
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 00:1-29

Load-balanced and locality-aware scheduling for data-
intensive workloads at extreme scales

Ke Wang1,*,†, Kan Qiao2, Iman Sadooghi1,
Xiaobing Zhou3, Tonglin Li1, Michael Lang4, Ioan Raicu1,5

1Illinois Institute of Technology, USA; 2Google Inc., USA; 3Hortonworks Inc., USA

4Los Alamos National Laboratory, USA; 5Argonne National Laboratory

†E-mail: kwang22@hawk.iit.edu

SUMMARY

Data driven programming models such as many-task computing (MTC) have been prevalent for
running data-intensive scientific applications. MTC applies over-decomposition to enable distributed
scheduling. To achieve extreme scalability, MTC proposes a fully distributed task scheduling
architecture that employs as many schedulers as the compute nodes to make scheduling decisions.
Achieving distributed load balancing and best exploiting data-locality are two important goals for the
best performance of distributed scheduling of data-intensive applications. Our previous research
proposed a data-aware work stealing technique to optimize both load balancing and data-locality by
using both dedicated and shared task ready queues in each scheduler. Tasks were organized in queues
based on the input data size and location. Distributed key-value store was applied to manage task
metadata. We implemented the technique in MATRIX, a distributed MTC task execution framework.
In this work, we devise an analytical sub-optimal upper bound of the proposed technique; compare
MATRIX with other scheduling systems; and explore the scalability of the technique at extreme scales.
Results show that the technique is not only scalable, but can achieve performance within 15% of the
sub-optimal solution. Copyright © 2015 John Wiley & Sons, Ltd.

Received …

KEY WORDS: data-intensive computing; data-aware scheduling; work stealing; key-
 value stores; many-task computing

1.! INTRODUCTION

Large-scale scientific applications are ushering in the era of big data such that task
execution involves consuming and producing large volumes of input and output data
with data dependencies among tasks. These applications are referred to as data-
intensive applications that cover a wide range of disciplines, including data analytics,
bioinformatics, data mining, astronomy, astrophysics, and MPI ensembles [1]. The
big data phenomenon has expedited the evolution of paradigm shifting from compute-
centric model to data-centric one.

*Correspondence to: Ke Wang, Department of Computer Science, Illinois Institute of Technology, 10
W 31st St, Stuart Building, Room 002, Chicago IL, 60616, USA.

Copyright © 2015 John Wiley & Sons, Ltd.

2

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

Scheduling data-intensive applications is dramatically different from scheduling
the traditional high performance computing (HPC) MPI applications [54, 55, 66, 67],
which are usually comprised of big tightly-coupled jobs with long durations, and the
amount of jobs is not that many. A centralized batch scheduling system, such as
SLURM [2], Condor [3], SGE [4], and Cobalt [5], may still work well at certain
scales, as there wouldn’t be many scheduling decisions to make. Load balancing and
data-locality are both trivial due to the global view of the centralized scheduler. On
the contrary, more and more data-intensive applications are becoming loosely coupled
in nature. They contain many small jobs/tasks (e.g. per-core) that have shorter
durations (e.g. sub-second) and large volumes of data dependencies [1]. As systems
are approaching billion-way concurrency at exascale [6], we argue that the data driven
programming models will likely employ over-decomposition to generate more fined-
grained tasks than available parallelism. While over-decomposition has the ability to
improve utilization and fault tolerance at extreme scales [7], it poses severe
challenges on scheduling system to make fast scheduling decisions (e.g. millions/sec)
and to be available, in order to achieve the best performance. These requirements are
far beyond the capability of today’s centralized batch scheduling systems.

The Many-task computing (MTC) [8] paradigm comes from the data driven model,
and aims to address the challenges of scheduling fine-grained data-intensive
workloads [9]. MTC applies over-decomposition to structure applications as Direct
Acyclic Graphs (DAG), in which the vertices are small discrete tasks and the edges
represent the data flows from one task to another. The tasks are embarrassingly
parallel with fine granularity in both size (e.g. per-core) and durations (e.g. sub-
seconds to a few seconds).

We have shown that the MTC paradigm will likely require a fully distributed task
scheduling architecture (as opposed to the centralized one) that employs as many
schedulers as the compute nodes to make scheduling decisions, in order to achieve
high efficiency, scalability, and availability [10] for exascale machines with billion-
way parallelism [6]. As at exascale, each compute node would have 2 to 3 orders of
magnitude more intra-node parallelism, and the MTC data-intensive workloads
contain extremely large amount of fine-grained tasks. Therefore, there would need a
scheduler on one “fat” compute node forming 1:1 mapping to make full utilization of
the node. All the schedulers are aware of each other and receive workloads to
schedule tasks to local executors. Therefore, ideally, the throughput would gain near-
optimal linear speedup as the system scales. Besides, failures only affect the tasks that
are run on the failed nodes, and can be resolved by resubmitting the affected tasks to
other schedulers for execution without much effort.

The two important but conflicting goals of the distributed scheduling are load
balancing and data-locality [10]. Load balancing [11] refers to distributing workloads
as evenly as possible across all the schedulers, and it is important given that a single
heavily loaded scheduler would lower the system utilization significantly. Data-
locality aware scheduling requires mapping a task to the node that has the input data.
This aims to minimize the overheads of moving large volumes of data through
network. To achieve dynamic load balancing, work stealing technique [12,13,14] was
utilized such that the idle schedulers poll neighbors to balance their loads by
migrating tasks from the overloaded schedulers. However, the action of moving tasks
randomly regardless of the data-locality may incur significant data-transferring
overhead. To best exploit data-locality, we need to map each task to where the data
resides. This is infeasible because this mapping is an NP-complete problem [17], and
is leading to poor load balancing due to the potential unbalanced data distribution.

3

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

To optimize between both goals, our previous work [10] proposed a data-aware
work stealing (DAWS) technique that was able to achieve good load balancing and
also tried to best exploit data-locality. Each scheduler maintained both dedicated and
shared task ready queues that were implemented as max priority queues [18] based on
the data size a task requires. Tasks in the dedicated queue were confined to be
executed locally unless special policy was applied, while tasks in the shared queue
may be migrated through work stealing among schedulers for balancing loads. A
ready task was put in either queue based on the size and location of the required input
data. A distributed key-value store (KVS) (i.e. ZHT [19, 62, 20, 21]) was applied as a
metadata service to keep task metadata, including data dependency and locality
information, for all the tasks. We implemented the technique in MATRIX [22, 64, 70],
a MTC task execution framework, and evaluated up to 200 cores.

This article makes the following new contributions that extend the previous
work broader in scope and more in depth:

(1)! Devise an analytical model to analyze the DAWS technique. This model gives
a sub-optimal upper bound of the performance of the technique and helps us
understand it in depth from a theoretical perspective.

(2)! Compare the experimental results with those achieved through the analytical
model, and explore the scalability of the technique through the model up to
extreme scales of 128K cores.

(3)! Add additional fine-grained task scheduling systems (Sparrow [23], CloudKon
[24]) to the performance comparison, further showing the potential broader
impact of the DAWS technique on the Cloud data centers.

The rest of this article is organized as follows. Section 2 introduces the fully
distributed scheduling architecture, the previously proposed data-aware work stealing
technique, and the MATRIX task scheduling system. Section 3 devises an analytical
model that gives a sub-optimal upper bound of the technique. Section 4 evaluates the
technique through MATRIX using real applications, as well as benchmarking
workloads. We list the related work in Section 5. Section 6 draws the conclusions and
presents the future work.

2.!LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

This section introduces the fully distributed scheduling architecture, the proposed
data-aware work stealing (DAWS) technique, and the implementation details of
MATRIX. The bulk of this section is from the previous paper [10] with a shortened
version, along with a couple of new added subsections.

2.1.! Fully Distributed Scheduling Architecture
We have shown that the MTC paradigm will likely require a fully distributed task
scheduling architecture for exascale machines. The architecture is shown in Figure 1.

The system has four components: client, scheduler, executor, and key-value store
(KVS). Each compute node runs a scheduler, an executor and a KVS server. The
client issues requests to generate a set of tasks, puts task metadata into KVS servers,
submits tasks to all schedulers, and monitors the execution progress. The schedulers
are fully connected, and map tasks to either the local or the remote executors,
according to the location and size of the required data of the tasks. Whenever a
scheduler has no ready tasks, it communicates with other schedulers to migrate ready
tasks through load balancing techniques (e.g. work stealing). Each executor forks

4

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

several (usually equals to number of physical cores of a machine) threads to execute
ready tasks concurrently.

KVS$server

Scheduler

Executor KVS$server

Scheduler

Executor

Compute(Node Compute(Node

……

Fully.Connected

communication

Client Client Client

Figure 1: Fully distributed scheduling architecture

A distributed key-value store (KVS), in our case the ZHT KVS [19, 25], is used to
monitor the execution progress and to keep the metadata of all the tasks and system
states in a distributed, scalable, and fault tolerant way. ZHT is a zero-hop persistent
distributed KVS with each ZHT client having a global view of all the ZHT servers.
For each operation (e.g. insert, lookup, remove) of ZHT server, there is a
corresponding client API. The client calls the API, which sends a request to the exact
server (known to the client by hashing the key) that is responsible for the request.
Upon receiving a request, the ZHT server executes the corresponding operation. ZHT
serves as a data management building block for extreme scale system software, and
has been tested up to 32K cores on an IBM Blue Gene /P supercomputer [19].

Both the system clients and schedulers are initialized as ZHT clients. The system
client inserts all the task metadata information to ZHT before submitting tasks to all
the schedulers. The scheduler queries and updates the task metadata when scheduling
tasks, and in the meanwhile, puts local state information (e.g. number of waiting,
ready, and complete tasks, number of idle executing threads) to ZHT periodically and
the system client keeps monitoring this information until all tasks are completed.

2.2.! Data-Aware Work Stealing
This section covers the proposed data-aware work stealing (DAWS) technique. We
first describe the adaptive data-locality oblivious work stealing technique that aims to
achieve load balancing. Then we put constraints on it to enable data-aware scheduling.
2.2.1.!Adaptive Work Stealing
Work stealing has been proven as an efficient load balancing technique at the
thread/core level in shared memory environment [11, 26]. It is a pull-based method in
which the idle processors randomly steal tasks from the overloaded ones. Our fully
distributed scheduling system adopts work stealing at the node level in distributed
environment. When a scheduler is idle, it randomly chooses some candidate neighbors.
Then, it goes through all neighbors in sequential to query the “load information”
(number of ready tasks), and tries to steal tasks from the most heavily loaded neighbor.

When a work stealing operation fails because either none of the selected neighbors
have ready tasks, or the reported tasks have been executed when the stealing happens,
the scheduler waits for a period of time (polling interval) and then does work stealing
again. We implemented an adaptive, exponential back-off polling interval strategy:
The default polling interval is set to a small value (e.g. 1 ms). Once a scheduler

5

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

successfully steals tasks, it sets its polling interval back to the initial small value.
Otherwise, the scheduler waits the time of polling interval and doubles it and tries to
do work stealing again. Also, we set an upper bound to the polling interval. Whenever
the value hits the upper bound, a scheduler would not do work stealing anymore. This
aims at reducing the amount of failed work stealing at the final stage when there are
rare tasks.

The parameters of work stealing are the number of dynamic neighbors, the number
of tasks to steal, and the polling interval. Our previous simulation work [13, 15, 16]
studied the parameter space extensively and found the optimal configurations that can
minimize the network communication overhead while achieving load balancing: the
number of tasks to steal is half; the number of dynamic neighbors is square root of the
number of all schedulers; and an exponential back-off polling interval strategy.
2.2.2.!Data-Aware Work Stealing (DAWS)
The adaptive work stealing technique is data-locality oblivious. This may incur
significant data movement overheads for data-intensive workloads. We present the
ideals that combine work stealing with data-aware scheduling.
1)! Distributed KVS Used as a Meta-Data Service
As distributed key-value store (KVS) has gained its popularity in serving as a building
block for distributed system services [25, 61, 65], we apply ZHT (a distributed KVS)
to store task metadata as (key, value) records for all the tasks. The key is task id, and
the value is defined as the following data structure in Figure 2. The value includes the
following information: the task status (e.g. queuing, being executed, and finished);
data dependency conditions (num_wait_parent, parent_list, children); data locality
information (data_object, data_size, all_data_size); task timestamps that record the
times of different phases (e.g. submission, queued, execution, and end) of the task;
and the task migrating history from one scheduler to another in the system.

Figure 2: Task metadata stored in ZHT

Job Submission: Before submitting an application workload DAG to the schedulers
for scheduling, the client generates a task metadata (focusing on the
“num_wait_parent” and “children”) for each task and inserts all the task metadata to
ZHT. The task metadata will be updated later by the schedulers when task state
changes. There are different mechanisms through which the client submits the tasks to
the schedulers. The first one is the worst case, in which the client submits all the tasks
to only one arbitrarily chosen scheduler. This is the worst case scenario from load
balancing’s perspective. The tasks will be spread out among all the schedulers
through the work stealing technique. The second one is the best case, in which the
client submits all the tasks to all the schedulers through some load balancing method

typedef TaskMetaData {
byte!status" // the status of the task: queuing, being executed, finished
int num_wait_parent; // number of waiting parent

 vector<string> parent_list; // schedulers that run each parent task
 vector<string> children; // children of this tasks
 vector<string> data_object; // data object name produced by each parent
 vector<long> data_size; // data object size produced by each parent
 long all_data_size; // all data object size (byte) produced by all parents
 List<long> timestamps; // time stamps of a task of different phases
 List<string> history; // the provenance of a task, from one node to another
} TMD;

6

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

(e.g. hashing the task ids among all the schedulers). In addition, the client is able to
submit tasks to whatever groups of schedulers it wants to.

Job Removal: The client can conduct the job removal easily when it decides to
remove a task in a workload after submission. The client can simply lookup the task
metadata from ZHT, and finds out where the task is at present ‒ the last scheduler in
the history field of the task metadata. Then, the client sends a message to the last
scheduler to request removing the task. After the scheduler receives the message, it
deletes the task in one of the task queues (will explain later). If the removed task has
not been finished (identified by the status field), the scheduler will need to remove all
the tasks in the subtree rooted as the removed task, because these tasks are waiting for
the removed task to be finished while this will never happen due to the removal. The
scheduler can remove these tasks as follows: First, the scheduler queries ZHT for the
children of the removed task. Then, for each task, it checks which scheduler is
holding the task, and sends removal message to that scheduler. This procedure is
continued until all the subtree tasks are removed.
2)! Distributed Queues in Scheduler
Each scheduler maintained four local task queues: wait queue (WaitQ), dedicated
local ready queue (LReadyQ), shared work stealing ready queue (SReadyQ), and
complete queue (CompleteQ) [68], as shown in Figure 3. These queues hold tasks in
different states (stored as metadata in ZHT). A task is moved from one queue to
another when state changes. With these queues, the system supports scheduling tasks
with data dependencies specified by an arbitrary DAG.

Wait%Queue

Local%
Ready%Queue

Task%1

Task%2

Task%6

Work7Stealing%
Ready%Queue

Task%1

Task%2

Task%3

Task%4

Task%5

Task%6

Task%3

Task%4

Task%5

Complete%
Queue

Task%1

Task%2

Task%3

Task%4

Task%5

Task%6

Wait%Queue%(WaitQ):%holds%tasks%that%
are%waiting%for%parents%to%complete

Dedicated%Local%Ready%Queue%
(LReadyQ):%holds%ready%tasks%that%can%
only%be%executed%on%local%node%

Shared%Work8Stealing%Ready%Queue%
(SReadyQ):%holds%ready%tasks%that%can%
be%shared%through%work%stealing

Complete%Queue%(CompleteQ):%holds%
tasks%that%are%completed

P1:%a%program%that%checks%if%a%task%is%
ready%to%run,%and%moves%ready%tasks%to%
either%ready%queue

P2:%a%program%that%updates%the%metadata%
of%each%child%of%a%completed%task

T1%to%T4:%executor%has%4%(configurable)%
executing%threads%that%executes%tasks%in%
the%ready%queues%and%move%a%task%to%
complete%queue%when%it%is%done%

P1 P2

T1 T2 T3 T4

Figure 3: Specification of task queues in a scheduler

Figure 4 displays the flowchart of the execution procedure of a task, during which
the task is moved from one queue to another. Initially, the scheduler puts all the
incoming tasks from the client to the WaitQ. A program (P1 in Figure 3) keeps
checking every task in the WaitQ to see whether the task is ready to run by querying
the metadata from ZHT. The task metadata has been inserted into ZHT by the client.
Specifically, only if the value of the field of “num_wait_parent” in the TMD is equal
to 0 would the task be ready to run. When a task is ready to run, the scheduler makes
decision to put it in either the LReadyQ or the SReadyQ, or push it to another node.

7

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

The decision making procedure is shown in the rectangle that is marked with dotted-
line edges in Figure 4. We will explain the decision making algorithm later.

When a task is done, it is moved to the CompleteQ. Another program (P2 in Figure
3) is responsible for updating the metadata for all the children of each completed task.
P2 first queries the metadata of the completed task to find out the children, and then
updates each child’s metadata as follows: decreasing the “num_wait_parent” by 1;
adding current scheduler id to the “parent_list”; adding the produced data object name
to the “data_object”; adding the size of the produced object to the “data_size”;
increasing the “all_data_size” by the size of the produced data object.

Figure 4: Flowchart of a task during the execution procedure

3)! Decision Making Algorithm
We explain the decision making procedure (the dotted-line rectangle in Figure 4) that
decides to put a ready task in either the LReadyQ or the SReadyQ, or push it to
another node, given in Algorithm 1.

The SReadyQ stores the tasks that can be migrated to any scheduler for load
balancing’s purpose (lines 1 – 13), the “load information” queried by work stealing is
the length of the SReadyQ; these tasks either don’t need any input data or the
demanded data volume is so small that the transferring overhead is negligible. The
LReadyQ stores the tasks that require large volumes of data and the majority of the
data is at the current node (lines 14 – 15); these tasks are confined to be scheduled and
executed locally unless special policy is used. If the majority of the input data is large
but at a different node, the scheduler then pushes the task to that node (lines 16 – 18).

8

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

When a scheduler receives a pushed task, it puts the task in the LReadyQ. The
threshold t defines the upper bound of the ratio of the data-transferring overhead (data
size divided by network bandwidth: net_band) to the estimated task execution length
(est_task_length). The smaller t means the less tolerance of moving data: If t is
smaller, in order to put the task in SReadyQ (meaning that the task can be migrated
through work stealing technique and that moving the data is tolerable), the task’s all
required data size (tm.all_data_size) needs to be smaller. This means less tolerance of
moving a decent large amount of data.
ALGORITHM 1. Decision Making to Put a Task in the Right Ready Queue
Input: a ready task (task), TMD (tm), a threshold (t), current scheduler id (id), LReadyQ, SReadyQ,
estimated length of the task in second (est_task_length)
Output: void.
1 if (tm.all_data_size / net_band / est_task_length <= t) then
2 SReadyQ.push(task);
3 else
4 long max_data_size = tm.data_size.at(0);
5 int max_data_scheduler_idx = 0;
6 for each i in 1 to tm.data_size.size() - 1; do
7 if tm.data_size.at(i) > max_data_size; then
8 max_data_size = tm.data_size.at(i);
9 max_data_scheduler_idx = i;
10 end
11 end
12 if (max_data_size / net_band / est_task_length <= t); then
13 SReadyQ.push(task);
14 else if tm.parent_list.at(max_data_scheduler_idx) == id; then
15 LReadyQ.push(task);
16 else
17 send task to: tm.parent_list.at(max_data_scheduler_idx)
18 end
19 end
20 return;

As we don’t know ahead how long a task will be running, we will need to predict
the est_task_length in some ways. One method is to use the average execution time of
the completed tasks as the est_task_length. This method works fine for workload of
largely homogeneous tasks that have small variance of task lengths. For highly
heterogeneous tasks, we can assume the task length conforms to some distributions,
such as uniform random, Gaussian, and Gama, according to the applications. This can
be implemented in our technique without much effort. Even though the estimation of
the task length has deviation, our technique can tolerate it with the dynamic work
stealing technique, along with the FLDS policy (will explain later). In addition, we
have evaluated MATRIX using highly heterogeneous MTC workload traces that have
34.8M tasks with the minimum runtime of 0 seconds, maximum runtime of 1469.62
seconds, medium runtime of 30 seconds, average runtime of 95.20 seconds, and
standard deviation of 188.08 [31], and MATRIX shows great scalability (results were
presented in [24]).The executor forks configurable number (usually equals to number
of cores of the node) of threads to execute ready tasks. Each thread first pops tasks
from the LReadyQ, and then from the SReadyQ if the LReadyQ is empty. Both ready
queues are implemented as max priority queue based on the data size. When
executing a task, the thread first queries the metadata to find the size and location of
the required data, and then collects the data either from local or remote nodes. If
neither queue has tasks, the scheduler does work stealing, and puts the stolen tasks in
the SReadyQ.

9

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

4)! Different Scheduling Policies
We define four scheduling policies for the DAWS technique, specified as follows:
a)! MLB: maximized load balancing

MLB considers only the load balancing, and all the ready tasks are put in the
SReadyQ allowing to be migrated. We achieve the MLB policy by tuning the
threshold t in Algorithm 1 to be the maximum possible value (i.e. LONG_MAX).
b)! MDL: maximized data-locality

MDL only considers data-locality, and all the ready tasks that require input data
would be put in the LReadyQ, no matter how big the data is. This policy is achieved
by tuning the threshold t in Algorithm 1 to be 0.
c)! RLDS: rigid load balancing and data-locality segregation

RLDS sets the threshold t in Algorithm 1 to be somewhere between 0 and the
maximum possible value. Once a task is put in the LReadyQ of a scheduler, it is
confined to be executed locally (this is also true for the MDL policy).
d)! FLDS: flexible load balancing and data-locality segregation

The RLDS policy may lead to poor load balancing when a task that produces large
volumes of data has many children. To avoid this problem, we relax the RLDS to the
flexible FLDS policy that allows tasks to be moved from the LReadyQ to the
SReadyQ under certain circumstance. We set a time threshold tt and use a monitoring
thread to check the LReadyQ periodically. If the estimated running time (est_run_time)
of the LReadyQ is above tt, the thread then moves some tasks to guarantee that the
est_run_time is below tt. The est_run_time equals to the LReadyQ length divided by
the throughput of the scheduler. Assuming 1000 tasks are finished in 10sec, the
LReadyQ has 5000 tasks, and tt=30sec. We calculate the number of moving tasks:
throughput=1000/10=100tasks/sec, est_run_time=5000/100=50sec, 20sec longer than
tt. 20sec takes 20/50=40% ratio, therefore, 40%*5000=2000 tasks will be moved.
5)! Write Locality and Read Locality
The DAWS technique ensured the best write locality, and at the meanwhile,
optimized the read locality. For write locality, every task writes the produced data
locally. We had considered using ZHT as both a data and a task metadata service.
However, it led to extreme difficulty in optimizing the data-locality as ZHT relies on
consistent hashing to determine where to store the data. We also considered
leveraging distributed file system (e.g. HDFS [27], FusionFS [28, 79, 80]) to manage
the data, especially as FusionFS is optimized for write operations. We argue that the
scheduling strategies are not affected by the actual method of data storage. We
envision allowing data to be stored in a distributed file system as future work.

Read locality was optimized by migrating a task to where the majority of data
resides for large data volumes. For small data volumes, tasks are run on wherever
there are available compute resources to maximize utilization.
6)! Caching
As in scientific computing, the normal pattern of data flows is write-once/ready-many
(according to the assumption HDFS made in the Hadoop system [29]), we have
implemented a caching mechanism to reduce the data movement overheads. In some
cases, moving data from one node to another is inevitable. For example, if a task
requires two pieces of data that are at different nodes, at least one piece of data needs
to be moved. In a data movement, we cached the moved data locally at the receiver
side for the future use by other tasks. This would significantly expedite the task

10

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

execution progress. As data is written once, all the copies of the same data would
have the same view, and no further consistency management would be needed.
7)! List of Short Terms
To summarize and make it clear about the important short terms we use in this article,
we list and explain them in Table 1 as follows.

Table 1: List of important short terms

Term Description
KVS key-value stores
WaitQ task waiting queue
LReadyQ dedicated local task ready queue
SReadyQ shared work stealing task ready queue
CompleteQ task complete queue
t a threshold defines the upper bound of the ratio of the data-transferring overhead to the

estimated task execution length
MLB maximized load balancing policy
MDL maximized data-locality policy
RLDS rigid load balancing and data-locality segregation policy
FLDS flexible load balancing and data-locality segregation policy
tt a time threshold to determine the number of tasks being moved from the LReadyQ to the

SReadyQ for the FLDS policy
DAWS Data aware work stealing

2.3.! Fault Tolerance
Fault tolerance refers to the ability of handing failures (e.g. nodes are down) of a
system. The goal of designing fault tolerance mechanisms is at least twofold: one is
that the system should still be operable under failures, the other one is that the system
should handle the failures without drawing much attention of the users. Fault
tolerance is an important design concern of efficient systems software, especially for
exascale machines that have high failure rates. Our distributed scheduling architecture
has the ability to tolerate failures with a minimum effort because of the distributed
nature, and the fact that the schedulers are stateless with the ZHT key-value store
managing the task metadata. When a compute node is down due to hardware failures,
only the tasks in the scheduler’s queues, data files in the memory and persistent
storage, and metadata in the ZHT server, of that particular node are affected, which
can be resolved as follows. (1) First of all, a monitoring system software (MSS) could
be applied, which detects the node failures by issuing periodic “heart-beat” messages
to the nodes; (2) The affected tasks can be acknowledged and resubmitted to other
schedulers by the clients. In the future, we will implement mechanism that can
resubmit the affected tasks automatically without any user interaction. For example,
the MSS will keep a copy of all the submitted tasks, and each scheduler can write the
list of task ids of local unfinished tasks to ZHT. Whenever the MSS detects a failed
scheduler, the MSS looks up the task ids of the unfinished tasks of the failed
scheduler from ZHT, and then resubmit the corresponding affected tasks; (3) A part of
the data files were copied and cached in other compute nodes when they were
transmitted for executing some tasks. In the future, we will rely on the underneath file
system to handle the affected files; (4) As ZHT is used to store the metadata, and ZHT
has implemented failure/recovery, replication and consistency mechanisms, MATRIX
needs to worry little about the affected metadata.

2.4.! Implementation Details

11

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

We had implemented a MTC task execution framework, MATRIX, for scheduling
data-intensive applications. MATRIX had the fully distributed scheduling architecture
shown in Figure 1, and implemented the DAWS technique. MATRIX simply used
ZHT as a black box through ZHT client APIs, ensuring easier maintainability and
extensibility. MATRIX codebase was made open source on Github:
https://github.com/kwangiit/matrix_v2. It had about 3K lines of C++ code
implementing the MATRIX client, scheduler, the executor, and the DAWS logic,
along with 8K lines of ZHT codebase, plus 1K lines of auto-generated code from
Google Protocol Buffer [30]. MATRIX had dependencies on ZHT [19] and Google
Protocol Buffer.

3.!THEORETICAL ANALYSIS OF THE DAWS TECHNIQUE

To understand the proposed DAWS technique in depth from a theoretical perspective,
we give a theoretical analysis about the upper bound of the performance of the
technique in terms of the overall timespan of executing a given data-intensive MTC
workload. The theoretical analysis is a centralized algorithm that has a global
knowledge of the system states (e.g. resource and task metadata), and aims to find the
shortest overall timespan of executing a workload.

The problem is modeled as follows. The workload is represented as an direct
acyclic graph (DAG), ! = #, % , along with several cost functions. Each vertex
&' & ∈ #' is a task, which takes)*+*, & unit of execution time and generates an
output of data with size - & . Assume that each ready task & gets queued to wait
)./012 & unit of time on average before being executed. The value of)./012 & is
directly related to the compute node that runs the task & and the individual task
execution time. This is because a compute node has certain amount of processing
capacity that can execute a limited number of tasks in parallel. The processing
capacity is usually measured as the number of idle cores. We evaluate the)./012 &
of task & as the average task waiting time of all the tasks on one node to release
some time constraints, with the following estimation.

Assuming on average, every core of a compute node gets 3 tasks that have an
average execution time of 4. Therefore, the 5th task needs to wait 5 − 1 ×4 time
before being executed. Thus, the)./012 & on average is:

)./012 & =
5 − 1 ×49

:;<

3
=

3 − 1 ×4

2
'''' 1

Define the time taken to move - & size of data to another compute node running
a task > that requires the data is)?@A020 &, > unit of time.)?@A020 &, > =
- & B &,> , in which B &,> is the data transfer rate between the two compute
nodes that run tasks & and >, respectively. For any arc C& ∈ %, it represents that
task C is the parent of task &, meaning that task & requires the data output of task
C. The parents of a task & is notated as D & = C|C& ∈ % .

Generally, there are two categories of locations where a task could be scheduled.
One is on the compute node that is different from all the compute nodes that ran the
task’s parents (case 1). In this case, the data items that are generated by all the parents
need to be transmitted, and we assume that the task itself is not moved. The other one
is on one of the compute nodes that ran at least one of the task’s parents (case 2). In
this case, the data items that are generated by all the other parents that were run on

12

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

different compute nodes need to be transmitted, and we assume that the task itself is
also moved.

We define the problem of getting the minimum timespan of executing a given data-
intensive MTC workload as follows:
•! Define)*F & as the earliest finishing time of task &.
•! The problem is to find out the largest)*F & , & ∈ #, which is the overall

timespan of finishing a given workload.
•! Define the time taken to move a task & from one node to another that runs

task > (a parent of task &) is)?@20G9 &, > , and)?@20G9 &, > =
HIJK(&)/B(&, >), in which, HIJK(&) is the size of the task specifications.

We summarize the mathematical notations of the system in Table 2. Then, we
devise the following recursive formulas to compute)*F & :

)*F & = min)*F
R & ,)*F

RR & +)*+*, &

)*F
R & = max

V∈W @
)*F C +)?@A020 C, & +)./012 &

)*F
RR & = min

V∈W(@)
max
/∈W @

)*F > +)?@A020 >, C +)?@20G9 &, > +')./012 &

In the formulas,)*F� & is for case 1, and)*F�� & is for case 2. Given an
application workload that is represented as ! = #, % and the cost functions, as
)*+*, & , - & , B C, & , HIJK(&), C ∈ #, & ∈ #, C& ∈ % are given, and)./012 & of
each task is computed through equation 1 , we could use dynamic programming to
calculate)*F & for all the tasks starting with the tasks that have no parents. The
biggest)*F & is the earliest time to finish the whole workload.

Table 2: Mathematical notations of the system

Notations Descriptions
X = Y, Z A workload DAG, # represents the tasks, and % represents the data dependencies
[, \,] Arbitrary task, C, &, >' ∈ #
^_`_a \ The execution time of task &
b \ The data output size of task &

cde_ \ The size of the specification of task & in bytes
^f]gd^ \ The waiting time of task & in the ready queue before execution

h The average number of task per core
i The average task execution time

^j\bg^g \,] The time taken to move - & size of data generated by task & to task >
^j\^gch \,] The time taken to move task & to the node that runs task >
k \,] The network bandwidth between two nodes that run task & and task >, respectively
l \ The parents of task &
^_m \ The earliest finishing time of task &

Assuming that the number of tasks is n, and every task has o parents on average,
the time complexity of the algorithm is Θ nop . The op comes from the computation
of)*FRR & , during which for all the o possible locations of running the task, we
need to wait until the data of the last finished parent arrives (the other o). In reality,
o is always much smaller than n. The memory complexity is Θ n , as we need to
memorize the values of)*F & and - & of all the tasks in tables for looking up.

This analysis gives a sub-optimal lower bound of the overall timespan
(performance upper bound) of executing a workload DAG. We call it sub-optimal,
because for a task, the solution above just considers one step backwards (parents).

13

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

This doesn’t consider the situation of scheduling a task to where the grand-parents or
grand-grand-parents were scheduled, which will eliminate unnecessary data
movements. However, finding an optimal solution is an NP-hard problem.

We will show how close our DAWS technique can achieve in performance
comparing to the theoretical sub-optimal upper bound in the evaluation section.

4.!EVALUATION

In this section, we present the performance evaluation of the DAWS technique. We
include and shorten a part of the evaluation results from the previous work [10],
including comparing MATRIX with the Falkon [32] centralized data-aware scheduler
using two scientific applications; comparing different scheduling polices; and running
MATRIX with benchmarking workloads. We add many more new evaluation results
that enable us better understanding of the efficiency and performance of the DAWS
technique, including some new visualization results of running MATRIX with the two
applications; theoretical analysis results up to extreme scales; and comparison results
of MATRIX with Sparrow [23] and CloudKon [24].

MATRIX was run on the Kodiak cluster from the Parallel Reconfigurable
Observational Environment (PROBE) [33] of Los Alamos National Laboratory.
Kodiak has 500 nodes and each node has two AMD Opteron (tm) processers 252
(2.6GHZ) and 8GB memory. We run experiments up to 100 nodes (200 cores),
similar to the Falkon data-diffusion work [34, 35] we compared with.

The performance metrics used in our evaluations include Average Time per stack
per CPU, Efficiency, Utilization, and Throughput, which are defined as follows:

Average Time Per Task Per CPU defines the average time of executing a task from
one CPU’s perspective. Ideally, each CPU would process tasks sequentially without
waiting for ready tasks. Therefore, the ideal average time should be equal to the
average task length of all the tasks. In reality, the average time should be larger than
the ideal case, and the closer they are the better. For example, assuming it takes 10sec
to run 2000 tasks on 100 cores, this means 2 tasks-per-sec-per-cpu (2000/10/100) on
average. The “Average Time Per Task Per CPU” is then 1/2=0.5sec. This metric is
from the Falkon Data-Diffusion paper [30] for fair comparison.

Efficiency refers to the proportion of time that the system spends on executing tasks.
The system spends other time on doing network communications, such as moving
data, moving tasks, doing work stealing. Efficiency also reflects the overall system
utilization and the higher the better. It is calculated as the ideal time (production of the
average task length and the average task per CPU) of finishing a workload dividing
the actual time of finishing the workload.

Utilization is an instant metric that measures the ratio of busy CPUs out of all
CPUs. Utilization is usually useful when doing visualization for the system state.

Throughput measures how fast the scheduling framework is able to execute tasks.
It is calculated as the average number of tasks finished during a time period (e.g. sec,
min, hours, and day). The throughput metric is useful for evaluation of the
performance of short-duration (e.g. sub-second) tasks.

4.1.! Evaluations of Scientific Applications
We compare MATRIX with the Falkon centralized scheduler using two scientific
applications: image stacking in astronomy [34] and all-pairs in biometrics [35].

4.1.1.! Image Stacking in Astronomy

14

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

This application conducts the “stacking” of image cutouts from different parts of the
sky. The procedure involves re-projecting each image to a common set of pixel planes,
and then co-adding many images to obtain a detectable signal that can measure their
average brightness/shape.

The workload includes many parallel tasks with each one fetching an individual
ROI object in a set of image files, and an aggregation task that collects all the outputs
to obtain a detectable signal. In our experiments, each task required a 2MB file (after
compression), executed 158ms and generated 10KB output data. The locality number
referred to the ratio of the number of tasks to the number of files. The numbers of
tasks and files of each locality number were given in [34].

We ran experiments up to 200 cores for all locality values. The MDL policy was
applied, as 2MB of data was large. We compared the DAWS technique implemented
in MATRIX with Falkon data diffusion at 128 cores (the largest scale the data
diffusion ran). The results are shown in Figure 5 (a). “GZ” meant the files were
compressed while “FIT” indicated the files were uncompressed. In the case of GPFS,
each task read its required data from the remote GPFS parallel file system. Data
diffusion first read all the data from GPFS, and then cached the data in the memory
for centralized data-aware scheduling of all the tasks. MATRIX read all the data from
the GPFS parallel file system, and then randomly distributed the data files to the
memory of all the compute nodes. The MATRIX client submitted tasks to all the
schedulers in the best case scenario. The schedulers applied the DAWS for distributed
data-aware scheduling of all the tasks. In all cases, the time taken to finish the
workload was clocked before the data was copied into the system, continued while the
tasks were loaded into the schedulers, and then kept going until all tasks were finished.

Figure 5: Evaluations using the Image Stacking application

We see that at 128-core scale, the average task running time of our DAWS
technique kept almost constant as locality increases, and was close to the ideal task
running time (158ms). This is because the files were uniformly distributed over all
compute nodes. The only overhead came from the schedulers making decisions to
migrate tasks in the right spots. When locality was small, the data diffusion (GZ)
experienced large average time, which decreased to be close to the ideal time when
locality increased to 30, because data was initially kept in a slower parallel file system
that needed to be copied to local disks. When locality was low, more amount of data
accesses from the file system was required. The average times of GPFS (GZ) and
GPFS (FIT) almost remained at a high constant value regardless of locality, due to the
fact that data was copied from the remote GPFS upon every data access.

0

400

800

1200

1600

2000

1 1.38 2 3 4 5 10 20 30 Ideal

Ti
m
e!
(m
s)
!p
er
!s
ta
ck
!p
er
!C
PU

Locality

Data!Diffusion!(GZ)
Data!Diffusion!(FIT)
GPFS!(GZ)
GPFS!(FIT)
DAWS

0

5

10

15

20

25

30

0

40

80

120

160

200

240

Ta
sk
!R
el
at
ed
!(
X1
00
0)

C
or
e!
R
el
at
ed

Time!(sec)

NumAllCore
NumBusyCore
NumTaskWait
NumTaskReady
NumTaskDone
Throughput!(tasks/10!sec)

(a) Comparison between DAWS with Data Diffusion (b) Utilization graph for locality 30

15

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

We show a visualization graph of MATRIX at 200 cores for locality 30 in Figure 5
(b). The utilization is calculated as the ratio of the area of the red region to that of the
green region. We see there is a quick ramp-up period, after which the load is balanced
across all the compute nodes. There is also a relatively long tail ramp-down period in
the end when there are few tasks remaining, which is because with the MDL policy,
no work stealing happened leading to poor load balancing in the end. But MATRIX
can still achieve 75% utilization at 200 cores with fine-grained tasks (158ms).

4.1.2.!All-Pairs in Biometrics
All-Pairs [35] describes a category of data-intensive applications that conduct a new
function on two sets, A and B. For example, in Biometrics, it is important to find the
covariance of two gene sequences by comparing piece with piece of the gene codes.

This workload included all independent tasks and every task executed for 100 ms
to compare two 12MB files with one from each set. There were 500 files in each set,
and we ran strong-scaling experiments up to 200 cores with a total of 500*500=250K
tasks. As a task needed two files that may locate at different nodes at the worst case,
one file may need to be transmitted. We used the FLDS policy. In the end (80% of the
workload is done), we set tt=20 sec, which was doubled when successfully moving
ready tasks from the LReadyQ to the SReadyQ.

Figure 6: Evaluations using the all-pairs application

We compared MATRIX DAWS technique with Falkon data diffusion [35] at 200
cores, and Figure 6 (a) shows the results. The “active storage” term [36] meant all the
files were stored in memory. For 100-ms tasks, our DAWS technique improved data
diffusion by 10.9% (85.9% vs 75%), and was close to the best case using active
storage (85.9% vs 91%). This is because data diffusion applied a centralized index-
server for data-aware scheduling, while our DAWS technique utilized distributed
KVS, which was much more scalable. It was also worthy to point out that without
harnessing data-locality (Best Case parallel file system), the efficiency was less than
20%, because all the files needed to be transmitted from the remote file system.

Although it is quite obvious that caching the data in the receiver’s memory will
usually be helpful to applications that have the write-once/ready-many pattern, we
show the effect of caching of the FLDS policy for the all-pairs application in Figure 7.
We see that without caching, the FLDS policy is only able to achieve less than 50%
efficiency at 200-core scales. This is because all the files are uniformly distributed
and each task requires two files, therefore, from the probability’s perspective, about
half of the tasks need to move data. With caching turned on, we record the cache-hit
rate, which shows as high as above 80%. This helps significantly and contributes to

0%

20%

40%

60%

80%

100%

500x500
200!CPUs
0.1!sec

Ef
fic
ie
nc
y

Experiment

Best!Case!(active!storage)
Falkon!(data!diffusion)
Best!Case!(parallel!file!system)
DAWS

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120 140 160 180 200

Ef
fic
ie
nc
y

No.!of!Cores

FLDS

MDL

MLB

(a) Comparison between DAWS with Data Diffusion (b) Comparison among different scheduling policies

16

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

85%+ efficiency. However, we shouldn’t conclude to always caching everything,
because memory size is limited. Besides, depending on the access patterns, the cached
data may never be reused. In the future, we will explore cache eviction mechanisms.

Figure 7: Comparison between Caching and No-Caching

4.1.3.!Comparisons of Different Scheduling Policies
We compared three scheduling polices using the all-pairs workloads, MLB, MDL, and
FLDS, up to 200 cores with the results shown in Figure 6 (b).

As we expected, the MLB policy performed the worst, because it considered only
load balancing and the required data was so large that transmitting it took significant
amount of time. The MDL policy performed moderately. From the load balancing’s
perspective, MDL did quite well except for the ending period. Because it did not allow
work stealing and loads might be imbalanced at the final stage leading to a long-tail
problem. The FLDS policy was the best, because it allowed the tasks being moved
from the LReadyQ to the SReadyQ as needed. This was helpful at the final stage when
many nodes were idle while a few others were busy.

To justify our explanation, we show the utilization figures of the FLDS and MDL
policies in Figure 8. The utilization is the percentage of the area of red line to that of
the green line. We see that both utilizations are quite high. The MDL policy has some
long tail end where the utilization drops, while the FLDS policy does not exhibit this.
Both policies have an initial ramp-up stage, during which one file (12MB) required by
a task may be transferred. The transferred files are cached locally for future use. After
that, because the number of files is relatively small (1000 in total), each compute node
is able to cache enough files that could satisfy most of future tasks locally.

Figure 8: Utilization graph of the FLDS and MDL policies at 200 cores

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120 140 160 180 200

C
ac
he
!H
it!
R
at
e

Ef
fic
ie
nc
y

Scale!(No.!of!Cores)

FLDS!Efficiency!(Caching)

FLDS!Efficiency!(NoYCaching)

FLDS!Caching!Hit!Rate

0

50

100

150

200

250

0! 20! 40! 60! 80! 100! 120! 140! 160!

N
o.
!o
f!c
or
es

Time!(sec)

NumAllCore NumBusyCore

0

50

100

150

200

250

0! 20! 40! 60! 80! 100! 120! 140! 160!

N
o.
!o
f!c
or
es

Time!(sec)

NumAllCore NumBusyCore

(a) Utilization of FLDS policy (b) Utilization of MDL policy

17

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

The conclusions are: for applications in which each task requires large amount of
data (e.g. several Megabytes), the FLDS policy should always be the first choice;
Unless the tasks require extremely large data that can easily saturate the networking,
the MDL policy should not be considered; The MLB policy should only be used when
tasks require small data pieces; The RLDS policy is preferable when the required
data pieces have a wide distribution of size (from few bytes to several Megabytes).
Besides, MATRIX is able to change policies at runtime as explained later.

4.2.! Evaluations of Benchmarking Workload DAGs
This section aimed to evaluate MATRIX with the DAWS technique using more
complex benchmarking workload DAGs, namely Bag of Task (BOT), Fan-In, Fan-
Out and Pipeline, which are represented in Figure 9 (a). BOT included independent
tasks without data dependencies and was used as a baseline; Fan-In and Fan-Out were
similar but with reverse tree-based shapes, and the parameters were the in-degree of
Fan-In and the out-degree of Fan-Out; Pipeline was a collection of “pipes” and in
each pipe, a task was dependent on the previous one. The parameter was the pipe size,
referring to the number of tasks in a pipe.

1

2

3

45

6 7

1

2 3 4

1

2 3 4

11 12 13

21 22 23

31 32 33

Bag+of+Tasks Fan3Out+DAG

Fan3In+DAG Pipeline+DAG

Figure 9: Evaluations using benchmarking workload DAGs

4.2.1.!Representative Applications of the Benchmarking Workload DAGs
After studying the workload patterns of a category of MTC data-intensive
applications using the Swift workflow system [44], we summarize the four
benchmarking workload DAGs that are representative and cater to the data-flow
patterns of different applications. Some applications display a single type of workload
DAG pattern, while others have a combination of several workload DAG types, out of
the four DAGs.

For example, the All-Pairs application in Biometrics is an example of the BOT
workload DAGs, in which, the tasks are independent and every task requires two
input files with each one coming from individual set. The Image Stacking application
in Astronomy has a two-layer Fan-In DAG data-flow pattern. The top layer includes
many parallel tasks with each one fetching an individual ROI object in a set of image
files, and the bottom layer has an aggregation task that collects all the outputs to
obtain a detectable signal. The workload DAGs of both applications were shown in
[10]. The molecular dynamics (MolDyn) application in Chemistry domain aims to
optimize and automate the computational workflow that can be used to generate the
necessary parameters and other input files for calculating the solvation free energy of

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200

Th
ro
ug
hp
ut
!(t
as
k!
/!s
ec
)

Scale!(No.!of!Cores)

BOT
Pipeline!DAG
FanYOut!DAG
FanYIn!DAG

(a) Benchmarking workload DAGs (b) Evaluation results

18

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

ligands, and can also be extended to protein-ligand binding energy. Solvation free
energy is an important quantity in Computational Chemistry with a variety of
applications, especially in drug discovery and design. The MolDyn application is an
8-stage workflow. At each stage, the workload data flow pattern is either a Fan-Out or
Fan-In DAG. The workload DAG was shown in [46]. The functional magnetic
resonance imaging (fMRI) application in the medical imaging domain is a functional
neuroimaging procedure that uses MRI technology to measure the brain activities by
detecting changes in blood flow through the blood-oxygen-level dependent (BOLD)
contrast [47]. In Swift, an fMRI study is physically represented in a nested directory
structure, with metadata coded in directory and file names, and a volume is
represented by two files located in the same directory, distinguished only by file name
suffix [48]. The workload to process each data volume has a 2-pipe pipeline pattern,
and each pipe consumes one file. The dominant pipeline consists of 12 sequential
tasks. Figure 10 shows the workload DAGs of both one volume and ten volumes.

Figure 10: Workload DAGs of the fMRI applications

4.2.2.!Evaluation Results!
MATRIX client can generate a specific workload DAG, given the input parameters
such as DAG type (BOT, Fan-In, Fan-Out, and Pipeline), DAG parameter (in-degree,
out-degree, and pipe size). Table 3 gives the experiment setups, which were the same
for all the DAGs: the executor had 2 executing threads with each one executing 1000
tasks on average (a weak-scaling configuration); the tasks had an average running
time of 50ms (0 to 100ms) and outputted an average data size of 5MB (0 to 10MB),
both were generated with uniform random distribution; we set the threshold t to 0.5, a
ratio of 0.5 of the data-transferring time to the task running time, the time threshold tt
of the FLDS policy to 10 sec, and the polling interval upper bound to 50 sec; the DAG
parameters (in-degree, out-degree and pipe size) were set to 10.

Table 3: Experiment Setup

Workload Parameters DAG Parameters FLDS Policy Parameters
No. task
per core

Task average
length (ms)

Task average data
output size (MB)

Fan-Out
degree

Fan-In
degree

Pipeline
pipe size

T tt
(sec)

Polling interval
upper bound (sec)

1000 50 ([0, 100]) 5 ([0, 10]) 10 10 10 0.5 10 50

Figure 9 (b) shows the results of scheduling all the DAGs in MATRIX using the
FLDS policy up to 200 executing threads. BOT achieved nearly optimal performance
with the throughput numbers implying a 90%+ efficiency at all scales. This is because

reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

(a) Workflow for one volume (b) Expanded (10 volume) workflow

19

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

tasks were run locally without requiring any data. The other three DAGs showed great
scalability, as the throughput was increasing linearly with the scale. Comparing the
three DAGs with data dependencies, Pipeline showed the highest throughput, because
each task needed at most one data from the parent. Fan-Out experienced a long ramp-
up period, as at the beginning, only the root task was ready to run. As time increased,
more tasks were ready resulting in better utilization. Fan-In DAG was the opposite. At
the beginning, tasks were run fast, but it got slower and slower due to the lack of tasks,
leading to a long tail that had worse effect than the slow ramp-up period of Fan-Out.

MATRIX showed great scalability running the benchmarking workload DAGs. In
addition, MATRIX is able to run any arbitrary DAG, in addition to the four examples.
4.2.3.!Explore Scalability through Theoretical Sub-optimal Solution

We have shown that the DAWS technique has great performance for the MTC data-
intensive workloads at moderate scales. The questions to ask are what the quality of
the results achieved with the DAWS technique is, and how scalable the technique is.
We measure the quality by comparing the experimental results with those achieved
through the analytical sub-optimal solution that we have devised in section 3. The task
running time)*+*, & , waiting time)./012 & , task size HIJK(&), and the size of
the output data - & for each individual task are set the same as the workloads used
in MATRIX. We also scale the sub-optimal solution up to 128K cores, showing the
potential scalability of the DAWS at extreme scales.

We apply dynamic programming to calculate the earliest time ()*F &) to finish a
task. The earliest finishing time of the last task is the overall timespan to finish all the
tasks, and we compute the throughput based on this. We first compare the
experimental results of MATRIX with those of the analytical sub-optimal solution for
the four benchmarking workloads up to 200 cores, shown in Figure 11.

Figure 11: Comparison between MATRIX and the analytical sub-optimal solution

The solid lines are the results of MATRIX, the round dotted lines represent the
results achieved from the sub-optimal solution (Theory), and the dash dotted lines
show the ratio of the experimental results to those of sub-optimal solutions. The
results of BOT, Pipeline, Fan-Out and Fan-In are interpreted with the colors of blue,
red, green, and black, respectively. We see that for all the workloads at different
scales, our DAWS technique could achieve performance within 15% compared with

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0!

400!

800!

1200!

1600!

2000!

2400!

2800!

3200!

3600!

4000!

0 20 40 60 80 100 120 140 160 180 200

Pe
rc
en
ta
ge
!to
!T
he
or
y!
Su
bY
op
tim
al

Th
ro
ug
hp
ut
!(t
as
k/
se
c)

Scale!(No.!of!cores)

Theory!BOT Theory!Pipeline Theory!FanOut Theory!FanIn
MATRIX!BOT MATRIX!Pipeline MATRIX!FanOut MATRIX!FanIn
BOT!percent Pipeline!percent FanOut!percent FanIn!percent

20

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

the analytical sub-optimal solution. This relatively small percentage of performance
loss indicates that the DAWS technique has the ability to achieve performance with
high quality (85%+).

In order to highlight the numbers, we list the average percentage of performance
that can be achieved through the DAWS technique for all the workloads in Table 4.
We see that for the BOT workload, our technique works almost as good as the sub-
optimal solution with a quality percentage of 99%, due to no data movement. For the
other three workloads, the DAWS technique achieves about 85.7% of the sub-optimal
for Fan-Out, 88.2% of the sub-optimal for Pipeline, and 90.6% of the sub-optimal for
Fan-In, on average. The reason that the Pipeline and Fan-Out DAGs show bigger
performance loss when comparing with the Fan-In DAG is because the former two
DAGs have worse load balancing. For Fan-Out, every task (except for the leaf tasks)
produces data of 5MB on average for 10 children, which may end up be run on the
same node as their parent for minimizing the data movement overhead, leading to
poor load balancing. Our FLDS policy mitigates this issue significantly. The same
situation happens for the Pipeline DAG, but is less severe, because every task has
only one child. However, the DAWS technique, configured with the FLDS policy, is
still able to achieve 85.7% and 88.2% of the sub-optimal solution for the Fan-Out and
Pipeline DAG, respectively, which demonstrate the high-quality performance.

Table 4: Average percentage of achieved performance comparing to the sub-optimal solution

Workloads BOT Pipeline FanOut FanIn
Percentage of sub-optimal 99.139636% 88.238118% 85.690323% 90.605218%

To explore the scalability of the fully distributed scheduling architecture and the
DAWS technique, we compute the throughputs of the four benchmarking workloads
with the theoretical solution, up to 128K cores. The configurations of all the
workloads are as the same as shown in Table 3. The results are illustrated in Figure 12.

Figure 12: Computing with the theoretical sub-optimal solution up to 128K-core scale

For the four benchmarking workloads, the theoretical solution shows the same
relative throughput results as MATRIX: BOT performs the best, and the second best
is Pipeline, followed by Fan-Out, with Fan-In performing the worst. These results
further justify our explanations of the MATRIX results in section 4.2. The throughput
trends with respect to the scale indicate that the theoretical solution has great

10!

100!

1000!

10000!

100000!

1000000!

10000000!

Th
ro
ug
hp
ut
!(t
as
k/
se
c)

Scale!(No.!of!cores)

Theory!BOT

Theory!Pipeline

Theory!FanOut

Theory!FanIn

21

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

scalability for all the workloads. At 128K-core (128M tasks) scale, the solution
achieves extremely high throughput of 2.33M tasks/sec for BOT, 1.85M tasks/sec for
Pipeline, 1.16M tasks/sec for Fan-Out, and 852.15K tasks/sec for Fan-In, respectively.
These throughput numbers satisfy the scheduling needs of MTC data-intensive
applications towards extreme scales. The trend is likely to hold towards million-core
scales, and we will validate in the future. Since we have shown that the DAWS
technique achieves performance within only 15% of the theoretical sub-optimal
solution, we believe that the technique has the potential of the same scalability
towards extreme scales.

The conclusion we can draw from this section is that the DAWS technique is not
only able to achieve high quality performance results that are close to the bounded
sub-optimal results within at most 15% performance loss, but has the potential to
scale up to extreme scales for the data-intensive MTC workloads.

4.3.! MATRIX vs. Sparrow and CloudKon
Our last sets of experiments are comparing MATRIX with the other state-of-the-art
fine grained task scheduling systems that are targeting loosely-coupled parallel
applications. Examples are Sparrow [23] and CloudKon [24]. We show the
preliminary results of comparing MATRIX with both of them using BOT workloads.
These comparisons aim at giving hints of how better MATRIX can achieve than
others, and showing the potential broader impact of our technique on the Cloud data
centers. We will compare using more complex workload DAGs in the future.

Sparrow [23] is a distributed scheduling system that employs multiple schedulers
pushing tasks to workers (run on compute nodes). Each scheduler has a global view of
all the workers. When dispatching tasks, a scheduler probes multiple workers (based
on the number of tasks) and pushes tasks to the least overloaded ones. Once the tasks
are scheduled to a worker, they cannot be migrated. CloudKon [24] is another
scheduling system specific to the cloud environment. CloudKon has the same
architecture as MATRIX, except that it leverages the Amazon SQS [37] to achieve
distributed load balancing and DynamoDB [38] for task metadata management.

We compare MATRIX with Sparrow and CloudKon in the Amazon cloud up to 64
“m1.medium” instances. The instance has 1 virtual CPU, 2 compute units, 3.7GB
memory, and 410GB hard disk. Since each instance has 2 compute units, we set the
number of executing threads of the executor to 2 for all of the systems. At present, we
compare the raw speed of executing tasks of the three scheduling systems, which is
measured as the throughput of executing the “sleep 0” NOOP tasks. We conduct
weak-scaling experiments, and in our workloads, each instance runs 16K “sleep 0”
tasks on average. The results are shown in Figure 13. Sparrow handles the scheduler
failures in the same way as MATRIX. Note that Sparrow does not persist scheduling
state to disk, therefore, it does not handle worker failures. On the other hand, both
CloudKon and MATRIX have persistent storage of all the metadata, as both SQS and
ZHT implemented persistent storage. In our experiments, we turn off the persistent
storage of both CloudKon and MATRIX to ensure a fair comparison with Sparrow.

From Figure 13, we see that all of the three scheduling systems can achieve
increased throughput trend with respect to the system scale. However, MATRIX is
able to achieve much higher throughput than CloudKon and Sparrow at all scales. At
64 instances, MATRIX shows throughput speedup of more than 5X (67K vs 13K)
comparing with CloudKon, and speedup of more than 9X comparing with Sparrow
(67K vs 7.3K). Comparing with MATRIX, CloudKon has a similar scheduling
architecture (fully distributed). However, the workers of CloudKon need to pull every

22

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

task from SQS leading to significant overheads for NOOP tasks, while MATRIX
migrates tasks in batches through the work stealing technique that introduces much
less communication overheads. Besides, CloudKon is implemented in Java that
introduces JVM overhead, while MATRIX is implemented in C++, which contributes
a portion to the 5X speedup. To eliminate the effects of different programming
languages, we compare CloudKon and Sparrow, both were implemented in Java, but
they have different scheduling architectures and load balancing techniques. CloudKon
outperforms Sparrow by 1.78X (13K vs 7.3K) at 64-instances scale, because the
schedulers of Sparrow need to send probing messages to push tasks and once tasks are
submitted, they cannot be migrated, leading to poor load balancing, while CloudKon
relies on SQS to achieve distributed load balancing.

Figure 13: Comparing MATRIX with Sparrow and CloudKon

The conclusions are that MATRIX can execute loosely coupled light weight tasks
much faster than the other two scheduling systems that target fine-grained workloads
in the Cloud environment. MATRIX, along with the DAWS scheduling technique, has
the potential to benefit the scheduling of the large-scale data processing workloads
(e.g. Hadoop workloads), which we will investigate in the future.

4.4.! Analysis of the DAWS Technique
We have shown that the DAWS technique is not only scalable, but is able to achieve
high quality performance within 15% of the sub-optimal solution on average for
different benchmarking workload DAGs. We justify that the technique is applicable to
a general class of MTC data-intensive workloads. This is due to the adaptive property
of the DAWS technique. The adaptive property refers to the ability of adjusting the
parameters for the best performance during the runtime according to system states.
We have enunciated how the adaptive work stealing works, how to choose the best
scheduling policies, individually. These should be considered together, along with the
other parameters, such as the ratio threshold (t), and the upper bound of the execution
time of the LReadyQ (tt) in the FLDS policy. The DAWS technique could always start
with the FLDS policy. Based on the data volumes transferred during runtime, it is able
to switch to other policies. If too much data is transferred, the technique would switch
to the MDL policy; on the other hand, the technique would switch to the MLB policy
if few data is transmitted. In addition, we can set the initial tt value in the FLDS
policy, double the value when moving ready tasks from the LReadyQ to the SReadyQ,
and reduce the value by half when work stealing fails. In order to cooperate with the

0

3

6

9

12

15

18

21

0

10000

20000

30000

40000

50000

60000

70000

1 4 16 64

Sp
ee
du
p

Th
ro
ug
hp
ut
!(t
as
ks
!/!
se
c)

No.!of!Instances

MATRIX
CloudKon
Sparrow
Speedup!(MATRIX/Sparrow)
Speedup!(MATRIX/CloudKon)

23

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

FLDS policy, after the polling interval of work stealing hits the upper bound (no work
stealing anymore), we set the polling interval back to the initial small value only if the
threshold tt becomes small enough. This would allow to do work stealing again.

However, things can become way more complicated when running large-scale
data-intensive applications that have very complex DAGs. There is still possibility
that even with the adaptive properties, the DAWS technique may not perform well.
The difficulties attribute to the constraint local views of each scheduler for the system
states. In the future, we will explore some monitoring mechanisms to further improve
the DAWS technique.

5.!RELATED WORK

This section presents the work that is related to ours by identifying the similarities and
differences comparing with our work, including the related work of load balancing,
work stealing, and data-aware scheduling.

Load balancing is an important design goal of most large-scale parallel
programming and runtime systems for the purpose of optimizing resource utilization,
data movement, power consumption, or any combination of these. There are two
broad categories of load balancing strategies based on applications – dynamic load
balancing for those applications that create and schedule new tasks during runtime,
and static load balancing for iterative applications that have persistent load patterns
[49]. Besides, load balancing could be achieved in a centralized, or distributed way.
Centralized load balancing has been studied extensively, such as JSQ [50], least-
work-left [51], and SITA [52]. However, they all suffered from poor scalability and
resilience. Distributed Load balancing employs multiple schedulers to spread out
computational and communication loads evenly across processors of a shared-
memory parallel machine, or across nodes of a distributed system (e.g. clusters,
supercomputers, grids, and clouds), so that no single processor or node is overloaded.
Clients are able to submit workload to any scheduler, and each scheduler has the
choice of executing the tasks locally, or forwarding the tasks to another scheduler
based on some function it is optimizing. Although distributed load balancing is likely
a more scalable and resilient solution towards extreme scales, there are many
challenges that must be addressed (e.g. utilization, partitioning). Fully distributed
strategies have been proposed, including neighborhood averaging scheme (ACWN)
[53, 56, 57]. In [57], several distributed load balancing strategies are studied, such as
Sender/Receiver Initiated Diffusion (SID/RID), Gradient Model (GM) and a
Hierarchical Balancing Method (HBM). Other hierarchical strategies are explored in
[56] and [58].

Work stealing is an efficient distributed load balancing technique that has been
used at small scales successfully in parallel languages such as Cilk [59], X10 [77],
Intel TBB [78] and OpenMP, to balance workloads across threads on shared memory
parallel machines [71, 72]. Theoretical work has proved that a work stealing scheduler
can achieve execution space, time, and communication bounds all within a constant
factor of optimal [72]. But the scalability of work stealing has not been well explored
on modern large-scale systems. In particular, concerns exist that the randomized work
stealing can lead to long idle times and poor scalability on large-scale clusters [71].
The work done by Diana et. al in [71] scaled work stealing to 8K processors using the
PGAS programming model and the RDMA technique. A hierarchical technique that
improved Diana’s work described work stealing as retentive work stealing. This
technique scaled work stealing to over 150K cores by utilizing the persistence

24

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

principle iteratively to achieve the load balancing of task-based applications [73].
However, these techniques considered only load balancing, not data-locality. On the
contrary, our work optimized both work stealing and data-locality. SLAW [40] is a
scalable task scheduler that applied the adaptive locality-aware work stealing
technique and supported both work-first and help-first policies [41] at runtime on a
per-task basis. The other work about data-aware work stealing technique improved
data locality across different phases of fork/join programs [74]. This work relied on
constructing a sample pre-schedule of work stealing tree, and the workload execution
followed the pre-schedule. This involved overheads of creating the sample and was
not suitable for irregular applications. Furthermore, both this work and SLAW
focused on the single shared-memory environment. Another work [42] of data-aware
work stealing is similar to ours in using both the dedicated and shared queues.
However, before scheduling the tasks, it relied on the X10 programming model [43]
to statically expose and to categorize the data-locality information. This is not
adaptive to various data-intensive workloads.

Charm++ [49] supports centralized, hierarchical and distributed load balancing. It
has demonstrated that centralized strategies work at scales of thousands of processors
for NAMD. In [49], the authors present an automatic dynamic hierarchical load
balancing method for Charm++, which scales up to 16K-cores on a Sun Constellation
supercomputer for a synthetic benchmark. This paper [75] describes a fully distributed
algorithm for load balancing that uses partial information about the global state of the
system to perform load balancing. This algorithm, referred to as GrapevineLB, first
conducts global information propagation using a lightweight algorithm inspired by
epidemic [76] algorithms, and then transfers work units using a randomized algorithm.
It has scaled the GrapevineLB algorithm up to 131,072 cores of Blue Gene/Q
supercomputer in the Charm++ framework. However, this algorithm doesn’t work
well for irregular applications that require dynamic load balancing techniques; it
neither considered data-aware scheduling.

Falkon [32] is a centralized task scheduling system that implemented a data
diffusion approach [34,35] in the scheduling of MTC data-intensive workloads. Data
diffusion applied a centralized index server to store the metadata, as opposed to our
distributed KVS, leading to poor scalability at large scales.

Sparrow [23] implemented distributed load balancing to achieve weighted fair
sharing of the resources, and supported the data-aware scheduling to co-locate each
task with its input data, for fine-grained sub-second tasks. However, the global
knowledge of all the resources of each scheduler may lead to resource contentions
when the task count is large. Furthermore, Sparrow implemented a pushing
mechanism by early binding the tasks to workers, which may suffer long tail problem
under heterogeneous workloads.

Dryad [39] is a distributed task execution engine for coarse grained data-parallel
applications. Similar to our work, Dryad supported running applications structured as
workflow DAGs. However, Dryad managed metadata in a centralized way that
greedily mapped tasks to where the data resides, which is not scalable.

CloudKon [24] has the similar scheduling architecture as MATRIX. CloudKon
focused on the Cloud environment by relying on the Cloud services to do distributed
load balancing (applying SQS [37]) and to manage the task metadata (leveraging
DynamoDB [38]). Although the Cloud services have the ability to facilitate the easier
development, the side effects are the potential loss of the performance and control.
Furthermore, CloudKon doesn’t support data-aware scheduling at present.

25

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

6.!CONCLUSIONS AND FUTURE WORK

This work aimed at exploring the scalability and performance quality of the
previously proposed data-aware work stealing technique that optimized both of the
load balancing and data-locality for MTC data-intensive applications. We devised an
analytical sub-optimal performance upper bound of the technique, implemented and
evaluated the technique in MATRIX, and compared MATRIX with other scheduling
systems. We also explored the scalability through the theoretical solution at extreme
scales. Results show that the technique is not only scalable, but is able to perform
within 15% of the sub-optimal solution.

In the future, we will deploy MATRIX on the IBM BG/Q Mira supercomputer at
ANL and strive to scale MATRIX to the full scale of the Mira machine that has 768K
cores. We aim to improve MATRIX by applying the ZHT communication layer,
which currently supports an inclusive communication protocols, namely, TCP, UDP,
UDT, and MPI. Another direction is to integrate the Swift [44] workflow engine with
MATRIX to enable MATRIX to run large-scale scientific applications. Instead of
having Swift to manage and scheduling the scientific applications, Swift will
decompose applications to workflow DAGs, which are then submitted to MATRIX
for scheduling. Another future work will be extending MATRIX to support the
scheduling of the Hadoop data-processing workloads [45, 60, 63, 69]. We will utilize
distributed file systems, likely the FusionFS [28, 79, 80], to help MATRIX manage
data in a transparent, scalable, and reliable way. MATRIX + FusionFS will be the
combination of the next generation distributed MapReduce framework, as opposed to
the Hadoop + HDFS combination of the current centralized MapReduce
implementation.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy under the contract DE-
FC02-06ER25750 and by the National Science Foundation (NSF) under grant OCI-
1054974, and also in part by the National Science Foundation (NSF) under the award
CNS-1042543 (PRObE, http://www.nmc-probe.org/).

REFERENCES

1.! I. Raicu, I. Foster, Y. Zhao. “Many-Task Computing for Grids and Supercomputers”, Invited
Paper, IEEE MTAGS 2008.

2.! M. A. Jette, A. B. Yoo, M. Grondona. “SLURM: Simple Linux utility for resource management.”
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP) 2003.

3.! D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in Practice: The Condor
Experience” Concurrency and Computation: Practice and Experience 17 (2-4), pp. 323-356, 2005.

4.! W. Gentzsch, et. al. “Sun Grid Engine: Towards Creating a Compute Power Grid,” 1st
International Symposium on Cluster Computing and the Grid, 2001.

5.! Cobalt: http://trac.mcs.anl.gov/projects/cobalt, 2014.
6.! V. Sarkar, S. Amarasinghe, et al. “ExaScale Software Study: Software Challenges in Extreme

Scale Systems”, ExaScale Computing Study, DARPA IPTO, 2009.
7.! X. Besseron and T. Gautier. “Impact of Over-Decomposition on Coordinated

Checkpoint/Rollback Protocol”, Euro-Par 2011: Parallel Processing Workshops, Lecture Notes in
Computer Science Volume 7156, 2012, pp 322-332.

8.! I. Raicu. “Many-Task Computing: Bridging the Gap between High Throughput Computing and
High Performance Computing”, ISBN: 978-3-639-15614-0, VDM Verlag Dr. Muller Publisher,
2009.

26

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

9.! I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford. “Toward Loosely
Coupled Programming on Petascale Systems”, IEEE/ACM Supercomputing 2008.

10.! K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, I. Raicu. “Optimizing Load Balancing and Data-
Locality with Data-aware Scheduling”, IEEE International Conference on Big Data 2014.

11.! M. H. Willebeek-LeMair, A. P. Reeves. “Strategies for dynamic load balancing on highly parallel
computers,” In IEEE Transactions on Parallel and Distributed Systems, volume 4, September
1993.

12.! R. D. Blumofe and C. E. Leiserson. “Scheduling multithreaded computations by work stealing”,
Symposium on Foundations of Computer Science 1994.

13.! K. Wang, A. Rajendran, K. Brandstatter, Z. Zhang, I. Raicu. “Paving the Road to Exascale with
Many-Task Computing”, Doctoral Showcase, IEEE/ACM Supercomputing/SC 2012.

14.! K. Wang, K. Brandstatter, I. Raicu. “SimMatrix: Simulator for MAny-Task computing execution
fabRIc at eXascales,” ACM HPC 2013.

15.! D. Zhao, D. Zhang, K. Wang, and I. Raicu, "Exploring Reliability of Exascale Systems through
Simulations," in Proc. 21st High Performance Computing Symposium, Bahia Resort, San Diego,
CA, 2013, pp. 1-9.

16.! K. Wang, J. Munuera, I. Raicu, and H. Jin. (2011, Aug. 23). Centralized and Distributed Job
Scheduling System Simulation at Exascale [online]. Available:
http://datasys.cs.iit.edu/~kewang/documents/summer_report.pdf

17.! J. D. Ullman. “NP-complete scheduling problems”, Journal of Computer and System Sciences,
Volume 10 Issue 3, June, 1975, Pages 384-393.

18.! D. Chase, Y. Lev. “Dynamic circular work-stealing deque”, Proceedings of the seventeenth
annual ACM symposium on Parallelism in algorithms and architectures (SPAA’05), 2005, pp 21
– 28.

19.! T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang, I. Raicu. “ZHT: A
Light-weight Reliable Persistent Dynamic Scalable Zero-hop Distributed Hash Table”, IEEE
International Parallel & Distributed Processing Symposium (IPDPS) 2013.

20.! T. Li, X. Zhou, K. Wang, D. Zhao, I. Sadooghi, Z. Zhang, I. Raicu, "A Convergence of Key-
Value Storage Systems from Clouds to Supercomputers", Journal of Concurrency and
Computation: Practice and Experience (CCPE), 2015.

21.! T. Li, C. Ma, J. Li, X. Zhou, K. Wang, D. Zhao, I. Sadooghi, and I. Raicu, “Graph/z: A key-value
store based scalable graph processing system,” poster session, IEEE Int. Conference on Cluster
Computing, 2015.

22.! K. Wang, A. Rajendran, I. Raicu. “MATRIX: MAny-Task computing execution fabRIc at
eXascale,” tech report, IIT, 2013.

23.! K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica. “Sparrow: distributed, low latency scheduling”,
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP’13,
pp. 69-84.

24.! I. Sadooghi, S. Palur, A. Anthony, I. Kapur, K. Belagodu, P. Purandare, K. Ramamurty, K. Wang,
I. Raicu. “Achieving Efficient Distributed Scheduling with Message Queues in the Cloud for
Many-Task Computing and High-Performance Computing”, 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2014.

25.! K. Wang, A. Kulkarni, M. Lang, D. Arnold, I. Raicu. “Using Simulation to Explore Distributed
Key-Value Stores for Extreme-Scale Systems Services,” IEEE/ACM Supercomputing/SC 2013.

26.! J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha. “Scalable work
stealing”, IEEE/ACM SC 2009.

27.! K. Shvachko, H. Huang, S. Radia, R. Chansler. “The hadoop distributed file system”, in: 26th
IEEE (MSST2010) Symposium on Massive Storage Systems and Technologies, May, 2010.

28.! D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, and I. Raicu.
“FusionFS: Towards Supporting Data-Intensive Scientific Applications on Extreme-Scale High-
Performance Computing Systems.” IEEE BigData, 2014.

29.! A. Bialecki, et al. “Hadoop: A Framework for Running Applications on Large Clusters Built of
Commodity Hardware”, http://lucene.apache.org/hadoop/, 2005.

30.! Google. “Google Protocol Buffers,” available at http://code.google.com/apis/protocolbuffers/,
2014.

31.! K. Wang, Z. Ma, I. Raicu. “Modeling Many-Task Computing Workloads on a Petaflop IBM Blue
Gene/P Supercomputer.” IEEE 27th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW) 2013.

32.! I. Raicu, Y. Zhao et al. “Falkon: A Fast and Light-weight tasK executiON Framework,”
IEEE/ACM SC 2007.

27

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

33.! Gibson, G., Grider, G., Jacobson, A. and Lloyd, W. “PRObE: A thousand-node experimental
cluster for computer systems research.” Usenix ;login: 38, 3 (2013).

34.! I. Raicu, Y. Zhao, I. Foster, A. Szalay. “Accelerating Large-scale Data Exploration through Data
Diffusion”, International Workshop on Data-Aware Distributed Computing 2008, co-locate with
ACM/IEEE HPDC 2008.

35.! I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, D. Thain. “The Quest for
Scalable Support of Data Intensive Workloads in Distributed Systems”, ACM HPDC 2009.

36.! C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and D. Thain. 2010. All-Pairs: An
Abstraction for Data-Intensive Computing on Campus Grids. IEEE Trans. Parallel Distrib. Syst.
21, 1.

37.! Amazon Simple Queue Service. Avaible online: http://aws.amazon.com/documentation/sqs/. 2014.
38.! G. DeCandia, D. Hastorun, M. Jampani, et al. “Dynamo: Amazon’s highly available key-value

store”, ACM SIGOPS Symposium on Operating Systems Principles (SOSP) 2007.
39.! M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad: Distributed data-parallel programs

from sequential building blocks”, In Proc. Eurosys, pp. 59–72, March 2007.
40.! Y. Guo, J. Zhao, V. Cave, V. Sarkar. “SLAW: a scalable locality-aware adaptive work-stealing

scheduler for multi-core systems”, Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2010.

41.! Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first scheduling policies for
async-finish task parallelism,” IEEE International Parallel & Distributed Processing Symposium
(IPDPS) 2009.

42.! J. Paudel, O. Tardieu and J. Amaral. “On the merits of distributed work-stealing on selective
locality-aware tasks”, 42nd International Conference on Parallel Processing (ICPP), 2013.

43.! P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V.
Sarkar, “X10: An Object-oriented Approach to Non-uniform Cluster Computing,” in ACM
Conference on Object-oriented Programming Systems Languages and Applications(OOPSLA),
2005, pp. 519–538.

44.! Y. Zhao, M. Hategan, B. Clifford, I. Foster et al. “Swift: Fast, Reliable, Loosely Coupled Parallel
Computation,” IEEE Workshop on Scientific Workflows 2007.

45.! J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters”, OSDI'04,
CA, December, 2004.

46.! Y. Zhao, I. Raicu, et al. “Realizing Fast, Scalable and Reliable Scientific Computations in Grid
Environments,” book chapter in Grid Computing Research Progress, ISBN: 978-1-60456-404-4,
Nova Publisher 2008.

47.! Huettel, S. A.; Song, A. W.; McCarthy, G. (2009), Functional Magnetic Resonance Imaging (2
ed.), Massachusetts: Sinauer, ISBN 978-0-87893-286-3.

48.! Horn, J.V., Dobson, J., Woodward, J., Wilde, M., Zhao, Y., Voeckler, J. and Foster, I. GridqBased
Computing and the Future of Neuroscience Computation. in Methods in Mind, MITPress, 2006.

49.! G. Zhang, E. Meneses, A. Bhatele, and L. V. Kale. Hierarchical Load Balancing for Charm++
Applications on Large Supercomputers. In Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops, ICPPW 10, pages 436-444, Washington, DC, USA, 2010.
IEEE Computer Society.

50.! H.C. Lin, C.S. Raghavendra. An approximate analysis of the join the shortest queue (JSQ) policy,
IEEE Transaction on Parallel and Distributed Systems, Volume 7, Number 3, pages 301-307,
1996.

51.! M. Harchol-Balter. Job placement with unknown duration and no preemption, ACM
SIGMETRICS Performance Evaluation Review, Volume 28, Number 4, pages 3-5, 2001.

52.! E. Bachmat, H. Sarfati. Analysis of size interval task assignment policies, ACM SIGMETRICS
Performance Evaluation Review, Volume 36, Number 2, pages 107-109, 2008.

53.! L. V. Kal´e. Comparing the performance of two dynamic load distribution methods. In
Proceedings of the 1988 International Conference on Parallel Processing, pages 8–11, August
1988.

54.! K. Wang, X. Zhou, H. Chen, M. Lang, and I. Raicu, "Next generation job management
systems for extreme scale ensemble computing," in Proc. 23rd Int. Symp. High Perform.
Distrib. Comput., 2014, pp. 111–114.

55.! K. Wang, X. Zhou, K. Qiao, M. Lang, B. McClelland, and I. Raicu, "Towards Scalable
Distributed Workload Manager with Monitoring-Based Weakly Consistent Resource Stealing," in
Proc. of the 24th Int. symposium on High-performance parallel and distributed computing, 2015.

56.! A. Sinha and L.V. Kal´e. A load balancing strategy for prioritized execution of tasks. In
International Parallel Processing Symposium, pages 230–237, April 1993.

28

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

K. WANG, K. QIAO, I. SADOOGHI, X. ZHOU, T. LI, M. LANG AND I. RAICU

57.! M.H. Willebeek-LeMair, A.P. Reeves. Strategies for dynamic load balancing on highly parallel
computers. In IEEE Transactions on Parallel and Distributed Systems, volume 4, September 1993.

58.! M. Furuichi, K. Taki, and N. Ichiyoshi. A multi-level load balancing scheme for or-parallel
exhaustive search programs on the multi-psi. In Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 1990.

59.! Matteo Frigo, Charles E. Leiserson and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. PLDI’98 Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, 212-223.

60.! K. Wang, N. Liu, I. Sadooghi, X. Yang, X. Zhou, T. Li, M. Lang, Xian-He Sun, and I. Raicu,
"Overcoming Hadoop Scaling Limitations through Distributed Task Execution," in Proc. of the
IEEE Int. Conference on Cluster Computing, 2015.

61.! K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu, "Exploring the Design Tradeoffs for
Extreme-Scale High-Performance Computing System Software," in Proc. of the IEEE Trans. on
Parallel and Dist. Systems, vol. PP, no. 99, pp. 1, 2015.

62.! T. Li, K. Keahey, K. Wang, D. Zhao, and I. Raicu, "A Dynamically Scalable Cloud Data
Infrastructure for Sensor Networks," in Proc. of the 6th Workshop on Scientific Cloud Computing,
2015.

63.! K. Wang, and I. Raicu, "Scheduling Data-intensive Many-task Computing Applications in the
Cloud," in the NSFCloud Workshop on Experimental Support for Cloud Computing, 2014.

64.! K. Wang and Ioan Raicu. (2014, Oct. 7). "Towards Next Generation Resource Management at
Extreme-Scales," Ph.D. Comprehensive Exam, Computer Science Department, Illinois Institute of
Technology [online]. Available: http://datasys.cs.iit.edu/publications/2014_IIT_PhD-
proposal_Ke-Wang.pdf

65.! A. Kulkarni, K. Wang, and M. Lang. (2012, Aug. 17). "Exploring the Design Tradeoffs for
Exascale System Services through Simulation," Summer Student Research Workshop at Los
Alamos National Laboratory [online]. Available:
https://newmexicoconsortium.org/component/com_jresearch/Itemid,146/id,31/task,show/view,pu
blication/

66.! X. Zhou, H. Chen, et al. (2013, Dec. 15). Exploring Distributed Resource Allocation Techniques
in the SLURM Job Management System [online]. Available:
http://datasys.cs.iit.edu/reports/2013_IIT-CS554_dist-slurm.pdf

67.! K. Ramamurthy, K. Wang, and I. Raicu. (2013, Dec. 15). Exploring Distributed HPC Scheduling
in MATRIX [online]. Available: http://www.cs.iit.edu/~iraicu/teaching/CS554-F13/best-
reports/2013_IIT-CS554_MATRIX-HPC.pdf

68.! K. Wang and I. Raicu. (2014, May 23). "Achieving Data-Aware Load Balancing through
Distributed Queues and Key/Value Stores," in the 3rd Greater Chicago Area System Research
Workshop [online]. Available: http://datasys.cs.iit.edu/reports/2014_GCASR14_paper-data-
aware-scheduling.pdf

69.! T. Forlini, T. Dubucq, et al. “Benchmarking State-of-the-art Many-Task Computing Runtime
Systems”, poster session, ACM HPDC, 2015.

70.! K. Wang. “Scalable Resource Management System Software for Extreme-Scale Distributed
Systems”, Computer Science Department, Illinois Institute of Technology, Doctorate Dissertation,
July 2015.

71.! J. Dinan, D.B. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha. “Scalable work
stealing”, In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC '09), 2009.

72.! Vipin Kumar, Ananth Y. Grama and Nageshwara Rao Vempaty. 1994. Scalable load balancing
techniques for parallel computers. Journal of Parallel and Distributed Computing, Volume 22
Issue 1, July 1994, 60-79. Academic Press, Inc. Orlando, FL, USA.

73.! J. Liander, S. Krishnamoorthy, and L. V. Kale. Work stealing and persistence-based load
balancers for iterative overdecomposed applications. In HPDC, 2012.

74.! Jonathan Lifflander, Sriram Krishnamoorthy, and Laxmikant V. Kale. 2014. Optimizing data
locality for fork/join programs using constrained work stealing. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC '14).

75.! Harshitha Menon and Laxmikant Kalé. A distributed dynamic load balancer for iterative
applications. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC '13), 2013.

76.! Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis,
Dan Swinehart, and Doug Terry. 1987. Epidemic algorithms for replicated database maintenance.

29

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 00:1-29

LOAD-BALANCED AND LOCALITY-AWARE SCHEDULING

In Proceedings of the sixth annual ACM Symposium on Principles of distributed computing
(PODC '87), Fred B. Schneider (Ed.).

77.! Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10: an object-oriented approach to non-
uniform cluster computing. SIGPLAN Not. 40, 10 (October 2005), 519-538.

78.! James Reinders. 2007. Intel Threading Building Blocks (First ed.). O'Reilly & Associates, Inc.,
Sebastopol, CA, USA.

79.! Dongfang Zhao, Ioan Raicu. “Distributed File Systems for Exascale Computing”, Doctoral
Showcase, IEEE/ACM Supercomputing/SC 2012

80.! Dongfang Zhao, Ning Liu, Dries Kimpe, Robert Ross, Xian-He Sun, and Ioan Raicu. "Towards
Exploring Data-Intensive Scientific Applications at Extreme Scales through Systems and
Simulations", IEEE Transaction on Parallel and Distributed Systems (TPDS) Journal 2015

