
Devising a Cloud Scientific

Workflow Platform for Big Data

Yong Zhao, Youfu Li

School of Computer Science and Engineering

Univ. of Electronic and Science Technology of China

Chengdu, China

{yongzh04, youfuli.fly}@gmail.com

Shiyong Lu

Department of Computer Science

Wayne State University

Detroit, USA

shiyong@wayne.edu

Ioan Raicu

Department of Computer Science

Illinois Institute of Technology

Chicago, USA

iraicu@iit.edu

Cui Lin

Department of Computer Science

California State University

Fresno, USA

clin@csufresno.edu

Abstract—Scientific workflow management systems

(SWFMSs) are facing unprecedented challenges from big data

deluge. As revising all the existing workflow applications to fit

into Cloud computing paradigm is impractical, thus migrating

SWFMSs into the Cloud to leverage the functionalities of both

Cloud computing and SWFMSs may provide a viable approach

to big data processing. In this paper, we first discuss the

challenges for scientific workflow applications and the available

solutions in details, and analyze the essential requirements for a

scientific computing Cloud platform. Then we propose a service

framework to normalize the integration of SWFMS with Cloud

computing. Meanwhile, we also present our implementation

experience based on the service Framework. At last, we set up a

series of experiments to demonstrate the capability of our

implementation and use a Montage Image Mosaic Workflow as a

showcase of the implementation.

Keywords—Big Data; Cloud Scientific Workflow Management;

Service Framework; Interface Definition

I. INTRODUCTION

Scientific workflow management systems (SWFMSs) have
been widely adopted in Physics, Astronomy, Bioinformatics,
Neuroscience, Earth Science, and Social Science to provide
essential support to scientific computing, including
management of data and task dependencies, job scheduling and
execution, provenance tracking, etc. Nevertheless, the big data
era has raised unprecedented challenges against the solution to
data processing based on traditional scientific workflows, as
the data scale and computation complexity are growing
exponentially. The ETL (Extraction-Transformation-Loading),
storage, retrieval, analysis and application upon the huge
amounts of data are beyond the capability of traditional data
processing infrastructures.

As an emerging computing paradigm, Cloud computing[6]
has brought us tremendous convenience for the processing of
large-scale datasets. Hadoop[22], together with associated
systems in its ecosystem, has been widely adopted to solve the
big data problem arisen in both scientific community and

enterprises, as they provide a scalable and large-scale solution
to data storage, analysis and mining. Theoretically, to address
the big data problems in these areas, scientists and application
developers may simply refactor all the existed workflow
applications into the Cloud computing paradigm, which looks
straightforward but in reality impractical. As traditional
scientific workflow applications have been mature during
many years’ development and always involve complicated
application logic and consist of massive computing processes,
including organization, distribution, coordination and parallel
processing. Transforming these scientific workflows will not
only cost scientists and developers much time, but also
manually handle all the integration details with various
underlying Cloud platforms.

An alternative for researchers is to integrate scientific
workflow management systems with Clouds, leveraging the
functionalities of both Cloud computing and SWFMSs to
provide a Cloud workflow platform as a service for big data
processing. In this solution, not only the challenges for
traditional scientific workflows can be dealt with, but also the
researchers can concentrate on applications and utilize the
integration platform to process massive data on Clouds. As
workflow management systems are diverse in many aspects,
such as workflow models, workflow languages, workflow
engines, and so on, and each workflow system engine may
depend on one specific Distributed Computing Infrastructures
(DCIs), porting a workflow management system to run on
another DCI may cost a large quantity of extra effort. We
would like to free researchers from complicated integration
details, such as Cloud resource provisioning, task scheduling
and so on, and provide them with the convenience and
transparency to scalable big data processing platform, therefore
we propose a service framework to standardize the integration
between SWFMSs and Cloud platforms, breaking the
limitations that a specific SWFMS is bound to a particular DCI
or Cloud environment. We define a series of components and
interfaces to normalize the interactions between different
workflow management subsystems.

II. RELATED WORK

Systems such as Taverna [11], Kepler [9], Vistrails [10],
Pegasus [8], Swift [20], and VIEW [25] have seen wide
adoption in various disciplines such as Physics, Astronomy,
Bioinformatics, Neuroscience, Earth Science, and Social
Science. In Table I, we list some use cases that focused on
applying SWFMSs to execute data-intensive applications.

TABLE I. USE CASES OF SWFMSS

SWFMSs
Application

Fields
Use Cases

Swift Climate Science Climate Data Analysis[1]

Taverna Bioinformatics
Single Nucleotide Polymorphisms

Analysis[2]

Vistrails Earth Science NASA Earth Exchange [3]

Kepler Physics Hyperspectral image processing [4]

VIEW Medical Science Neurological disorder diagnosis[13]

There are also some researchers that tried to run workflow
applications on Clouds. The series of works [12][18] focused
on running scientific workflows that are composed of loosely
coupled parallel applications on various Clouds. The study
conducted on an experimental Nimbus Cloud testbed [17]
dedicated to science applications involved a non-trivial amount
of computation performed over many days, which allowed the
evaluation of the scalability as well as the performance and
stability of the Cloud over time. Their studies demonstrated
that the multi-site Cloud computing is a viable and effective
solution for some scientific workflows, and the networking and
management overhead across different Cloud infrastructures do
not have a major effect on the overall user experience, and the
convenience of being able to scale resources at runtime
outweighs such overhead.

The deployment and management of workflows over the
current existing heterogeneous and not yet interoperable Cloud
providers, however, is still a challenging task for the workflow
developers. The series of works [14] [16] presented a broker-
based framework to support the execution of workflow
applications on a multi-Cloud environment.

The CODA framework [23] was designed and implemented
to support big data analytics in Cloud computing. Important
functions, such as workflow scheduling, data locality, resource
provisioning, and monitoring functions, had been integrated
into the framework. Through the CODA framework, the
workflows could be easily composed and efficiently executed
in Amazon EC2. In order to address performance and cost
issues of big data processing on Clouds, Long Wang et al. [15]
presented a novel design of adaptive workflow management
system which included a data mining based prediction model,
workflow scheduler, and iteration controls to optimize the data
processing via iterative workflow tasks.

Those works mentioned above were mainly focused on
applications of SWFMSs and different aspects of the
deployment and management of integrating workflows into
Clouds, including underlying resource allocation, function
implementation, service evaluation, performance and cost
issues, etc., however, a normalized, service-oriented integration
framework is still missing. As running scientific workflows as
a service in the Cloud platforms involves a variety of systems

and techniques, defining the pivotal interfaces can help to
normalize the interactions between essential systems.

III. CHALLENGES AND AVAILABLE SOLUTIONS

In this section, we discuss the challenges of utilizing
traditional scientific workflows to deal with big data problems
and analyze the available solutions to the following challenges.

A. Challenges for Tranditional Scientific Workflows

Scientific workflow systems have been formerly applied
over a number of execution environments such as workstations,
clusters/Grids, and supercomputers. In contrast to Cloud
environment, running workflows in these environments are
facing a series of obstacles when dealing with big data
problems [5], including data scale and computation
complexity, resource provisioning, collaboration in
heterogeneous environments, etc..

1) Data Scale and Computation Complexity
The execution of scientific workflows often consume and

produce huge amounts of distributed data objects. These data
objects can be of primitive or complex types, files in different
sizes and formats, database tables, or data objects in other
forms. At present, the scientific community is facing a “data
deluge” [7] coming from experiments, simulations, networks,
sensors, and satellites, and the data that needs to be processed
generally grows faster than computational resources and their
speed. The data scale and management in big data era are
beyond the capability of traditional workflows can handle as
they depend on traditional infrastructure for resource
provisioning. For example, in high energy physics, the Large
Hadron Collider

1
 at CERN can generate more than 100TB of

collision data per second; In bioinformatics, GenBank
2
, one of

the largest DNA databases, already hosts over 120 billion
bases, the European Molecular Biology and Bioinformatics
Institute Laboratory (EMBL) hosts 14 PB of data, and the
numbers are expected to double every 9-12 months.

In addition to data scale, science analysis and processing
complexity is also growing exponentially. Scientists are now
attempting calculations requiring orders of magnitude more
computing and communication than was possible only a few
years ago. For instance, in bioinformatics a protein simulation
problem [19] involves running many instances of a structure
prediction simulation, each with different random initial
conditions and performs multiple rounds. Given a couple of
proteins and parameter options, the simulation can easily scale
up to 100,000 rounds. In cancer drug design, protein docking
can involve millions of 3D structures and have a runtime up to
tens of CPU years. To enable the storage and analysis of such
large quantities of data and to achieve rapid turnaround, data
and computation may need to be distributed over thousands or
even tens of thousands of computation nodes.

2) Resource Provisioning
Resource provisioning represents the functionality and

mechanism of allocating computing resource, storage space,
network bandwidth, etc., to scientific workflows. As
cluster/Grid environments is not adept at providing the

1 http://lhc.web.cern.ch
2 http://www.ncbi.nlm.nih.gov/genbank

workflows with smoothly dynamic resource allocation, the
resource provisioned to a scientific workflow is fixed once the
workflow has been deployed to execute, which may in return
restrict the scale of science problems that can be handled by
workflows. Moreover, the scale of resource is upbounded by
the size of a dedicated resource pool with limited resource
sharing extension in the form of virtual organizations.
Meanwhile, the representation of resources in the context of
scientific workflows is also bothering the scientists [28], as
they must be able to recognize the supported types of resources
and tools. For instance, the resource in Taverna is a web
service which usually limits the use of many scientific
resources that are not represented as web services.

To break through the limitations introduced by traditional
resource provisioning strategy, some works have been focused
on the approaches for automated provisioning, including the
Context Broker [24] from the Nimbus project, which supported
the concept of “one-click virtual cluster” that allowed clients to
coordinate large virtual cluster launches in simple steps. The
Wrangler system [26] was a similar implementation that
allowed users to describe a desired virtual cluster in XML
format, and send it to a web service, which managed the
provisioning of virtual machines and the deployment of
software and services. It was also capable of interfacing with
many different Cloud resource providers.

3) Collaboration in Heterogeneous Environments
Collaboration refers to the interactions between workflow

management system and execution environment, such as
resource access, resource status perception, load balance and so
on. As more and more scientific research projects become
collaborative in nature and involve multiple geographically
distributed organizations, which brings a variety of challenges
to scientists and application developers to handle the
collaboration in heterogeneous environments.

The management of resource, authority authentication,
security, etc., can be very complicated, as scientific workflow
applications are normally executed in cluster/Grid
environments, where accessible computing resources and
storage space are located in various management domains. The
execution of traditional workflows are also influenced by the
heterogeneous performance of computing resource due to the
varied configuration of physical machines. In addition, in Grid
environment, the status of physical machines is uncontrollable,
switching among online (the machine is started up and
connected to the Grid), offline (the machine is powered off or
disconnected), busy (the machine is executing other tasks),
etc., making it extremely difficult to maintain load balance.

B. Moving Workflow Applications to Cloud

Since Cloud computing has been widely adopted to solve
the ever-increasing computing and storage problems arising in
the Internet age. To address the challenges of dealing with
peta-scale scientific problems in scientific workflow solutions,
we can move workflow applications into Cloud, using the
MapReduce computing model to reconstruct the formerly
applied workflow specifications. MapReduce provides a very
simple programming model and powerful runtime system for
the processing of large datasets. The programming model is
based on just two key functions: “map” and “reduce,”

borrowed from functional languages. The runtime system
automatically partitions input data and schedules the execution
of programs in a large cluster of commodity machines.
Modified applications to fully leverage the unprecedented
scalability and resources on demand offered by the Cloud
without introducing extra management overheads.

Despite all the advantages of transforming traditional
workflow applications into Cloud-based applications, there are
still some shortcomings and unsolved obstacles:

1) Cloud computing cannot benefit from the distinguishing
features provided by SWFMSs, including management of data
and task dependencies, job scheduling and execution,
provenance tracking, etc.. The challenges for big data
processing in Cloud remain unsolved and are still bothering
developers and researchers.

2) Utilizing the certain data flow support offered by
MapReduce to refactor traditional workflow applications
require application logic to be rewritten to follow the map-
reduce-merge programming model. Scientists and application
developers need to fully understand the applications and port
the applications before they can leverage the parallel
computing infrastructure.

3) Large-scale workflows, especially data-intensive
scientific workflows [29] may require far more functionality
and flexibility than MapReduce can provide, and the implicit
semantics incurred by a workflow specification goes far more
than just the “map” and “reduce” operations, for instance, the
mapping of computation to compute node and data partitions,
runtime optimization, retry on error, smart re-run, etc.

4) Once we decide to migrate workflow applications to
Cloud computing, we need to reconstruct the data being
processed to be able to be stored in partitioned fashion, such as
in GFS, or HDFS, so that the partitions can be operated in
parallel, which may introduce a tremendous amount of work to
scientists and application developers.

5) Revising workflow applications to be capable of
executing in Cloud platforms makes new requests to scientists
and application developers, as they need to grasp new
programing model and techniques instead of using already-
familiar workflow pattern, which may cost large amount of
time beyond the research topics. Moreover, the risks associated
with vendor lock-in cannot be ignored.

C. Migrating Workflow Management into Cloud

To avoid the disadvantages brought by moving workflow
applications directly to Cloud, we may try to integrate
workflow management systems with Cloud to provide a Cloud
workflow platform as a service for big data processing. Once
we decide to integrate SWFMS with Cloud computing, we may
deploy the whole SWFMS inside the Cloud and access the
scientific workflow computation via a Web browser. A distinct
feature of this solution is that no software installation is needed
for a scientist and the SWFMS can fully take advantage of all
the services provided in a Cloud infrastructure. Moreover, the
Cloud-based SWFMS can provide highly scalable scientific
workflows and task management as services, providing one
kind of Software-as-a-Service(SaaS). One concern the user

might have is the economic cost associated with the necessity
of using Cloud on a daily basis, the dependency on the
availability and reliability of the Cloud, as well as the risk
associated with vendor lock-in.

To provide a good balance between system performance
and usability, an alternative for researchers is to encapsulate
the management of computation, data, and storage and other
resources into the Cloud, while the workflow specification,
submission, presentation and visualization remain outside the
Cloud to support the key architectural requirement of user
interface customizability and user interaction support. The
benefit of adopting the solution to manage and run scientific
workflows on top of the Cloud can be multifold:

1) The scale of scientific problems that can be addressed by
scientific workflows can be greatly increased compared to
cluster/Grid environments, which was previously upbounded
by the size of a dedicated resource pool with limited resource
sharing extension in the form of virtual organizations. Cloud
platforms can offer vast amount of computing resources as well
as storage space for such applications, allowing scientific
discoveries to be carried out in a much larger scale.

2) Application deployment can be made flexible and
convenient. With bare-metal physical servers, it is not easy to
change the application deployment and the underlying
supporting platform. However with virtualization technology in
a Cloud platform, different application environments can be
either pre-loaded in virtual machine (VM) images, or deployed
dynamically onto VM instances.

3) The on-demand resource allocation mechanism in the
Cloud can improve resource utilization and change the
experience of end users for improved responsiveness. Cloud-
based workflow applications can get resources allocated
according to the number of nodes at each workflow stage,
instead of reserving a fixed number of resources upfront. Cloud
workflows can scale out and in dynamically, resulting in fast
turn-around time for end users.

4) Cloud computing provides much larger room for the
trade-off between performance and cost. The spectrum of
resource investment now ranges from dedicated private
resources, a hybrid resource pool combining local resource and
remote Clouds, and full outsourcing of computing and storage
to public Clouds. Cloud computing not only provides the
potential of solving larger-scale scientific problems, but also
brings the opportunity to improve the performance/cost ratio.

5) Although migrating scientific workflow management to
Cloud may introduce extra management overheads, Cloud
computing now can leverage the advantages carried about with
SWFMSs (e.g. workflow management, provenance tracking,
etc.).

IV. REQUIREMENTS, DESIGN AND IMPLEMENTATION

In this section, we present our structured approach to
designing and deploying a Cloud workflow management
platform for big data processing. We first analyze the
requirements for such a platform from the perspective of
scientists and researchers, we then discuss our service
framework and analyze the implementation in details from the

perspective of interfaces, which standardize the interactions
between associated subsystems.

A. Design Requirements

From the perspective of scientists and researchers, a Cloud
platform for scientific computing should cover the end-to-end
application execution scenario, from job specification, job
submission, resource provisioning, to job execution and result
delivery. We argue that a scientific computing Cloud platform
should meet the following requirements:

Application development environment: Scientists and
application developers would need a development environment
for the specification, debugging and testing of their application
logic, and the environment could also support easy deployment
and execution of the application in the Cloud platform. One
example is application developers for Windows Azure Services
from Microsoft could use Visual Studio to develop their Cloud
applications, test and run the applications locally, and then
deploy to the Azure Cloud platform. Having such an
environment would greatly facilitate the development process
and simplify interfacing to the Cloud.

Cloud gateway service: Just like the way scientists interact
with a Grid computing platform such as TeraGrid [21], they
would need a similar interface in the form of a gateway or
portal such that they can access resources in the back and run
their applications without becoming experts on Grid or Cloud
technologies. In addition to servicing job submissions and
resource requests, the gateway can also manage user
authentication and authorization, and keep track of resource
usage and accounting related issues.

Virtual Resource provisioning: One of the major benefits
of Cloud is its resources on demand. With the right resource
provisioning mechanism, applications running on the Cloud
can easily scale out and in, and achieve good cost performance
balance. Combined with virtualization technology, virtual
resource provisioning can provide science applications with not
only the scalability to tap into the potentially unlimited
resources, but also the flexibility to set up and deploy the
necessary infrastructure and environment required for the
applications to run. Virtual cluster provisioning can even
provision a cluster of virtual machine instances with the
network and storage all set up, and in some implementations a
ready-to-use scheduler such as PBS for job scheduling.

Job scheduling and execution: As we have pointed out
before, getting the necessary resources for the application is not
the end of story to running an application. We would also need
to schedule and coordinate the execution of the jobs in the
application, and balance resource utilization across the jobs. A
job scheduling and execution service needs to be deployed on
top of the acquired virtual resources for efficient execution.

Infrastructure level support: An underlying Cloud
platform should provide the basic infrastructure level support
such as management of physical servers, network and storage
devices, configuration and instantiation of virtual machines, as
well as virtual image management and logging etc. In addition
to the ones listed above, there are other functional
requirements, such as monitoring and error recovery of job
execution, result visualization, provenance tracking, etc. to a

science computing Cloud platform. There are also performance
related issues, such as the instantiation time of virtual machine
instances and clusters, resource scheduling efficiency, and so
on.

B. The Service Framework

We propose a reference service framework that fulfills the
above design requirements and covers all the major aspects
involved in the migration and integration of SWFMS into the
Cloud, from client-side workflow specification, service-based
workflow submission and management, task scheduling and
execution, to Cloud resource management and provisioning.
As illustrated in Fig. 1, the service framework includes 4
layers, 8 components and 6 interfaces. Detailed description of
the service framework is made public at our website

3
.

The first layer is the Infrastructure Layer, which consists of
multiple Cloud platforms with the underlying server, storage
and network resources. The second layer is called the
Middleware Layer. This layer consists of three subsystems:
Cloud Resource Manager, Scheduling Management Service
and Task Scheduling Frameworks. The third layer, called the
Service Layer, consists of Cloud Workflow Management
Service and Workflow Engines. Finally, the fourth layer – the
Client Layer, consists of the Workflow Specification &
Submission and the Workflow Presentation & Visualization
subsystem. The service framework would help to break
through workflows’ dependence on the underlying resource
environment, and take advantage of the scalability and on-
demand resource allocation of the Cloud.

Fig. 1. The Service Framework

We present a layered service framework for the
implementation and application of integrating SWFMS into
manifold Cloud platforms, which can also be applicable when
deploying a workflow system in Grid environments. The
separation of each layer enables abstractions and different
independent implementations for each layer, and provides the
opportunity for scientists to develop a stable and familiar
problem solving environment where rapid technologies can be
leveraged but the details of which are shielded transparently
from the scientists who need to focus on science itself. The
Interfaces defined in the framework is flexible and

3 http://www.cloud-uestc.cn/projects/serviceframework/index.html

customizable for scientists to expand or modify according to
their own specified requirements and environments.

C. Implementation

We also implement the service framework by integrating
the Swift scientific workflow management system [20] with
the OpenNebula and Eucalyptus platforms. The integration
supports workflow specification and submission, on-demand
virtual cluster provisioning, high-throughput task scheduling
and execution, and scalable resource management in the Cloud.
The layers, systems and interfaces displayed in the integration
architecture can be easily mapped into the corresponding
components in the service framework. As we can choose
different available systems for the integration, we would like to
focus on the interactions between the associated subsystems
when interpreting the implementation.

1) Associated Subsystems
As the implementation of service framework includes a

variety of systems and techniques, for the purpose of clarity,
we list the subsystems, corresponding to Fig. 1, in table II. And
we also point out which subsystems are directly from the
original systems and which are implemented for the
integration.

TABLE II. SUBSYSTEMS IMPLEMENTATION DESCRIPTION

Subsystems Description Mapped Subsystems

OpenNebula/Eucalyptus reuse Cloud Platforms

Falkon Scheduling

Framework [27]

minor

revision

Task Scheduling

Frameworks

Scheduling Management

Service
implemented

Scheduling Management

Service (Abbr. SMS)

Cloud Resource

Manager
implemented Cloud Resource Manager

Swift System
minor

revision
Workflow Engines

Cloud Workflow

Management Service
implemented

Cloud Workflow

Management Service

(Abbr. CWMS)

Client Submission Tool implemented
Workflow Specification &

Submission

a. “reuse”: we directly reuse the available components for integration
b. “minor revision”: we reuse the available components after customization.

c. “implemented”: we implement the components from design to test.

The Swift Workflow Management System

Swift is a system that bridges scientific workflows with
parallel computing. Swift takes a structured approach to
workflow specification, scheduling, and execution. It consists
of a simple scripting language called SwiftScript for concise
specification of complex parallel computations based on
dataset typing and iterations, and dynamic dataset mappings for
accessing large-scale datasets represented in diverse data
formats.

The Swift system architecture consists of four major
components: Program Specification, Scheduling, Execution,
and Provisioning. Computations are specified in SwiftScript,
which has been shown to be simple yet powerful. SwiftScript
programs are compiled into abstract computation plans, which
are then scheduled for execution by the workflow engine onto

provisioned resources. Resource provisioning in Swift is very
flexible, tasks can be scheduled to execute on various resource

providers, where the provider interface can be implemented as
a local host, a multi-site Grid, or the Amazon EC2 service.

TABLE III. INTERFACES IMPLEMENTATION DESCRIPTION

Interfaces Description Mapped Into Interaction Between

IWorkflowSubmission implemented Interface I1 Workflow Specification & Submission and CWMS

IVirtualClusterRequest implemented Interface I2 CWMS and Cloud Resource Manager

ISchedulingFrameworkDeployment implemented Interface I3 Cloud Resource Manager and SMS

IVirtualMachineOperation implemented Interface I4 Cloud Resource Manager and Cloud Platforms

ISchedulingFrameworkOperation under evaluation Interface I5 SMS and Task Scheduling Frameworks

IWorkflowJobSubmission under evaluation Interface I6 CWMS and Workflow Engines

a. “implemented”: means we define and implement the interfaces.
b. “under evaluation”: represents those interfaces have been defined but still need further adjustment and evaluation for detail implementation.

2) Interface Definitions
The realization of service framework also involves

complicated communications between different essential
subsystems. These interfaces, not bound to one specific system,
are defined to normalize the interactions between associated
systems. Available systems can be easily integrated into the
service framework as long as they can be modified to realize
the corresponding interfaces. For instance, we can deploy
CloudStack as the underlying Cloud platform as long as we
encapsulate the CloudStack’s API according to the interfaces
between the Cloud Resource Manager and Cloud Platforms.

Corresponding to Fig. 1, we list the key interfaces in Table
III, and point out the implementation status and interaction
relationships. We will introduce the definitions of some pivotal
interfaces in the following, and further details about these
interfaces are available at our website

4
.

In Table IV, we present the definition of interface
“IWorkflowSubmission”, which can be mapped into Interface
I1. We define the interface “IWorkflowSubmission” to
standardize the submission of workflows from the Workflow
Specification & Submission to Cloud Workflow Management
Service.

TABLE IV. DEFINITION OF IWORKFLOWSUBMISSION

public interface IWorkflowSubmission {

public boolean submitWorkflow(WorkflowSpecification workflow,

ExecutionConfiguration config) throws Exception;
public WorkflowStatus queryWorkflowStatus(String workflowID)

throws Exception;

public WorkflowResult queryWorkflowResult(String workflowID)
throws Exception;

public boolean retractWorkflowSubmission(String workflowID)
throws Exception;

…}

In Table V, we list a set of operations corresponding to
Interface I2, for the interactions between Cloud Workflow
Management Service and Cloud Resource Manager, such as
sending a cluster request, querying cluster information and
releasing a cluster after execution.

TABLE V. DEFINITION OF IVIRTUALCLUSTERREQUEST

public interface IVirtualClusterRequest {

public VirtualCluster requestCluster(int clusterSize, ClusterDetails

details) throws Exception;
public VirtualCluster queryClusterInformation(String clusterID)

throws Exception;

4 http://www.cloud-uestc.cn/projects/serviceframework/index.html.

public boolean releaseCluster(String clusterID) throws Exception;

…}

We define the interface “ISchedulingFramework-
Deployment” (displayed in Table VI), which can be mapped
into Interface I3, to standardize the deployment of scheduling
framework with specified deployment configuration. Other
operations, associated with the deployment of Scheduling
Management Service, are also defined in this interface.

TABLE VI. DEFINITION OF ISCHEDULINGFRAMEWORKDEPLOYMENT

public interface ISchedulingFrameworkDeployment {

public SchedulingFrameworkInformation deployScheduling-

Framework(VirtualCluster virtualCluster,
SchedulingFrameworkConfiguration configuration) throws Exception;

public SchedulingFrameworkInformation modifyScheduling-

Framework(VirtualCluster virtualCluster, SchedulingFramework-

Information information, SchedulingFrameworkConfiguration

configuration) throws Exception;

public boolean revokeSchedulingFrameworkDeployment
(VirtualCluster virtualCluster, SchedulingFrameworkInformation

information) throws Exception;

…}

The definition of interface “IVirtualMachineOperation” in
Table VII can be mapped into Interface I4. This interface
covers the general operations upon virtual machines, including
instance creation, launching, shutdown, reboot, etc., which can
be the encapsulation standard of Cloud platforms API.

TABLE VII. DEFINITION OF IVIRTUALMACHINEOPERATION

public interface IVirtualMachineOperation {
public ArrayList<VirtualMachineInformation> createInstances (int

vmNumber) throws Exception;

public ArrayList<VirtualMachineInformation> launchInstances
(ArrayList <VirtualMachineInformation> vmList) throws Exception;

public boolean shutdownInstances (ArrayList <VirtualMachine-

Information> vmList) throws Exception;
public ArrayList<VirtualMachineInformation> rebootInstances

(ArrayList <VirtualMachineInformation> vmList) throws Exception;

public boolean destroyInstances (ArrayList <VirtualMachine-
Information> vmList) throws Exception;

…}

To normalize the submission of workflow job from Cloud
Workflow Management Service to Workflow Engines, we
define a series of operations in “IWorkflowJobSubmission” (as
shown in Table VIII), corresponding to Interface I6. Covering
the general operations upon submitting workflow job to
Workflow Engines.

TABLE VIII. DEFINITION OF IWORKFLOWJOBSUBMISSION

public interface IWorkflowJobSubmission {

public boolean submitWorkflowJob(WorkflowSpecification

specification, VirtualCluster cluster, WorkflowEngine engine) throws

Exception;
public WorkflowStatus checkWorklfowExecutionStauts (String

workflowID) throws Exception;

public WorkflowResult fetchWorkflowResult(String workflowID)
throws Exception;

public boolean cancelWorkflowExecution(String workflowID) throws

Exception;
…}

V. EVALUATION

In this section, we show our experiment results of
implementation for both the OpenNebula and Eucalyptus
platforms to demonstrate the practicability and capability of
our implementation.

A. Experiment Configuration

OpenNebula: We use 6 machines in the experiment, each
configured with Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB
memory, 500GB HDD, and connected with Gigabit Ethernet
LAN. The configuration for each VM is 1 core, 1.5GB
memory, 20GB HDD, and we use KVM as the hypervisor. One
of the machines is used as the frontend which hosts the
workflow service, the CRM, and the monitoring service. The
other 5 machines are used to instantiate VMs, and each
physical machine can host up to 2 VMs, so at most 10 VMs
can be instantiated in the environment.

Eucalyptus: Considering the efficient and convenient
service provided by the FutureGrid

5
, we choose Eucalyptus for

the implementation and deployment. FutureGrid is a project led
by Indiana University and funded by the National Science
Foundation (NSF) to develop a high-performance Grid test bed
that lets scientists collaboratively develop and test innovative
approaches to parallel, Grid, and Cloud computing. We
measure the performance to establish a baseline for resource
provisioning and Cloud resource management overhead in the
science Cloud environment.

The instance type used in our experiment is m1.small: 1
CPU Unit, 1 CPU Core and 500MB Memory. All the instances
use Ubuntu Server 12.04 as the operating system.

B. Resource Provisioning

In our implementation, we have realized the dynamic
resource request by interacting with underlying Cloud
platforms. Considering the experiments are conducted in the
laboratory environment, where economic cost can be
temporarily ignored, we pre-instantiate all the required VMs
and put them in the VM pool, which may help the evaluation
results be more intuitionistic and comparable.

1) The base line measurement
We first measure the base line for server initialization time

and worker registration time. We create a Falkon virtual cluster
with 1 server, and varying number of workers, and we don’t
reuse the virtual cluster.

The base line results in Fig. 2 are measured in OpenNebula
environment. We can observe that the server initialization time
is quite stable, around 4.7s every time, and for worker parallel

5 FutureGrid: https://portal.futuregrid.org/

registration, the time increases slightly with the worker
number.

Fig. 2. The Base Line Measurement (OpenNebula)

We measure the server initialization time and worker
registration time (illustrated in Fig. 3) in Eucalyptus
environment to compare with those in the OpenNebula setting.
We observe the time to create a Falkon server and start the
service is around 11s, much longer than that in Fig.2. We
attribute this to the m1.small configuration. The overall time
increases slightly with the worker number as all the worker
registration is executed concurrently, which shows a similar
pattern to that in Fig. 2.

Fig. 3. The Base Line Measurement (Eucalyptus)

2) Performance improvement
We implement an optimization technique to speed up the

cluster creation. When a Falkon virtual cluster is
decommissioned, we change its status to “standby”, and it can
be re-activated. When the Cloud Resource Manager receives
resource request, it checks if there is a “standby” Falkon
cluster, if so, it will return the information of the Falkon
service, and also checks the number of the Falkon workers
already in the cluster.

In Eucalyptus environment, We measure the recycling
mechanism by submitting requests with exponentially
decreasing worker number. Except the first request, the server
initialization time of the other requests is zero, and the time
taken is to deregister 16 workers8 workers4 workers2
workers1 worker from previous “standby” Falkon cluster

We use (1) to calculate the percent of time saved when
applying recycling mechanism for resource provisioning. The
 means the percent of time saved, and represents the base

line to create a Falkon cluster with specified worker number.
 indicates the time cost to initialize a Falkon cluster when
applying the recycling mechanism. As shown in table IX, we
can clearly see the recycling mechanism is efficient when
initializing a cluster based on the “standby” Falkon cluster.

 (1)

TABLE IX. PERFORMANCE IMPROVEMENT (EUCALYPTUS)

Cluster Size Time(s) Base Line(s) Time Saved(percent)

32 39.598 40.376 -

16 9.548 34.173 72%

8 7.61 28.331 73%

4 5.844 25.053 76%

2 4.571 23.891 80%

1 4.482 21.503 79%

C. Montage Image Mosaic Workflow

In the OpenNebula environment, We demonstrate and
analyze the integration implementation using a Montage Image
Mosaic Workflow. Montage is a suite of software tools
developed to generate large astronomical image mosaics by
composing multiple small images, as shown in Fig. 4. The
typical workflow process involves the following key steps:
 Image projection:
o re-project each image into a common coordinate space

(mProjectPP)
 Background rectification:
o Calculate a list of overlapping images (mOverlaps)
o Perform image difference between each pair of

overlapping images (mDiffFit)
o Fit difference images into a plane (mConcatFit)
o Background correction (mBackground)

 Image co-addition (mAdd):
o Optionally divide a region into a grid of sub-regions,

and co-add the images in each region into a mosaic

o Co-add the processed images (or mosaics in sub-
regions) into a final mosaic

And finally the mosaic is shrunk (mShrink) and converted
into a JPEG image (mJPEG) for display.

To visualize the workflow execution, We developed a
Nebula Image Mosaic demo service. In the demo a user can
pick one of the nebulae (e.g. the Swan Nebulae) to create the
mosaic for it, and the demo service submits a workflow request
to the Cloud workflow service, which in turn instantiates the
Cloud resources on-the-fly to execute the workflow. The demo
also visualizes workflow progress in a DAG (directed acyclic
graph) on the top, and displays the execution log on the lower
left and intermediate results on the lower right, as illustrated in
Fig. 5. The deployment provides scientists with an easy-to-use
platform to manage and execute scientific workflows on a
Cloud platform without knowing the details of workflow
scheduling and Cloud resource provisioning.

Fig. 4. The Montage Workflow

Fig. 5. Nebula Image Mosaic Demo

VI. CONCLUSIONS AND FUTURE WORK

We discuss the challenges for traditional scientific
workflow applications in the big data era and the available
solutions to deal with the these challenges. We propose a
service framework, which meets all the essential requirements
for a scientific computing Cloud platform, to normalize the
integration of SWFMS and Cloud computing and address the
big data processing problem in traditional infrastructures.
Meanwhile, we also present our implementation details based
on the service framework for the integration of the Swift
workflow management system with both OpenNebula and
Eucalyptus, and set up a series of experiments to demonstrate
the capability of our implementation. We also demonstrate the
functionality and efficiency of our approach using a Montage
Image Mosaic Workflow.

For future work, we will investigate to port different
SWFMSs, such as Taverna, VIEW, etc., to Clouds according to
the proposed framework. We will also investigate autonomous
application deployment in resource provisioning, which can
deploy workflow applications automatically in a virtual cluster.

ACKNOWLEDGMENT

This paper is supported by the key project of National
Science Foundation of China No. 61034005 and No.
61272528.

REFERENCES

[1] Woitaszek, M., Dennis, J., Sines, T. Parallel High-resolution Climate
Data Analysis using Swift. 4th Workshop on Many-Task Computing on
Grids and Supercomputers 2011.

[2] Damkliang K, Tandayya P, Phusantisampan T, et al. Taverna Workflow
and Supporting Service for Single Nucleotide Polymorphisms
Analysis[C]//Information Management and Engineering, 2009.
ICIME'09. International Conference on. IEEE, 2009: 27-31.

[3] Zhang J, Votava P, Lee T J, et al. Bridging VisTrails Scientific
Workflow Management System to High Performance
Computing[C]//Services (SERVICES), 203 IEEE Ninth World Congress
on. IEEE, 2013: 29-36.

[4] Zhang J. Ontology-driven composition and validation of scientific grid
workflows in Kepler: a case study of hyperspectral image
processing[C]//Grid and Cooperative Computing Workshops, 2006.
GCCW'06. Fifth International Conference on. IEEE, 2006: 282-289.

[5] Juve G, Deelman E. Scientific workflows in the cloud[M]//Grids,
Clouds and Virtualization. Springer London, 2011: 71-91.

[6] I. Foster, Y. Zhao, I. Raicu, S. Lu. “Cloud Computing and Grid
Computing 360-Degree Compared,” IEEE Grid Computing
Environments (GCE08) 2008, co-located with IEEE/ACM
Supercomputing 2008. Austin, TX. pp. 1-10

[7] G. Bell, T. Hey, A. Szalay, Beyond the Data Deluge, Science, Vol. 323,
no. 5919, pp. 1297-1298, 2009.

[8] E. Deelman et al. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems, Scientific Programming, vol. 13,
iss. 3, pp. 219-237. July 2005.

[9] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.
A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the
Kepler system, Concurrency and Computation: Practice and
Experience,Special Issue: Workflow in Grid Systems, vol. 18, iss. 10,
pp. 1039–1065, 25 August 2006.

[10] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger and H.
T. Vo, Managing Rapidly-Evolving Scientific Workflows, Provenance

and Annotation of Data, Lecture Notes in Computer Science, 2006, vol.
4145/2006, 10-18, DOI: 10.1007/11890850_2

[11] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T.
Oinn, “Taverna: a tool for building and running workflows of services,”
Nucleic Acids Research, vol. 34, pp. 729-732, 2006.

[12] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, G. B. Berriman.
“Experiences Using Cloud Computing for A Scientific Workflow
Application”, Invited Paper, ACM Workshop on Scientific Cloud
Computing (ScienceCloud) 2011. pp. 15-24.

[13] Lin C, Lu S, Lai Z, et al. Service-oriented architecture for VIEW: a
visual scientific workflow management system[C]//Services Computing,
2008. SCC'08. IEEE International Conference on. IEEE, 2008, 1: 335-
342.

[14] Kozlovszky M, Karoczkai K, Marton I, et al. Enabling generic
distributed computing infrastructure compatibility for workflow
management systems[J]. Computer Science, 2012, 13(3): 61-78.

[15] Wang L, Duan R, Li X, et al. An Iterative Optimization Framework for
Adaptive Workflow Management in Computational Clouds[C]//Trust,
Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference on. IEEE, 2013: 1049-1056.

[16] Jrad F, Tao J, Streit A. A broker-based framework for multi-cloud
workflows[C]//Proceedings of the 2013 international workshop on
Multi-cloud applications and federated clouds. ACM, 2013: 61-68.

[17] K. Keahey, T. Freeman, “Science Clouds: Early Experiences in Cloud
Computing for Scientific Applications,” Cloud Computing and Its
Applications 2008 (CCA-08), Chicago, IL. October 2008.

[18] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
J. Good, “On the Use of Cloud Computing for Scientific Workflows,”
3rd International Workshop on Scientific Workflows and Business
Workflow Standards in e-Science (SWBES), pp. 640-645, 2008.

[19] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M.
Hategan, B. Clifford, I. Raicu, “Parallel Scripting for Applications at the
Petascale and Beyond,” IEEE Computer Nov. 2009 Special Issue on
Extreme Scale Computing, vol. 42, iss. 11, pp. 50-60, 2009.

[20] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewski, I. Raicu, T.
S.-Praun, M. Wilde. “Swift: Fast, Reliable, Loosely Coupled Parallel
Computation,” IEEE Workshop on Scientific Workflows 2007, pp. 199-
206.

[21] M. Christie and S. Marru. The lead portal: a teragrid gateway and
application service architecture: Research articles. Concurrency and
Computation : Practice and Experience, 19(6):767{781, 2007.

[22] Bhandarkar M. MapReduce programming with apache
Hadoop[C]//Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. IEEE, 2010: 1-1.

[23] Chaisiri S, Bong Z, Lee C, et al. Workflow framework to support data
analytics in cloud computing[C]//Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE,
2012: 610-613.

[24] Keahey, K., and T. Freeman. Contextualization: Providing One-click
Virtual Clusters. in eScience. 2008, pp. 301-308. Indianapolis, IN, 2008.

[25] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J.
Hua, “A Reference Architecture for Scientific Workflow Management
Systems and the VIEW SOA Solution,” IEEE Transactions on Services
Computing (TSC), 2(1), pp.79-92, 2009.

[26] G. Juve and E. Deelman. Wrangler: Virtual Cluster Provisioning for the
Cloud. In HPDC, pp. 277-278, 2011.

[27] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: a Fast
and Light-weight tasK executiON framework,” IEEE/ACM
SuperComputing 2007, pp. 1-12.

[28] Lacroix Z, Aziz M. Resource descriptions, ontology, and resource
discovery[J]. International Journal of Metadata, Semantics and
Ontologies, 2010, 5(3): 194-207.

[29] Szabo C, Sheng Q Z, Kroeger T, et al. Science in the Cloud: Allocation
and Execution of Data-Intensive Scientific Workflows[J]. Journal of
Grid Computing, 2013: 1-20.

