
A Cloud-based Interactive Data Infrastructure for Sensor
Networks

Tonglin Li1, Kate Keahey2, Rajesh Sankaran2, Pete Beckman2, Ioan Raicu1,2
1
Illinois Institute of Technology, Computer Science Department

2
Argonne National Laboratory, Mathematics and Computer Science Division

tli13@hawk.iit.edu, keahey@mcs.anl.gov, rajesh@anl.gov, beckman@anl.gov, iraicu@cs.iit.edu

ABSTRACT

Small specialized sensor devices capable of both reporting on

environmental factors and interacting with the environment are

becoming increasingly ubiquitous, reliable and inexpensive. This

transformation has enabled domain sciences to create "instruments

at large" – dynamic and often self-organizing groups of sensors

whose outputs are capable of being aggregated and correlated

to support experiments organized around specific questions. This

calls for an infrastructure that can support remote administration

of sensors, relies on protocols that can withstand unreliable

communications, and extend storage capability that can scale to

support many data producing sensors, many different data types,

and many end user requests. In this work we present protocols and

a cloud-based data store called "WaggleDB" that address the

above challenges. The system efficiently aggregates and stores

data from sensor networks and enables users to query the data

sets. The "WaggleDB" data store incorporates a scalable multi-tier

architecture with individually scalable layers toward overcoming

the challenges.

Keywords

Sensor Network, Cloud, Data Infrastructure, Column-Oriented

Database

1. INTRODUCTION
The last several years have seen a raise in the use of sensors,

actuators and their networks for sensing, monitoring and

interacting with the environment [1]. There is a proliferation of

small, cheap and robust sensors for measuring various physical,

chemical and biological characteristics of the environment that

open up novel and reliable methods for monitoring qualities

ranging from the geophysical variables, soil conditions, air and

water quality monitoring to growth and decay of vegetation.

Structured deployments, such as the global network of flux

towers, are being augmented by innovative use of personal mobile

devices (e.g., such as use of cell phones to detect earthquakes),

use of data from social networks, and even citizen science.

As small, specialized sensor devices, capable of both reporting on

environmental factors and interacting with the environment,

become more ubiquitous, reliable, and cheap, increasingly more

domain sciences are creating “instruments at large” – dynamic,

often self-organizing, groups of sensors whose outputs are capable

of being aggregated and correlated to support experiments

organized around specific questions. In other words, rather than

construct a single instrument comprised of millions of sensors, a

“virtual instrument” might comprise dynamic, potentially ad hoc

groups of sensors capable of operating independently but also

capable of being combined to answer targeted questions. Projects

organized around this approach represent important areas ranging

from ocean sciences, ecology, and urban construction to

hydrology.

2. Design and Implementation

2.1 Challenges and solutions
The online analysis needs of such “instruments at large” create the

need for data store management system with the following

properties:

Write scalability: The data store will need to be able to sustain

many concurrent writes generated by thousands of sensor

controller nodes that continuously send data to the database with

the same quality of service, i.e., reliability (not losing any writes),

time to acknowledge, etc. For achieving these goals, we propose

to use a multi-layer architecture. A high performance load

balancer is used as the first layer to accept and forward all write

requests from sensor controller nodes evenly to a distributed

message queue. In our system the message queue works as a write

buffer and handles requests asynchronously. A separate

distributed data agent service keeps pulling messages from the

queue, preprocess it and then write to the data store. On the client

side (sensor controller nodes), we adopt a collective sending

method, which accumulates the sensor data and send a batch of

message to the cloud periodically. Similar batch sending can be

found in [6]. The client sending frequency is customizable so to

meet the different needs of data freshness.

Support for various data types: Since sensor data can be of

various types and sizes; there is no fixed scheme for the data

formats from all the different types of sensor. Therefore we need

a flexible data schema so to enable a unified API to collect and

store the data, and to organize data in a scalable way for further

use (query/analytics). To address this issue, we design a flexible

and self-describing message data structure that easily fits into a

large category of scalable distributed databases, called column-

oriented databases (or BigTable-like data stores [2]), a type of

NoSQL database [3,4,5]. This design enables us to elevate the rich

features, performance advantage and scalability from column-

oriented databases, as well as to define a unified data access API.

Transactional interaction between admin users and sensors:

Administrators need to push commands or queries to sensor

controllers for development or maintenance purposes. However

sensor network connection is not reliable and the connection can

be lost any time, which makes conventional remote login

mechanism such as SSH fail to work. We use a database table to

track the sessions between admins and sensor controllers. A

session contains all communication events and their orders.

Admin submit a series of commands and the nodes that will run

these commands to the system database, sensor controllers check

out the commands from the same database whenever they are

online. The controllers’ responses are also push to the database for

admins.

Dynamic scalable services: The request rate can change in a wide

range. The system needs to be able adjust its capability to satisfy

multiple requests for processing with qualities of service. We

distribute the functionality to independent tiers in the architecture,

which is designed in such way that each tier can be scaled by

adding more independent resources provisioned on-demand in the

cloud.

2.2 Architecture
We design a loosely coupled multi-layer architecture to boost the

scalability while maintaining a good performance. As shown in

fig 2, the system is composed of a sensor controller node and a

data server that is both written to by the sensors and read from by

the clients. On the server side, there are 5 layers of components,

namely load balancer, message queue, data agent, database, and

query execution engine. Each layer can be deployed on a

dedicated or shared virtual cluster. If any layer becomes

bottleneck, it can be scaled easily by simply adding more

resource.

Figure 1. System architecture.

2.3 Implementation
We have implemented a functioning prototype of WaggleDB and

deploy it on a public cloud platform, FutureGrid. We use

RabbitMQ as the message queue, Cassandra as the database,

HAProxy as the load balancer. All tiers are deployed on multiple

VMs.

The prototype now has following features: accepting and storing

data from different type of sensors, a blob store for potential big

files from sensors such as full-spectrum cameras, transactional

interaction between admin and sensor controllers, sensor and

controller registration, CQL and SQL query on the database,

dynamic scalability.

3. Performance Evaluation
We have conducted a preliminary performance evaluation of

WaggleDB system on FutureGrid, which is an OpenStack based

public cloud. Since we don’t have many sensor controller nodes at

this point, we run the clients on virtual machines and send random

data in a tight loop to a WaggleDB queue server as a simulation.

In this experiment, we use the number of clients and message size

as parameters. We measured request latency from client side,

message queue processing bandwidth and requests throughput on

the queue server side. Figure 2 shows that the latency slowly

increases with the concurrency level but much better than. It is

worth noting that the message size has little influence on latency.

This indicates that the major parts of overhead consists connection

creation and closing, but not network transferring. This is also

proved by our bandwidth measurement, as shown in figure 3.

Clients have proportionally high bandwidth when using bigger

messages. With 32 clients sending messages of 10,000 bytes, the

system reaches 50MB/s bandwidth, while it only has 59KB/s with

10 bytes messages. The request throughput benefits from adding

from concurrent clients as well.

Figure 2. When the client scale increased by 32 times, the average latency only

increased by 2.2 times. The differences between the latencies of 10 to 10k bytes

message sizes were small.

Figure 3. The bandwidth gain from bigger message size is close to that from adding

more clients.

When adding concurrent clients up to 128, the latency increases

rapidly for one server, while the systems that have more servers

perform better. Single server is saturated at 32 clients scale, 2, 4

and server systems saturated at 64 and 128 clients respectively. 8

servers system performs still well. This implies excellent server

scalability.

Figure 3. Server scalability. The more server in the system, the less latency increases.

4. Conclusion
The emerging sensor network usage calls for an infrastructure

able to collect, store, query, and process data set from sensor

networks. We present the challenges and gives tentative solution

through WaggleDB, a cloud-based interactive data infrastructure

for sensor networks. WaggleDB is elastic on both scales and data

presentation, and shows excellent potential to scale each tier in the

architecture.

5. REFERENCES
[1] Martinez, K., J.C. Hart, and R. Ong, Environmental Sensor Networks.

Computer, 2004. 37(8): p. 50-56.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat. 2006. Bigtable: a distributed

storage system for structured data. OSDI '06.

[3] Jiri Schindler. 2013. Profiling and analyzing the I/O performance of NoSQL

DBs. SIGMETRICS Perform. Eval. Rev.

[4] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang,

Anupam Rajendran, Zhao Zhang, Ioan Raicu. ZHT: A Light-weight Reliable

Persistent Dynamic Scalable Zero-hop Distributed Hash Table, IPDPS2013.

[5] Tonglin Li, Raman Verma, Xi Duan, Hui Jin, Ioan Raicu. 2011. Exploring

Distributed Hash Tables in High-End Computing, SIGMETRICS Perform. Eval.

Rev.

[6] Tonglin Li, Ioan Raicu, Lavanya Ramakrishnan, Scalable State Management for

Scientific Applications in the Cloud, BigData2014

0

1

2

3

4

5

6

7

1 2 4 8 16 32

L
a

te
n

cy
 i

n
 m

s

Clients #

10
100
1000
10000

Message size
 in bytes

4

41

406

5,034

20

161

1,643

19,128

59

600

5,139

50,886

0

0

0

1

10

100

1,000

10,000

100,000

10 100 1000 10000

B
a

n
d

w
id

th
 i

n
 K

B
/s

Message sizes

2
8
32

Client #

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 4 8 16 32 64 128

L
a

te
n

cy
 i

n
 m

s

Clients #

1

2

4

8

Queue Server
Number

