
Evaluating the Support of MTC Applications

On Intel Xeon Phi Many-Core Accelerators

Poornima Nookala, Serapheim Dimitropoulos, Karl Stough, Ioan Raicu
Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois

{pnookala,sdimitro,kstough,iraicu}@hawk.iit.edu

 Abstract -As Many-Task Computing (MTC) is becoming

common-place on clusters, grids, and supercomputers,

research that aims to take advantage of the new

advances in hardware for MTC workloads is becoming

more relevant. A good example is the design of

frameworks like GeMTC that incorporate general

purpose GPU hardware to improve the concurrency of

executing tasks. This work attempts to support MTC

workloads on the Intel Xeon Phi accelerators. Our plan

is to develop two frameworks that will achieve that goal.

One based on OpenMP and the other one based on

Intel’s Symmetric Communication Interface (SCIF)

provided for Many-Integrated Core (MIC) accelerators

like the Xeon Phi. Both frameworks aim to provide the

same interface as GeMTC, leveraging the integration

efforts with the Swift parallel programming system. Our

end-goal is to present how programming many-core

computing processors can be made easier and more

productive using OpenMP or SCIF, and enable the

execution of MTC workloads hybrid accelerator-based

systems.

Keywords-Many-task computing; Accelerators; Intel Xeon

Phi Coprocessor; Programming models; Execution models.

I. BACKGROUND INFORMATION

The Intel Xeon Phi is a hardware coprocessor from Intel.

It is a PCI device with roughly 60 cores and 240 hardware

threads. Its design makes it ideal for applications that are

performance critical and need large levels of parallelism.

Moreover, the fact that it implements x86 for its instruction

set architecture, makes its integration with existing systems

simpler than the integration of other accelerators like

General Purpose GPUs (GPGPUs). GeMTC is a CUDA

based framework which allows Many-Task Computing

workloads to run efficiently on NVIDIA GPUs [3]. The

novelty in the design of this framework is that different jobs

that are running in parallel are also isolated from each other

and therefore the utilization of the GPU is almost

maximized. Unfortunately, the framework’s implementation

is very closely-tied to the architecture and the conventions

of GPUs. Many-Task Computing (MTC) has been an

emerging paradigm and area of research for some years

now. Therefore, considering embedding the capabilities of

the Xeon Phi in systems that support MTC workloads is

considered a relatively new ground. This paper attempts to

cover this ground.

II. ARCHITECTURE

 Due to the foundations of Intel architecture, the

coprocessor can be programmed in several different ways.

For the OpenMP implementation, we used offloading

approach for offloading computations from host to the Phi.

For the SCIF part, we implemented the framework to run

natively on the Phi while accepting jobs from clients running

on the host CPU [6]. The major advantage of native

execution coupled with SCIF over offloading is that the

developer gets more control overall in the configuration and

the architecture of their design in order to maximize

performance. In addition, different MIC cards can

communicate directly with each other basically making

certain designs more efficient.

 The OpenMP version of the framework is developed using

a Producer-Consumer architecture which communicates

using shared memory for IPC. The Consumer side hosts the

framework which runs as multiple worker threads which use

the shared memory space as a queue structure, continuously

accepting new tasks from producer. Likewise, the producer

acts as a client process which submits tasks to the queue.

Asynchronous offloading is used to allow the framework to

be non-blocking to continue accepting tasks while other tasks

are running on the Phi. This approach was chosen to provide

the same feature set as GeMTC while taking advantage of

asynchronous offloading capabilities of OpenMP.

 The SCIF implementation is a complete port of the

GeMTC framework. The core architecture of GeMTC is

actually completely rewritten in C from CUDA and

abstracted out into a shared library. The library includes all

the main functionality of GeMTC. The rest of the framework

is modeled after a client-server architecture where clients

send their tasks to the Phi from the host and a server, which

runs natively on the Phi, accepts the jobs. After submitting

the job, the clients can request the result and the server will

deliver it to them when the task has finished processing. The

whole procedure is non-blocking for the server who can

handle multiple requests and submissions at the same time.

The SCIF API is used for communications between the

server and the clients.

III. EVALUATION

All of our experiments were run on the Midway High-

Performance Computing Cluster at University of Chicago.

Our testing host is an Intel Sandy Bridge with 32 cores at 2.6

Ghz and 32 GB of RAM. It has 2 Xeon Phis attached to it.

Both of them are from the 5100 series of Intel coprocessors

and have 60 cores at 1.053 GHz each and 8 GB RAM.

A. Synthetic Sleep Workloads

Experiments were performed using various sleep length

tasks. As seen below, preliminary results show that

efficiency reaches higher 90s for task lengths at 1 msec when

using 1 worker on host, 2 msec for 60 workers and 5 msec

for 128 workers. This clearly shows that this framework

using OpenMP performs better than GeMTC on Xeon Phi

which reaches higher efficiency only at 5 ms. To reduce the

overhead of multithreading, we took an approach of creating

threads on the Phi before offloading tasks which reduced the

overall execution time considerably [7]. Also, SCIF

approach performs at higher 90s with sleep tasks of 1 msec.

Figure 1. Efficiency of sleep jobs (usec) on Xeon Phi using OpenMP

measured by varying number of worker threads and tasks on Xeon Phi.

Figure 2. Efficiency of sleep jobs using OpenMP and SCIF (a

comparison).

B. Matrix Multiplication Results

In order to assess the real-world performance of Xeon

Phi, the team performed tests using naïve matrix

multiplication. The overhead of OpenMP data transfer only

became negligible when matrix sizes of 64x64 were tested.

Before that point, the task completion time remained fairly

constant. At larger matrix sizes, the time taken increases

linearly with the amount of work performed. The team also

analyzed the performance gain from an increase in the

number of threads. It was found that while single-threaded

tasks scaled fairly linearly with the workload, many-threaded

tasks didn’t achieve optimal scalability until much larger

matrices were tested. Data transfer offload overhead seems

to be high when offloading large amounts of data and

techniques for reducing data transfer overhead and reusing

the allocated memory are being investigated. Our SCIF

implementation does not support bulk I/O for testing with

large matrixes. Enabling bulk I/O for SCIF implementation

using RMA API is part of future work.

IV. CONCLUSION AND FUTURE WORK

 To enable running MTC workloads on Xeon Phi, we

designed a framework that not only sends and executes tasks

on Xeon Phi but also ensures that these tasks are isolated

from each other and can run in parallel. Our work is built

upon the existing functionality of GeMTC and in the future

would allow for an identical interface which could be

dropped into Swift/T. We implemented both OpenMP as

well as SCIF-based frameworks and were able to run MTC

workloads on Xeon Phi. Our preliminary evaluation data are

encouraging and should provide enough motivation for

future. Our future work includes evaluating the design

further and enabling Swift/T integration.

REFERENCES

[1] Poornima Nookala, Karl Stough, ”GeMTC-OpenMP Source Code
Repository”, https://github.com/pnookala/MIC OpenMP GeMTC.

[2] Serapheim Dimitropoulos, ”GeMTC-SCIF Source Code Repository”,
https://github.com/sdimitro/scif-modules/tree/master/scif-sc.

[3] S. Krieder, J. Wozniak, T. Armstrong, M. Wilde, D. Katz, B.
Grimmer, I. Foster and I. Raicu, ”Design and Evaluation of the
GeMTC Framework for GPU-enabled Many-Task Computing”,
ACM HPDC, 2014.

[4] J. Johnson, S. Krieder, B. Grimmer, J. Wozniak, M. Wilde and I.
Raicu, ”Understanding the Costs of Many-Task Computing
Workloads on Intel Xeon Phi Coprocessors”, GCASR, 2013

[5] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu and Y. Wang,
”High-Performance Computing on the Intel Xeon Phi: How to Fully
Exploit MIC Architectures”, Springer, 2014, pp. 3-30.

[6] Intel, ”Intel Many Integrated Core Symmetric Communications
Interface (SCIF) User Guide”, 2012.

[7] High Performance Parallelism Pearls Volume One: Multicore and
Many-core Programming Approaches, 1st Edition – James Reinders
(Author),James Jeffers (Author).

0

10

20

30

40

50

60

70

80

90

100

10 40 160 640 2560 10000 1000000

Ef
fi

ci
en

cy
 (

%
)

Sleep Duration (microseconds)

Efficiency of sleep jobs using OpenMP

1 Worker - OpenMP 60 Workers - OpenMP

128 Workers - OpenMP

0

10

20

30

40

50

60

70

80

90

100

10 40 160 640 2560 10000 1000000

Ef
fi

ci
en

cy
 (

%
)

Sleep Duration (microseconds)

Effiency of sleep jobs using SCIF vs OpenMP

1 Worker - SCIF 1 Worker - OpenMP

