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Abstract—In the era of Big Data and Cloud, distributed key-
value stores are increasingly used as building blocks of large scale
applications. Comparing to traditional relational databases, key-
value stores are particularly compelling due to their low latency
and excellent scalability. Many big companies, such as Facebook
and Amazon, run multiple different applications and services
on top of a single key-value store deployment to reduce the
deployment and maintenance complexity as well as economic cost.
However every application has its own performance requirement
but most of current key-value store systems are designed to
serve every application request equally. This design works well
when a single application accesses the key-value store, but it
is not as good for the emerging concurrent multi-application
scenario. In this paper we present ZHT/Q, a flexible QoS (Quality
of Service) fortified distributed key-value storage system for
clouds and data centers. It improves the overall throughput by
an order of magnitude and still satisfies different applications’
latency requirements with QoS by means of dynamic and adaptive
request batching mechanisms. The experiment results show that
our new system delivers up to 28 times higher throughput than
the base solution while more than 99% of requests’ latency
requirements are satisfied.

Keywords—Distributed key-value store, QoS, NoSQL database,
Request batching, Distributed systems.

I. INTRODUCTION

Distributed key-value stores are known for their ease of
use and attractive performance. Major technology companies
such as Facebook, Amazon and Google have built their data
infrastructure with key-value stores to accommodate their
fast growing businesses. Due to the complexity of system
design, deployment and maintenance, along with the running
cost, more and more companies choose to share a single
key-value storage system between different applications and
services. Take Facebook as an example, workloads from user
accounts information, web-app object metadata and system
data on service location, etc., run on one Memcached deploy-
ment [1]. Most of applications have their unique performance
requirements. Some applications may prefer lowest latency,
some prefer high total throughput, while others may like to
have a well-balanced performance profile. These potentially
conflicting requirements can be very different from the design
goals of conventional key-value stores, which mostly focus on
low-latency. How to choose a good solution that meets many
applications’ needs is still an open question. The choice is
even not obvious for latency – one of the most commonly
used metrics. Different applications can tolerate very different
latency ranges. For example, a shopping cart application can
satisfy customers with 50 ms latency; instant messaging users
are fine with 500 ms while a metadata service for databases
or file systems requires as low as possible latency, ideally no
longer than 5 ms [2]. Giving all applications same efforts and

optimizing on the same aspect (single request latency) is not
necessarily appropriate, as sometimes it might harm the total
throughput provision of the system, and lower the resource
utilization. This is especially true when key-value stores are
delivered as cloud services that need to serve many different
applications and users [3].

In this paper we present ZHT/Q, a flexible QoS fortified
distributed key-value storage system for clouds. It enhances a
high performance key-value store with flexible QoS (Quality
of Service) properties such that both configurable latency
and high aggregated throughput can be achieved. It satisfies
different applications’ latency requirements with QoS while
improves the overall performance through dynamic and adap-
tive request batching mechanisms. The system QoS provides
guaranteed and best-effort service on latency for different
scenarios. It also watches the performance change and dynam-
ically adjusts the batching strategy to alleviate performance
degradation upon traffic.

The contributions of this paper include:

• We design and implement a flexible QoS fortified
distributed key-value storage system on top of our
previous plain key-value store [4]. The new system is
optimized to satisfy QoS on latency while achieving
high throughput;

• Our system supports different QoS latency on a single
deployment for multiple concurrent applications, both
guaranteed and best-effort services are provided;

• Extensive performance evaluation is conducted
through both real system micro benchmarks (16
nodes) and simulations (512 nodes), and the
comparisons show the advantages and limitations of
this design.

II. DESIGN AND IMPLEMENTATION

In this section we firstly describe the challenges and
considerations in our design. Then, we present the design and
implementation of the system. Finally, we analyze and model
the performance.
A. Challenges and design considerations

1) Configurable QoS on performance: Different applica-
tions have different performance requirements, some times
even one application can have different requirements when
facing different scenarios. The first and most important ques-
tion we face when designing the system is how to support
user-configurable QoS. For storage systems, there are many
ways to deliver different performance levels. Amazon EC2 and
Google Compute Engine use different hardware resource (such



as SSD v.s. HDD) and network bandwidth to offer different
performance; some use software-defined network to manage
performance [5], some uses different consistency models in
storage replication to provide different response time [3]. Many
of these solutions depend on special hardware and leave users
few choice. We decide to use a pure software solution, request
batching, so as to avoid hardware dependency.

2) Batching strategy: Request batching is not a new
method to achieve better system efficiency. By aggregating
individual requests, a batching system can reduce the total
number of messages and amortize service overhead. The key
question in request batching is when to send the batch. The
situation is simple when there is no time limit for request
delivery (latency), within network bandwidth limits, bigger
batches generally bring better throughput and efficiency. If
there is an inviolate request latency limit, the system designer
has to give the latency limit a higher priority over the sys-
tem efficiency and throughput. Various latency limits, which
are usually associated with different applications, make the
situation even more complicated. With this consideration, the
design goal is to provide as high as possible throughput without
violating the request latency limits. Dynamic request batching
is a real-time scheduling problem [6]. Some theoretical works
[7] have been done on various aspects of request batching. We
use a modified Earliest-Deadline First (EDF) [8] algorithm in
our dynamic batching mechanism.

3) Dynamic system performance tuning: In dynamic envi-
ronments such as clouds and data centers, network and server
workload may fluctuate all the time and impact the system per-
formance. When the network and servers are heavily loaded,
to keep trying sending more requests could make the situation
worse. Therefore our system needs to be smart enough to
adjust the request sending rate according to the network traffic,
which requires the network/server traffic detection. Since the
dynamic nature makes it difficult to predict a request latency,
we design a history-based heuristic approach to detect the
traffic and to tune system parameters.

B. System design

We design the new system based on our previous work,
ZHT [4, 9], a zero-hop distributed key-value store. ZHT fol-
lows a Memcached-like network architecture, in which servers
are organized in a logical ring and each houses a contiguous
key space. Clients have the knowledge of all servers and can
send requests to servers by hashing the given keys. As we
observed in [4] and [9], when a client is sending requests
in very high rate (e.g. in a tight loop), the bottleneck is
actually on the client side and is bounded by the ability to
handle socket connections, which is limited by kernel and
CPU performance [10]. Thus in most of scenarios the servers
and network are not saturated. Additionally because the client-
server communication dominates round-trip latency, it would
be desired to reduce message number between clients and
servers.

With these consideration in mind, we propose to add a
proxy layer for dynamic batching mechanism on the client side
instead of server side. The client proxy works on each client,
collects and batches the requests that share a same destination
server and sends to the server. The destination server unpacks
the batch with a parser, executes the requests sequentially,
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Fig. 1: Requests are batched on client side in a proxy, which controls how and when to
send a batch to a server. The servers parse batch and execute the requests sequentially,
and then send batched responses back to the client.
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Fig. 2: Client proxy has a list of buckets (B1 to Bn), each of which is dedicated to one
server. A monitor thread checks and sends a batch if the sending condition is satisfied.
Returned response batch is unpacked and stored in a local key-value map in client proxy,
the client will be notified upon the map change.

packs the return status (including lookup results) in a batch and
send back. This keeps the communication and storage layers
of architecture of key-value store unchanged.

1) Client Proxy: The client proxy architecture is shown in
Fig.2. The client proxy API wrapper offers the applications
a set of interfaces that are compatible with conventional
APIs (put/get). At the same time it also provides advanced
controls to specify the working mode and QoS level so as to
fine tune the performance.

The client proxy maintains a list of batch buckets, each of
which is associated to a destination server. When a request is
submitted in single mode, the client proxy sends it directly to
the server like most of key-value stores do. If the request mode
is batch, the request handler pushes it to the batch bucket that
is associated to the corresponding destination server. Then it
updates the condition variables of the batch bucket according to
the new request. A batch monitor checks the condition variable
for each batch bucket and decide to send it or not. Apparently
the value of the condition variable is the key to the batching
system behavior. It is calculated through different batching
policies (Alg.1), which work as plugins in the client proxy.
We implement multiple batching policies and discuss them in
Section II-C.

When a server receives a batch, it sequentially executes the
requests and pack the results into a new batch and then send
back to the client. Note that any request batch and response
batch only involves one client/server pair.



Algorithm 1 Batch requests handling

1: procedure THREAD REQUESTHANDLER
2: repeat
3: batch← batch.addToBatch(newReq)
4: deadlinenew ← timenewArrv +QoSnew

5: num reqbatch ← num reqbatch + 1
6: size bytebatch ← size bytebatch + sizenew
7: batch.mutex lock()
8: if deadlinebatch ≥ deadlinenew then
9: deadlinebatch ← deadlinenew

10: end if
11: batch.mutex unlock()
12: until Terminated
13: end procedure
14:
15: procedure THREAD MONITOR
16: repeat
17: for all batch in BatchList do
18: batch.mutex lock()
19: if conditionsend(policy) = True then
20: sendBatch()
21: deadlinebatch ←∞
22: batch.requests← φ
23: end if
24: batch.mutex unlock()
25: end for
26: until Terminated
27: end procedure

TABLE I: Batch request data structure

Variable Name Description
Client IP For server returning results

Client Port Client listening port
Dest Server Destination server

Curr Deadline Current batch deadline; Condition var
Batch num item # of requests; Condition var
Batch num limit limit of requests #; given threshold
Batch Size Byte size in bytes; Condition var
Batch Size limit limit of size in bytes; given threshold
Data Requests List of single requests

2) Client APIs: Most key-value stores’ client APIs work
in a synchronous manner, in which clients are blocked while
waiting for the servers’ response. To minimize the application
change, ZHT/Q supports both synchronous and asynchronous
APIs. Under the hood, in ZHT/Q’s client proxy, requests
are handled in non-blocking and asynchronous manner. All
batch mode responses from servers are stored in a response
buffer, which is a local in-memory hash map in the proxy
(Fig.2). In this buffer map, keys and values are request keys
and server responses respectively. For applications that require
asynchronous access, they simply check the hash map at
will, for example, to check after the QoS latency time. For
synchronous applications, a dedicated thread is created in the
client proxy, which blocks the application and checks the hash
map within the specified QoS latency time. The application
will return until response is found or a given time-out is
reached.
C. Batching strategies

A batching strategy is represented by a multi-parameter
trigger condition, based on which the client proxy (batcher)

decides when to send a batch. ZHT/Q provides several impor-
tant strategies, each of them can work in two modes, static
and dynamic. In static mode, the client proxy uses policies
with user specified or system initialized parameters and thus
will not change. In dynamic mode, the client proxy works
with the same initial parameter set but it dynamically adjusts
parameters based on currently measured performance so as to
provide best-effort service when network or servers are heavily
loaded (Alg.3).

Some applications do not have explicit QoS requirement.
This type of requests can be sent in static mode with fixed
batch size if the user specifies, which can fully utilize the
advantage of batching. If users do not specify, these requests
will be handled along with the QoS enforced requests by the
system automatically with a modified Earliest-Deadline First
(EDF) strategy (Alg.2). This strategy considers all three major
parameters, namely batch latency limit (deadline), logical
batch size (number of requests in a batch) and physical batch
size in bytes. The batch deadline is calculated dynamically
based on arrival time and QoS of every single request. The
threshold values for the other two variables are given by the
system administrator. A batch will be sent as soon as any one
out of three conditions (batch deadline, logical batch size and
physical batch size) are satisfied. In other words, the deadline
for a batch is the closest deadline of all requests in that batch.
EDF strategy works well to satisfy various QoS requirements.
However it has a potential problem when the QoS range
is very wide. The requests that have smaller QoS latency
value can prevent the batching mechanism from accumulating
many requests, because the system has to send batches more
frequently to satisfy the smaller QoS latency.

Algorithm 2 Earliest-Deadline First Batching

1: procedure conditionsend
2: if dlbatch ≤ sysdelay + timecur‖num reqbatch ≥
max req‖size bytebatch ≥ max sizebatch

3: return True
4: else
5: deadlinebatch ←∞
6: batch.requests← φ
7: return False
8: endif
9: end procedure

D. QoS properties

In a request batching system, a potential problem is that
a request could wait in the batch queue for a long period
of time if the sending condition is not met. This could
happen when the condition is not properly set or the request
arrival rate is low. We avoid this problem by fortifying all
batch mode requests with a maximal tolerable latency, called
QoS latency, which can be defined in QoS or SLA and the
system is supposed to return results before that. Requests in
single mode require as low as possible latency, thus they are
always served immediately with the lowest possible latency
(best-effort service) and no explicit QoS definition needed.
ZHT/Q offers a guaranteed service when the network has no
congestion and a best-effort service when network or servers
are busy.

1) Guaranteed service: When the network and servers’
processing capability are not saturated, the QoS on latency



is guaranteed. Assuming a request i has a different maximal
tolerable latency, denoted as l qosi, the request is submitted
at time Tci, then there is a deadline di presented in POSIX
time for the request. To ensure that the QoS of all requests in
a batch are satisfied, we define the deadline of a batch dB to
be the closest deadline to present (Tnow) in the batch. A given
sys cost is a threshold that is greater than the possible round-
trip transferring time plus server side execution. As long as the
batch is sent before dB + sys cost, the QoS of all requests
are satisfied. Then, we have the lowest condition (Formula 1)
to decide when to send a batch while keeping QoS.

di = Tci + l qosi,

dB =
n

max
i=1

di,

dB 6 Tnow + sys cost (1)

2) Best-effort service with feedback based adjustment:
When the network or servers are heavily loaded, the client side
measured performance can degrade significantly. ZHT/Q uses
passive latency detection to adjust batching parameters so as
to adapt to the dynamic network environment (Alg.3). Latency
is measured on clients for each request and compare it with an
threshold value to judge if the system is running normally. The
threshold latency for single and batch request mode is set in
different ways. For single mode, it looks straightforward: just
set to be slightly shorter than the QoS latency. However this
can cause a serious problem. On one hand, because of the delay
between measured latency-based adjustment and measurable
effects, and the presence of network noise, if simply using
the latest measured latency as as the batching adjustment
condition, the randomness of latency could lead the system
to jitter. On the other hand, since individual requests are
generally very small, the latency could fluctuate drastically
due to the influence from client/server CPU utilization and
network noise. Thus the request latency would has larger
standard deviation, especially in dynamic environments such
as clouds. This means there could always be a tiny part of
requests are responded after the given threshold. This makes
it very difficult to give a valid expected latency for threshold.
To avoid this problem, we use a weighted arithmetic mean
(Formula 2b) instead of the actually measured latency, in
which newer recorded latencies have higher weight. In this
way, newer measured latency always play more important roles
while the older latency can be used to balance the jitter.

lim
n→∞

n∑
i=1

1

2n
= 1

L̄n =

n∑
i=1

Li

2n
(2a)

¯Ln+1 = L1/2 + 1/2

n∑
i=2

Li

2n

= (L1 + L̄n)/2 (2b)

Note that L1 is the latest latency, Ln is the oldest latency
recorded and L̄n is the weighted average latency for past n
requests. When n is reasonablely big, the error is negligible
(L̄n/2

n).

In batch mode, since there is no QoS latency for batches,
and the time to send a batch can not be determined before

Algorithm 3 Dynamic parameter tuning

1: function PARAMETERTUNER(L, sizen, sizeb, sys delay)
2: if L > ExpectedLatency() then
3: sizen ← sizen/2
4: sizeb ← sizeb/2
5: sys delay ← 2× sys delay
6: end if
7: end function
8: function EXPECTEDLATENCY(Lcur, L̄)
9: if isIndividualRequest then

10: ExpectedLatency ←WeightedAvgLatency()
11: else
12: ExpectedLatency ← ExpectedBatchLatency()
13: end if
14: return ExpectedLatency
15: end function
16: function WEIGHTEDAVGLATENCY(Lcur, L̄)
17: if L̄ = 0 then
18: L̄← Lcur

19: else
20: L̄← (Lcur + L̄)/2
21: end ifreturn L̄
22: end function

it meet the predefined sending condition, it is hard to give a
reasonable threshold based on given QoS. However we can
still find if a batch is delayed. When a batch reaches the
condition for sending, its physical size and logical size are
known. With these sizes, we can calculate a expected batch
latency by Formula 3 where αtr is the constant transferring
factor, Sreq+res is total data size to transfer, n is the number
of requests in a batch, and Cexe is the time of executing a
request.

Lexp = αtr × Sreq+res + n× Cexe + C (3)

From Formula 3 we can see that the batch response time is
a linear function of two variables: request number (n) and
total data size to transfer (Sreq+res, including requests to
and response from a server). Since the profiles from different
network environment are different, the parameters need to be
determined for all ZHT/Q deployments. Running a set of test
requests with different sizes at the initial stage and measure
the latency, we can calculate these parameters through linear
regression.

When the measured latency (from send batch to response
received, Fig.3) is longer than the expected duration, ZHT/Q
will switch to best-effort service mode to ensure the QoS time
l qosi is met if at all possible. In this mode, a compensatory
mechanism is triggered to tune the current batching strategy to
reduce latency. The predefined system cost (sys delay) will
be increased such that batches are sent more frequently. Since
reducing requests in batches will benefit latency, this attempt
is to sacrifice throughput for latency.

III. PERFORMANCE EVALUATION

In this section we evaluate the performance of our system
with different batching policies and various workloads through
micro benchmarks. We run real system micro benchmarks on
Amazon EC2 with moderate scales (up to 32 instances) and
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simulations on large scales (up to 512 nodes) to measure the
performance.
A. Workloads

For better coverage of different application scenarios, we
define 3 types of workloads with various requirements. In all
three workloads, requests are sent from clients in tight loops.
Like Facebook [1] and MICA’s [10] workloads, we focus on
small requests with fixed key (10 bytes) and value length (20
bytes), 95% get and 5% put.

Workload with no explicit latency QoS: In this type
of workload, application requests are relatively less latency-
sensitive and well tolerant of a wide range of response laten-
cies. This covers a category of applications that do not have
a explicitly specified response time limit, such as logging and
archiving systems. For this scenario, logical batch size (the
number of requests in a batch) is the only parameter, meaning
that setting a limit for batch size would work for most of cases.

Workload with single QoS latency: In this workload,
key-value requests in each experiment are given same QoS
latency. Assuming one application only has one QoS setting,
this workload represents the scenario in which one application
with many clients is served by the data store. In the test data
set, the QoS time varies from 1 ms to 1000 ms.

Workload with multiple QoS latency: This workload
simulates the scenario that multiple different applications use
a single deployment of key-value store as a service. Note
that applications in this case have various QoS latency time,
ranging from 1ms to 1000 ms. The workload is organized as
shown in table II. Requests in workloads of pattern 1, 3 and
4 have more even QoS distribution, while pattern 2 represents
a highly skewed workload.

TABLE II: Workload with multiple QoS

QoS latency time 1ms 10ms 100ms 1000ms
Pattern 1 25% 25% 25% 25%
Pattern 2 4% 32% 32% 32%
Pattern 3 0% 33% 33% 33%
Pattern 4 0% 0% 50% 50%

B. Experiment setup and metrics
For a detailed performance study, we conduct a real system

micro benchmark on Amazon EC2 with 2 to 32 C3.large
instances, half as servers, half as clients. We separate servers
from clients to avoid any local communication. For better
understanding the performance and scalability on large scale
deployments, we construct a PeerSim [11] based simulator. We
use the data captured from real system to calibrate and validate
our simulation results (Section III-F).

We focus on 3 metrics that accurately reflect batching
performance, namely individual request latency, batch latency
and node throughput. Request latency presents the duration
from a request is submitted to the response is returned by
a server. Batch request presents the duration from the first
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Fig. 4: Batching with fixed batch size. Expected longer batch latency can be observed in
experiments wirh larger size (Fig.4c and fig.4d). Note that batch latency is proportional
with batch size.

request enter the batch, to the batch response is returned by
a server. node throughput presents the number of finished
requests in one second by the system. Please note that in
individual request mode, low latency directly means high
throughput. But in batch mode, it is a different story. Low
average request latency imply a smaller batch size, which
is not likely to make good use of the system resource. On
the contrary, longer average request latency (while still within
QoS) usually implies high throughput, due to the system has
longer time to accumulate requests.

C. Applications with no explicit QoS
There are also many applications that have a response time

expectation but do not have QoS options in their APIs, we set
a maximal time limit 1 second during the experiment, by then
a batch will be sent even if the batch size has not reached the
threshold. As expected, the throughput (Fig.5) increases with
the batch size. However it is worth to note that the throughput
increasing rate is much slower than that of batch size. This
is because the batching cost and the time for waiting requests
are accumulated during batching. When the batch size is n, it
takes n∗(tc+tcost) time to wait and to push all the n requests
into the batch, where tc is the interval between 2 contiguously
arrived requests, and tcost is the time cost for processing a
request in the batch. This implies a linear batching cost with
logical batch size. Under this workload (Fig.4), as expected,
the batch latency is significantly longer with larger batch size
(Fig.4c and Fig.4d).

On throughput (Fig.5), unsurprisingly bigger batch sizes
bring higher single node throughput, but the increment is
not proportional to the batch size due to the accumulated
batching overhead and increased data transferring cost. On
different scales, the single node throughput stays consistent,
which indicates excellent scalability.
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Fig. 6: Workload with single QoS latency represents single-application scenarios. Higher
batch latency (red line) is desired because it can accumulate more requests and yield
higher throughput (Fig.7). Batch latency is proportional to the QoS, and is close to
the single request QoS, implying that the system and network are still far from being
saturated.

D. Single application with latency QoS
Typical applications with QoS requirement usually specify

only one QoS value. This experiment represents the use case
that multiple clients of single application access the data store.
We can see that more than 99% requests are satisfied within the
QoS time (Fig.6), except for the workload with very long QoS
latency, in which 95% requests are satisfied. The throughput
increases with the QoS time (Fig.7). Due to the longer QoS
time, each batch can accumulate more requests before sending,
which means larger batch size and throughput. This is also the
reason why the throughput shows similar pattern with fixed
size batching (Fig.5).

In Fig.6 we see that the measured batch latency is pro-
portional to the specified QoS latency. Note that higher batch
latency (red line) is desired because it can accumulate more
requests and yield higher throughput (Fig.7). This also implies
that if measured request latency is much shorter than QoS, it
causes waste to the system efficiency. Thus a ”lazy” but good
enough (just to satisfy QoS) batching strategy is welcomed.
On throughput (Fig.7), similar to the trends shown in static
batching (Fig.5), longer QoS brings higher throughput.
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pattern 1 (black), pattern 2 (red), pattern 3 (blue) and pattern 4 (green) respectively. The
lines for pattern 1 and 2 are pretty close because they both have some low QoS latency
(1ms) requests, which significantly increases the batch sending frequency. Corresponding
throughput is shown in Fig.9.

E. Multiple applications with different latency QoS
The workload that we use to test the system is organized

as table II. Requests have different QoS latency requirements,
and are submitted in random order. Although QoS latency
are mostly satisfied, the workload pattern has huge impact on
throughput. In pattern 1, 3 and 4, requests QoS latencies appear
with same probability, while pattern 2 presents a highly skewed
workload. Similarly as the results shown in fixed batch size
experiments (Fig.5), longer QoS latency implies larger batch
size, thus higher throughput (Fig.9).

Interestingly we find workload pattern 2 and 3 only have
4% difference, but the throughput of workload pattern 3 is
almost 3x higher (Fig.9), the measured batch latency (Fig.8)
also shows almost 10x difference. On the contrary, perfor-
mance profiles of pattern 1 and 2 are similar, but the workload
distributions are totally different (tab.II). The results shows
how a small part of requests with low QoS latency can
significantly influence overall performance. It also remind us
that EDF batching strategy still has great potential to improve.

F. Throughput comparison on large scales
In this section we discuss the experiments on large scale

deployments with simulation results. We construct the simula-
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Fig. 9: Throughput of batching with different workloads. Low QoS latency (1ms) requests
in pattern 1 and 2 significantly lower the total throughput, because they force the system
to send batches more frequently. Corresponding latency distribution is shown in Fig.8.
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(a) Fixed batch size: The minimal differ-
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tested result from EC2 shows that the sim-
ulation can precisely predicts the perfor-
mance of batching mechanism.
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result, meaning the system scalability char-
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Fig. 10: Simulation validation
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Fig. 11: Throughput comparison on scales

tor on top of PeerSim [11].

1) Simulation Validation: We firstly validate the simulation
with real experimental results from fixed batch-size (Fig.10a)
and EDF dynamic batching (Fig.10b) on Amazon EC2 cloud.
The result only shows less than 5% error between real test and
simulation result. This implies that the simulator can precisely
predict the batching mechanism and the simulated throughput
result on large scale is validated.

2) Simulation Results: We conduct experiments to evaluate
the system scalability and total throughput with different
batching mechanisms. Up to 512 nodes, both fixed-size static
batching (Fig.11a) and EDF batching (Fig.11b) with different
workloads show nearly constant single node throughput which
demonstrate excellent scalability.

IV. RELATED WORK

A. Approaches to boost performance of distributed storage
systems

To achieve high throughput, low latency and better scal-
ability in distributed storage systems on clouds, numerous
works have been done in many aspects. Some focus on
optimizing network communication. Kielmann’s work [12]
adopts dynamic load balanced multicast to offer more efficient
communication for data-intensive application. Liu’s work de-
ploys a burst buffer [13] between parallel file system servers
and compute nodes in supercomputers so as to avoid burst
writing to the file system. Sata developed a model-based
algorithm [14] for optimizing I/O intensive applications in
clouds through VM layer coordination. Wolf’s work [15]
attempts to optimize massively parallel I/O and data locality.
Some are trying to exploit new hardware, such as NV-RAM.
Panda’s team, in another hand, proposed new storage primitive
[16] for emerging storage hardware. For large-scale storage-
class memory systems, Jung [17] attempts to utilize Resistive
Random Access Memory (RRAM), another promising memory
technology to offer higher bandwidth and lower latency. There
are also works done on parallel SQL databases, such as

ParaLite [18], which supports collective queries to parallelize
User-Defined Executables (EDU).

B. Key-value stores
This work is built on top of ZHT [4, 9, 19–23], a zero-hop

distributed key-value store system, which has been tuned for
the requirements of high-end computing systems. ZHT aims
to be a building block for future distributed systems, such
as parallel and distributed file systems [24, 25], distributed
job scheduling systems [26–29], cloud storage systems [30–
36], and parallel programming systems. There are some other
recent works that have been done to improve key-value store
performance and scalability in various aspects. MICA [10] is
another scalable key value store that can handle millions of
operations per second using single general multi purpose core
system. MICA achieved this by encompassing all aspects of
request handling by enabling parallel access to data, network
request handling, and data structure design. SPANStore [37]
presents a key value store that exports a unified view of storage
services in geographically distributed data centers. SPANStore
combines three main principles, spans multiple cloud providers
to minimize cost, estimating application workload at the right
granularity and finally minimizing use of compute resources.
SPANStore in some scenarios was able to lower cost by
10X. Masstree [38] presents anther key value store designed
for SMP machines. Masstree functions by keeping all data
in memory in a form of concatenated B+ trees. Lookups
use optimistic concurrency control, a read-copy-update like
technique but no writing on shared data. With these tech-
niques Masstree is able to execute more than six million
simple queries per second. LOCS [39] is system equipped
with customized SSD design, which exposes its internal flash
channels to applications, to work with LSM-tree based KV
store, specifically LevelDB in LOCS. Main motivation of
LOCS was to overcome inefficiencies to naively combining
LSM-tree based KV stores with SSD. They were able to show
4X increase in storage throughput after applying the proposed
optimization techniques. Small Index Large Table (SILT) [40]
presents a memory efficient high performance key value store
system based on flash storage that can scale to serve billions
of key value items on a single node. SILT focuses on using
algorithmic and systemic techniques to balance the use of
memory, storage and computation.

C. Request batching and QoS in key-value stores
For performance improvement, request batching are already

used in some production systems, such as Facebook Mem-
cached [41] and Amazon DynamoDB [42]. In these systems,
users explicitly wrap requests into batches. Memcached allows
users to call a multiget API to submit a batch of get
requests. Note that the batch contains requests that will go
to multiple servers. Then the server that initially received
the multiget request will have to communicate to many other
servers, which may increase the actual latency. Adding more
servers will not help this case because the busy server is CPU
bounded. This problem is now known as Multiget Hole [43].
In ZHT/Q, batching works in the background and users do not
know any details. Multiget Hole problem is avoided by making
the requests in a batches have a same destination server.
DynamoDB has a similar mechanism for request batching.
Another issue with these solutions is that an user must have
all the requests ready by hand and then pack them in batches.



This requires users to use a very different set of APIs, thus
some times change the applications’ logic.

Request batching is also used to reduce power consump-
tion. In [44] Cheng used a request batcher on server side
to buffer requests so to keep the CPU in idle mode for
longer time to save energy. In [45] Wang proposed a batching
technique with DVFS for virtual machines to save power. But
neither focuses on performance perspective and multiple QoS
requirements.

There are couple of key-value store projects support QoS or
SLA (service level agreement). Pileus [3] is a key-value store
that allows applications to declare their consistency and latency
requirements. The performance difference is implemented via
choosing different consistency level and replication options.
Zoolander [46] is a key value store that supports latency SLAs.
Similar with Pileus, Zoolander makes use of systems data and
workload conditions along with different replication options to
deliver different performance level.

V. CONCLUSIONS

Every application has its own performance requirement but
most of current key-value store systems are designed to serve
every application request equally. In this paper we propose
a flexible distributed key-value storage system which can be
used by cloud providers and data centers to satisfy various
applications’ QoS requirement concurrently. It uses dynamic
and adaptive request batching mechanisms to achieve both QoS
on latency and high aggregated throughput. The experiment
results show that our new system delivers up to 28 times higher
throughput than the base solution while more than 99% of
requests’ latency requirements are satisfied. The results also
remind us that wide range of latency requirements need to be
handled carefully.
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