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ABSTRACT 

Scientific applications are ushering in the era of big data that has 

expedited the evolution of paradigm shifting from compute-

centric model to data driven one. The Many-task computing 

(MTC) paradigm comes from a data driven model and aims to 

address the challenges of scheduling data-intensive workloads 

through over-decomposition. MATRIX is a distributed scheduler 

for fine-grained data-intensive MTC applications. We have 

evaluated MATRIX on the BG/P machine up to 4K cores, and on 

the Kodiak cluster up to 200 cores. We propose to integrate the 

Swift workflow engine with MATRIX to enable MATRIX 

running many more scientific applications in the Cloud. We also 

plan to replace the centralized schedulers of the Hadoop clusters, 

such as YARN and Mesos, by MATRIX to support MATRIX 

running the data-intensive applications in the data centers and 

Cloud domains. We believe that the two recently funded Cloud 

testbeds, namely the Chameleon and CloudLab, would offer great 

platforms for our experiments. 

1. INTRODUCTION 
Large-scale scientific applications are ushering in the era of big 

data such that task execution involves consuming and producing 

large volumes of input and output data with data dependencies 

among tasks. These applications are referred to data-intensive 

applications that cover a wide range of disciplines, including 

astronomy, astrophysics, bioinformatics, data analytics, data 

mining, and MPI ensembles [1]. The big data phenomenon [2] has 

expedited the evolution of paradigm shifting from compute-

centric model to data driven one [3].  

As systems are growing exponentially in parallelism approaching 

billion-way concurrency at exascale [4], we argue that the data 

driven programming models will likely employ over-

decomposition that would generate even many more fined-grained 

tasks than available parallelism. While over-decomposition has 

been shown to improve utilization at extreme scales as well to 

make fault tolerance more efficient [5], it poses significant 

challenges on scheduling system to make fast scheduling 

decisions (e.g. millions/sec), in order to achieve the highest 

throughput and utilization. This requirement is far beyond the 

capability of today’s centralized scheduling systems. 

The Many-task computing (MTC) [6] paradigm comes from the 

data driven model, and aims to define and address the challenges 

of scheduling fine-grained data-intensive workloads. MTC applies 

over-decomposition to structure applications as Direct Acyclic 

Graphs (DAG), in which the vertices are small discrete tasks and 

the directed edges represent the data flows from one task to 

another. The tasks have fine granularity in both size (e.g. per-

core) and durations (e.g. sub-seconds to a few seconds), and do 

not require strict coordination of processes at job launch as the 

traditional HPC workloads. 

We justify that the task scheduling system for MTC will need to 

be fully distributed to achieve high scalability, efficiency, and 

availability. The architecture is shown in Figure 1.  
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Figure 1: Fully-distributed scheduling architecture 

Each compute node would run one scheduler and one or more 

executors/workers. As a compute node would have thousands of 

cores at exascale [4], and given the fact that the MTC data-

intensive workloads have extremely large amount of fine-grained 

jobs/tasks with each task requiring one core for a short amount of 

time (e.g. millisecond), there would need a dedicated scheduler on 

one “fat” compute node forming 1:1 mapping. All the schedulers 

are fully connected, and receive workloads to schedule tasks to 

local executors. Therefore, ideally, the throughput would gain 

near-optimal linear speedup as the system scales. More 

importantly, the failures would only affect the tasks that are run 

on the failed compute nodes. 

2. MATRIX Scheduling System 
MATRIX [9] is a fully distributed task scheduling system for fine-

grained data-intensive MTC applications with the architecture 

shown in Figure 1. MATRIX applies work stealing to achieve 

distributed load balancing, and supports the data-aware work 

stealing with the help of four distributed local queues (task 

waiting queue, task ready queue, task running queue, and task 

completion queue) and the ZHT distributed key-value stores 

(KVS) [7][8]. ZHT stores the task metadata including task 

dependency information, data flow information, data-locality 

information, and task execution progress in a transparent and 

scalable way. 

MATRIX is developed in C++. MATRIX has about 3K lines of 

codes, with 8K lines of ZHT codebase. We have evaluated 

MATRIX using micro-benchmarks on an IBM Blue Gene/P 

supercomputer up to 4K-core scale. MATRIX maintains 

throughput as high as 13K tasks/sec, and 85%+ efficiency with 

fine-grained sub-second tasks (64ms) [9]. We also applied 

MATRIX to schedule two data-intensive applications, namely the 



image stacking application from Astronomy and the all-pairs 

applications from Bio-informatics up to 200 cores [10]. 

3. Proposed Work 
We propose to integrate the Swift workflow engine with 

MATRIX to enable MATRIX running many more scientific 

applications in Cloud. We also plan to replace the centralized 

schedulers of the Hadoop clusters, such as YARN and Mesos, by 

MATRIX to support MATRIX running the data-intensive 

applications in the data centers and Cloud domains. 

3.1 Swift Integration with MATRIX 
The plan to enable MATRIX to run large-scale MTC applications 

in Cloud is to integrate with Swift [12]. Swift is a parallel 

programming system and workflow engine for MTC applications 

that cover a variety of disciplines, ranging from Biology, Earth 

Systems, Physical Chemistry, Astronomy, to Neuroscience, 

Economics, and Social Learning and so on. Swift will serve as the 

high-level data-flow parallel programming language between the 

applications and MATRIX. Swift would essentially output many 

parallel and/or loosely coupled distributed jobs/tasks with the 

necessary task dependency information, and submit them to 

MATRIX. Instead of having Swift manage the DAG, the DAG 

would be managed in a distributed way by MATRIX through the 

ZHT distributed KVS. Swift has been scaled to distribute up to 

612 million dynamically load balanced tasks per second at scales 

of up to 262,144 cores [12]. This extreme scalability would 

absolutely advance the progress of enabling MATRIX supporting 

large-scale scientific applications at extreme-scales. 

3.2 MATRIX in Data Centers and Clouds 
Another direction is to push MATRIX in the data center and 

Cloud environment to run the data-intensive workloads from the 

Internet domain. The current MapReduce framework has a 

centralized task dispatcher to dispatch the data-intensive 

workloads to mappers that have data for specific tasks. We will 

extend MATRIX to support the MapReduce framework to enable 

distributed scheduling for the MapReduce data-intensive 

workloads. We will utilize distributed file systems, such as 

FusionFS [11], to help MATRIX implement data locality and the 

data-aware scheduling with the help of ZHT KVS. MATRIX + 

FusionFS will be the combination of distributed version of 

MapReduce framework, as opposed to the current centralized 

YARN + HDFS or the Mesos + Hive combinations. We will also 

compare MATRIX with YARN [13] and Mesos [14] schedulers. 

4. Expected Experiments and Platforms 
For Swift integration, the expected experiments are decomposing 

data-intensive applications from Biology, Earth Systems, Physical 

Chemistry, Astronomy, Neuroscience, Economics, and Social 

Learning as different DAGs. Then, MATRIX would be deployed 

in the Cloud environment to run all these applications at large 

scales. We also plan to extend our work through simulations to 

study the scalability of MATRIX up to exascale levels with 

millions of nodes. These experiments aim to explore the 

performance gains of scheduling large-scale scientific applications 

in the Cloud platforms through the MTC over-decomposition 

principle and the data-aware work stealing technique. 

For applying MATRIX to run data-intensive applications in the 

data centers and cloud environments, we expect to deploy 

MATRIX on the Cloud platforms to run typical Hadoop 

applications, such as Word Count, Sort, Grep, Inverted Index, at 

the first stage. Then we will try to compare MATRIX with the 

YARN and Mesos schedulers by running the data-intensive 

applications that were run by YARN (the Yahoo! data-intensive 

workloads) and by Mesos (the Facebook data-intensive 

workloads), respectively. We expect that MATRIX will be more 

scalable and have the ability to make much faster scheduling 

decisions for these data-intensive workloads due to the distributed 

data-aware scheduling architecture and technique.  

All these experiments are expected to be up to the scales of 

thousands of cores. The newly funded Cloud testbeds are perfect 

platforms for our expected experiments, because they are 

designed to run loosely coupled data-intensive applications. 

What’s more, there shouldn’t be problems of deploying and 

running MATRIX in both platforms, as MATRIX is developed in 

C++, which has great supports in different Linux distributions. 
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