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1. INTRODUCTION
Many believe that current high-performance computing

(HPC) storage systems would not meet the I/O requirement
of the emerging exascale computing because of the segrega-
tion of compute and storage resources. Indeed, our simu-
lation predicts, quantitatively, that the system availability
would go towards zero at exascale. This work proposes a
storage architecture with node-local disks for HPC systems.
Although collocating compute and storage is not a new idea
in general, it has not been adopted in HPC systems. We
build a node-local filesystem, which we called FusionFS, with
two major design principles: maximal metadata concurrency
and optimal file write, both of which are crucial to HPC
applications. We also discuss FusionFS’s integral features
such as hybrid and cooperative caching, efficient accesses to
compressed files, space-efficient data redundancy, and dis-
tributed provenance tracking. We have evaluated FusionFS
on petascale supercomputers with 64K-cores and compared
its performance with major storage systems such as GPFS,
PVFS, HDFS, and S3.

1.1 Limitations of Conventional Architecture
In order to understand HPC storage performance in the

emerging exascale computing, we design and implement a
simulator [1] validated by real application traces. We scale
simulations of synthetic workloads and IBM Blue Gene logs
to 2-million nodes, and find that conventional parallel filesy-
setms on remote storage nodes would result in zero system
availability and efficiency. Nevertheless, result shows that
a node-local distributed filesystem is promising to achieve
highly scalable I/O throughput and efficient checkpointing.

2. FUSION DISTRIBUTED FILE SYSTEM
We design and implement a filesystem prototype, the Fu-

sion distributed filesystem (FusionFS), to justify the superi-
ority of node-local distributed filesystems over remote par-
allel filesystems. FusionFS is built from the ground up with
the following two assumptions: (1) it is efficient for small-
and medium-sized files, i.e., metadata-intensive operations,
and (2) file write should be optimized. Neither of above as-
sumptions fits in the scope of Cloud Computing, where files
are assumed to be large in size and file read is typically more
frequent than file-write (write-once-read-many).

We achieve the first goal by distributing file metadata (via
a distributed hashtable [2]) to all compute nodes. Experi-
mental results show that FusionFS metadata rate outper-
forms GPFS by more than one order of magnitude [3]. The
second goal, i.e., write optimization, is achieved by writing

data locally (if possible), where we design multiple file trans-
fer protocols. In terms of performance, we deploy FusionFS
on a 16K-node IBM Blue Gene supercomputer, and observe
2.5 TB/s aggregate throughput [4].

2.1 Hybrid and Cooperative Caching
When the node-local storage capacity is limited, remote

parallel filesystems should coexist with FusionFS to store
large-sized data. In some sense, FusionFS is regarded as a
caching middleware between the main memory and remote
parallel filesystems. We are interested in what placement
policies (i.e., caching strategies) are beneficial to HPC work-
loads.

Our first attempt is a user-level caching middlewere on
every compute node, assuming a memory-class device (for
example, SSD) is accessible along with a conventional spin-
ning hard drive. That is, each compute node is able to ma-
nipulate data on hybrid storage systems. The middleware,
named HyCache [5], speeds up HDFS by up to 28%.

Our second attempt is a cooperative caching mechanism
across all the compute nodes, called HyCache+ [6]. Hy-
Cache+ extends HyCache in terms of network storage sup-
port, higher data reliability, and improved scalability. In
particular, a two-stage scheduling mechanism called 2-Layer
Scheduling (2LS) is devised to explore the data locality of
cached data on multiple nodes. HyCache+ delivers two or-
ders of magnitude higher throughput than the remote par-
allel filesystems, and 2LS outperforms conventional LRU
caching by more than one order of magnitude.

2.2 Accesses to Compressed Data
Conventional data compression embedded in filesystems

naively applies the compressor to either the entire file or
every block of the file. Both methods have limitations on ei-
ther inefficient data accesses or degraded compression ratio.
We introduce a new concept called virtual chunks, which en-
able efficient random accesses to the compressed files while
retaining high compression ratio.

The key idea [7] is to append additional references to the
compressed files so that a decompression request could start
at an arbitrary position. Current system prototype [8] as-
sumes the references are equidistant, and experiments show
that virtual chunks improve random accesses by 2X speedup.

2.3 Space-Efficient Data Reliability
The reliability of distributed filesystems is typically achieved

through data replication. That is, a primary copy serves
most requests, and there are a number of backup copies



(replicas) that would become the primary copy upon a fail-
ure.

One concern with the conventional approach is its space
efficiency; for example, two replicas imply poor 33% space
efficiency. On the other hand, erasure coding has been pro-
posed to improve the space efficiency; unfortunately it is
criticized on its computation overhead. We integrated GPU-
accelerated erasure coding to FusionFS and report the per-
formance in [9]. Results showed that erasure coding could
improve FusionFS performance by up to 1.82X.

2.4 Distributed Data Provenance
The traditional approach to track application’s provenance

is through a centralized database. To address this perfor-
mance bottleneck on large-scale systems, in [10] we propose
a lightweight database on every compute node. This allows
every participating node to maintain its own data prove-
nance, and results in highly scalable aggregate I/O through-
put. Admittedly, an obvious drawback of this approach is
on the interaction among multiple physical databases: the
provenance overhead becomes unacceptable when there is
heavy traffic among peers.

To address the above drawback, we explore the feasibil-
ity of tracking data provenance in a completely distributed
manner in [11]. We replace the database component by a
graph-like hashtable data structure, and integrate it into the
FusionFS filesystem. With a hybrid granularity of prove-
nance information on both block- and file-level, FusionFS
achieves over 86% system efficiency on 1,024 nodes. A query
interface is also implemented with small performance over-
head as low as 5.4% on 1,024 nodes.

3. CONCLUSION AND FUTURE WORK
We present a high-level introduction to FusionFS, the Fu-

sion distributed file system. We report its I/O performance
on up to 16K compute nodes of a leadership-class super-
computer; its excellent scalability shows its potential for the
emerging exascale systems. The uniqueness of FusionFS lies
in its highly scalable metadata and file-write performance.
We also discuss its integral features such as cooperative
caching, efficient accesses to compressed data, space-efficient
data reliability, and distributed data provenance.

There are three main directions of FusionFS’s future work.
First, we are integrating popular data management frame-
works, such as data-aware scheduling [12], into FusionFS.
Second, we will simulate real-world workloads with the CODES
framework [13] in order to study the viability of FusionFS
at exascales. Third, we plan to employ machine learning
techniques (for example, incremental algorithms [14–16] to
better understand and hopefully predict the I/O workloads
so that a data-aware caching mechanism autonomously ad-
just the file placement.
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