
HRDBMS: A NewSQL Database for Analytics

Jason Arnold, Boris Glavic, Ioan Raicu
Department of Computer Science

IIT
Chicago, USA

jarnold6@hawk.iit.edu, bglavic@iit.edu, iraicu@cs.iit.edu

Abstract— HRDBMS is a new type of distributed relational
database that uses a hybrid model by combining the best of
traditional distributed relational databases with more modern
workflow/framework based relational databases. This allows
HRDBMS to take advantage of years worth of research
regarding query optimization, while also taking advantage of the
scalability of workflow-based systems. Furthermore, it uses a
customized execution framework that removes the performance
challenges that have been observed with running SQL on
Map/Reduce and Spark. These include materialization of
intermediate results, lack of a global cost-based optimizer,
unnecessary sorting, lack of good index support, lack of good
statistics, lack of full DML support, and the large number of map
and reduce phases that are required.

Keywords—SQL, analytics, distributed query processing,
relational databases

I. BACKGROUND
The increasing scale of data to be processed for analytics

has been a problem for the IT industry for years. Many types
of solutions to this problem have been proposed. First MPP
relational databases were proposed. These used a shared-
nothing architecture to try to parallelize the query processing
across multiple nodes. While this proved to be effective at
very small numbers of nodes, this approach did not scale to
even medium-sized clusters. Second columnar databases were
proposed. For many types of analytical queries, these proved
more efficient than their row-based counterparts. But, they
suffered the same scalability issues that standard MPP
relational databases faced. Most recently, we have seen a
number of workflow/framework based SQL engines. This
includes things like Hive, Shark, Spark SQL, and Dremel.
While these types of approaches scale much better than
traditional database approaches, they tend to perform very
poorly because the database has to reduce the queries into a
DAG of jobs to be performed on the underlying workflow
framework. HRDBMS is an attempt to unify the best things
about workflow-based SQL engines with the best things about
traditional MPP relational databases.

II. HIGH LEVEL ARCHITECTURE
An HRDBMS cluster is broken into 2 types of nodes.

There are coordinator nodes and worker nodes. Coordinator
nodes only hold system metadata and are responsible for query
planning. Worker nodes only hold user data and are
responsible for the majority of query execution. Queries enter

the system by a client submitting SQL to a coordinator node.
The coordinator node then runs the query through the
optimizer, which uses statistics which are stored in system
tables. The output of the optimizer is a query plan, which then
gets submitted for execution. Query results are eventually fed
back up to the coordinator node that planned the query. Final
sorts or aggregations may occur on the coordinator node, if
they are small enough. The coordinator node then forwards the
result set on to the client.

The optimizer is a cost-based optimizer as with traditional
relational databases. The benefits of cost-based optimization
are well established. Secondly, it uses an execution framework
modeled after Map/Reduce, and the scalability of such
frameworks is also well-established. Third, HRDBMS varies
from the typical Map/Reduce model in ways that improve the
performance of SQL queries. These differences are outlined in
section III.

Unlike Hive, HRDBMS also supports
INSERT/UPDATE/DELETE operations with full transactional
consistency (ACID compliance).

III. HRDBMS’S DISTRIBUTED EXECUTION ENGINE
Queries execute in the HRDBMS framework. The

HRDBMS framework is modeled after Map/Reduce, but
contains many improvements and customizations specific to
executing relational queries.

We made the following observations about Map/Reduce
that we believe lead to the slowness of SQL operations for
databases such as Hive. First of all, a reduce phase is really
just a special type of map phase. It again emits key/value pairs.
The difference is that these key value pairs do not go through a
shuffle and instead are directly written to disk. It takes another
(basically no-op) map phase to shuffle the output from a
previous reduce phase so that data is correctly co-located for
processing. In HRDBMS, we therefore forego the use of
reduce phases and string a series of map phases together with
shuffles in between them. Any of these map phases can
perform any type of relational operation, including
aggregation. This also eliminates the write to disk that occurs
in Map/Reduce at the end of each reduce phase. HRDBMS
only materializes the data when necessary. This also
significantly improves performance as noted by others [1].

The first map phase will read the necessary input data from
disk. The data read may either come from a table or from an

index. Data is not stored on HDFS. Instead the data is stored
directly on the local filesystem of each node. Coordinator
nodes are aware of how the data is partitioned across each of
the worker nodes. Worker nodes may each contain a large
number of physical disks. The coordinators are also aware of
how the data is partitioned across each disk on the worker
nodes. The first map phases are always scheduled to run on the
node where the data they read resides. It is not a preference for
placement of the map task like it is in Map/Reduce. Data
locality is guaranteed. These map tasks can then perform any
type of relational operations needed, and eventually they do a
mapping of each row and write it out to the shuffle.

It’s worth pointing out a few more differences between the
HRDBMS framework and Map/Reduce. First of all a
HRDBMS shuffle does not guarantee an ordering of the key
values that the next map phase receives. It just guarantees that
all the rows with the same key are sent to the same node for the
next phase of processing. This is sufficient to implement
distributed joins or aggregation, and reduces overhead be
eliminating unnecessary sorts.

Also, these map tasks are inherently parallel. Each map
task is defined in terms of the I/O and relational operations it
will perform. HRDBMS is designed such that it is easy to
construct map tasks which perform different relational
operations in parallel, do I/O in parallel, and even use
parallelism within the execution of a single relational operator.
For example, table data is not only partitioned across nodes,
but also partitioned across disk drives on each node. A
separate I/O thread is assigned to each disk.

Another performance improvement comes from the
combination of not materializing intermediate files on disk, and
not sorting during the shuffle. These changes allow 1 map
phase to start processing data before a previous map phase
finishes running. In fact for some queries, all of the map
phases involved in the query may immediately begin to do
work when the workflow begins executing.

Eventually, the map tasks all map their rows back to the
coordinator node that planned the query. The coordinator then
returns the result set back to the client.

IV. HRDBMS OPTIMIZER
HRDBMS takes advantage of years worth of research into

traditional relational database SQL optimization to build
efficient workflows for execution. Query planning starts out
very similar to query planning for a traditional relational
database. Standard transformations such as operator reordering
are applied, join types are chosen, cardinalities are estimated
from statistics, selection and projection are pushed down, etc…

In HRDBMS, the cost of a query is dominated by the cost
of the shuffles. Therefore, the optimizer attempts to do 2
things. First it attempts to reduce the number of shuffles by
taking advantage of the way the data is partitioned on disk as
much as possible. Secondly, it attempts to reduce the number
of rows that are passed through each of the shuffles. This is a

similar process to join enumeration in a standard relational
database.

The optimizer then adds combiner steps where they can be
used. Again, this reduces the amount of data that has to pass
through the shuffle. These combiner steps are just like in
Map/Reduce where they are local to 1 node. However,
HRDBMS also prefers multiple smaller parallel shuffles to one
big shuffle. So, the optimizer may also choose to insert
“combiner-like” steps to do pre-aggregation, where each
combiner-like step processes data from a subset of the overall
set of map tasks. There may be more than 1 round of these
combiner-like tasks depending on data cardinality and the
number of nodes involved.. The optimizer may also choose to
do the same sort of thing for sorting. This is essentially multi-
pass k-way mergesort, but with parallelism on each of the
passes. The optimizer will insert these combiner-like steps in
an effort to reduce the number of neighbors that each node
must communicate with. Tests have shown that this results in
more efficient network communications.

Lastly, the optimizer decides where to replace table scans
with index access. The final workflow is composed and it is
submitted to the HRDBMS framework for execution.

V. RESULTS
We have run micro-benchmarks as well as the TPC-H

benchmark at the 100GB scale on clusters ranging from 4 to 32
nodes. All nodes are Amazon EC2 m3.2xlarge instances.
HRDBMS was compared against Hive and DB2 (an enterprise
class traditional distributed relational database). In micro-
benchmarks, HRDBMS outperformed both Hive and DB2. In
the TPC-H benchmark, HRDBMS was a few percent slower
than DB2, but several times faster than Hive. HRDBMS did
show a higher speedup from 4-32 nodes in TPC-H testing than
did DB2.

VI. FUTURE WORK
Fault tolerance is not yet implemented in HRDBMS, but

the system is already rack-aware and aware of how data is
partitioned across nodes and disks. The plan is to have
HRDBMS maintain on-rack and off-rack replicas that can be
used in the event of primary node failure. This could be
extended to preferring secondary copies of data when certain
nodes have more capacity at current than other nodes. Data
modifications affecting nodes that are down would be placed
into pending-work queues. The work in these queues must be
completed and successfully committed before a node is
allowed to rejoin the cluster.

REFERENCES

[1] R. Xin, J. Rosen, M. Zaharia, et al, ”Shark: SQL and rich analytics at
scale,” Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 13-24, 2013

