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Abstract—Scientific workflow management systems 

(SWFMSs) are facing unprecedented challenges from big data 

deluge. As revising all the existing workflow applications to fit 

into Cloud computing paradigm is impractical, thus migrating 

SWFMSs into the Cloud to leverage the functionalities of both 

Cloud computing and SWFMSs may provide a viable approach 

to big data processing. In this paper, we first discuss the 

challenges for scientific workflow applications and the available 

solutions in details, and analyze the essential requirements for a 

scientific computing Cloud platform. Then we propose a service 

framework to normalize the integration of SWFMS with Cloud 

computing. Meanwhile, we also present our implementation 

experience based on the service Framework. At last, we set up a 

series of experiments to demonstrate the capability of our 

implementation and use a Montage Image Mosaic Workflow as a 

showcase of the implementation. 
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I. INTRODUCTION 

Scientific workflow management systems (SWFMSs) have 
been widely adopted in Physics, Astronomy, Bioinformatics, 
Neuroscience, Earth Science, and Social Science to provide 
essential support to scientific computing, including 
management of data and task dependencies, job scheduling and 
execution, provenance tracking, etc. Nevertheless, the big data 
era has raised unprecedented challenges against the solution to 
data processing based on traditional scientific workflows, as 
the data scale and computation complexity are growing 
exponentially. The ETL (Extraction-Transformation-Loading), 
storage, retrieval, analysis and application upon the huge 
amounts of data are beyond the capability of traditional data 
processing infrastructures. 

As an emerging computing paradigm, Cloud computing[6] 
has brought us tremendous convenience for the processing of 
large-scale datasets. Hadoop[22], together with associated 
systems in its ecosystem, has been widely adopted to solve the 
big data problem arisen in both scientific community and 

enterprises, as they provide a scalable and large-scale solution 
to data storage, analysis and mining. Theoretically, to address 
the big data problems in these areas, scientists and application 
developers may simply refactor all the existed workflow 
applications into the Cloud computing paradigm, which looks 
straightforward but in reality impractical. As traditional 
scientific workflow applications have been mature during 
many years’ development and always involve complicated 
application logic and consist of  massive computing processes, 
including organization, distribution, coordination and parallel 
processing. Transforming these scientific workflows will not 
only cost scientists and developers much time, but also 
manually handle all the integration details with various 
underlying Cloud platforms. 

An alternative for researchers is to integrate scientific 
workflow management systems with Clouds, leveraging the 
functionalities of both Cloud computing and SWFMSs to 
provide a Cloud workflow platform as a service for big data 
processing. In this solution, not only the challenges for 
traditional scientific workflows can be dealt with, but also the 
researchers can concentrate on applications and utilize the 
integration platform to process massive data on Clouds. As 
workflow management systems are diverse in many aspects, 
such as workflow models, workflow languages, workflow 
engines, and so on, and each workflow system engine may 
depend on one specific Distributed Computing Infrastructures 
(DCIs), porting a workflow management system to run on 
another DCI may cost a large quantity of extra effort. We 
would like to free researchers from complicated integration 
details, such as Cloud resource provisioning, task scheduling 
and so on, and provide them with the convenience and 
transparency to scalable big data processing platform, therefore 
we propose a service framework to standardize the integration 
between SWFMSs and Cloud platforms, breaking the 
limitations that a specific SWFMS is bound to a particular DCI 
or Cloud environment. We define a series of components and 
interfaces to normalize the interactions between different 
workflow management subsystems. 



II. RELATED WORK 

Systems such as Taverna [11], Kepler [9], Vistrails [10], 
Pegasus [8], Swift [20], and VIEW [25] have seen wide 
adoption in various disciplines such as Physics, Astronomy, 
Bioinformatics, Neuroscience, Earth Science, and Social 
Science. In Table I, we list some use cases that focused on 
applying SWFMSs to execute data-intensive applications. 

TABLE I.  USE CASES OF SWFMSS 

SWFMSs 
Application 

Fields 
Use Cases 

Swift Climate Science Climate Data Analysis[1] 

Taverna Bioinformatics 
Single Nucleotide Polymorphisms 

Analysis[2] 

Vistrails Earth Science NASA Earth Exchange [3] 

Kepler Physics Hyperspectral image processing [4] 

VIEW Medical Science Neurological disorder diagnosis[13] 

There are also some researchers that tried to run workflow 
applications on Clouds. The series of works [12][18] focused 
on running scientific workflows that are composed of loosely 
coupled parallel applications on various Clouds. The study 
conducted on an experimental Nimbus Cloud testbed [17] 
dedicated to science applications involved a non-trivial amount 
of computation performed over many days, which allowed the 
evaluation of the scalability as well as the performance and 
stability of the Cloud over time. Their studies demonstrated 
that the multi-site Cloud computing is a viable and effective 
solution for some scientific workflows, and the networking and 
management overhead across different Cloud infrastructures do 
not have a major effect on the overall user experience, and the 
convenience of being able to scale resources at runtime 
outweighs such overhead. 

The deployment and management of workflows over the 
current existing heterogeneous and not yet interoperable Cloud 
providers, however, is still a challenging task for the workflow 
developers.  The series of works [14] [16] presented a broker-
based framework to support the execution of workflow 
applications on a multi-Cloud environment.  

The CODA framework [23] was designed and implemented 
to support big data analytics in Cloud computing. Important 
functions, such as workflow scheduling, data locality, resource 
provisioning, and monitoring functions, had been integrated 
into the framework. Through the CODA framework, the 
workflows could be easily composed and efficiently executed 
in Amazon EC2. In order to address performance and cost 
issues of big data processing on Clouds, Long Wang et al. [15] 
presented a novel design of adaptive workflow management 
system which included a data mining based prediction model, 
workflow scheduler, and iteration controls to optimize the data 
processing via iterative workflow tasks. 

Those works mentioned above were mainly focused on 
applications of SWFMSs and different aspects of the 
deployment and management of integrating workflows into 
Clouds, including underlying resource allocation, function 
implementation, service evaluation, performance and cost 
issues, etc., however, a normalized, service-oriented integration 
framework is still missing. As running scientific workflows as 
a service in the Cloud platforms involves a variety of systems 

and techniques, defining the pivotal interfaces can help to 
normalize the interactions between essential systems. 

III. CHALLENGES AND AVAILABLE SOLUTIONS 

In this section, we discuss the challenges of utilizing 
traditional scientific workflows to deal with big data problems 
and analyze the available solutions to the following challenges. 

A. Challenges for Tranditional Scientific Workflows 

Scientific workflow systems have been formerly applied 
over a number of execution environments such as workstations, 
clusters/Grids, and supercomputers. In contrast to Cloud 
environment, running workflows in these environments are 
facing a series of obstacles when dealing with big data 
problems [5], including data scale and computation 
complexity, resource provisioning, collaboration in 
heterogeneous environments, etc.. 

1) Data Scale and Computation Complexity 
The execution of scientific workflows often consume and 

produce huge amounts of distributed data objects. These data 
objects can be of primitive or complex types, files in different 
sizes and formats, database tables, or data objects in other 
forms. At present, the scientific community is facing a “data 
deluge” [7] coming from experiments, simulations, networks, 
sensors, and satellites, and the data that needs to be processed 
generally grows faster than computational resources and their 
speed. The data scale and management in big data era are 
beyond the capability of traditional workflows can handle as 
they depend on traditional infrastructure for resource 
provisioning. For example, in high energy physics, the Large 
Hadron Collider

1
 at CERN can generate more than 100TB of 

collision data per second; In bioinformatics, GenBank
2
, one of 

the largest DNA databases, already hosts over 120 billion 
bases, the European Molecular Biology and Bioinformatics 
Institute Laboratory (EMBL) hosts 14 PB of data, and the 
numbers are expected to double every 9-12 months.  

In addition to data scale, science analysis and processing 
complexity is also growing exponentially. Scientists are now 
attempting calculations requiring orders of magnitude more 
computing and communication than was possible only a few 
years ago. For instance, in bioinformatics a protein simulation 
problem [19] involves running many instances of a structure 
prediction simulation, each with different random initial 
conditions and performs multiple rounds. Given a couple of 
proteins and parameter options, the simulation can easily scale 
up to 100,000 rounds. In cancer drug design, protein docking 
can involve millions of 3D structures and have a runtime up to 
tens of CPU years. To enable the storage and analysis of such 
large quantities of data and to achieve rapid turnaround, data 
and computation may need to be distributed over thousands or 
even tens of thousands of computation nodes. 

2) Resource Provisioning 
Resource provisioning represents the functionality and 

mechanism of allocating computing resource, storage space, 
network bandwidth, etc., to scientific workflows. As 
cluster/Grid environments is not adept at providing the 
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workflows with smoothly dynamic resource allocation, the 
resource provisioned to a scientific workflow is fixed once the 
workflow has been deployed to execute, which may in return 
restrict the scale of science problems that can be handled by 
workflows. Moreover, the scale of resource is upbounded by 
the size of a dedicated resource pool with limited resource 
sharing extension in the form of virtual organizations. 
Meanwhile, the representation of resources in the context of 
scientific workflows is also bothering the scientists [28], as 
they must be able to recognize the supported types of resources 
and tools. For instance, the resource in Taverna is a web 
service which usually limits the use of many scientific 
resources that are not represented as web services. 

To break through the limitations introduced by traditional 
resource provisioning strategy, some works have been focused 
on the approaches for automated provisioning, including the 
Context Broker [24] from the Nimbus project, which supported 
the concept of “one-click virtual cluster” that allowed clients to 
coordinate large virtual cluster launches in simple steps. The 
Wrangler system [26] was a similar implementation that 
allowed users to describe a desired virtual cluster in XML 
format, and send it to a web service, which managed the 
provisioning of virtual machines and the deployment of 
software and services. It was also capable of interfacing with 
many different Cloud resource providers. 

3) Collaboration in Heterogeneous Environments 
Collaboration refers to the interactions between workflow 

management system and execution environment, such as 
resource access, resource status perception, load balance and so 
on. As more and more scientific research projects become 
collaborative in nature and involve multiple geographically 
distributed organizations, which brings a variety of challenges 
to scientists and application developers to handle the 
collaboration in heterogeneous environments.  

The management of resource, authority authentication, 
security, etc.,  can be very complicated, as scientific workflow 
applications are normally executed in cluster/Grid 
environments, where accessible computing resources and 
storage space are located in various management domains. The 
execution of traditional workflows are also influenced by the 
heterogeneous performance of computing resource due to the 
varied configuration of physical machines. In addition, in Grid 
environment, the status of physical machines is uncontrollable, 
switching among online (the machine is started up and 
connected to the Grid), offline (the machine is powered off or 
disconnected), busy (the machine is executing other tasks), 
etc., making it extremely difficult to maintain load balance. 

B. Moving Workflow Applications to Cloud 

Since Cloud computing has been widely adopted to solve 
the ever-increasing computing and storage problems arising in 
the Internet age. To address the challenges of dealing with 
peta-scale scientific problems in scientific workflow solutions, 
we can move workflow applications into Cloud, using the 
MapReduce computing model to reconstruct the formerly 
applied workflow specifications. MapReduce provides a very 
simple programming model and powerful runtime system for 
the processing of large datasets. The programming model is 
based on just two key functions: “map” and “reduce,” 

borrowed from functional languages. The runtime system 
automatically partitions input data and schedules the execution 
of programs in a large cluster of commodity machines. 
Modified applications to fully leverage the unprecedented 
scalability and resources on demand offered by the Cloud 
without introducing extra management overheads.  

Despite all the advantages of transforming traditional 
workflow applications into Cloud-based applications, there are 
still some shortcomings and unsolved obstacles: 

1) Cloud computing cannot benefit from the distinguishing 
features provided by SWFMSs, including management of data 
and task dependencies, job scheduling and execution, 
provenance tracking, etc.. The challenges for big data 
processing in Cloud remain unsolved and are still bothering 
developers and researchers. 

2) Utilizing the certain data flow support offered by 
MapReduce to refactor traditional workflow applications 
require application logic to be rewritten to follow the map-
reduce-merge programming model. Scientists and application 
developers need to fully understand the applications and port 
the applications before they can leverage the parallel 
computing infrastructure. 

3) Large-scale workflows, especially data-intensive 
scientific workflows [29] may require far more functionality 
and flexibility than MapReduce can provide, and the implicit 
semantics incurred by a workflow specification goes far more 
than just the “map” and “reduce” operations, for instance, the 
mapping of computation to compute node and data partitions, 
runtime optimization, retry on error, smart re-run, etc. 

4) Once we decide to migrate workflow applications to 
Cloud computing, we need to reconstruct the data being 
processed to be able to be stored in partitioned fashion, such as 
in GFS, or HDFS, so that the partitions can be operated in 
parallel, which may introduce a tremendous amount of work to 
scientists and application developers. 

5) Revising workflow applications to be capable of 
executing in Cloud platforms makes new requests to scientists 
and application developers, as they need to grasp new 
programing model and techniques instead of using already-
familiar workflow pattern, which may cost large amount of 
time beyond the research topics. Moreover, the risks associated 
with vendor lock-in cannot be ignored. 

C. Migrating Workflow Management into Cloud 

To avoid the disadvantages brought by moving workflow 
applications directly to Cloud, we may try to integrate 
workflow management systems with Cloud to provide a Cloud 
workflow platform as a service for big data processing. Once 
we decide to integrate SWFMS with Cloud computing, we may 
deploy the whole SWFMS inside the Cloud and access the 
scientific workflow computation via a Web browser. A distinct 
feature of this solution is that no software installation is needed 
for a scientist and the SWFMS can fully take advantage of all 
the services provided in a Cloud infrastructure. Moreover, the 
Cloud-based SWFMS can provide highly scalable scientific 
workflows and task management as services, providing one 
kind of Software-as-a-Service(SaaS). One concern the user 



might have is the economic cost associated with the necessity 
of using Cloud on a daily basis, the dependency on the 
availability and reliability of the Cloud, as well as the risk 
associated with vendor lock-in. 

To provide a good balance between system performance 
and usability, an alternative for researchers is to encapsulate 
the management of computation, data, and storage and other 
resources into the Cloud, while the workflow specification, 
submission, presentation and visualization remain outside the 
Cloud to support the key architectural requirement of user 
interface customizability and user interaction support. The 
benefit of adopting the solution to manage and run scientific 
workflows on top of the Cloud can be multifold: 

1) The scale of scientific problems that can be addressed by 
scientific workflows can be greatly increased compared to 
cluster/Grid environments, which was previously upbounded 
by the size of a dedicated resource pool with limited resource 
sharing extension in the form of virtual organizations. Cloud 
platforms can offer vast amount of computing resources as well 
as storage space for such applications, allowing scientific 
discoveries to be carried out in a much larger scale. 

2) Application deployment can be made flexible and 
convenient. With bare-metal physical servers, it is not easy to 
change the application deployment and the underlying 
supporting platform. However with virtualization technology in 
a Cloud platform, different application environments can be 
either pre-loaded in virtual machine (VM) images, or deployed 
dynamically onto VM instances. 

3) The on-demand resource allocation mechanism in the 
Cloud can improve resource utilization and change the 
experience of end users for improved responsiveness. Cloud-
based workflow applications can get resources allocated 
according to the number of nodes at each workflow stage, 
instead of reserving a fixed number of resources upfront. Cloud 
workflows can scale out and in dynamically, resulting in fast 
turn-around time for end users. 

4) Cloud computing provides much larger room for the 
trade-off between performance and cost. The spectrum of 
resource investment now ranges from dedicated private 
resources, a hybrid resource pool combining local resource and 
remote Clouds, and full outsourcing of computing and storage 
to public Clouds. Cloud computing not only provides the 
potential of solving larger-scale scientific problems, but also 
brings the opportunity to improve the performance/cost ratio. 

5) Although migrating scientific workflow management to 
Cloud may introduce extra management overheads, Cloud 
computing now can leverage the advantages carried about with 
SWFMSs (e.g. workflow management, provenance tracking, 
etc.). 

IV. REQUIREMENTS, DESIGN AND IMPLEMENTATION 

In this section, we present our structured approach to 
designing and deploying a Cloud workflow management 
platform for big data processing. We first analyze the 
requirements for such a platform from the perspective of 
scientists and researchers, we then discuss our service 
framework and analyze the implementation in details from the 

perspective of interfaces, which standardize the interactions 
between associated subsystems. 

A. Design Requirements  

From the perspective of scientists and researchers, a Cloud 
platform for scientific computing should cover the end-to-end 
application execution scenario, from job specification, job 
submission, resource provisioning, to job execution and result 
delivery. We argue that a scientific computing Cloud platform 
should meet the following requirements:  

Application development environment: Scientists and 
application developers would need a development environment 
for the specification, debugging and testing of their application 
logic, and the environment could also support easy deployment 
and execution of the application in the Cloud platform. One 
example is application developers for Windows Azure Services 
from Microsoft could use Visual Studio to develop their Cloud 
applications, test and run the applications locally, and then 
deploy to the Azure Cloud platform. Having such an 
environment would greatly facilitate the development process 
and simplify interfacing to the Cloud. 

Cloud gateway service: Just like the way scientists interact 
with a Grid computing platform such as TeraGrid [21], they 
would need a similar interface in the form of a gateway or 
portal such that they can access resources in the back and run 
their applications without becoming experts on Grid or Cloud 
technologies. In addition to servicing job submissions and 
resource requests, the gateway can also manage user 
authentication and authorization, and keep track of resource 
usage and accounting related issues.  

Virtual Resource provisioning: One of the major benefits 
of Cloud is its resources on demand. With the right resource 
provisioning mechanism, applications running on the Cloud 
can easily scale out and in, and achieve good cost performance 
balance. Combined with virtualization technology, virtual 
resource provisioning can provide science applications with not 
only the scalability to tap into the potentially unlimited 
resources, but also the flexibility to set up and deploy the 
necessary infrastructure and environment required for the 
applications to run. Virtual cluster provisioning can even 
provision a cluster of virtual machine instances with the 
network and storage all set up, and in some implementations a 
ready-to-use scheduler such as PBS for job scheduling.  

Job scheduling and execution: As we have pointed out 
before, getting the necessary resources for the application is not 
the end of story to running an application. We would also need 
to schedule and coordinate the execution of the jobs in the 
application, and balance resource utilization across the jobs. A 
job scheduling and execution service needs to be deployed on 
top of the acquired virtual resources for efficient execution. 

Infrastructure level support: An underlying Cloud 
platform should provide the basic infrastructure level support 
such as management of physical servers, network and storage 
devices, configuration and instantiation of virtual machines, as 
well as virtual image management and logging etc. In addition 
to the ones listed above, there are other functional 
requirements, such as monitoring and error recovery of job 
execution, result visualization, provenance tracking, etc. to a 



science computing Cloud platform. There are also performance 
related issues, such as the instantiation time of virtual machine 
instances and clusters, resource scheduling efficiency, and so 
on. 

B. The Service Framework 

We propose a reference service framework that fulfills the 
above design requirements and covers all the major aspects 
involved in the migration and integration of SWFMS into the 
Cloud, from client-side workflow specification, service-based 
workflow submission and management, task scheduling and 
execution, to Cloud resource management and provisioning. 
As illustrated in Fig. 1, the service framework includes 4 
layers, 8 components and 6 interfaces. Detailed description of 
the service framework is made public at our website

3
. 

The first layer is the Infrastructure Layer, which consists of 
multiple Cloud platforms with the underlying server, storage 
and network resources. The second layer is called the 
Middleware Layer. This layer consists of three subsystems: 
Cloud Resource Manager, Scheduling Management Service 
and Task Scheduling Frameworks.  The third layer, called the 
Service Layer, consists of Cloud Workflow Management 
Service and Workflow Engines. Finally, the fourth layer – the 
Client Layer, consists of the Workflow Specification & 
Submission and the Workflow Presentation & Visualization 
subsystem. The service framework would help to break 
through workflows’ dependence on the underlying resource 
environment, and take advantage of the scalability and on-
demand resource allocation of the Cloud. 

 
Fig. 1. The Service Framework 

We present a layered service framework for the 
implementation and application of integrating SWFMS into 
manifold Cloud platforms, which can also be applicable when 
deploying a workflow system in Grid environments. The 
separation of each layer enables abstractions and different 
independent implementations for each layer, and provides the 
opportunity for scientists to develop a stable and familiar 
problem solving environment where rapid technologies can be 
leveraged but the details of which are shielded transparently 
from the scientists who need to focus on science itself. The 
Interfaces defined in the framework is flexible and 
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customizable for scientists to expand or modify according to 
their own specified requirements and environments. 

C. Implementation 

We also implement the service framework by integrating 
the Swift scientific workflow management system [20] with 
the OpenNebula and Eucalyptus platforms. The integration 
supports workflow specification and submission, on-demand 
virtual cluster provisioning, high-throughput task scheduling 
and execution, and scalable resource management in the Cloud. 
The layers, systems and interfaces displayed in the integration 
architecture can be easily mapped into the corresponding 
components in the service framework. As we can choose 
different available systems for the integration, we would like to 
focus on the interactions between the associated subsystems 
when interpreting the implementation. 

1) Associated Subsystems 
As the implementation of service framework includes a 

variety of systems and techniques, for the purpose of clarity, 
we list the subsystems, corresponding to Fig. 1, in table II. And 
we also point out which subsystems are directly from the 
original systems and which are implemented for the 
integration. 

TABLE II.  SUBSYSTEMS IMPLEMENTATION DESCRIPTION 

Subsystems Description Mapped Subsystems 

OpenNebula/Eucalyptus reuse Cloud Platforms 

Falkon Scheduling 

Framework [27] 

minor 

revision 

Task Scheduling 

Frameworks 

Scheduling Management 

Service 
implemented 

Scheduling Management 

Service (Abbr. SMS) 

Cloud Resource 

Manager 
implemented Cloud Resource Manager 

Swift System 
minor 

revision 
Workflow Engines 

Cloud Workflow 

Management Service 
implemented 

Cloud Workflow 

Management Service 

(Abbr. CWMS) 

Client Submission Tool implemented 
Workflow Specification & 

Submission 

a. “reuse”: we directly reuse the available components for integration 
b. “minor revision”: we reuse the available components after customization.  

c. “implemented”: we implement the components from design to test. 

The Swift Workflow Management System 

Swift is a system that bridges scientific workflows with 
parallel computing. Swift takes a structured approach to 
workflow specification, scheduling, and execution. It consists 
of a simple scripting language called SwiftScript for concise 
specification of complex parallel computations based on 
dataset typing and iterations, and dynamic dataset mappings for 
accessing large-scale datasets represented in diverse data 
formats.  

The Swift system architecture consists of four major 
components: Program Specification, Scheduling, Execution, 
and Provisioning. Computations are specified in SwiftScript, 
which has been shown to be simple yet powerful. SwiftScript 
programs are compiled into abstract computation plans, which 
are then scheduled for execution by the workflow engine onto 



provisioned resources. Resource provisioning in Swift is very 
flexible, tasks can be scheduled to execute on various resource 

providers, where the provider interface can be implemented as 
a local host, a multi-site Grid, or the Amazon EC2 service. 

TABLE III.  INTERFACES IMPLEMENTATION DESCRIPTION 

Interfaces Description Mapped Into Interaction Between 

IWorkflowSubmission implemented Interface I1 Workflow Specification & Submission and CWMS 

IVirtualClusterRequest implemented Interface I2 CWMS and Cloud Resource Manager 

ISchedulingFrameworkDeployment implemented Interface I3 Cloud Resource Manager and SMS 

IVirtualMachineOperation implemented Interface I4 Cloud Resource Manager and Cloud Platforms 

ISchedulingFrameworkOperation under evaluation Interface I5 SMS and Task Scheduling Frameworks 

IWorkflowJobSubmission under evaluation Interface I6 CWMS and Workflow Engines 

a. “implemented”: means we define and implement the interfaces. 
b. “under evaluation”: represents those interfaces have been defined but still need further adjustment and evaluation for detail implementation. 

2) Interface Definitions 
The realization of service framework also involves 

complicated communications between different essential 
subsystems. These interfaces, not bound to one specific system, 
are defined to normalize the interactions between associated 
systems. Available systems can be easily integrated into the 
service framework as long as they can be modified to realize 
the corresponding interfaces. For instance, we can deploy 
CloudStack as the underlying Cloud platform as long as we 
encapsulate the CloudStack’s API according to the interfaces 
between the Cloud Resource Manager and Cloud Platforms. 

Corresponding to Fig. 1, we list the key interfaces in Table 
III, and point out the implementation status and interaction 
relationships. We will introduce the definitions of some pivotal 
interfaces in the following, and further details about these 
interfaces are available at our website

4
. 

In Table IV, we present the definition of interface 
“IWorkflowSubmission”, which can be mapped into Interface 
I1. We define the interface “IWorkflowSubmission” to 
standardize the submission of workflows from the Workflow 
Specification & Submission to Cloud Workflow Management 
Service. 

TABLE IV.  DEFINITION OF IWORKFLOWSUBMISSION 

public interface IWorkflowSubmission { 

public boolean submitWorkflow(WorkflowSpecification workflow, 

ExecutionConfiguration config) throws Exception; 
public WorkflowStatus queryWorkflowStatus(String workflowID) 

throws Exception; 

public WorkflowResult queryWorkflowResult(String workflowID) 
throws Exception; 

public boolean retractWorkflowSubmission(String workflowID) 
throws Exception; 

…} 

In Table V, we list a set of operations corresponding to 
Interface I2, for the interactions between Cloud Workflow 
Management Service and Cloud Resource Manager, such as 
sending a cluster request, querying cluster information and 
releasing a cluster after execution. 

TABLE V.  DEFINITION OF  IVIRTUALCLUSTERREQUEST 

public interface IVirtualClusterRequest { 

public VirtualCluster requestCluster(int clusterSize, ClusterDetails 

details) throws Exception; 
public VirtualCluster queryClusterInformation(String clusterID) 

throws Exception; 
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public boolean releaseCluster(String clusterID) throws Exception; 

…} 

We define the interface “ISchedulingFramework-
Deployment” (displayed in Table VI), which can be mapped 
into Interface I3, to standardize the deployment of scheduling 
framework with specified deployment configuration. Other 
operations, associated with the deployment of Scheduling 
Management Service, are also defined in this interface. 

TABLE VI.  DEFINITION OF ISCHEDULINGFRAMEWORKDEPLOYMENT 

public interface ISchedulingFrameworkDeployment { 

public SchedulingFrameworkInformation deployScheduling-

Framework(VirtualCluster virtualCluster, 
SchedulingFrameworkConfiguration configuration) throws Exception; 

public SchedulingFrameworkInformation modifyScheduling-

Framework(VirtualCluster virtualCluster, SchedulingFramework-

Information information, SchedulingFrameworkConfiguration 

configuration) throws Exception; 

public boolean revokeSchedulingFrameworkDeployment 
(VirtualCluster virtualCluster, SchedulingFrameworkInformation 

information) throws Exception; 

…} 

The definition of interface “IVirtualMachineOperation” in 
Table VII can be mapped into Interface I4. This interface 
covers the general operations upon virtual machines, including 
instance creation, launching, shutdown, reboot, etc., which can 
be the encapsulation standard of Cloud platforms API. 

TABLE VII.  DEFINITION OF IVIRTUALMACHINEOPERATION 

public interface IVirtualMachineOperation { 
public ArrayList<VirtualMachineInformation> createInstances (int 

vmNumber) throws Exception; 

public ArrayList<VirtualMachineInformation> launchInstances 
(ArrayList <VirtualMachineInformation> vmList) throws Exception; 

public boolean shutdownInstances (ArrayList <VirtualMachine-

Information> vmList) throws Exception; 
public ArrayList<VirtualMachineInformation> rebootInstances 

(ArrayList <VirtualMachineInformation> vmList) throws Exception; 

public boolean destroyInstances (ArrayList <VirtualMachine-
Information> vmList) throws Exception; 

…} 

To normalize the submission of workflow job from Cloud 
Workflow Management Service to Workflow Engines, we 
define a series of operations in “IWorkflowJobSubmission” (as 
shown in Table VIII), corresponding to Interface I6. Covering 
the general operations upon submitting workflow job to 
Workflow Engines. 

TABLE VIII.  DEFINITION OF IWORKFLOWJOBSUBMISSION 

public interface IWorkflowJobSubmission { 

public boolean submitWorkflowJob(WorkflowSpecification 



specification, VirtualCluster cluster, WorkflowEngine engine) throws 

Exception; 
public WorkflowStatus checkWorklfowExecutionStauts (String 

workflowID) throws Exception; 

public WorkflowResult fetchWorkflowResult(String workflowID) 
throws Exception; 

public boolean cancelWorkflowExecution(String workflowID) throws 

Exception; 
…} 

V. EVALUATION 

In this section, we show our experiment results of 
implementation for both the OpenNebula and Eucalyptus 
platforms to demonstrate the practicability and capability of 
our implementation. 

A. Experiment Configuration 

OpenNebula: We use 6 machines in the experiment, each 
configured with Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB 
memory, 500GB HDD, and connected with Gigabit Ethernet 
LAN. The configuration for each VM is 1 core, 1.5GB 
memory, 20GB HDD, and we use KVM as the hypervisor. One 
of the machines is used as the frontend which hosts the 
workflow service, the CRM, and the monitoring service. The 
other 5 machines are used to instantiate VMs, and each 
physical machine can host up to 2 VMs, so at most 10 VMs 
can be instantiated in the environment.  

Eucalyptus: Considering the efficient and convenient 
service provided by the FutureGrid

5
, we choose Eucalyptus for 

the implementation and deployment. FutureGrid is a project led 
by Indiana University and funded by the National Science 
Foundation (NSF) to develop a high-performance Grid test bed 
that lets scientists collaboratively develop and test innovative 
approaches to parallel, Grid, and Cloud computing. We 
measure the performance to establish a baseline for resource 
provisioning and Cloud resource management overhead in the 
science Cloud environment.  

The instance type used in our experiment is m1.small: 1 
CPU Unit, 1 CPU Core and 500MB Memory. All the instances 
use Ubuntu Server 12.04 as the operating system. 

B. Resource Provisioning 

In our implementation, we have realized the dynamic 
resource request by interacting with underlying Cloud 
platforms. Considering the experiments are conducted in the 
laboratory environment, where economic cost can be 
temporarily ignored, we pre-instantiate all the required VMs 
and put them in the VM pool, which may help the evaluation 
results be more intuitionistic and comparable. 

1) The base line measurement 
We first measure the base line for server initialization time 

and worker registration time. We create a Falkon virtual cluster 
with 1 server, and varying number of workers, and we don’t 
reuse the virtual cluster. 

The base line results in Fig. 2 are measured in OpenNebula 
environment. We can observe that the server initialization time 
is quite stable, around 4.7s every time, and for worker parallel 

                                                           
5 FutureGrid:  https://portal.futuregrid.org/ 

registration, the time increases slightly with the worker 
number. 

 

Fig. 2. The Base Line Measurement (OpenNebula) 

We measure the server initialization time and worker 
registration time (illustrated in Fig. 3) in Eucalyptus 
environment to compare with those in the OpenNebula setting. 
We observe the time to create a Falkon server and start the 
service is around 11s, much longer than that in Fig.2. We 
attribute this to the m1.small configuration. The overall time 
increases slightly with the worker number as all the worker 
registration is executed concurrently, which shows a similar 
pattern to that in Fig. 2. 

 

Fig. 3. The Base Line Measurement (Eucalyptus) 

2) Performance improvement 
We implement an optimization technique to speed up the 

cluster creation. When a Falkon virtual cluster is 
decommissioned, we change its status to “standby”, and it can 
be re-activated. When the Cloud Resource Manager receives 
resource request, it checks if there is a “standby” Falkon 
cluster, if so, it will return the information of the Falkon 
service, and also checks the number of the Falkon workers 
already in the cluster. 

In Eucalyptus environment, We measure the recycling 
mechanism by submitting requests with exponentially 
decreasing worker number. Except the first request, the server 
initialization time of the other requests is zero, and the time 
taken is to deregister 16 workers8 workers4 workers2 
workers1 worker from previous “standby” Falkon cluster 

We use (1) to calculate the percent of time saved when 
applying recycling mechanism for resource provisioning. The 
    means the percent of time saved, and    represents the base 



line to create a Falkon cluster with specified worker number. 
   indicates the time cost to initialize a Falkon cluster when 
applying the recycling mechanism. As shown in table IX, we 
can clearly see the recycling mechanism is efficient when 
initializing a cluster based on the “standby” Falkon cluster. 

    
     

  
                               (1) 

TABLE IX.  PERFORMANCE IMPROVEMENT (EUCALYPTUS) 

Cluster Size Time(s) Base Line(s) Time Saved(percent) 

32 39.598 40.376 - 

16 9.548 34.173 72% 

8 7.61 28.331 73% 

4 5.844 25.053 76% 

2 4.571 23.891 80% 

1 4.482 21.503 79% 

C. Montage Image Mosaic Workflow 

In the OpenNebula environment, We demonstrate and 
analyze the integration implementation using a Montage Image 
Mosaic Workflow. Montage is a suite of software tools 
developed to generate large astronomical image mosaics by 
composing multiple small images, as shown in Fig. 4. The 
typical workflow process involves the following key steps: 
 Image projection: 
o re-project each image into a common coordinate space 

(mProjectPP) 
 Background rectification: 
o Calculate a list of overlapping images (mOverlaps) 
o Perform image difference between each pair of 

overlapping images (mDiffFit) 
o Fit difference images into a plane (mConcatFit) 
o Background correction (mBackground) 

 Image co-addition (mAdd): 
o Optionally divide a region into a grid of sub-regions, 

and co-add the images in each region into a mosaic 

o Co-add the processed images (or mosaics in sub-
regions) into a final mosaic 

And finally the mosaic is shrunk (mShrink) and converted 
into a JPEG image (mJPEG) for display. 

To visualize the workflow execution, We developed a 
Nebula Image Mosaic demo service. In the demo a user can 
pick one of the nebulae (e.g. the Swan Nebulae) to create the 
mosaic for it, and the demo service submits a workflow request 
to the Cloud workflow service, which in turn instantiates the 
Cloud resources on-the-fly to execute the workflow. The demo 
also visualizes workflow progress in a DAG (directed acyclic 
graph) on the top, and displays the execution log on the lower 
left and intermediate results on the lower right, as illustrated in 
Fig. 5. The deployment provides scientists with an easy-to-use 
platform to manage and execute scientific workflows on a 
Cloud platform without knowing the details of workflow 
scheduling and Cloud resource provisioning. 

 

Fig. 4. The Montage Workflow 

 



Fig. 5. Nebula Image Mosaic Demo 

VI. CONCLUSIONS AND FUTURE WORK 

We discuss the challenges for traditional scientific 
workflow applications in the big data era and the available 
solutions to deal with the these challenges. We propose a 
service framework, which meets all the essential requirements 
for a scientific computing Cloud platform, to normalize the 
integration of SWFMS and Cloud computing and address the 
big data processing problem in traditional infrastructures. 
Meanwhile, we also present our implementation details based 
on the service framework for the integration of the Swift 
workflow management system with both OpenNebula and 
Eucalyptus, and set up a series of experiments to demonstrate 
the capability of our implementation. We also demonstrate the 
functionality and efficiency of our approach using a Montage 
Image Mosaic Workflow. 

For future work, we will investigate to port different 
SWFMSs, such as Taverna, VIEW, etc., to Clouds according to 
the proposed framework. We will also investigate autonomous 
application deployment in resource provisioning, which can 
deploy  workflow applications automatically in a virtual cluster. 
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