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ABSTRACT
This paper presents a new storage architecture to address
the I/O bottleneck of conventional HPC architecture. We
describe how to design and implement a real system of such
architecture, namely FusionFS, as well as the unique fea-
tures that are not supported in conventional storage sys-
tems. We then explain the need for FusionFS to be ported
to the Cloud, and point out the directions and steps for the
FusionFS migration from HPC systems to the Cloud.

1. INTRODUCTION
State-of-the-art high-performance computing (HPC) stor-

age subsystems for scientific computing are mainly com-
prised of the parallel filesystems (for example, GPFS [1])
deployed on remote storage servers. Many believe that this
design would not meet the I/O requirement of the emerging
exascale computing because of the segregation of compute
and storage resources. Indeed, our simulation [2] predicts,
quantitatively, that the system availability would go towards
zero at exascale.

The authors have proposed a storage architecture with
node-local disks for HPC systems [3]. Although co-locating
compute and storage is not a new idea in general, it has not
been widely adopted in scientific computing. We have built a
node-local filesystem, FusionFS, with two major principles:
maximal metadata concurrency and optimal file write, both
of which are crucial to scientific applications. FusionFS has
been deployed on an IBM Blue Gene/P supercomputer at
16K nodes. FusionFS’s performance is orders of magnitude
faster than other major file systems such as GPFS, PVFS,
HDFS, and S3.

As many scientific applications are moving from the con-
ventional HPC systems to the Cloud platforms, we believe
it is critical to provide a Cloud counterpart of FusionFS.
Although FusionFS has been extremely successful in HPC
systems, it is unclear whether it would provide a superior
performance than the state-of-the-art, such as HDFS [4].
Therefore, we propose to customize and evaluate FusionFS
on the Cloud so that scientific applications deployed on the
Cloud will also benefit from FusionFS’s I/O performance.

2. FUSION DISTRIBUTED FILE SYSTEM
We design and implement a filesystem prototype, the Fu-

sion distributed filesystem (FusionFS), to justify the superi-
ority of node-local distributed filesystems over remote par-
allel filesystems. FusionFS is built from the ground up with
the following two assumptions: (1) it is efficient for small-

and medium-sized files, i.e., metadata-intensive operations,
and (2) file write should be optimized. Neither of above as-
sumptions fits in the scope of Cloud Computing, where files
are assumed to be large in size and file read is typically more
frequent than file-write (write-once-read-many).

We achieve the first goal by distributing file metadata (via
a distributed hashtable [5]) to all compute nodes. Experi-
mental results show that FusionFS metadata rate outper-
forms GPFS by more than one order of magnitude [6]. The
second goal, i.e., write optimization, is achieved by writing
data locally (if possible), where we design multiple file trans-
fer protocols. In terms of performance, we deploy FusionFS
on a 16K-node IBM Blue Gene supercomputer, and observe
2.5 TB/s aggregate throughput [7].

2.1 Hybrid and Cooperative Caching
When the node-local storage capacity is limited, remote

parallel filesystems should coexist with FusionFS to store
large-sized data. In some sense, FusionFS is regarded as a
caching middleware between the main memory and remote
parallel filesystems. We are interested in what placement
policies (i.e., caching strategies) are beneficial to HPC work-
loads. We have tried both a user-level caching middlewere
on every compute node (HyCache [8]) and a cooperative
caching mechanism across all the compute nodes called Hy-
Cache+ [9].

2.2 Accesses to Compressed Data
Conventional data compression embedded in filesystems

naively applies the compressor to either the entire file or
every block of the file. Both methods have limitations on ei-
ther inefficient data accesses or degraded compression ratio.
We introduce a new concept called virtual chunks, which en-
able efficient random accesses to the compressed files while
retaining high compression ratio. The key idea [10] is to ap-
pend additional references to the compressed files so that a
decompression request could start at an arbitrary position.

2.3 Space-Efficient Data Reliability
The reliability of distributed filesystems is typically achieved

through data replication. That is, a primary copy serves
most requests, and there are a number of backup copies
(replicas) that would become the primary copy upon a fail-
ure. As a more efficient manner, we integrated GPU-accelerated
erasure coding to FusionFS and report the performance in [11].

2.4 Distributed Data Provenance
The traditional approach to track application’s provenance



is through a centralized database. To address this perfor-
mance bottleneck on large-scale systems, in [12] we propose a
lightweight database on every compute node. This allows ev-
ery participating node to maintain its own data provenance,
and results in highly scalable aggregate I/O throughput. We
also explore the feasibility of tracking data provenance in a
completely distributed manner in [13].

3. PROPOSED WORK
We plan to customize and evaluate FusionFS on the Cloud

in three main directions: integration with data management,
extreme-scale simulation, and the ability of FusionFS to ad-
just itself.

3.1 Integration with data management
We will integrate popular data management frameworks,

such as data-aware scheduling [14, 15], into FusionFS. The
goal is to have a full software stack for scientific comput-
ing. The state-of-the-art solution on the Cloud, namely
MapReduce-HDFS, is originally crafted for the workloads
that are quite different than scientific applications.

3.2 Extreme-scale simulation
We will deploy FusionFS on the Cloud at the largest pos-

sible scale and evaluate its performance with a variety of
benchmarks. The traces we gathered from these benchmarks
will be used to tune the parameters of a FusionFS-based
simulator. We will then simulate real-world workloads on
FusionFS in order to study its viability at the scales forth-
coming in the next decade.

3.3 Self-adjustment
We plan to employ machine learning techniques (for exam-

ple, incremental algorithms [16–18] to better understand and
hopefully predict the I/O workloads so that a data-aware
caching mechanism autonomously adjust the file placement.
To the best of our knowledge, such an intelligent file sys-
tem has not existed. This will also open the door of many
interdisciplinary collaborations between system researchers,
statisticians, and domain scientists.
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