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Abstract—Cloud computing is an emerging computing paradigm that can offer unprecedented scalability and resources on 

demand, and is getting more and more adoption in the science community, while scientific workflow management systems 

provide essential support such as management of data and task dependencies, job scheduling and execution, provenance 

tracking, etc., to scientific computing. As we are entering into a “big data” era, it is imperative to migrate scientific workflow 

management systems into the Cloud to manage the ever increasing data scale and analysis complexity. We propose a 

reference service framework for integrating scientific workflow management systems into various Cloud platforms, which 

consists of eight major components, including Cloud workflow management service, Cloud resource manager, etc., and 6 

interfaces between them. We also present a reference framework for the implementation of Cloud Resource Manager, which is 

responsible for the provisioning and management of virtual resources in the Cloud. We discuss our implementation of the 

framework by integrating the Swift scientific workflow management system with the OpenNebula and Eucalyptus Cloud 

platforms, and demonstrate the capability of the solution using a NASA MODIS image processing workflow and a production 

deployment on the Science@Guoshi network with support for the Montage image mosaic workflow. 

Index Terms—Cloud Workflow, Cloud Resource Management, Reference Service Framework, Swift, Virtual Cluster 

Provisioning, Workflow-as-a-Service 

——————————      —————————— 

1 INTRODUCTION

CIENTIFIC workflow management systems (SWFMSs) 
have been proven essential to scientific computing and 

services computing [4], [24], [25], [26] as they provide func-
tionalities such as workflow specification, process coordina-
tion, job scheduling and execution, provenance tracking, and 
fault tolerance. Systems such as Taverna [11], Kepler [9], 
Vistrails [10], Pegasus [8], Swift [32], and VIEW [25] have 
seen wide adoption in various disciplines such as Physics, 
Astronomy, Bioinformatics, Neuroscience, Earth Science, 
and Social Science. Nevertheless, advances in science in-
strumentation and network technologies are posing great 
challenges to our workflow systems in both data scale and 
application complexity. 

Industrial and Scientific communities are facing a “data 
deluge” [7] coming from products, sensors, satellites exper-
iments and simulations. Scientists, manufacturers and de-
velopers are attempting multifarious methods to deal with 
the ever-increasing computing and storage problems arising 

in the “big data” era. The Large Hadron Collider1 at CERN 
can generate more than 100 terabytes of collision data per 
second; GenBank2, one of the largest DNA databases, hosts 
over 120 billion bases and the number is expected to double 
every 9-12 months. Data volumes are also increasing dra-
matically in physics, earth science, medicine, and many oth-
er disciplines. As for application complexity, a protein simu-
lation problem [29] involves running many instances of a 
structure prediction simulation, each with different random 
initial conditions and performs multiple rounds. The num-
ber of jobs can easily reach hundreds of thousands, and can 
run up to tens of CPU years. 

As an emerging computing paradigm, Cloud computing 
[1] is gaining tremendous momentum in both academia and 
industry: Amazon, Google, IBM, and Microsoft all released 
their Cloud platforms one after another. Meanwhile, several 
open source Cloud platforms, such as Hadoop3, OpenNebu-
la4, Eucalyptus [28], Nimbus [22], and OpenStack5, become 
available with fast growth of their own communities. Scien-
tific workflow systems have been formerly applied over a 
number of execution environments such as workstations, 
clusters/Grids, and supercomputers, where the new Cloud 
computing paradigm with unprecedented size of datacen-
ter-level resource pool and on-demand resource provision-
ing can offer much more to such systems, enabling scientific 
workflow solutions capable of addressing peta-scale scien-
tific problems. The benefit of managing and running scien-
tific workflows on top of the Cloud can be multifold: 

 

1 http://lhc.web.cern.ch 
2 http://www.ncbi.nlm.nih.gov/genbank 
3 http://hadoop.apache.org/ 
4 http://www.OpenNebula.org 
5 http://www.openstack.org 
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1) The scale of scientific problems that can be addressed 
by scientific workflows can be greatly increased compared to 
cluster/Grid environments, which was previously up-
bounded by the size of a dedicated resource pool with lim-
ited resource sharing extension in the form of virtual organi-
zations. Cloud platforms can offer vast amount of compu-
ting resources as well as storage space for such applications, 
allowing scientific discoveries to be carried out in a much 
larger scale. 

2) Application deployment can be made flexible and con-
venient. With bare-metal physical servers, it is not easy to 
change the application deployment and the underlying sup-
porting platform. However with virtualization technology in 
a Cloud platform, different application environments can be 
either pre-loaded in virtual machine (VM) images, or de-
ployed dynamically onto VM instances. 

3) The on-demand resource allocation mechanism in the 
Cloud can improve resource utilization and change the ex-
perience of end users for improved responsiveness. Cloud-
based workflow applications can get resources allocated 
according to the number of nodes at each workflow stage, 
instead of reserving a fixed number of resources upfront. 
Cloud workflows can scale out and in dynamically, resulting 
in fast turn-around time for end users. 

4) Cloud computing provides much larger room for the 
trade-off between performance and cost. The spectrum of 
resource investment now ranges from dedicated private 
resources, a hybrid resource pool combining local resource 
and remote Clouds, and full outsourcing of computing and 
storage to public Clouds. Cloud computing not only pro-
vides the potential of solving larger-scale scientific problems, 
but also brings the opportunity to improve the perfor-
mance/cost ratio. 

There are various challenges associated with migrating 
and adapting an SWFMS in the Cloud, including architec-
tural challenges, integration challenges, computing chal-
lenges, data management challenges, language challenges 
and service management challenges. We have discussed the 
challenges in depth in an early paper [12]. Meanwhile, Secu-
rity has been identified as one of the main concerns for the 
adoption and success of the Cloud [1] and is the first major 
service that needs to be provided by a Cloud provider. In 
many cases, large simulations are organized as scientific 
workflows that run on Distributed Computing Infrastruc-
tures (DCIs), and we realize that SWFMSs are diverse in 
many aspects, such as workflow models, workflow lan-
guages, workflow engines, and so on. In many cases, one 
workflow system engine is dependent on one specific DCI, 
porting a SWFMSs to run on another DCI may cost a large 
quantity of extra effort. So in practice, researchers may 
choose to integrate a specific SWFMS into a particular 
Cloud, whichever takes the minimum effort to migrate. 

Taking into consideration all the advantages, require-
ments and challenges, we propose a service framework for 
migrating and integrating SWFMSs into various Cloud plat-
forms. Through the introduction of the reference service 
framework and the implementation of different modules 
that can be mapped into the proposed framework, we try to 
achieve three goals: 1) proposing a framework to bridge var-
ious SWFMSs with multiple heterogeneous Cloud environ-

ments; 2) breaking the limitations that a specific SWFMS is 
bound to a particular Cloud environment; 3) providing both 
practical and reference value to researchers who are devoted 
to the study of running scientific workflows in Clouds, so 
that they can contribute and share components designed 
and implemented by the guidance of the service framework, 
which is beneficial to both the workflow and the Cloud 
computing communities. The service framework covers all 
the major aspects involved in workflow management in the 
Cloud, from the client-side workflow submission to the un-
derlying Cloud resource management. Our major contribu-
tions are: 1) we propose a reference service framework for 
migrating SWFMSs into various Cloud platforms; 2) we also 
propose a reference service architecture for Cloud resource 
management that is a core component of the framework; 3) 
we provide implementations of the service framework by 
integrating the Swift workflow system with the OpenNebula 
and Eucalyptus Cloud platforms; 4) we analyze the integra-
tion efficiency of our approach in a small cluster based 
Cloud setting, a public science Cloud platform, and also pre-
sent a use case of production deployment. 

The rest of the paper is organized as follows: in section II, 
we discuss related work in running scientific applications 
and workflows in the Cloud. In section III, we present our 
reference service framework for migrating different 
SWFMSs into diverse Cloud platforms. In the Implementa-
tion Experience section, we discuss our experience in inte-
grating the Swift workflow system into the OpenNebula and 
Eucalyptus Cloud platforms. In the Experiment section, we 
demonstrate and analyze our integration using a NASA 
MODIS image processing workflow and the Montage image 
mosaic workflow [19], and in the last section, we draw our 
conclusions and discuss future work. 

2 RELATED WORK 

There have been a couple of explorers that tried to run work-
flow on Clouds. The series of works [13], [30] focused on 
running scientific workflows that are composed of loosely 
coupled parallel applications on various Clouds. The study 
conducted on an experimental Nimbus Cloud testbed [14] 
dedicated to science applications involved a non-trivial 
amount of computation performed over many days, which 
allowed the evaluation of the scalability as well as the per-
formance and stability of the Cloud over time. Their studies 
demonstrated that the multi-site Cloud computing is a via-
ble and effective solution for some scientific workflows, and 
the networking and management overhead across different 
Cloud infrastructures do not have a major effect on the over-
all user experience, and the convenience of being able to 
scale resources at runtime outweighs such overhead. 

The deployment and management of workflows over the 
current existing heterogeneous and not-yet interoperable 
Cloud providers, however, is still a challenging task for 
workflow developers.  The series of works [3], [15] presented 
a broker-based framework to support the execution of work-
flow applications on a multi-Cloud environment. Wang et al. 
[16] designed a Workflow as a Service (WFaaS) architecture 
focused on responding continuous workflow requests and 
scheduling their executions in the Cloud. After proposing 
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four heuristic workflow scheduling algorithms for the 
WFaaS architecture, they analyzed the differences and best 
usages of the algorithms in terms of performance, cost and 
the price/performance ratio via experimental studies. Sun-
flower [5] was an adaptive P2P agent-based framework for 
configuring, enacting, managing and adapting autonomic 
workflows on hybrid Grid-Cloud infrastructures. To orches-
trate Grid and Cloud services, Sunflower utilized a bio-
inspired autonomic choreography model and integrated the 
scheduling algorithm with a provisioning component that 
could dynamically launch virtual machines in a Cloud infra-
structure to provide on-demand services in peak-load situa-
tions. 

Approaches for automated provisioning include the Con-
text Broker [22] from the Nimbus project, which supported 
the concept of “one-click virtual cluster” that allowed clients 
to coordinate large virtual cluster launches in simple steps. 
The Wrangler system [23] was a similar implementation that 
allowed users to describe a desired virtual cluster in XML 
format, and send it to a web service, which managed the 
provisioning of virtual machines and the deployment of 
software and services. It was also capable of interfacing with 
many different Cloud resource providers. 

Upon dynamic resource allocation for scientific work-
flows, Tram Truong Huu et al. [31] described a framework 
that automated Cloud resource allocation, deployment and 
application execution control. It was based on a cost estima-
tion model that took into account both virtual network and 
nodes managed by the Cloud. Simon Ostermann et al. [21] 
investigated the usability of compute Clouds to extend a 
Grid workflow middleware and showed in a real implemen-
tation that it could speed up executions of scientific 
workflows. Elena Apostol et al. [18] addressed key require-
ments in managing resources at the infrastructure level -- 
new resources can be dynamically allocated on-demand or 
policy-based. 

The studies mentioned above were either focused on 
running workflow applications on Clouds or on the de-
ployment and management of integrating workflows into 
Clouds, dealing with workflow scheduling, resource alloca-
tion, application adaptation, performance evaluation, etc., 
however, a normalized, service-oriented integration frame-
work is still missing. As running scientific workflows as a 
service in the Cloud platforms involves a variety of systems 
and techniques, researching and designing of a service-
oriented framework can help to standardize the integration 
procedure and interaction between essential systems, and 
foster community collaboration. 

In this paper, we propose a generic service framework to 
integrate SWFMSs with various Cloud based DCIs, which 
covers a wide spectrum from workflow management and 
migration into Clouds, task scheduling, Cloud resource 
management, and virtual resource provisioning and recy-
cling. We define a series of interfaces to standardize the in-
teractions between different components. Implementation of 
different components can be reused and migrated to the 
service framework according to the interface definition. We 
also present a reference architecture for the implementation 
of Cloud Resource Manager, which is a key component in 
the service framework. 

3 SERVICE FRAMEWORK 

In this section, we discuss a service framework for migrating 
and adapting SWFMSs into various Cloud platforms. Before 
we go into further details of the service framework, we first 
discuss some background information with regard to inte-
gration options and challenges. 

3.1 Integration Options 

In an early paper [12], we identified four implementation 
approaches to the deployment of SWFMSs in a Cloud com-
puting environment according to the reference architecture 
for SWFMSs [25]. The reference architecture for SWFMSs 
was proposed as an endeavor to standardize the SWFMS 
research and development efforts, and an SOA-based instan-
tiation was first implemented in the VIEW system. As 
shown in Fig. 1, the reference architecture consists of 4 logi-
cal layers, 7 major functional subsystems, and 6 interfaces.  

The four deployment options, accordingly, correspond to 
deploying different layers of the reference architecture into 
the Cloud: 

1) Operational-Layer-in-the-Cloud. In this solution, only the 
Operational Layer lies in the Cloud with an SWFMS running 
out of the Cloud. An SWFMS can now leverage Cloud appli-
cations as another type of task components. Cloud-based 
applications can take advantage of high scalability provided 
by the Cloud and large resource capacity provisioned by 
data centers. This solution also relieves a user from the con-
cern of vendor lock-in due to the relative ease of using alter-
native Cloud platforms for running Cloud applications. 
However, the SWFMS itself cannot benefit from the scalabil-
ity offered by the Cloud. 

2) Task-Management-Layer-in-the-Cloud. Both the Opera-
tional Layer and the Task Management Layer will be de-
ployed in the Cloud. The Data Product Management, Prov-
enance Management, and Task Management components 
can now leverage the high scalability provided by the Cloud. 
For Task Management, rather than accommodating the us-
er’s request based on a batch-based scheduling system, all or 
most tasks with a ready state can now be immediately de-
ployed over Cloud computing nodes and executed instead 
of waiting in a job queue for the availability of resources. 
One limitation of this solution is that the economic cost asso-
ciated with the storage of provenance and data products in 
the Cloud. Moreover, although task scheduling and man-
agement can benefit from the scalability offered by the 
Cloud, workflow scheduling and management do not since 

 

Fig. 1. A Reference Architecture for SWFMSs 
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the workflow engine runs outside of the Cloud. 
3) Workflow-Management-Layer-in-the-Cloud. In this solu-

tion, the Operational Layer, the Task Management Layer, 
and the Workflow Management Layer are deployed in the 
Cloud with the Presentation Layer deployed at a client ma-
chine. This solution provides a good balance between sys-
tem performance and usability: the management of compu-
tation, data, and storage and other resources are all encapsu-
lated in the Cloud, while the Presentation Layer remains at 
the Client to support the key architectural requirement of 
user interface customizability and user interaction support. 
In this solution, both workflow and task management can 
benefit from the scalability offered by the Cloud, but the 
downside is that they become more dependent on the Cloud 
platform over which they run. 

4) All-in-the-Cloud.  In this solution, a whole SWFMS is 
deployed inside the Cloud and accessible via a Web brows-
er. A distinct feature of this solution is that no software in-
stallation is needed for a scientist and the SWFMS can fully 
take advantage of all the services provided in a Cloud infra-
structure. Moreover, the Cloud-based SWFMS can provide 
highly scalable scientific workflows and task management as 
services, providing one kind of Software-as-a-Service (SaaS). 
One concern the user might have is the economic cost asso-
ciated with the necessity of using Cloud on a daily basis, the 
dependency on the availability and reliability of the Cloud, 
as well as risks associated with vendor lock-in. 

For easy integration with a Cloud platform, a “Task-
Management-layer-in-the-Cloud” approach can be chosen by 
implementing, for instance an “Amazon EC2” provider to 
Swift, then tasks in a Swift workflow can be submitted into 
EC2 and executed on EC2 VM instances. However, this ap-
proach would leave most of the workflow management and 
dynamic resource scaling outside the Cloud. For application 
developers, we would like to free them from complicated 
Cloud resource configuration and provisioning issues, and 
provide them with the convenience and transparency to 
scalable Cloud resources, therefore we choose to take the 
“Workflow-Management-Layer-in-the-Cloud” approach, which 
requires minimal configuration at the client side and sup-
ports easy deployment with virtualization techniques. 

3.2 Integration Challenges 

Many of the immediate challenges to running scientific 
workflows on the Cloud are to integrate scientific workflow 
systems with Cloud infrastructure and resources. As we 
have discussed in the previous section, the degree of integra-
tion also depends on how we choose to deploy an SWFMS 
into Clouds. While we certainly cannot cover all the aspects 
of the integration problems that we could encounter in the 
“All-in-the-Cloud” approach, we strive to identify some 
practical ones, and also discuss possible solutions to them. 

Applications, services, tools integration: In the Opera-
tional-Layer-in-the-Cloud approach, we treat applications, 
services, and tools hosted in the Cloud as task components 
in a workflow, the scheduling and management of a work-
flow are mostly outside the Cloud, where these task compo-
nents are invoked as they are scheduled to execute. The in-
vocation would need the right interface to interact with such 
applications, services, tools, for instance, via HTTP or REST 

protocols, or Web services calls, and then in the workflow, it 
needs to transform the output of one invocation, and then 
feed it as an input to another invocation. A majority of the 
mashup sites (such as those that leverage Google’s map ser-
vice) take this approach, and they use some ad hoc scripts 
and programs or shimming techniques [17] to glue the ser-
vices together. An early exploration of the Taverna work-
flow engine and gRAVI services in the caBIG project [42] can 
also be thought as an example of integrating an off-the-shelf 
workflow engine with Cloud/Grid services. gRAVI can rap-
idly wrap and expose applications, scripts and workflows as 
Web services, and deploy them into Grid, or the Nimbus 
Cloud environment. 

We notice that while the approach works for applications 
with small data exchanges, moving large dataset in and out 
the Cloud would incur serious overhead. For data intensive 
applications, it is necessary to migrate data into the Cloud. 
While Amazon’s Cloud services allow loading data into the 
S3 storage, and then having the EC2 computing service ac-
cess the data stored in S3, the MapReduce style of Cloud 
services such as Hadoop, would actually require computa-
tion to be collocated with storage (the same node that is used 
for storage is also used for computation) to explore data lo-
cality and avoid expensive data movement within and 
across data centers. Loading data in and out the Cloud is not 
a trivial process, for instance, within Microsoft, to load each 
day’s Bing search log into the Cloud, this task itself takes 
hundreds of dedicated servers working around the clock. So 
in an ideal Cloud workflow solution, we should avoid such 
operations as much as possible. 

Once we decide to get task dispatching and scheduling 
into the Cloud, resource provisioning becomes the next issue 
to resolve. Although conceptually Cloud offers uncapped 
resources, and a workflow can request as many resources as 
it requires, this comes with a cost and the presumption that 
the workflow engine can talk directly with the resource allo-
cated in the Cloud (Which is usually not true without tweak-
ing the configuration of the workflow engine). Taking these 
two factors into consideration, some existing solutions such 
as Nimbus would acquire a certain number of virtual ma-
chines (e.g. EC2 compute nodes), and assemble them as a 
virtual cluster, onto which existing cluster management sys-
tems such as PBS can be deployed and used as a job submis-
sion/ execution service that a workflow engine can directly 
interact with. An existing study [20] simply choose manual 
deployment over automated provisioning, in which the pro-
visioning step involves construction of a virtual Condor 
pool, where the VMs act as Condor worker nodes and report 
to a Condor Master node that runs on a submit host outside 
the Cloud. This belongs to the Task-Management-Layer-in-
the-Cloud approach, and it requires the Condor connection 
broker to enable VMs with private network addresses to talk 
to the outside submit host. 

Debugging, monitoring, and provenance tracking for 
workflows become increasingly difficult in the Cloud envi-
ronment, since compute resources are usually dynamically 
assigned and based on virtual machine images, the envi-
ronment that a task is executed on could be destroyed right 
after the task is finished, and assigned to a complete differ-
ent user and task. Some Clouds also support task migration 
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where tasks can be migrated to another virtual machine if 
there is a problem with the node that the task was running 
on. 

3.3 Service Framework 

We propose a structured service framework that addresses 
the above mentioned challenges and covers all the major 
aspects involved in the migration and integration of 
SWFMSs into the Cloud, from client-side workflow specifi-
cation, service-based workflow submission and manage-
ment, task scheduling and execution, to Cloud resource 
management and provisioning. As illustrated in Fig. 2, the 
service framework includes 4 layers, 8 components and 6 
interfaces. 

3.3.1 Layers 

The first layer is the Infrastructure Layer, which consists of 
multiple Cloud platforms with the underlying server, stor-
age and network resources.  This layer provides IaaS level 
support such as the management of the fundamental physi-
cal equipment, virtual machines and storage systems to up-
per layers. The separation of the Infrastructure Layer from 
other layers isolates the science-focused and technology-
independent problem solving environment from the under-
lying fast advancing high-end computing infrastructure. 

The second layer is called the Middleware Layer. This lay-
er is responsible for resource management and provisioning, 
and responding to requests from upper-layer and support-
ing various scheduling frameworks. All the operations that 
need to access the underlying resources are encapsulated in 
this layer. According to the description in the Integration 
Options section, this layer is responsible for the require-
ments requested by the Task-Management-Layer-in-the-Cloud 
option. Moreover, the separation of the Middleware Layer 
from the Infrastructure Layer promotes the extensibility of 
the Infrastructure Layer with new Cloud platforms and new 
high-end computing facilities, and localizes system evolu-
tion due to hardware or software advances to the interface 
between the Infrastructure Layer and the Middleware Layer. 

The third layer is the Service Layer, which is responsible 
for providing scientific workflow management as a service 
to the upper clients and realizing the execution and monitor-
ing of scientific workflows. This layer also provides interfac-
es to support various workflow engines. According to the 
integration options, the Service Layer fulfills the require-
ments addressed in the Workflow-Management-Layer-in-the-

Cloud option. The separation of the Service Layer from the 
Middleware Layer concerns two aspects: 1) it isolates the 
choice of a workflow model from the choice of a task model, 
so changes to the workflow structure do not need to affect 
the structures of tasks and 2) it separates workflow schedul-
ing from task execution, thus provides space for perfor-
mance and scalability of the whole management system. 

The fourth layer is the Client Layer, which provides the 
functionality of workflow design, specification, visualization 
and various user interfaces and tools for workflow submis-
sion, resource configuration etc. The Client layer may be out 
of the Cloud to circumvent the disadvantages discussed in 
the All-in-the-Cloud option. The separation of the Client Lay-
er from other layers provides the flexibility of customizing 
the user interfaces of the system and promotes the reusabil-
ity of the rest of system components for different scientific 
domains. 

3.3.2 Subsystems 

The eight major functional subsystems correspond to the key 
functionalities required for workflow management as a ser-
vice in the Cloud. Although the reference framework may 
allow the introduction of additional subsystems and their 
features in each layer, this paper only focuses on the major 
subsystems and their essential functionalities. 

The Workflow Specification & Submission subsystem is re-
sponsible for producing workflow specifications represented 
in a workflow specification language that supports a particu-
lar workflow model, and the submission of workflows to the 
Cloud Workflow Management Service subsystem. The 
Workflow Specification & Submission subsystem may pro-
vide users with a standalone or Web-based workflow de-
signer, which may support both graphical- and scripting-
based design interfaces, and a workflow submission compo-
nent to submit workflows. The interoperability of workflows 
should be addressed in this subsystem by the standardiza-
tion and conversion of workflow languages. 

The Workflow Presentation & Visualization subsystem is 
important especially for data-intensive and visualization-
intensive scientific workflows, in which the presentation of 
workflows and visualization of various data products and 
provenance metadata in multi-dimensions are key to gain-
ing insights and knowledge from large scale of data and 
metadata. 

The Cloud Workflow Management Service subsystem acts as 
an intermediary between the workflow client and the 
backend Cloud Resource Manager, and is the key service in 
the service framework provided to researchers interested in 
using Cloud-based scientific workflow. It supports the fol-
lowing functionalities: workflow language compilation, 
workflow scheduling, resource acquisition, and status moni-
toring. In addition, the implementation of fault-tolerance 
mechanism can also be defined in the service. 

The Workflow Engines subsystem supports various work-
flow engines and can be specified by end-users from the 
Workflow Specification & Submission subsystem. A work-
flow engine is the heart of a workflow system and responsi-
ble for creating and executing workflow runs according to a 
workflow run model, which defines the state transitions of 
each scientific workflow and its constituent task runs. A 

 

Fig. 2. The Service Framework 
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workflow run consists of a coordinated execution of tasks, 
each of which is called a task run. The interoperability of 
workflows should be addressed by the standardization of 
interfaces, workflow models, and workflow run models, so 
that a scientific workflow or its constituent sub-workflows 
can be scheduled and executed in multiple Workflow En-
gines that are provided by various vendors. 

The Cloud Resource Manager (CRM) subsystem is a re-
source management framework that bridges task scheduling 
frameworks with various Cloud platforms, such as Amazon 
EC2, OpenNebula, Eucalyptus, CloudStack, etc. A reference 
architecture of Cloud Resource Manager and description in 
detail will be given in the following section. 

The Scheduling Management Service subsystem is a frame-
work that bridges Cloud Resource Manager with various 
Task Scheduling Frameworks. It provides a set of operations 
for the deployment and management of various scheduling 
frameworks according to configurations specified by users. 

The Task Scheduling Frameworks subsystem consists of 
multiple scheduling frameworks, such as Falkon[27], Spar-
row, Gearman, and so on, and the framework can be speci-
fied by end-users through configuration. It is devised to 
schedule tasks delivered from the Workflow Engines sub-
system. 

The Cloud Platforms Subsystem refers to various supported 
Cloud platforms in general and the functionalities can be 
summarized from the Infrastructure Layer. 

3.3.3 Interfaces 

In the reference architecture, six interfaces are explicitly de-
fined, which show how each subsystem interacts with other 
subsystems. The interoperability between the subsystems 
should be addressed by standardizing the interfaces provid-
ed by each subsystem. 

Interface I1 provides a set of interfaces for the communica-
tion between Workflow Specification & Submission subsys-
tem and the Cloud Workflow Management Service, so 
workflow specifications created by workflow design tools 
can be submitted to a workflow execution environment for 
compiling, scheduling, and management. Interface I2 pro-
vides a series of interfaces for Cloud Workflow Management 
Service to interact with Cloud Resource Manager: the Cloud 
Workflow Management Service sends resource request to 
allocate specified cluster resources, and the Cloud Resource 
Manager replies with the cluster information for task execu-
tion. Interface I3 provides a series of interfaces for the Cloud 
Resource Manager to communicate with the Scheduling 
Management Service: upon the specified resource requests 
from Cloud Workflow Management Service are received, 
the Cloud Resource Manager provisions resources and de-
ploys the user-specified Task Scheduling Framework into 
the cluster based on the services provided by the Scheduling 
Management Service, then sends cluster information back to 
the Cloud Workflow Management Service. Interface I4 pro-
vides a set of interfaces for the Cloud Resource Manager to 
interact with underlying Cloud Platforms, mostly for re-
source provisioning, monitoring and recycling. Interface I5 
provides a series of interfaces for the Scheduling Manage-
ment Service to interact with Task Scheduling Frameworks 
subsystem: the supported operations upon scheduling 

frameworks are defined here. Interface I6 provides a set of 
interfaces to interoperate with deployed Workflow Engines. 
Workflow Specifications can be passed through to default or 
user-specified workflow engine for execution. 

3.3.4 Discussion 

The motivation of our work is to break through workflows’ 
dependence on the underlying environment, and take ad-
vantage of the scalability and on-demand resource allocation 
of the Cloud. We present a layered service framework for 
the implementation of integrating SWFMSs into manifold 
Cloud platforms, which can also be applicable when deploy-
ing a workflow system in Grid environments. The separa-
tion of each layer enables abstractions and different inde-
pendent implementations for each layer, and provides the 
opportunity for scientists to develop a stable and familiar 
problem solving environment where rapid technologies can 
be leveraged but the details of which are shielded transpar-
ently from the scientists who need to focus on science itself. 
The Interfaces defined in the framework is flexible and cus-
tomizable for scientists to expand or modify according to 
their own specified requirements and environments. 

3.4 A Reference Service Architecture for CRM 

The Cloud Resource Manager (CRM) is a key module in the 
Service framework, which is responsible for supporting var-
ious underlying Cloud Computing Infrastructures. Introduc-
ing the reference architecture for CRM can contribute to the 
standardization of CRM implementation in the proposed 
service framework and achieve the reusability of resource 
management modules. Application developers do not need 
to implement different resource management modules on 
different IaaS Cloud platforms. 

The CRM provides scientific workflows with Cloud re-
source provisioning as a service and the workflows can ben-
efit from the scalability offered by the Cloud. Meanwhile, the 
dependency on Cloud platforms can be reduced as imple-
mentations for various Cloud platforms can be provided, 
ranging from commercial to open source ones, including 
Amazon EC2, OpenNebula, Eucalyptus, CloudStack, etc. 
The architecture, illustrated in Fig. 3, consists of four layers 
which are loosely coupled between each other.  

3.4.1 Layers 

The first layer is the Infrastructure Layer, which is consistent 
with the Infrastructure Layer in Fig. 2. 

The Platform Layer is responsible for the encapsulation 

 

Fig. 3. A Reference Architecture for CRM 
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and configuration of underlying Cloud platforms. The sepa-
ration of Platform Layer from the Infrastructure Layer pre-
vents the changes of underlying Cloud platforms from influ-
encing the implementation of upper functionalities and 
promotes the extensibility of the Infrastructure Layer. 

The Virtual Resource Layer is designed to provide efficient 
and systematic management of virtual resources, including 
computing resource and storage resource in multiple Cloud 
platforms. Focusing on virtual resource management, the 
implementation of this layer can be regarded as further ab-
straction of the Platform Layer. The separation of the Virtual 
Resource Layer from the Platform Layer concerns two as-
pects: 1) it prevents the operations in this layer from access-
ing the Cloud platforms directly; 2) it isolates resource man-
agement from resource instantiation and reduces the degree 
of coupling between the two layers. 

The Service Layer, based on all the underlying layers, is 
responsible for providing cluster resource services according 
to the task execution service specified by the user. The sepa-
ration of the Service Layer from other layers provides the 
flexibility of service customization and extendibility of ser-
vice update and release. 

3.4.2 Components 

The eight major functional components implement the re-
quirements of virtual cluster resource provisioning as a ser-
vice to scientific workflows. In the reference architecture, we 
focus on major functionalities and extensibility. It may allow 
introduction of new components to meet extra requirements. 

The Virtual Cluster Provisioning component accepts re-
source requests from the Cloud Workflow Management 
Service and is in charge of provisioning virtual clusters dy-
namically to the workflow service. All the clusters can be 
maintained through the Virtual Cluster Management compo-
nent, which may support the alteration of cluster size, cluster 
status monitoring, and cluster resource recycling and reuse. 
Both the Virtual Cluster Provisioning and Virtual Cluster 
Management components support manifold cluster types, 
including single-server cluster, multi-server cluster and 
peer-to-peer distributed cluster. 

The Virtual Machine Management component defines a se-
ries of interfaces upon the operations of virtual machines, 
such as launch, reboot, termination, etc. Based on the Virtual 
Machine Management component, the Resource Pool Man-
agement component manages all the launched VM instances 
as a pool, and will apply for more resources if there is a 
shortage of virtual machines in the pool. The Resource Moni-
toring component may consist of monitoring and heartbeat 
modules which are respectively in charge of monitoring 
CPU, memory and IO, and checking the heartbeat of each 
instance. 

To provide the basic management for multiple Cloud 
platforms, we implement the Cloud Platforms API Encapsula-
tion component, which is responsible for the API encapsula-
tion of all the supported platforms by interacting with the 
underlying Infrastructure Layer. The configuration infor-
mation of the platforms, which is required to initialize the 
virtual resource management, can be edited and read in 
XML format files through the functions offered by the Cloud 
Platforms Configuration component. 

3.4.3 Interfaces 

In the reference architecture for CRM, eight interfaces are 
explicitly defined, which show how each component com-
municates with other components. The interoperability be-
tween components should be addressed by standardizing 
the interfaces provided by each component. The details of 
the interfaces between components at the same layer are not 
shown in the figure for simplicity. 

Interface I1 provides a series of interfaces for the interac-
tion between the Virtual Cluster Management and Virtual 
Cluster Provisioning components, so the required cluster 
reference information can be sent between the two compo-
nents and the provisioned clusters can be recycled and re-
used. Interface I2 provides a set of interfaces for the Virtual 
Cluster Management component to communicate with the 
Resource Pool Management component, and the resource 
reference information can be transmitted through these in-
terfaces. Interface I3 defines a set of interfaces for the com-
munication between Resource Pool Management and Virtu-
al Machine Management, so we can invoke the functions 
encapsulated in Virtual Machine Management to manage 
the virtual machines in the resource pool. Interface I4 pro-
vides a set of interfaces for Virtual Machine Management to 
interact with the Resource Monitoring component. Through 
these interfaces, the monitoring information can be used to 
better manage the virtual machines and respond to excep-
tion status. Interface I5 provides a series of interfaces for the 
Virtual Machine Management component to invoke the 
Cloud platform APIs encapsulated in Cloud Platforms En-
capsulation and apply for more virtual resources from un-
derlying Cloud platforms. Interface I6 provides a set of inter-
faces for the Cloud Platforms Encapsulation component to 
acquire the specified or user defined Cloud platform config-
uration from Cloud Platforms Configuration component. 
Interface I7 offers a series of interfaces for the Cloud Plat-
forms Configuration component to fetch and modify the 
configuration of Cloud platforms in the Infrastructure Layer. 
Interface I8 defines a set of interfaces for the Cloud Platforms 
Encapsulation component to access Cloud Platforms to ac-
quire resources, including virtual machines, network and 
storage resources etc. 

4 IMPLEMENTATION EXPERIENCE 

In this section we describe our experience in integrating the 
Swift scientific workflow management system [32] with dif-
ferent Cloud platforms based on the service framework we 
introduced above. The integration supports workflow speci-

 

Fig. 4. The Integration Architecture 
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fication and submission, on-demand virtual cluster provi-
sioning, high-throughput task scheduling and execution, 
and scalable resource management in the Cloud. We imple-
ment for both the OpenNebula and the Eucalyptus plat-
forms and we show the integration architecture for 
OpenNebula in Fig. 4. 

4.1 Components and Interfaces 

As the implementation of service framework involves a va-
riety of systems and techniques, for the purpose of clarity, 
we list the subsystems, corresponding to Figure 2, in Table 1. 
And we point out which subsystems are directly from the 
original systems and which are implemented for the integra-
tion. We also define a series of interfaces to standardize the 
complicated interactions between different essential subsys-
tems. We list the key interfaces, corresponding to Figure 2, in 
Table 2, and point out the implementation status and inter-
action relationships. Further details about these interfaces 
are available at our website6. 

In Table 1 and Table 2, the “reuse” description represents 
we directly reuse the available components for integration, 
and “minor revision” means we reuse the available compo-
nents after modification. The “implemented” description 
indicates we implement the components and interfaces, in-
cluding specification, design, development and test. At last, 
the “under evaluation” description represents those interfac-
es have been defined and need further adjustment and eval-
uation for detailed implementation. 

In Table 3, we present some interfaces defined in the im-
plementation. To submit a workflow from the client side 
tool, we define an interface to standardize the submission of 
workflows, which can be mapped into Interface I1 in Fig 2. 
We also list a set of operations corresponding to Interface I2 

 

6 http://www.cloud-uestc.cn/projects/serviceframework/index.html. 

in Fig 2, for the interaction between Cloud Workflow Man-
agement Service and Cloud Resource Manager, such as 
sending a cluster request, querying cluster information and 
releasing a cluster after execution. We have published the 
definitions of the interfaces between different subsystems at 
our website and made the code public7. 

4.2 Infrastructure Layer Implementation 

At the infrastructure layer, OpenNebula manages Cloud 
datacenter resources such as servers, network and storage. 
The reason we first choose OpenNebula for our implementa-
tion is because it has a flexible architecture and is easy to 
customize. 

The OpenNebula Cloud Platform 
OpenNebula is a fully open-source toolkit to build pri-

vate, public and hybrid IaaS Clouds, and a modular system 
that can implement a variety of Cloud architectures and in-
terface with multiple datacenter services. It orchestrates 
storage, network, virtualization, monitoring, and security 
technologies to deploy multi-tier services [6] as virtual ma-
chines on distributed infrastructures. The OpenNebula in-
ternal architecture can be divided into three layers: Drivers, 
Core and Tools. 

4.3 Middleware Layer Implementation 

At the middleware layer, a few components are integrated 
seamlessly to bridge the gap between the service layer and 
the underlying infrastructure layer. The components include 
the Cloud Resource Manager, the Scheduling Management 
Service, and the Falkon scheduling framework [27]. The 
Cloud Resource Manager receives resource requests from 
the Cloud Workflow Management Service and in turn pro-
visions a virtual cluster on-demand with the Falkon schedul-
ing framework deployed into the cluster for high-
throughput task scheduling and execution. 

The Cloud Resource Manager 
Referring to the service architecture of the Cloud Re-

source Manager we introduced above, our implementation 
provides support for both the OpenNebula and Eucalyptus 
platforms. Other Cloud platforms can also be easily mapped 
into the architecture with the interfaces we define. 
 

7 https://github.com/YoufuLi/Cattles 

TABLE 1 
SUBSYSTEMS IMPLEMENTATION DESCRIPTION 

Components Description Subsystems 
OpenNebula 
/Eucalyptus 

reuse 
Cloud Platforms 

(Abbr. CP) 

Falkon Schedul-
ing Framework 

minor revision 
Task Scheduling Frameworks 

(Abbr. TSF) 

SMS implemented 
Scheduling Management 

Service (Abbr. SMS) 

CRM implemented 
Cloud Resource Manager 

(Abbr. CRM) 

Swift System minor revision 
Workflow Engines 

(Abbr. WE) 

CWMS implemented 
Cloud Workflow Manage-

ment Service (Abbr. CWMS) 
Client Submis-

sion Tool 
implemented 

Workflow Specification & 
Submission (Abbr. WSS) 

TABLE 2 
INTERFACES IMPLEMENTATION DESCRIPTION 

Interfaces Description Interaction 

I1 in Fig 2 implemented WSS & CWMS 

I2 in Fig 2 implemented CWMS & CRM 
I3 in Fig 2 implemented CRM & SMS 
I4 in Fig 2 implemented CRM & CP 
I5 in Fig 2 under evaluation SMS & TSF 
I6 in Fig 2 implemented CWMS & WE 

 

TABLE 3 
INTERFACES DESIGNED IN IMPLEMENTATION 

public interface IWorkflowSubmission { 
public boolean submitWorkflow(WorkflowSpecification work-

flow, ExecutionConfiguration config) throws Exception; 
public WorkflowStatus queryWorkflowStatus(String work-

flowID) throws Exception; 
public WorkflowResult queryWorkflowResult(String work-

flowID) throws Exception; 
public boolean retractSubmission(String workflowID) throws Ex-

ception; 
…} 

public interface IVirtualClusterRequest { 
public VirtualCluster requestCluster(int clusterSize, ClusterDe-

tails details) throws Exception; 
public VirtualCluster queryClusterInformation(String clusterID) 

throws Exception; 
public boolean releaseCluster(String clusterID) throws Exception; 

…} 
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The following process describes the interaction between 
each component and the steps to start a Falkon virtual clus-
ter: 

1) The Virtual Cluster Provisioner (VCP) provides a service 
interface for the Cloud Workflow Management Service, 
the latter makes a resource request to VCP. 

2) The Resource Pool Management (RPM) component initial-
izes and maintains a pool of virtual machines, and a 
monitoring service based on Ganglia is started on each 
virtual machine to monitor CPU, memory and IO. 

3) Upon a resource request from the workflow service: 
a) The Virtual Cluster Management (VCM) component 

fetches required number of VMs from the VM pool 
and interacts with the Scheduling Management Ser-
vice to deploy the Falkon Scheduling Framework in 
the cluster: 
i) start the Falkon service in one VM and the Falkon 

workers in the other VMs. 
ii)  make those workers register to the Falkon service. 

b) If the VMs in the pool are not enough, then RPM will 
make resource request to the underlying OpenNebu-
la platform to create more VM instances. 

4) VCP returns the end point reference of the Falkon serv-
er to the workflow service, and the workflow service 
can now dispatch tasks to the Falkon scheduling 
framework. 

5) VCM starts the Cluster Monitoring Service to monitor the 
health of the Falkon virtual cluster. 

6) Note that we also implement an optimization technique 
to speed up the Falkon virtual cluster creation. When a 
Falkon virtual cluster is decommissioned, we change its 
status to “standby”, and it can be re-activated.   
When VCP receives resource request from the workflow 
service, it checks if there is a “standby” Falkon cluster, if 
so, it will return the information of the Falkon service 
directly to the workflow service, and also checks the 
number of the Falkon workers already in the cluster. 
a) If the number is more than requested, then the sur-

plus workers are de-registered and put into the pool.  
b) If the number is less than required, then VMs will be 

pulled from the VM pool to create more workers. 
As for the management of VM images, VM instances, and 

VM network, the Virtual Machine Management component 
interacts with and relies on the underlying Platform Layer, 
which is responsible for interacting with the OpenNebula 
Cloud platform. Our resource provisioning approach takes 
into consideration not only the dynamic creation and de-
ployment of a virtual cluster with a ready-to-use execution 
service, but also efficient instantiation and re-use of the vir-
tual cluster, as well as the monitoring and recovery of the 
virtual cluster. 

The Scheduling Management Service 
Before sending cluster reference information to the Cloud 

Workflow Management Service, the Cloud Resource Man-
ager will first interact with the Scheduling Management Ser-
vice to check the deployment of task scheduling framework, 
and start scheduling service. We have already implemented 
the deployment, management and maintenance of Falkon 
scheduling framework and the other scheduling frameworks 
can also be easily mapped into the architecture. 

The Falkon Execution Service 
Falkon is a light-weight task execution framework for op-

timized task throughput and resource efficiency delivered 
by a streamlined dispatcher, a dynamic resource provision-
er, and the data diffusion mechanism [27] to cache datasets 
in local disk or memory and dispatch tasks according to data 
locality. The key design of Falkon is to enable efficient dis-
patch and execution of large number of small tasks. 

4.4 Service Layer Implementation 

At the service layer, a Cloud Workflow Management Service 
based on the Swift workflow management system is pre-
sented as a gateway to the Cloud platform underneath. The 
Cloud workflow management service accepts workflow 
submissions from the client tool, and makes resource re-
quests to the Cloud Resource Manager. 

The Swift Workflow Management System 
Swift is a system that bridges scientific workflows with 

parallel computing. Swift takes a structured approach to 
workflow specification, scheduling, and execution. It con-
sists of a simple scripting language called SwiftScript for 
concise specification of complex parallel computations based 
on dataset typing and iterations [32], and dynamic dataset 
mappings for accessing large-scale datasets represented in 
diverse data formats. The Swift system architecture consists 
of four major components: Program Specification, Schedul-
ing, Execution, and Provisioning, as illustrated in Fig. 5. The 
reason that we choose Swift as the SWFMS for implementa-
tion is because the four major components of the Swift sys-
tem can be easily mapped into the four layers in the 
SWFMSs reference architecture and it can provide flexible 
interfaces for implementation. 

Resource provisioning in Swift is very flexible, tasks can 
be scheduled to execute on various resource providers, 
where the provider interface can be implemented as a local 
host, a cluster, a multi-site Grid, or the Amazon EC2 service. 
In contrast to Cloud environment, running workflows in 
traditional infrastructures are facing a series of obstacles 
when dealing with big data problems, including resource 
provisioning, collaboration in heterogeneous environments, 
etc. To leverage the unprecedented scalability and resources 
on demand offered by the Cloud, we encapsulate a wrapper 
service over the original Swift system, namely the Swift 
Cloud Workflow Management Service, to interact with client 
submission and CRM. 

The Swift Cloud Workflow Management Service 
The Swift Cloud workflow management service acts as 

an intermediary between the workflow client and the 
backend Cloud Resource Manager. The service has a Web 

 

Fig. 5. The Swift System Architecture 
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interface for configuration of the service, the resource man-
ager and application environments. It supports the following 
functionalities: SwiftScript programming, SwiftScript compi-
lation, workflow scheduling, resource acquisition, and status 
monitoring. In addition, the service also implements fault-
tolerance mechanism. 

4.5 Client Layer Implementation 

At the client layer, we provide a client-side development 
and submission tool for application specification and sub-
mission. The client submission tool is a standalone java 
application that provides an IDE for workflow development, 
and allows users to edit, compile, run and submit 
SwiftScripts. Scientists and developers can write their scripts 
in this environment and also test run their workflows on 
local host, before they make final submissions to the Swift 
Cloud service to run and monitor workflow execution sta-
tus. 

5 EXPERIMENT 

In this section, we show our experiment results for our im-
plementation for both the OpenNebula and Eucalyptus plat-
forms to demonstrate the practicability and capability of the 
service framework. As the Cloud Resource Manager is the 
key module in the implementation of service framework, we 
conduct a series of experiments focused on the capability 
and efficiency of Cloud Resource Manager and use an image 
processing workflow to verify the integration. 

5.1 OpenNebula Experiments 

We demonstrate and analyze the integration implementa-
tion in Fig. 4, Section IV using a NASA MODIS image pro-
cessing workflow. The NASA MODIS dataset8 we use is a 
set of satellite aerial data blocks, each block is of size around 
5.5MB, with digits indicating the geological feature of each 
point in that block, such as water, green land, urban area, 
etc. Details of the experiment can be found in an early paper 
[2], and we present some of the results to show the applica-
bility of the implementation to a real workflow use case, the 
efficiency of the cluster recycling mechanism, and the 
tradeoff between scalability vs. resource provisioning over-
head. 

5.1.1 MODIS Image Processing Workflow 

The workflow (illustrated in Fig. 6) takes a set of such blocks, 
gets the size of the urban area in each of the blocks, analyzes 
and picks the top 12 of the blocks that have the largest urban 

area, converts them into displayable format, and assembles 
them into a single PNG file. 

 

8 http://modis.gsfc.nasa.gov/ 

5.1.2 Experiment Configuration 

We use 6 machines in the experiment, each configured with 
Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB memory, 
500GB HDD, and connected with Gigabit Ethernet LAN. 
The configuration for each VM is 1 core, 1.5GB memory, 
20GB HDD, and we use KVM as the hypervisor. One of the 
machines is used as the frontend which hosts the workflow 
service, the CRM, and the monitoring service. The other 5 
machines are used to instantiate VMs, and each physical 
machine can host up to 2 VMs, so at most 10 VMs can be 
instantiated in the environment. We use the controlled small 
set of resources in order to reach resource limit easily, they 
are enough for the other performance tests nonetheless. 

5.1.3 Experiment Results 

In our implementation, we support dynamic resource provi-
sioning by interacting with the underlying Cloud platforms. 
In the experiments we would like to measure the benefit of 
cluster recycling, therefore we pre-instantiate the VMs and 
put them in the VM pool so that the instantiation overhead 
will not be counted towards the evaluation results and make 
them comparable across different underlying Cloud plat-
forms. The time to instantiate a VM is around 42s and this 
does not change much for all the VMs created. 

The serial submission experiment 
In this experiment, we first measure the base line for 

server initialization time and worker registration time. We 
create a Falkon virtual cluster with 1 server, and varying 
number of workers, and we don’t reuse the virtual cluster. 

In Fig. 7, we can observe that the server initialization time 

is quite stable, around 4.7s every time, and for worker paral-
lel registration, the time increases slightly with the worker 
number. 

Then, we submit a workflow after the previous one has 
finished to test virtual cluster recycling. In Fig. 8, the re-

 

Fig. 6. The MODIS Image Processing Workflow 

 

Fig. 7. The Base Line for Virtual Cluster Creation 

 

Fig. 8. Serial Submission, Decreasing Resource Required 



YONG ZHAO ET AL.:  A SERVICE FRAMEWORK FOR SCIENTIFIC WORKFLOW MANAGEMENT IN THE CLOUD 11 

 

sources required for the workflows are one Falkon server 
with 5 workers, one server with 3 workers and one server 
with 1 worker. As the workers and server of a “standby” 
cluster can be reused in the following ones, we can see that 
for the second and third submissions, the server initializa-
tion time is zero, only the surplus workers need to de-
register themselves. 

Different number of data blocks experiment 
In this experiment, we change the number of input data 

blocks from 50 blocks to 25 blocks, and measure the execu-
tion time with varying number of workers in the virtual 
cluster. 

In Fig. 9, we can observe that with the increase of the 
number of workers, the execution time decreases according-
ly (i.e. execution efficiency improves), however at 5 workers 
to process the workflow, the system reaches efficiency peak. 
After that, the execution time goes up with more workers. 
This means that the improvement cannot subsidize the 
management and registration overhead of the added work-
er. The time for server initialization and worker registration 
remain unchanged when we change the input size (as have 
been shown in Fig. 7). The experiment indicates that while 
our virtual resource provisioning overhead is well con-

trolled, we do need to carefully determine the number of 
workers used in the virtual cluster to achieve resource utili-
zation efficiency. 

5.2 Eucalyptus Experiments 

In this section, we show the results of using Eucalyptus in-
stead of OpenNebula for resource provisioning. Considering 
the efficient and convenient service provided by the Fu-
tureGrid9, we choose Eucalyptus for the implementation and 
deployment. FutureGrid is a project led by Indiana Universi-
ty and funded by the National Science Foundation (NSF) to 
develop a high-performance Grid test bed that lets scientists 
collaboratively develop and test innovative approaches to 
parallel, Grid, and Cloud computing. In addition, the Euca-
lyptus API is compatible with Amazon EC2 so the imple-
mentation can easily support Amazon EC2 Cloud. We 
measure the performance to establish a baseline for resource 
provisioning and Cloud resource management overhead in 
the science Cloud environment. 

5.2.1 Experiment Configuration 

The instance type used in our experiment is m1.small: 1 CPU 
Unit, 1 CPU Core and 500MB Memory. All the instances use 
Ubuntu Server 12.04 as the operating system. In Eucalyptus 
 

9 FutureGrid:  https://portal.futuregrid.org/ 

environment, we also pre-instantiate 32+1 instances and put 
them in the VM pool to make the evaluation results more 
intuitive and comparable. 

5.2.2 Framework Overhead Evaluation 

In the overhead evaluation experiment, we measure the 
server initialization time and worker registration time to 
compare with those in the OpenNebula setting.  

In Fig. 10, we observe the time to create a Falkon server 
and start the service is around 11s, much longer than that in 

Fig. 7. We attribute this to the m1.small configuration. The 
overall time increases slightly with the worker number as all 
the worker registration is executed concurrently, which 
shows a similar pattern to that in Fig. 7. 

Then we measure the recycling mechanism by submit re-
quests with exponentially decreasing worker number. The 
“standby” virtual cluster can be reused in the following re-
quest. Except the first request, the server initialization time 

of the other requests is zero, and the time taken is to deregis-
ter 16 workers8 workers4 workers2 workers1 
worker. The results are shown in Fig. 11. We can see the 
cluster creation time also decreases accordingly. 

In Fig. 12, we measure the server initialization and work-

er registration time of a Falkon cluster starting from one 

 

Fig. 9. Different Input Sizes 

 

Fig. 12. Serial Submission, Increasing Resource Required 

 

Fig. 10. The Base Line for Virtual Cluster Creation 

 

Fig. 11. Serial Submission, Decreasing Resource Required 
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server and one worker. Then we expand the cluster size ex-
ponentially by adding 1 worker2 workers4 workers8 
workers16 workers into the cluster. 

As shown in Fig. 12, we can see that although the worker 
number increases exponentially, the time rises almost linear-
ly. The reason is the workers can simultaneously register to 
the already existing server. The time cost to register each 
individual worker is similar to that in Fig. 10.  

In Fig. 13, we first request a virtual cluster with 1 server 
and 32 workers, we then make 5 parallel requests for virtual 
clusters with 1 server and 5 workers. According to the clus-

ter reuse mechanism, one of the clusters can be created 
based on the available cluster, while the other 4 are created 
on-demand. In this case, it is much faster to de-register the 
surplus workers than to create the server from scratch. 

6 PRODUCTION DEPLOYMENT 

Besides evaluating the service framework and integration 
performance in experimental environment, we also deploy 
the implementation described in Section IV to the Sci-
ence@Guoshi (Fruit) Network. The deployment in produc-
tion environment shows our proposed framework is capable 
of providing a “big data” solution upon data-intensive ap-
plication for both researchers and engineers. 

The Science@Guoshi project10 is based on Guoshi Net-
work, which is a new media service platform created to 
promote public learning and learning oriented communities 
by Chinese Ministry of Education and China Education TV 
Station. Through the early stage construction and operation, 
Guoshi Network already has rich functionality and powerful 
infrastructure service capability, and has gained experience 
in platform construction, operation and maintenance, appli-
cation development and customer service. As of now, the 
infrastructural Cloud computing platform, such as physical 
servers, storage and network devices, for Guoshi Network is 
ready and working, deployed over 12 datacenters at Beijing, 
Wuxi, Dongguan, Tibet, and other cities. Beijing is the first 
major center, and Wuxi the second, with Tibet acting as a 
mirroring site, the rest are sub-centers. There are over 1000 
servers at these 12 datacenters, and an aggregated compu-
ting power of 50Teraflops, and 580TB of storage. Out of the 
resources, 140 servers and 70TB of storage are assigned to 
Science@Guoshi for scientific computation and experiments. 

The second major center – Wuxi, has 140 servers, each 
with 8-core processors, and a total storage of 60TB, and 20 
servers and 10TB of storage are allocated to Science@Guoshi.  

10 http://science.guoshi.com 

We deployed our solution over 3 of the 12 datacenters in-
cluding Wuxi, Dongguan, and Kaifeng. The deployment 
diagram is shown in Fig. 14. We chose Wuxi as a demo cen-

ter on which we ported the Montage application [19], and 
developed a Nebula Image Mosaic demo service. For the 
Cloud platform underneath we chose OpenNebula and we 
used up to 96 VMs. 

We present the application deployment based on the 
Montage Image Mosaic Workflow. The Montage Workflow 

has much larger input size and number of input files (up to 
tens of thousands), and the workflow can process different 
nebula image data, which serves better for educational pur-
pose and also demonstrate the scalability of Cloud.  

Montage is a suite of software tools developed to gener-
ate large astronomical image mosaics by composing multi-
ple small images, as shown in Fig. 15. The typical workflow 
process involves the following key steps: 
 Image projection: 
o re-project each image into a common coordinate 

space (mProjectPP) 
 Background rectification: 
o Calculate a list of overlapping images (mOverlaps) 
o Perform image difference between each pair of over-

lapping images (mDiffFit) 
o Fit difference images into a plane (mConcatFit) 
o Background correction (mBackground) 

 Image co-addition (mAdd): 
o Optionally divide a region into a grid of sub-regions, 

and co-add the images in each region into a mosaic 
o Co-add the processed images (or mosaics in sub-

regions) into a final mosaic 
And finally the mosaic is shrunk (mShrink) and convert-

ed into a JPEG image (mJPEG) for display. 

 

Fig. 13. Parallel Submission, Mixed Resource Required 

 

Fig. 14. Deployment on Science@Guoshi 

 

Fig. 15. The Montage Workflow 
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In the demo a Science@Guoshi user can pick one of the 
nebula (as illustrated in Table 4) to create the mosaic for it, 
and the demo service submits a workflow request to the 
Cloud workflow service, which in turn instantiates the 
Cloud resources on-the-fly to execute the workflow. The 
demo also visualizes workflow progress in a DAG (directed 
acyclic graph), and displays the execution log and interme-
diate results. The deployment provides scientists with an 
easy-to-use platform to manage and execute scientific work-
flows on a Cloud platform without knowing the details of 
workflow scheduling and Cloud resource provisioning. 

As the Science@Guoshi platform is not yet completely 
open to the public, so far, there are totally 125 registered us-
ers, mainly from 9 research institutes. Besides the Nebula 
Image Workflow, the scientific computing platform has been 
utilized by scientists from different institutes to conduct ex-

periments and share their experience. Some application 
types are shown in Table 5. The platform serves as a gate-
way to learning and exploring workflow and Cloud tech-
nologies for the community. 

7 CONCLUSIONS AND FUTURE WORK 

As more and more scientific applications are migrating into 
Cloud, it is imperative to also migrate SWFMSs into Cloud 
to take advantage of Cloud scalability, and also to handle the 
ever increasing data scale and analysis complexity of such 
applications. Cloud offers unprecedented scalability to 
workflow systems, and could potentially change the way we 
perceive and conduct scientific experiments. The scale and 
complexity of the science problems that can be handled can 
be greatly increased on the Cloud, and the on-demand na-
ture of resource allocation on the Cloud will also help im-
prove resource utilization and user experience.  

We propose a reference service framework for integrating 
scientific workflow management systems into various Cloud 
platforms, and also present our implementation effort in 

integrating the Swift workflow management system with 
the OpenNebula and the Eucalyptus Cloud platforms ac-
cording to the service framework, in which a client-side tool, 
a Cloud workflow management service, a Cloud resource 
manager, and a cluster monitoring service are developed. 
We also demonstrate the functionality and efficiency of our 
approach using two real-world scientific workflows.  

The implementation can readily be used for OpenStack as 
it is getting more popularity in scientific research area and 
commercial applications. We are also investigating the inte-
gration of other SWFMSs into these various Clouds. 
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