-structure. In order to provide persistence, ZHT uses its own Non-Volatile 
Hash Table (NoVoHT). NoVoHT uses a log based persistence mechanism with periodic check-pointing. 

e.! Dynamic Scalability (membership) 

ZHT supports dynamic membership. That means server nodes can join or leave the system any time 
during the operation. Hence, the system scale can be dynamically changed on ZHT (and also Fabriq) during 
the operation. Although dynamic scalability of Fabriq is supported, due to space limitation, we will explore 
the evaluation of dynamic membership in Fabriq in future work.  

4.2.2! Fabriq Design and Architecture 

The main design goal of Fabriq is achieving high scalability, efficiency and perfect load balance. Since 
Fabriq is using ZHT as its building block for saving messages and the communication purposes, and ZHT 
has proven to be able to scale more than 8k-nodes, we can expect Fabriq to also scale as much as ZHT [23].  

Fabriq distributes the queue load of each of the user queue among all of its servers. That means user 
queues can co-exist on multiple servers. When a single server is down due to any reason such as failure or 
maintenance, the system can continue serving all of the users with other servers. That enables the system to 
provide a very high availability and reliability. Figure 36 depicts the message delivery of multiple user 
queues in Fabriq.  
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Figure 36. Fabriq servers and clients with many user queues. 

Like any other message queue, Fabriq has the simple push and pop functions. In addition to those, 
Fabriq also supports peek method which is reading the contents of a message without removing it. In order 
to implement the queue functionalities, we have used ZHT as our system building block and extended the 
queue functionalities to it. Figure 37 shows the structure of a single Fabriq server. Besides the local 
NoVoHT hash table, there are two different data structures on each server.  

MessageId Queue: it is a local in-memory queue, used to keep the message IDs of a user queue that are 
saved on the local NoVoHT on this server. The purpose of having this queue is to be able to get messages 
of a user queue from the local hash table without having the message Ids, and also to distinguish the 
messages of different user queues from each other. This way, each Fabriq server can independently serve 
the clients without having the get the message Ids of a user queue from a central server. 

Metadata List: each user queue has a unique Metadata list in the whole system which keeps the address 
of the servers which have messages of this certain queue. The Metadata list only exists in one server. The 
purpose of having this list is to reduce the chance of accesses to the servers that don’t have messages for a 
user queue. 
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Figure 37. Structure of a Fabriq server. 

Next, we discuss about the process of delivering messages by explaining the major methods on Fabriq. 
Besides the below mentioned methods, Fabriq has peek and deleteQueue.  

1)! createQueue 
This method lets users define their own queue. The method gets a unique name for the queue (assume it 

is “Qx”), and hashes the name. Based on the hashing value, the client sends a createQueue request to the 
destination server. Then it will define a unique Metadata List for “Qx”. The Metadata List is supposed to 
keep the address of the servers that keep the messages of “Qx”. It will also create a MessageId queue for 
“Qx” for the future incoming messages to this server. A user queue can have more than one MessageId 
queue in the whole system, but it has only one Metadata List. The Metadata List of a user queue resides on 
the server with the same address as the hash value of that user queue name. 

2)! push 
Once a user queue has been defined, the client can push messages to it. The method has two inputs: the 

queue name and the message contents. Fabriq uses Google Protocol Buffer for message serialization and 
encoding. Therefore, the message contents input supports both string or user defined objects.  Once the 
push method is called, the client first generates a message Id using its IP Address, port, and a counter. The 
message Id is unique on the whole system. Then, the client hashes the message Id and chooses the 
destination server based on the hash value. Since the hashing function in Fabriq distributes the signature 
uniformly among all of the servers, the message could land on any of the collaborating servers. Figure 38 
depicts the push procedure on Fabriq. After receiving the push request, the destination server performs one 
of the following based on the queue name: 
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Figure 38. Push operation. 

a) If the MessageId queue exists in this server, it will add the new MessageId to the queue and then it 
will make a put request to the underlying ZHT server. Since the hashing function used to hash the message 
Id on the client side is the same as the ZHT server’s hashing function, the hash value will again determine 
the local server itself as the destination. Thus the ZHT server will add the message to its local NoVoHT 
server and there will be no additional network communications involved. 

b) If the destination server does not have a MessageId queue with the name of this user queue, the 
server first creates a new MessageId queue for the user queue on this server, and then it will push the 
message to the MessageId queue and the local NoVoHT. Meanwhile, the Metadata List of this user queue 
has to be updated with the information of the new server that keeps its messages. The server makes a 
request to the server that keeps Metadata List of the user queue and adds its own address to that list. The 
address of the destination server that keeps the Metadata list will be retrieved by hashing the name of the 
user queue.  

3)! pop 
The pop method requests a message from a user queue on a local or remote Fabriq server. We want to 

make sure to retrieve a message from a Fabriq server with the lowest latency and the minimum network 
communication overhead. 

A message of a certain queue may reside in any of the servers. The client can always refer to the 
Metadata list of a certain queue to get the address of a server that keeps messages of that queue. However, 
referring to the owner of the Metadata list in order to find a destination server adds network communication 
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overhead and degrades the performance. Moreover, on larger scales, accessing the single metadata list 
owner could become a bottleneck for the whole system. In order to avoid the communication overhead, the 
client first tries the following ways before directly going to the metadata List owner: 

(1) When a client starts to run, it first checks if there is a local Fabriq server running on the current 
node. The pop method first gets all of the messages on the local Fabriq server. The method sends the pop 
request to the local server and keeps getting messages until the mId queue is empty. After that the server 
returns a null value meaning that there is nothing left for this user queue on this server.  

(2) After getting the null value, the client uses the second approach. It generates a random string and 
makes a pop request to a random server based on its hash value. Please note that the random string is not 
used as the message Id to be retrieved and it is only used to choose a remote server. If the destination server 
has messages, the client saves the random string as the last known server for the later accesses of this user 
queue. The client keeps popping messages from the last known server until it runs out of the messages for 
this user queue and returns null value.  

(3) Finally, after client finds out that the last know server has returned null, using the hash value of the 
user queue name, it sends a request to the metadata list and gets the address of a server that has messages 
for this queue. Once a server returns null, the client again goes back to the metadata list owner and asks for 
a new server address.  

Figure 39 shows a remote pop operation that only takes 1 hop. On the server side, the pop method looks 
for the MessageId queue of the requested user queue: a) If the mId queue does not exist in this server or if 
it is empty, the pop method returns a null value to the client. b) If the mId queue exists and has at least one 
message Id, it will retrieve a mId from the queue and makes a ZHT get request. Since the message Ids on 
the local queue have the same hash value as the local server’s Id, the get request which is supposed to hash 
the message Id to find the server’s address will get the value from the local ZHT server. Then the pop 
method will return that message to the client. If the retrieved mId was last one on the mId queue, the server 
calls a thread to asynchronously update the Metadata List of this user queue and remove the server Id from 
it. 

4.2.3! Features 

In this section, we discuss about some of the important features of Fabriq that makes it superior to other 
state-of-the-art message queues. 

 
Figure 39. A remote pop operation with a single hop cost. 
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a)! Load Balancing 

One of the design goals of Fabriq is to achieve a near perfect load balance. We want to make sure that 
the load from multiple queues gets distributed on all of the servers.  

The load balancing of a system can highly depend on its message routing strategy. The systems with 
deterministic message routing usually have a static load distribution. That means the messages of multiple 
queues are statically split among all of the servers. This design is more convenient for the centralized and 
hierarchical architectures. However, there are many limitations with such design. In these architectures, the 
load balance on the system can fluctuate depending on the submission rate on different queues. On the 
other hand, the systems with non-deterministic routing have a more dynamic load on the servers. In order to 
have a dynamic load distribution, Fabriq Client generates a randomly generated key for each message. 
Based on the hash value of the key, the message will be sent to a Fabriq server. Fabriq uses a uniformly 
distributed hash function.  

b)! Order of messages 

Like many other distributed message queues, Fabriq cannot guarantee to keep the order of messages in 
the whole queue [46][23]. However, it can guarantee the order of the messages in a single server. The 
messages of a user queue are written in a local message queue on each server and the order of the messages 
is kept in that queue. Therefore the order of messages delivery in the server will be kept. 

The message delivery order can be important for some workflows in scientific applications or HPC, we 
have provided a specific mode to define queues in a way that it keeps the message order. In this mode the 
messages of the user queue are only submitted to a single server. Since the order is kept in the single server, 
the order of the delivery will be kept as submitted. 

c)! Message delivery guarantee 

When it comes to large scale distributed systems, the delivery of the content becomes a real challenge. 
Distributed systems cannot easily deal with this problem. On most of the loosely coupled systems where 
each node controls its own state, the delivery is not guaranteed. In distributed Message Queues, the delivery 
of the messages is an inevitable requirement. Therefore, most of the state of the art systems guarantee of 
the delivery. It is hard for the independent servers to synchronize with each other at large scales. Therefore 
they guarantee the delivery at the cost of producing duplicate messages. Thus, they guarantee at least once 
delivery. Similarly in Fabriq, we guarantee at least once delivery.  

Fabriq benefits from using a persistent DHT as its backbone. The push method in Fabriq makes a put 
request on the ZHT. The data in each server is persistent. ZHT also provides replication. Replication can 
prevent the loss of data in case of losing the hard disk on a node. The push and pop functions are both 
blocking functions. The client only removes the message from the memory after the server returns a 
success notification. There are two possible scenarios in case of the network or the server failure. If the 
message somehow does not get delivered, the server will not send a success notification. Therefore the 
push function times out and the message will be sent again. However, there is a possibility that the message 
gets delivered and the notification signal gets lost. In such scenario, the client will again send the message. 
This behavior could lead to duplicate messages on the system. However, the message destination is 
determined by the hash value of its message Id (mId). That means a message with a certain mId will always 
deliver to the same destination server. In case of the duplicate delivery, the ZHT destination server will 
notice a rewrite on the same Id and throws an exception. Therefore the messages are pushed with no 
duplicate messages. 

Likewise, on the pop operation, the server only removes the message from ZHT when the client returns 
a success notification. The pop method first performs a ZHT get on the server side. It only performs a ZHT 
remove after it gets a notification from the client. If the client fails to receive the message or if it fails to 
notify the server, the message will remain at the server. Obviously, if the delivery happens with an 
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unsuccessful server acknowledgement, the server will keep the message. The same message which is now a 
duplicate message will be delivered on a later pop. Therefore Fabriq can only guarantee at least once 
delivery. But the difference of Fabriq with Kafka and SQS is the fact that it may only generate duplicate 
messages at the message pick up. The delivery of the message to the servers will not cause generating any 
duplicates. 

d)! Persistence  

Fabriq extends the ZHT’s persistence strategy to provide persistence. In ZHT, a background thread 
periodically writes the hash table data into the disk. Using ZHT, we can make sure the messages are safe in 
the hash table. But Fabriq still needs to keep its own data structure persistent in the disk. Otherwise, in case 
of system shut down of memory fail, Fabriq will not be able to retrieve messages from the hash table.  In 
order to save the MessageId Queues and the Metadata List on each server, we have defined a few key-value 
pairs in the local NoVoHT table of each server. We save the list of the Metadata Lists and the MessageId 
Queues in two key-value pairs. We also save the contents of each single queue or list on an object and save 
those separately in the hash table. The background thread periodically updates the values of the data 
structures on the hash table. In case of failure, the data structures could be rebuilt using the key for the list 
of queues and lists in the hash table. 

e)! consistency and fault tolerance 

Fabriq extends the ZHT strategies for its fault tolerance and consistency. It supports a strong 
consistency model on the first two replicas. The consistency is weak after the second replica. Fabriq also 
implements the lazy tagging of failed servers. In case of failure the secondary replica will take over the 
delivery. The metadata lists and the MessageId queues of each Fabriq server are locally saved on its ZHT. 
Therefore they are automatically replicated on different servers. In case of the failure of a server, they can 
be easily regenerated from the replica server.  

Another strategy which helps Fabriq provide better fault tolerance is spreading each user queue over all 
of the servers. In case of the failure of a server, without any need to link the client, the client will randomly 
choose any other server and continue pushing/retrieving messages from the system. Meanwhile, the 
secondary replica takes over and fills the gap.  

f)! Multithreading 

Fabriq supports multithreading on the client side. The client can do push or pop using multiple threads. 
On the server side, Fabriq can handle simultaneous requests. But it does not use multithreading. The Fabriq 
server uses an event-driven model based on epoll which is able to outperform the multithreaded model by 
3x. The event-driven model also achieves a much better scalability compared to the multithreading 
approach [23].  

4.3! Network Communication Cost 

In order to achieve low latency and high efficiency, it is important to keep the number of network 
communications low. In Fabriq, we design our push and pop operation with the minimum possible number 
of network communications. In this work, we consider each network communication as one hop. 

Push cost: As shown in Figure 38, the push operation takes only one hop to complete. Since the update 
of the metadata list is executed by a separate thread in a non-blacking fashion, we don’t count it as an extra 
hop. Moreover, it only happens in the first push of each server. Therefore it does not count as an extra hop 
for the push operation.  

Pop cost: A pop operation communication cost varies depending on the situation of both the client and 
the server. In order to be able to model the cost, we make a few assumptions and simplify our model. We 
assume that the uniform hash function works perfectly, and evenly distributes the messages among all of 
the servers. We analyze this assumption in practice in a later section. 
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We model the total cost of the pop operation in a system with a single consumer and multiple servers. s 
shows the number of servers and m shows the total number of messages that was produced by the clients. 
We model the cost in two situations: (a) when the total number of messages is more than the number of 
servers (m>s); and (b) when the number of messages is less than the number of servers (m<s). The total 
cost when m>s is shown below:  
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Based on the assumption of having perfect uniform distribution, we can assume that each server has m/s 
messages at the beginning of the consumption. Since the consumer first consumes all of the messages on its 
local server, the cost of the first m/s messages is going to be zero hop. After that, the consumer randomly 
chooses a server among the s-1 that are left. The cost of finding a server with messages can be either 1 or 3. 
The client saves the id of the last known server and only makes a random call when the last known server 
has no messages left. After finding a new server, the client fetches all of the messages on the last known 
server until the server is empty. The cost of all of these messages ((m/s)-1) is 1 hop.  This process continues 
until all of the messages of each server are consumed. We can conclude that on each of the s-1 remote 
servers there will be a single message that is going to be retrieved with the cost of 1 or 3 hops and (m/s)-1 
messages that are retrieved with the cost of exactly 1 hop. Having the total cost of the retrieval, we can 
calculate the average cost of each pop operation by dividing the total cost by the number of total messages: 

;<=>$?=&'"(#(*+,) = 1 − 1( +
( − 1
2/ & 

We can induce the range of the cost from the average cost formula. The average cost ranges from <1 to 
<1.5 hops. In the second scenario where the total number of messages is less than the number of servers, the 
total cost is: 

!"#$%&'"(#(*A,) =
(( + 5 − (/ + 1))×3 + ((/ + 1) − 5)×1

(

*

9:8
 

In this case, since each server gets one message at most, the cost of retrieving each message can be either 
1 or 3. The average cost analysis is provided below: 

;<=>$?=&'"(#(*A,) = 3 − / + 1
(  

Again, we can induce that the average cost of pop in this case ranges from 2 to 3 hops. 
In order to confirm our analysis, we ran an experiment with a single consumer and counted the average 

number of hops on each pop operation. 0 shows the hop count in an experiment with 1 client and 64 servers. 
The total number of messages in this run was 64,000 messages. The results show that there were 1,079 
messages on the local queue with the cost of 0 hops. Based on the cost model the average cost of hops in this 
experiment is 0.984 and the actual average cost is 1.053 hops, which means the model is fairly accurate. 

The maximum communication cost in a system with multiple clients could be more than 3 hops. Since 
multiple clients can request a queue metadata owner for a message server at the same time, there is a 
chance that they both receive the same message server address from the metadata owner. Assuming the 
message server has only 1 message for this queue, the first client can get that last message, and the second 
client gets a null return value. In that case the client has to request the owner server again for another 
message server.  This process can be repeated for s times until the client gets a message. However the 
chances of this occasion are very low. In fact, we have ran experiments in up to 128 instances scale and 
have not experienced a pop operation with more than 5 hops. 
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Figure 40. Cumulative Distribution of 1 client and 64 servers. 

4.4! Performance Evaluation 

This section analyzes the performance of Fabriq in different scenarios, compared with the other state of 
the two art Message Queue systems. But first, we summarize different features of Fabriq, compared with 
Kafka and SQS. We compare the performance of the three systems in terms of throughput and latency. We 
also compare the load balancing of the Kafka and Fabriq. 

4.4.1! Fabriq, Kafka, and SQS 

All three of the compared systems are fully distributed and are able to scale very well. However, they 
use different techniques in their architecture. Fabriq uses a DHT as its building block, while Kafka uses 
ZooKeeper [86] to handle the metadata management. SQS is closed source and there is minimal 
information available about its architecture. 

One of the important features of a distributed queue is its message retrieval policy. All of the Fabriq 
servers act as a shared pool of messages together. That means all of the clients have equal chance of 
accessing a message at the same time. This feature enables the system to provide better load balancing. 
Moreover, having this feature, the producer can make sure that its messages are not going only to a specific 
consumer, but all of the consumers. SQS provides this feature as well. In Kafka, messages that reside in a 
broker (server) are only consumed by a single consumer at a time. The messages of that broker will only be 
available when the consumer gets the number of messages it requires. This can cause load imbalance when 
there is not enough messages in all of the brokers and degrade the system performance. This design goal in 
Kafka was a tradeoff to provide the rewind feature. Unlike other conventional queue systems including 
Fabriq and SQS, Fabriq provides message rewind feature that lets consumers to re-consume a message that 
was already consumed. However, s mentioned before, having this feature means only one consumer can 
access a broker at a time.  

TABLE 4. summarizes the features of the three queuing services. Unlike the other two systems, Fabriq 
does not support message batching yet. However this feature is currently supported in the latest version of 
ZHT and can be easily integrated with Fabriq. We expect that batching is going to improve the throughput 
significantly. 

In Kafka brokers, messages are written as a continuous record and are only separated by the offset 
number. This feature helps Kafka provides better throughput for continues log writing and reading from 
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producers and consumers. However, as mentioned before, this makes it impossible for multiple consumers 
to access the same broker at the same time. SQS and Fabriq save messages as separate blocks of data that 
enables those to provide simultaneous access on a single broker. All three of the systems provide the queue 
abstraction for multiple clients. In Fabriq and SQS, the client can achieve this by creating new queues. In 
Kafka, the client achieves this by defining new topics. Another important feature of Fabriq is the fact that it 
is able to run on different types of supercomputers including Blue Gene series that don’t support Java. 
Kafka is written in Java, and SQS is closed source. Scientists are unable to use those two systems for HPC 
applications that run on such supercomputers. 

TABLE 4. COMPARISON OF FABRIQ, SQS AND KAFKA 

Feature Fabriq Kafka SQS 
Persistence Yes Yes Yes 

Delivery 
Guarantee At least Once At least Once At least Once 

Message 
Order Inside Node Inside Node - 

Replication Customizable Mirroring 3x 

Shared Pool Yes No Yes 

Batching 
No        

(Future 
work) 

Yes Yes 

 

4.4.2! Testbed and Configurations 

Since SQS runs on AWS, in order to keep our comparisons fair, we chose Amazon EC2 as our testbed. 
The experiments scale from 1 to 128 instances. We chose m3.medium instances. Each instance has a single 
CPU core, a 1 Gigabit network card, and 16 GB of SSD storage. 

4.4.3! Load Balance 

As discussed before, we believe that Fabriq provides a very good load balance. In this section we 
compare the load balancing of Fabriq with Kafka by checking the message distribution on the server of 
both systems. Since we don’t have access to the servers on SQS, we cannot include this system on this 
experiment. 

Figure 41 shows the number of messages received on each server of the two systems. In this 
experiment, each producer has sent 1000 messages. The total number of messages is 64000. The results 
show a very good load balance on Fabriq. The number of messages range from 940 to 1088 messages on 64 
servers. We ran the experiment 5 times and found out that the error rate is less than 5% for at least 89% of 
the servers, and is less than 9.5% in worst case. In Kafka, we observe a major load imbalance. The number 
of messages per server ranged from 0 to 6352. More than half of the servers got less than 350 messages.  

Considering the fact that each server can only be accessed by one consumer at a time, we can notice 
that there will be a major load imbalance in the system. In a system with a 1 to 1 mapping between the 
servers and the consumers, more than half of the consumers go idle after finishing the messages of the 
underutilized servers and will wait for the rest of consumers to finish consuming their messages. Only after 
that, they can consume the rest of the messages and finish the workload. 
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Figure 41. Load Balance of Fabriq vs. Kafka on 64 instances. 

4.4.4! Latency 

The latency of the message delivery is a very important metric for a distributed message queue.  It is 
important for a DMQ to provide low latency on larger scales in order to be able to achieve high efficiency. 
Nowadays, many of the modern scientific and data analytics applications run tasks with the granularity of 
sub-seconds [14]. Therefore, such systems will not be able to exploit a message queue service that delivers 
messages in the order of seconds.  

We measured latency by sending and receiving 1000, 50 bytes messages. Each instance ran 1 client and 
1 server. Figure 42 shows the average latency of the three systems in push and pop operations.  
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Figure 42. Average latency of push and pop operations 

All the three systems show stable latency in larger scale. Fabriq provides the best latency among the 
three systems. Since the communications are local at the scale of 1 for Kafka and Fabriq, they both show 
significantly lower latency than the other scales. We can notice that there is almost an order of magnitude 
difference between the average latency of Fabriq and the other two systems. In order to find out the reason 
behind this difference, we have generated the cumulative distribution on both push and pop operations for 
the scales of 64 and 128 instances. According to Figure 43, at the 50 percentile, the push latency of Fabriq, 
Kafka, and SQS are respectively 0.42ms, 1.03ms, and 11ms. However, the problem with the Kafka is 
having a long tail on latency. At the 90 percentile, the push latency of Fabriq, Kafka, and SQS are 
respectively 0.89ms, 10.4ms, and 10.8ms. We can notice that the range of latency on Fabriq significantly 
shorter than the Kafka. At the 99.9 percentile, the push latency of Fabriq, Kafka, and SQS are respectively 
11.98ms, 543ms, and 202ms.  
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Figure 43. Cumulative distribution of the push latency. 

Similarly, Figure 44 shows a long range on the pop operations for Kafka and SQS. The maximum pop 
operation time on the on Fabriq, Kafka, and SQS were respectively 25.5ms, 3221ms, and 512ms. 
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Figure 44. Cumulative distribution of the pop latency. 

As we observed on from the plots, Fabriq provides a more stable latency with a shorter range than the 
other two systems. Among the three systems, Kafka has the longest range of latency. There could be many 
reasons for the poor performance of Kafka. Before starting to produce or consume, each node needs to get 
the broker information from a centralized ZooKeeper. In larger scales, this could cause a long wait for 
some of the nodes. Another reason for the long range of message delivery is the load imbalance. We have 
already discussed about it on the previous sections. 

4.4.5! Throughput 

It is substantial for a DMQ to provide high throughput in different scales. In this section, we compare 
the throughput of the three systems. We have chosen three different message sizes to cover small, medium 
and large messages.  All of the experiments were run on 1 to 128 instances with a 1 to 1 mapping between 
the clients and servers in Fabriq and Kafka. In SQS, since the server is handled by AWS, we only run the 
client that includes producer and consumer on each instance. !

Figure 45 shows the throughput of both push and pop operations for the short messages. Each client 
sends and receives 1000 messages that are each 50 bytes long. Among the three systems, Fabriq provides 
the best throughput on both push and pop operations.  As mentioned before, due to problems such as bad 
load distribution, and the problem of single access to the broker by the consumers, the throughput of Kafka 
is almost an order of magnitude lower than the Fabriq. 
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Figure 45. Throughput for short (50 bytes) messages (msgs/sec). 

All of the three systems are scaling almost nearly up to the scale of 128 instances. We can also notice 
that the throughput of pop operation is higher than the push operation. The reason for that in Fabriq is that 
the consumers first try to fetch the local messages. Also, in general we know that in a local system, the read 
operation is usually faster than the write operation. Figure 46 compares the throughput of push and pop 
operations for medium (256KB) and large (1MB) messages. At the largest scale, Fabriq could achieve 1091 
MB/sec on push operation and 1793 MB/sec on pop operation. We notice that the throughput of the Kafka 
for push and pop operations is respectively 759 MB/sec and 1433 MB/sec which is relatively close to what 
Fabriq can achieve. The reason for that is the continuous writing and reading on the same block of file 
instead of having separate files for different messages. This way, Kafka is able to deliver large messages 
with the minimum overhead. Therefore it performs well while delivering larger messages. 

 
Figure 46. Push and pop throughput for large messages (MB/sec). 
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4.5! Summary 

A Distributed Message Queue can be an essential building block for distributed systems. A DMQ can 
be used as a middleware in a large scale distributed system that decouples different components from each 
other. It is essential for a DMQ to reduce the complexity of the workflow and to provide low overhead 
message delivery. We proposed Fabriq, a distributed message queue that runs on top a Distributed Hash 
Table. Fabriq was designed with the goal of achieving low latency and high throughput while maintaining 
the perfect load balance among its nodes. Servers in Fabriq are fully independent. The load of each queue is 
shared among all of the nodes of the Fabriq. This makes Fabriq achieve good load balance and high 
availability. The network communication protocol in Fabriq is tuned to provide low latency. A push 
operation could take 0 to 1 roundtrip communication between the servers. A pop operation takes 0, 1 or 3 
operations for more than 99% of the operations.  

The results show that Fabriq achieve higher efficiency and lower overhead than Kafka and SQS. The 
message delivery latency on SQS and Kafka is orders of magnitude larger than Fabriq. Moreover, they 
have a long range of push and pop latency which makes them unsuitable for applications that are sensitive 
to operations with long tails. Fabriq provides a very stable latency throughout the delivery. Results show 
that more than 90% of the operations take less than 0.9ms and more than 99% percent of the operations 
take less than 8.3ms in Fabriq. Fabriq also achieves high throughput is large scales for both small and large 
messages. At the scale of 128, Fabriq was able to achieve more than 90000 msgs/sec for small messages. 
At the same scale, Fabriq was able to deliver large messages at the speed of 1.8 GB/sec. 

There are many directions for the future work of Fabriq. One of the directions is to provide message 
batching support in Fabriq. The latest version of ZHT which is under development supports message 
batching. We are going to integrate Fabriq with the latest version of ZHT and enable the batching support. 
Another future direction of this work is to enable our network protocol to support two modes for different 
workflow scenarios. In this feature, the user will be able to choose between the two modes of heavy 
workflows with lots of messages, and a moderate workflow with less number of messages. We are going to 
optimize Fabriq for task scheduling purposes and leverage it in CloudKon [46] and MATRIX! [92] which 
are both task scheduling and execution systems optimized for different environments and workflows. 
Finally, inspired by the work stealing technique used in MATRIX [92], we are planning to implement 
message-stealing on the servers in order to support pro-active dynamic load balancing of messages. Pro-
active load balancing of the messages helps balancing the server loads when the message consumption is 
uneven. 

5.! Related Work 

This section introduces the related work of our proposal, which covers a wide range of research topics 
and areas. The related work could be divided into several aspects, namely, the evaluation of the 
performance of the cloud for scientific computing, distributed job scheduling systems, and the distributed 
message queues. 

5.1! The Evaluation of the Performance of the Cloud for Scientific Computing 

There have been many researches that have tried to evaluate the performance of Amazon EC2 cloud 
[34][21]Error! Reference source not found.[35]. However the experiments were mostly run on limited 
types and number of instances.  Therefore they lack the generality in their results and conclusions, as they 
have not covered all instance types.  

Ostermann et al. have evaluated Amazon EC2 using micro-benchmarks in different performance 
metrics. However their experiments do not include the more high-end instances that are more competitive 
to HPC systems. Moreover, the Amazon performance has improved since then and more features have been 
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added to make it useful for HPC applications [34]. In addition to the experiments scope of that paper, our 
work provides the evaluations of the raw performance of a variety of the instances including the high-end 
instances, as well as the performance of the real applications. 

He et al. have deployed a NASA climate prediction application into major public clouds, and compared 
the results with dedicated HPC systems results. They have run micro-benchmarks and real applications [20]. 
How-ever they only run their experiments on small number of VMs. We have evaluated the performance of 
EC2 on larger scales. 

Jackson has deployed a full application that performs massive file operations and data transfer on 
Amazon EC2 [36]. The research mostly focuses on different storage options on Amazon. Walker evaluates 
the performance of EC2 on NPB benchmarks and compares their performance on EC2 versus NCSA ABE 
supercomputer on limited scale of 1 and 4 instances [23]. The paper suffices to bring the results without 
detailed analysis and does not identify what this gap contributes to. Other papers have run the same 
benchmark on different infrastructures and provided better analysis of the results [20][50]. 

Only a few of the researches that measure the applicability of clouds for scientific applications have 
used the new Amazon EC2 cluster instances that we have tested [19][38][41]. Mehrotra compares the 
performances of Amazon EC2 HPC instances to that of NASA’s Pleiades supercomputer [19]. However the 
performance metrics in that paper is very limited. They have not evaluated different performance metrics of 
the HPC instances. Ramakrishnan have measured the performance of the HPCC benchmarks [38]. They 
have also applied two real applications of PARATEC and MILC.  

Juve investigates different options of data manage-ment of the workflows on EC2 [41]. The paper 
evaluates the runtime of different workflows with different under-lying storage options. The 
aforementioned works have not provided a comprehensive evaluation of the HPC instances. Their 
experiments are limited to a few metrics. Among the works that have looked at the new HPC instances, our 
work is the only one that has evaluated all of the critical performance metrics such as memory, compute, 
and network performance. 

Jackson compares the conventional HPC platforms to EC2 using real applications on small scales. The 
evaluation results show poor performance from EC2 virtual cluster running scientific applications. 
However they haven’t used HPC instances, and have used instances with slower interconnects. Apart from 
the virtualization overhead, the instances are not quite comparable to highly tuned nodes on the super 
computers [39]. 

Many works have covered the performance of public clouds without having an idea about the host 
performance of the nodes without virtualization overhead [34][20][21]. Younge has evaluated the 
performance of different virtualization techniques on FutureGrid private cloud [31]. The focus of that work 
is on the virtualization layer rather than the cloud infrastructure. Gupta in identifies the best fit for the cloud 
among the HPC applications [50]. He investigates the co-existence of the cloud with super computers and 
suggests a hybrid infrastructure run for HPC applications that fit into the cloud environment. The paper also 
provides the cost analysis of running cloud on different HPC applications and shows where it is beneficial 
to use cloud. 

Many papers have analyzed the cost of the cloud as an alternative resource to dedicated HPC resources 
[36][37][42]. Our work covers the storage services performance both on micro-benchmarks as well as the 
performance while being used by data-intensive applications. 

Our work is unique in a sense that it provides comprehensive evaluation of EC2 cloud in different 
aspects. We first evaluate the performance of all instance types in order to better identify their potentials 
and enable users to choose the best instances for different use case scenarios. After identifying the 
potentials, we compare the performance of the public cloud and a private cloud on different aspects, 
running both microbenchmarks and real scientific applications. Being able to measure the virtualization 



I. Sadooghi, Dissertation Proposal  Pages 62 of 74 
 

 

 

 

 

overhead on the FermiCloud as a private cloud, we could provide a more realistic evaluation of EC2 by 
comparing it to the FermiCloud.  

Another important feature of the Cloud is having different services. We provide a broader view of EC2 
by analyzing the performance of cloud services that could be used in modern scientific applications. More 
scientific frameworks and applications have turned into using cloud services to better utilize the potential of 
Cloud [37][46]. We evaluate the performance of the ser-vices such Amazon S3 and DynamoDB as well as 
their open source alternatives running on cloud. Finally, this work is unique in comparing the cost of 
different instances based on major performance factors in order to find the best use case for different 
instances of Amazon EC2. 

5.2! Distributed Job Scheduling Systems 

The job schedulers could be centralized, where a single dispatcher manages the job submission, and 
execution state updates; or hierarchical, where several dispatchers are organized in a tree-based topology; 
or distributed, where each computing node maintains its own job execution framework.  

Condor [6] was implemented to harness the unused CPU cycles on workstations for long-running batch 
jobs. Slurm [5] is a resource manager designed for Linux clusters of all sizes. It allocates exclusive and/or 
non-exclusive access to resources to users for some duration of time so they can perform work, and 
provides a framework for starting, executing, and monitoring work on a set of allocated nodes. Portable 
Batch System (PBS) [7]  was originally developed to address the needs of HPC. It can manage batch and 
inter-active jobs, and add the ability to signal, rerun and alter jobs. LSF Batch [57] is the load-sharing and 
batch-queuing component of a set of workload management tools.  

All these systems target as the HPC or HTC applications, and lack the granularity of scheduling jobs at 
finer levels making them hard to be applied to the MTC applications. What’s more, the centralized 
dispatcher in these systems suffers scalability and reliability issues. In 2007, a light-weight task execution 
framework, called Falkon [18] was developed. Falkon also has a centralized architecture, and although it 
scaled and performed magnitude orders better than the state of the art, its centralized architecture will not 
even scale to petascale systems [12]. A hierarchical implementation of Falkon was shown to scale to a 
petascale system in [12], the approach taken by Falkon suffered from poor load balancing under failures or 
unpredictable task execution times. Although distributed load balancing at extreme scales is likely a more 
scalable and resilient solution, there are many challenges that must be addressed (e.g. utilization, 
partitioning). Fully distributed strategies have been proposed, including neighborhood averaging scheme 
(ACWN) [56][57][58][59]. In [59], several distributed and hierarchical load balancing strategies are studied, 
such as Sender/Receiver Initiated Diffusion (SID/RID), Gradient Model and a Hierarchical Balancing 
Method. Other hierarchical strategies are explored in [58]. Charm++ [60] supports centralized, hierarchical 
and distributed load balancing. In [60], the authors present an automatic dynamic hierarchical load 
balancing method for Charm++, which scales up to 16K-cores on a Sun Constellation supercomputer for a 
synthetic benchmark. 

Sparrow is another scheduling system that focuses on scheduling very short jobs that complete within 
hundreds of milliseconds [14]. It has a decentralized architecture that makes it highly scalable. It also 
claims to have a good load balancing strategy with near optimal performance using a randomized sampling 
approach. It has been used as a building block of other systems. 

Omega presents a scheduling solution for scalable cluster using parallelism, shared-state and lock-free 
optimistic concurrency control [61]. The difference of this work with ours is that it optimized for course-
grained scheduling of dedicated resources. CloudKon uses elastic resources. It is optimized for scheduling 
of both HPC and MTC tasks. 

Work stealing is another approach that has been used at small scales successfully in parallel languages 
such as Cilk [60], to load balance threads on shared memory parallel machines [63][64][13]. However, the 
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scalability of work stealing has not been well explored on modern large-scale systems. In particular, 
concerns exist that the randomized nature of work stealing can lead to long idle times and poor scalability 
on large-scale clusters [13]. The largest studies to date of work stealing have been at thousands of cores 
scales, showing good to excellent efficiency depending on the workloads [13]. MATRIX is an execution 
fabric that focuses on running Many Task Computing (MTC) jobs [23]. It uses an adaptive work stealing 
approach that makes it highly scalable and dynamic. It also supports the execution of complex large-scale 
workflows. Most of these existing light-weight task execution frameworks have been developed from 
scratch, resulting in code-bases of tens of thousands of lines of code. This leads to systems which are hard 
and expensive to maintain, and potentially much harder to evolve once initial prototypes have been 
completed. This work aims to leverage existing distributed and scalable building blocks to deliver an 
extremely compact distributed task execution framework while maintaining the same level of performance 
as the best of breed systems. 

To our knowledge CloudKon is the only job management system to support both distributed MTC and 
HPC scheduling. We have been prototyping distributed job launch in the Slurm job resource manager under 
a system called Slurm++ [22] , but that work is not mature enough yet to be included in this study. 
Moreover, CloudKon is the only distributed task scheduler that is designed and optimized to run on public 
cloud environment. Finally, CloudKon has an extremely compact code base, at 5% of the code base of the 
other state-of-the-art systems. 

5.3! Distributed Message Queues 

Enterprise queue systems are not new in the distributed computing area. They have been around for 
quite a long time and have played a major role in asynchronous data movement. Systems like JMS [84] and 
IBM Websphere MQ [83] have been used in distributed applications. However, these systems have some 
limitations that make them unusable for today’s big data computing systems. First, these systems usually 
add significant overhead to the message flow that makes them incapable of handling large scale data flows. 
JMS supports delivery acknowledgement for each message. IBM Websphere MQ provides atomic 
transaction support that lets the publisher submit a message to all of the clients. These features can add 
significant overhead to the process. It is not trivial to handle these features for the larger scale systems. In 
general, traditional queuing services have many assumptions that prevent them from scaling well. Also, 
many of these traditional services do not support persistence. 

ActiveMQ [82] is a message broker in Java that supports AMQP protocol. It also provides a JMS client. 
ActiveMQ provides many configurations and features. But it does not support any message delivery 
guarantee. Messages could be delivered twice or even get lost. Other researches have shown that it cannot 
scale very well in larger scales [76]. 

RabbitMQ [81] is a robust enterprise queuing system with a centralized manager. The platform provides 
option to choose between performance and reliability. That means enabling persistence would highly 
degrade the performance. Other than the persistence, the platform also provides options like delivery 
acknowledgement and mirroring of the servers. The message latency on RabbitMQ is large and not 
tolerable for any application that is sensitive to the efficiency. Being centralized makes RabbitMQ not scale 
very well. It also makes it unreliable because of having a single point of failure. Other researches have 
shown that it cannot perform well in larger scales as compared to scalable systems like Kafka [3]. 

Besides the traditional queuing systems, there are two modern queuing services that have got quite 
popular among commercial and open source user community. Those two are Apache Kafka [2] and 
Amazon Simple Queue Service (SQS) [16]. Kafka is an open source, distributed publish and consume 
service which is introduced by LinkedIn. The design goal of Kafka is to provide a system that gathers the 
logs from a large number of servers, and feeds it into HDFS [85] or other analysis clusters. Other log 
management systems that were provided by other big companies are usually saving data to offline file 
systems and data warehouses. That means they do not have to provide low latency. However, Kafka can 
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deliver data to both offline and online systems. Therefore, it needs to provide low latency on message 
delivery. Kafka is fully distributed and provides high throughput. We discuss more about Kafka later in a 
separate section. 

Amazon SQS is a well-known commercial service which provides reliable message delivery in large 
scales. SQS is persistent. Like many other Amazon AWS services [15], SQS is reliable and highly available. 
It is fully distributed and highly scalable. We discuss more about SQS and compare its features to Fabriq in 
another section. 

6.! Accomplishments and Conclusions 

We highlight the current state of the proposed work towards developing next-generation job 
management system for extreme-scale computing. The papers that have been published are an important 
metric to measure the progress and to highlight the accomplishments achieved so far. We then draw the 
conclusions achieved so far. 

6.1! Accomplishments 

So far, we have achieved several accomplishments. We have achieved the following goals in this work:  

(1)! A comprehensive study on scientific applications characteristics and evaluation of their 
performance on clouds. The study analyzes the potentials of the cloud as an alternative 
environment for scientific computing [102]. 

(2)! A distributed job scheduling system (CloudKon) design that suites the cloud’s characteristics. A 
system that is able to support HPC and MTC workloads. We conduct a performance evaluation up 
to 1024 instances scale. [46] 

(3)! A distributed message queuing (Fabriq) system that is scalable and provides ultra low latency. 
Fabriq exploits distributed hash tables as a building block to deliver a highly scalable solution. 
The proposed system is able to achieve near perfect load balancing and sub-milliseconds 
distribution latency. Fabriq offers support for substantial features such as persistence, consistency, 
reliability, dynamic scalability, and message delivery guarantees. [103] 

The papers and documents that have been published based on our working progress are listed as follows: 

Conference Papers: 
(1)! Iman Sadooghi,  Ke Wang, Shiva Srivastava, Dharmit Patel, Dongfang Zhao, Tonglin Li, Ioan 

Raicu . “FaBRiQ: Leveraging Distributed Hash Tables towards Distributed Publish-Subscribe 
Message Queues “, 2nd IEEE/ACM International Symposium on Big Data Computing (BDC) 
2015. 

(2)! Iman Sadooghi, Sandeep Palur, Ajay Anthony, Isha Kapur, Karthik Belagodu, Pankaj Purandare, 
Kiran Ramamurty, Ke Wang, Ioan Raicu. “Achieving Efficient Distributed Scheduling with 
Message Queues in the Cloud for Many-Task Computing and High-Performance Computing”, 
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2014. 

(3)! Ke Wang, Ning Liu, Iman Sadooghi, Xi Yang, Xi Zhou, Tonglin Li, Michael Lang, Xian-He Sun, 
Ioan Raicu, "Overcoming Hadoop Scaling Limitations through Distributed Task Execution," in 
Proceedings of the IEEE International Conference on Cluster Computing 2015. 

(4)! Tonglin Li, Ke Wang, Shiva Srivastava, Dongfang Zhao, Kan Qiao, Iman Sadooghi, Xiaobing 
Zhou, Ioan Raicu “A Flexible QoS Fortified Distributed Key-Value Storage System for the Cloud” 
in IEEE International Conference on Big Data 2015. 
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Journal Papers: 
(5)! Iman Sadooghi, Jesus Hernandez Martin, Tonglin Li, Kevin Brandstatter, Yong Zhao, Ketan 

Maheshwari, Tiago Pais Pitta de Lacerda Ruivo, Steven Timm, Gabriel Garzoglio, Ioan Raicu. 
“Understanding the performance and potential of cloud computing for scientific applications” 
IEEE Transactions on Cloud Computing PP (99), (2015).  

(6)! Tonglin Li, Xi Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi, Zhe Zhang, Ioan Raicu, "A 
Convergence of KeyValue Storage Systems from Clouds to Supercomputers", Journal of 
Concurrency and Computation: Practice and Experience (CCPE), 2015. 

(7)! Ke Wang, Ke Qiao, Iman Sadooghi, Xi Zhou, Tonglin Li, Michael Lang, Ioan Raicu. “Load-
balanced and locality-aware scheduling for data-intensive workloads at extreme scales.”, Journal 
of Concurrency and Computation: Practice and Experience (CCPE), 2015. 

Workshop Papers: 
(8)! Dongfang Zhao, Xu Yang, Iman Sadooghi, Gabriele Garzoglio, Steven Timm, Ioan Raicu. 

"High-Performance Storage Support for Scientific Applications on the Cloud", Invited Paper, 
ACM ScienceCloud 2015. 

(9)! Dharmit Patel, Faraj Khasib, Iman Sadooghi, Ioan Raicu. "Towards In-Order and Exactly-Once 
Delivery using Hierarchical Distributed Message Queues", 1st International Workshop on Scalable 
Computing For Real-Time Big Data Applications (SCRAMBL'14) at IEEE/ACM CCGrid 2014. 

 

Extended Abstracts and Posters: 
(10)! Iman Sadooghi, Ioan Raicu. "Understanding the Cost of the Cloud for Scientific Applications", 

2nd Greater Chicago Area System Research Workshop (GCASR), 2013. 
(11)! Iman Sadooghi, Ioan Raicu. “Towards Scalable and Efficient Scientific Cloud Computing”, 

Doctoral Showcase, IEEE/ACM Supercomputing/SC 2012. 
(12)! Iman Sadooghi, Dongfang Zhao, Tonglin Li, Ioan Raicu. “Understanding the Cost of Cloud 

Computing and Storage”, 1st Greater Chicago Area System Research Workshop, 2012. 
(13)! Tonglin Li, Chaoqi Ma, Jiabao Li, Xiaobing Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi, 

Ioan Raicu “GRAPH/Z: A Key-Value Store Based Scalable Graph Processing System” 2015. 
(14)!  
(15)! Dongfang Zhao, Chen Shou, Zhao Zhang, Iman Sadooghi, Xiaobing Zhou, Tonglin Li, Ioan 

Raicu. "FusionFS: a distributed file system for large scale data-intensive computing", 2nd Greater 
Chicago Area System Research Workshop (GCASR), 2013. 

Journal Papers under Review: 
(16)! Dongfang Zhao, Ke Wang, Kan Qiao, Tonglin Li, Iman Sadooghi, Ioan Raicu,! “Toward High-

performance Key-value Stores through GPU Encoding and Locality-aware Scheduling”!Journal of 
Parallel and Distributed Computing. 

(17)! Ke Wang, Anupam Rajendran, Xiaobing Zhou, Kiran Ramamurthy, Iman Sadooghi, Michael 
Lang, Ioan Raicu. “Distributed Load-Balancing with Adaptive Work Stealing for Many-Task 
Computing on Billion-Core Systems”, Journal of ACM Transactions on Parallel Computing. 

Also, there are some technical reports ([93][94][95][96][97]) that we have published online. 

6.2! Conclusions 

According to our achievements and the findings on our papers, we are able to make the following 
conclusions.  
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Cloud Computing has potentials to run Scientific Applications: We showed that certain series of 
compute instances and other type of resources have the ability to perform closely to the HPC clusters and 
Supercomputers. Therefore there is a potential to provide tools, such as scheduling systems to run scientific 
workloads and applications.  

We present a comprehensive, quantitative study to evaluate the performance of the Amazon EC2 for the 
goal of running scientific applications. Our study first covers the performance evaluation of different 
compute instances in terms of compute, network, memory and storage. In terms of compute performance, 
only a few of the instances that are from a certain group were able to meet the requirements of the scientific 
workloads. We also noticed that there is need for improvements on network performance. Moreover, we 
compared the performance of the real distributed applications on the cloud and observed that their 
performance is close to each other. We also have to state that the new generation of the AWS instances 
which were released after this research was conducted can possibly satisfy the needs of the scientific and 
HPC applications [reference needed]. 

Distributed Message Queues can be used as building blocks for distributed scheduling: We 
designed and implemented CloudKon, a distributed job scheduling system using SQS as its building block. 
We assessed the throughput, latency and the scalability of SQS to make sure that it could be used as a 
building block for our scheduling system. Using SQS gave us the ability to design a powerful and scalable 
scheduling system with loosely coupled components. We were able to prove that it is a good idea to use 
cloud services within distributed applications that run inside the cloud. It is not trivial to create complex 
distributed applications that could perform well on cloud. Using cloud services will make it significantly 
easier and faster to implement these applications and guarantees the optimal performance and utilization. 
We were able to support both HPC and MTC workloads on CloudKon by using SQS. 

The evaluation of the CloudKon proves that it is highly scalable and achieves a stable performance over 
different scales. We have tested our system up to 1024 instances. CloudKon was able to outperform other 
systems like Sparrow and MATRIX on scales of 128 instances or more in terms of throughput. CloudKon 
achieves up to 87% efficiency running homogeneous and heterogeneous fine granular sub-second tasks. 
Compared to the other systems like Sparrow, it provides lower efficiency on smaller scales. But on larger 
scales, it achieves a significantly higher efficiency. 

Distributed Hash Tables are a building block for large scale system services: We motivated that 
Distributed Hash Tables (DHT) are a viable building block for large scale distributed applications and tools. 
This statement lays the foundations for developing distributed system services that are highly available, 
scalable and reliable at larger scales. We implemented Fabriq, a distributed message queue that runs on top 
of ZHT. ZHT is a scalable DHT that is proven to perform well at larger scales and achieve sub-
milliseconds latency. It is also reliable and persistent. That makes it a perfect match to be used as a building 
block of a distributed application. The design goal of Fabriq was to achieve low latency and high 
throughput while maintaining the perfect load balance among its nodes at larger scales. We used ZHT as a 
building block for Fabriq. 

The results show that Fabriq outperforms Kafka and SQS in different metrics. Fabriq has shown to have 
low overhead on the data movement process. Thus it achieves a higher efficiency than the other two 
systems. It also has a faster message delivery. Message delivery latency on SQS and Kafka is orders of 
magnitude more than Fabriq. Moreover, they have a long range of push and pop latency which makes them 
unsuitable for applications that are sensitive to operations with long tails. Fabriq provides a very stable 
latency throughout the delivery. Results show that more than 90% of the operations take less than 0.9ms 
and more than 99% percent of the operations take less than 8.3ms in Fabriq. Fabriq also achieves high 
throughput is large scales for both small and large messages. At the scale of 128, Fabriq was able to 
achieve more than 90000 msgs/sec for small messages. At the same scale, Fabriq was able to deliver large 
messages at the speed of 1.8 GB/sec. 
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7.! Future Work 

The achievements we have accomplished to data have laid the foundations for a broad yet clear sort of 
future work. So far we were able to: (1) Assess the ability of the cloud for running scientific applications. (2) 
Design and implement a distributed job scheduling system that runs on Amazon AWS using SQS. (3) 
Design and implemented a distributed and scalable message queue service that could potentially replace SQS. 
All the future work aims to push our resource management system to scalable production systems that could 
run a variety of applications on the cloud environment efficiently. We first list all the future directions of our 
work. Then we present our plans for the future publications, which are followed by a rough timeline of our 
work towards the final dissertation.   

7.1! Future Directions 
The future directions of our work are listed as follows:  

Improve the Efficiency and Flexibility via a new Scheduling System: In order to further improve the 
efficiency of CloudKon, we need to replace SQS with a new DMQ that works more efficiently. We have 
designed and implemented Fabriq with the goal of achieving a better efficiency than the available DMQs. 
We plan to integrate the Fabriq with an all new distributed job scheduling system. The design of the new 
scheduling system is based on the CloudKon design. It uses Fabriq as its building block to distribute the jobs 
to different workers. Fabriq’s latency is orders of magnitude lower than the SQS. Moreover, having access to 
the source code, we will be able to implement a tightly coupled, integrated system. Using Fabriq, the new 
system will be able to distribute the jobs much more efficiently with a significantly lower latency. Since the 
Fabriq is written in C++, we will implement the new scheduler system using C++ in order to further improve 
the performance. 

The new scheduling system will not be tied down the Amazon AWS cloud. It is a more flexible system 
that can be deployed on any platform with supports C++ compiler. That includes Amazon AWS and many 
other cloud environments. We are also planning to run our system on new environments including 
OpenStack private cloud and even supercomputers and compare our achievements with the old CloudKon 
and the other state of the art scheduling and resource management systems. 

Enhancing Flexibility of the Fabriq by Enabling Priority Queues: modern applications could have 
complex data delivery requirement. Supporting priority queues could help these applications with their 
complex requirements. We are planning to provide support for built-in priority queues in Fabriq. The new 
Fabriq will be able to support messages with different priorities. That means the user can make sure that at 
each time on each server, the messages with the higher priority will be delivered earlier. Our priority queues 
will provide the inside sorting time of O(log n). Priority queue support opens up new usage directions for 
Fabriq. Many applications can benefit from this feature. 

Efficient Scheduling of Task dependency in Direct Acyclic Graphs (DAG): The first version of 
CloudKon supports both loosely coupled MTC jobs and the HPC jobs with dependencies. However, the 
current architecture in CloudKon is not able to achieve an optimum performance and efficiency on HPC jobs. 
One of our main directions for the new job scheduling design is improve the efficiency of the HPC jobs by 
providing built-in support for Directed Acyclic Graph (DAG) based tasks and task with dependency on each 
other. In order to support tasks with dependency, we will make use of the priority queue support of Fabriq. 
We will redefine the DAG tasks with more sections within themselves. Each task will have a priority and a 
list of children. The priority of the children tasks of each task will increase after its execution. The DAG 
support feature can be very useful for different MTC and HPC workloads. 

Solving a new set of problems with CloudKon: The ultimate goal of this work is to efficiently schedule 
and execute modern data-intensive MTC workloads with finer grained tasks. It is important for our 
scheduling system to be able to run data-intensive applications. For the future directions of our scheduler, we 
will focus on Hadoop Map-Reduce jobs and Spark in-memory jobs Error! Reference source not found.. 
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-! Hadoop Map-Reduce Workloads: Hadoop is one of the most useful applications that has been able 
to improve the data analytics significantly. Supporting Hadoop workloads could be essential for our 
resource management system. On Hadoop jobs, each Reduce task is dependent on one or more Map 
tasks. Using the task dependency and DAG support could help us extend the design to support Map-
Reduce tasks. We will be able to test our scheduler against Map-Reduce workload trends and compare 
the results with the Hadoop Yarn scheduler [reference needed]. We expect to provide a significant 
speed-up in terms of throughput and latency. 

-! Spark In-memory Workloads: Spark is another useful data analytics application that proposes 
improving the performance by orders of magnitudes via keeping the data in memory. We are planning 
to extend the design of CloudKon to enable the support of Spark workloads. 

Reducing the Scheduling and Distribution overhead per Task: Another future direction of this work 
is to improve the efficiency and performance of the scheduling by minimizing the scheduling overhead per 
task. We can achieve this by providing task batching on our DMQ. We are planning to extend the Fabriq 
design to provide support for batch tasks. The distribution and delivery process of each batch will take the 
same time as it does for a single message. This could significantly improve the throughput of Fabriq, and 
therefore improve the throughput of the new scheduler.  

 Optimum Load Balancing on different Scenarios: As we stated on the section 4.3 of chapter 4, Fabriq 
provides near optimum load balancing among its servers while distributing and delivering the messages. It 
achieves the perfect load balancing by making use of the static hashing over its servers. However, that is 
only true when Fabriq has a static set of servers running from the beginning of its bootstrap. Fabriq supports 
dynamic membership. That means it is possible to add or remove servers in the middle of the process 
without crashing the system. The perfect load balancing is not guaranteed anymore if one makes use of the 
dynamic membership. That means if a server is added or removed from the Fabriq dynamically, it will not be 
able to achieve a perfect load balance any more. One of the future directions of Fabriq is to provide perfect 
load balance under this corner case situation.  

Distributed Monitoring Via Distributed Message Queues: Monitoring has proven to be essential for 
distributed systems. It is very important to understand how the resources of a distributed system are utilized 
by applications. Monitoring resources of a large scale distributed system is not trivial with a centralized 
traditional monitoring solution. Distributed Message Queues could play an essential part to provide a 
distributed solution for large scale system monitoring [101]. One of the future directions of this work is to 
design and implement a distributed monitoring system using Fabriq. Providing an efficient system, Fabriq 
will be able to serve a distributed monitoring solution well. 

7.2! Plans for future publications 

We have clear plans to submit for publications during the period of the next year; the goal is to publish at 
least 1 more journal paper (extending the CloudKon and Fabriq conference papers), as well as at least one 
more conference paper. The list of the venues that we are planning to submit our work on along with their 
submission deadlines are as follows. 

(1)! IEEE International Conference on Distributed Computing Systems (ICDCS 2016), December 15 
(2)! IEEE International Conference on Cloud Computing (ClOUD 2016), January 2016 
(3)! ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC’16), January 
2016 

(4)! IEEE/ACM International Conference for High Performance Computing, Networking, Storage, and 
Analysis (SC’16), April 2016 

(5)! IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2016), 
July 2016 

(6)! IEEE/ACM International Symposium on Big Data Computing (BDC 2016), July 2016 
(7)! IEEE Transaction on Parallel and Distributed Systems Journal (TPDS), Anytime 
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(8)! IEEE Transaction on Cloud Computing Journal (TCC), Anytime 

7.3! Timeline 

The timeline of my future work of the next year is roughly based on the publication plans. I will take my 
Ph.D comprehensive exam in September 2015. I plan to do my Ph.D final dissertation defense within a year 
from that date. The steps are listed in Table 5   

Table 5: Tasks toward the final Ph.D dissertation defense 

Date Description 
September 2015 Comprehensive exam 
July 2016 Dissertation Draft sent to committee 
September 2016 Dissertation Defense 
Fall 2016 Graduation 
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