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Abstract
With the exponential growth of diditited systems in both FLOPS amdrallelism (number of
cores/threads), sciéfic applications are growingiore diverse with variougorkloads. Thes workloads
include traditionalargescale high performance computingRC) MPI jobs, and HPC ensemblerkloads
that support the investigatiaf parameter sweeps using mamgaltscale coordinated jobs, as well he t
fine-grained loosehcoupledmanytask computing (MTC) workload®elivering high throughput and low
latency for all the workloads has driven us designing and impating the nexgenerationresource
management systenthat are magnitudes ore scalable and available thémday's centralized bateh
scheduled onesat extremescalesfor both MTC and HPC applicationg/e devised a generic taxonomy to
explore the design choices for extresmale system services, and proposed thatelealue storegould
serve as a viable building block for scalable distributed system semieedesigne@dnd developeéully -
distributed archectures for nextgenerationresource management systemaich are radically different
from the traditionatentralized architecte; we also proposithe distributeddataaware work stealing and
resource stealingechniques to achievedtiibutedworkload andesourcebalancing at extremscalesWe
studied tle distributed architectusewith the proposed techniques through simulaigSimMatrix and
SIMSLURM++) upto exascale with millions of nodeas well as through real systerldATRIX &
SLURM++) at thousands of nosfiescales. We are currently workirmn pushing bottMATRX (a fully-
distributedresource management systéon MTC applications) and SLURM+{a parttion-based fully
distributed resource management systemHPC applicationsjo support the rumng of real scientific
MTC andHPCworkloads at large scales.

1. Introduction

Predictions are that around the end @ ttecadedistributedsystems will reach exascdE0'® FLOPS)
with millions of nodes and billions of threads of executjbh There are many domains (e.g. weather
modeling,global warming,hational security, energylrug discovery, etgthat will achieve revolutionary
advancerants due to exascale computjaf Exascalecomputingwill enable the unrasling of significant
mysteriesfor a diversity of scientific applicationg;anging from Biology, Earth Systems, Physical
Chemistry, Astronomy, tdleuroscienceEconomics, and Social Learning and sd3jn Runningall these
applicationson an exascale computing systegfficiently poses significant scheduling challenges on
resource management systemisch as efficiency, scalability and reliabiligrom this point, the terms of
resource management system, resource manager, job scheduling, sygiescheduler, and job
management system (JMS) are usetrchangeablyAlso, the terms of job and task would be used
interchangeablyThese challenges would unlikely to be addressed by the traditional centralized JMS. These
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requirements have driven ts design and implement next generation JMS that are orders of magnitudes
more efficient, scalable and reliable for the ensemble of scientific applicatientremescales

1.1 Diversity of Scientific Applications towards Exascale Computing

With the extreme magnitude of component count and concurrency, one way to efficiently use exascale
machines without guiring full-scale jobss to support the runningf diverse categoriesf applicationg4].

These applicationsvould combinescientific workloads from dferent applicationdomains, such athe
traditionalhigh performance computing (HPC) MPI jobs, dndHPC ensemble workloads, as welltae
Many-Task Canputing (MTC) workloads. Given the significant decreaseMsfanTime-To-Failure
(MTTF) [5][90] at exacale levelsthe running of all the diverse applicatiosisould be more resilient by
definition given that failures will affect a smaller part of the machines.

Traditional HPC workloasl are largescale tightlycoupled applications that use messpgesing
interface (MPI) programming modé6] for communication and synchronization. Resiliencydhieved
relying on checkpointing. As the system scales up, cpeaking will not be sdabledue tothe increasing
overheads to do chegointing, and there will be less jobs requiring-&ilte allocation.

OtherHPC workloads are ensemble workflows that support the investigation of parameter sweeps using
many smaklscale coordinated jobs. These individual jobs are coordinated in a traditional HPC fashion by
using MPI. There are applications that do parameterpsveedefine areas of interest for larger scale-high
resolution runs. These ensemble runs are managed in -Awcathshion without any scheduling
optimization. Ensemble workload is one way to efficiently use adscgke machine without requiring full
scde jobs and as an added benefit this workload is then more resilient to node failures. If an individual
ensemble task fails, it is just rescheduled on different nodes. Another area where ensemble runs are
beneficial is in scheduling regression tests. Mapglications use regression tests tlidede changes in the
code baseThese tests are smaltale, sometimes individual nodes ad scheduled on a dg basis. A
similar workload includes thesystem hedh jobs, which are run when joQueues have smaltlle
allocations available or when allocations are not preferred daek®f contiguous nodgg].

The other extremeaseworkloads comdrom the ManyTask Canputing (MTC) [3][8] paradigm. In
MTC, appications are decomposed of seal orders of magnitude larger number (e.g. billions) of-fine
grainedenbarrassinglyparalkel tasks with datalependencies. Tasks are figained in both size (e.g. per
core, pemode) and duration (from st#econd to hours), and are represented as Diegtlic Graph
(DAG) whereverticesare discrete tasks and an edge denotes the data flow from one task to another. The
tasks do not requarstrict coordination of processes at job launch as the traditional HPC workloads do. A
decade ago or earlier, it was recognized that applications composed ofuarger rof tasks may be used
as adriver for numerical experiments that may be caretliintoan aggregate methdd]. In particular, the
algorithm paradigms well suited for MTC are Optimization, Data Analysis, Monte Carlo and Uncertainty
Quantification. Vaious applications that demonstrate characteristics of MTC cover a wide range of
domains, including astronomy, physics, astrophysics, pharmaceuticals, bioinformatics, biometrics,
neuroscience, medical imaging, chemistiimate modeling, and economif3j[10].

1.2 Requirements of Next GenerationJob Management Systems

Jobmanagementystem(JMS) isa core system middleware fdistributedcomputing systemsIMS is
responsible for managing the system resources and scheduling application woiltleddsy performance
requirements for JIMS asdficiency, scalability and reliabilityEfficiency means the JMS nestd allocate
resources and to schedule jobs fsbugh to maintaimigh system utilizatios;, Scalability referdo the
increasing of processing capacity (measured by throughput) as the workload (number of tasks) and
computing resources scabnd Reliabilityrequires the JMS is stilinctioning well umer failures.

The next generation JM$or exascalecomputingwill need to be versatileefficient, scalable and
reliable enough, in order to deliver the extremely high throughput and low latency requinegirttain
high performanceThe JMS we are targeting at are for tightly coupled lsagge HPC environments (e.g.
Clusters and Supercomputers), but ottistributedsystems such as the Cloud domains could also benefit
from this work. Most of statef-the-art schedulers (e.g. SLURM1], Condor[12], PBS[13], SGE[14],
Falkon[15]) havecentralized master/slaves architecture where a controller is handling atthduling
and managemerctivities, such as metadata managatresource provisioninggb scheduling, angbb
execution This centralized architecture is not suited for the demands of exascale computing, due to both
poor scalability and singlpoint-of-failure. The popular JIMS, SLURM, reported maximum throughput of
500 jobs/sed16]; however, we will need many orders of magnitude higher job delivering rates (e.g.
millions/sec) due to the significant increase of scheduling size (10X higher node counts, 100X higher
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thread counts, anchuch higher job counts), along with the much finer granularity of job duratimm (
milliseconds/minuteto hours/days).

1.3 Contributions

To addresshe significantchallengeof JMS, we are designing and implementirgxtgeneration JMS
for exascalecomputing.We devisea generic taxonomy to explore the design choices for exisede
system services, and propodmt the keyalue storeqdKVS) [17][18][89][92] could serve as a viable
building block for scalable distributed system servid&® takefully-distributed architecturs that are
radically different from the centralized ofer nextgeneration JMS for both MTC and HPC applications
We also proposdlistributedwork stealing[19] and resource stealinigchniques to achievdistributed
workload and resourdealancing We thenimprove the work stealing technique to be datality aware
for dataintensive apptations[20].

We studied thedistributed architecture with the proposed techniques through simulations up to
exascale with millions of node¥he simulation results showed our proposaethitecture andtechniques
have great efficiency, scalability andeliability towards exascaleWe then implemented two fuly
distributedjob management systems, namely SLURM#} and MATRIX [21][87][91], both of which
utilize a distributed key-value store fordistributed resource and workload magement. MATRIX is
focusing on executin fine-grained MTC applicationswvhile SLURM++ is targetingscheduling the HPC
MPI jobs and tb HPC ensemble workloadg/e have scaledMATRIX up to 1024 nodesand scaled
SLURM++ up to 500 nodessing differentoenchmarking workloads with promising performance results.
We are working on pushing both systems to support the running of real scientific workloads at large scales.

The main contributions of this work are as follows:

(1) A genericsystem servicégaxonomy tha decomposes services inteetr basic building blocks. The
taxonomy could guide us to explore the design choices and quantify the overheads of distributed
features, such as replication, failure/recovery and consistency models, for different services.

(2) A key-value store (KVS) simulator that exploredifferent service architectures and distributed
design choicesp to millions of nodes.

(3) A Many-task computing (MTC) job management system (JMS) simul&onMatrix, which
studies the scalability of the proposed work stealing technique upgviididn nodes, 1Billion
cores, and 108illions tasks.

(4) A distributed MTC task scheduleW]ATRIX , which implements the work stealing technique for
distributedschedulingpf fine-grained MTC workloads.

(5) A distributedHPC resource management syst&ilJRM++, which implements different resource
stealing techniques for distributedhedulingof HPC and HPC ensemble workloads.

2. Proposed Work

We proposdo develop nexgeneration JMSowards exscale computingto support the running of all
varieties of application®©ur work is divided into three stepss JMS is an example of system serviths,
first step isto understand the design choices and the overheadistobuted featurefor all the system
services. Therefore, we devised a generic taxonomy that serves as a principle to guide us to utigerstand
services. At the second step, we propose thatvkye stores (KVS) could be used as a building block for
system services andnsillate KVS to explore the design choices and distributed overheads guided by the
taxonomy. After we have the taxonomy as fivnciple and the KVS as the building block, we then
develop the nexgeneration JMS for both MTC and HPC applications

2.1 System Serice Taxonomy

To be able to reason about system sesfimeHPC and existing distributed services, evedevised a
taxonomy[17] by breaking services down into various core components that can be composed into a full
service. The taxonomygervices as generic principle for all the services, halhs us reason about
distributed services as follows: (1) gives us a systematic way to decompose services into their basic
building block components; (2) allows us to categorize services based on the features of these building
block components, and (3) suggests the configurafiate to consider for evaluating service designs via
simulation or implementation.

Here we introduce theaxonomyby deconstructing a system service into their building bléckystem
service can be primarily characterized bysgsvice model data model network model, failure model,
andconsistency modelThese components are explained in details as follows:
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By combining specific instances of these components we then can define a service architecture. Some

specific instantiations of sendarchitectures from the taxamy are depicted shown kigurel andFigure

2. For instancec, is a service architecture with a centralized data model and -hase€e hierarchical

overlay network, consistency and recovery model are not depicted, but would need to be identified to define

a complete service architectuity; has a distributed dataadel with a fullyconnected overlay network

whereasd o is @ distributed data model and has a Chord overlay net@tkvith partial membership,

again the constency and recovery model are not show graphically.

(b) Crailover (C) Ciree
Figure 1: Centralized service architectures

(a) dfc (b) dchord (C) drandom

Figure 2: distributed service architectures

The taxonomy is generic and could be used as a principle for all the system services. By exploring the
design choices and addressing the challenges of each component of a senticen emmbine the
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solutions together for the whole system service. Since the job management system (JMS) is a representative
of system services, this taxonomy helps us understand the architectures and the overheads of different
design choices of JMS.

2.2 Key-Value Sores (KVS) serve as a Building Block

Since we have the taxonomy as a generic principle, we narrow down to one typical system sefvice, key
value stores (KVS)andpropose that distributed KVS would be a viable building block for extrerate
system servies. We generally targedt servicesthat require high performancsuch as those that support
system booting, system monitoriftgrdware or software configuration and managenjeintand resource
management/O forwardingand runtime systems foprogramming models and communicatidraries
[11][22][23][24]. Forextremescale systems, these servieflsneed to operate on large volumes of data in
a consistent, resilient amdficient manner at extreme scales. We observe that these services comntbnly
naturally comprise of access patterns amenable to Ne®&i&tion, adata storage and retrieval paradigm
that admits weakeronsistency models than traditional relational databaBkesse requirements are
consistentwith those of largescale distributedata centers, for example, Amazon, Facebook LinkedIn and
Twitter. In these commercial enterprises, NoSQL data storBsstributed Key-Value Stores (KVS), in
particulari have been used successfyR$][26][27].

We assert that by taking the particular needkigh performance computing (HP@ito account, we
can use KVS for HPC services to help resolve many o€omsistency, scalability and roliness concerns.
By encapsulating distributed system complexity in the KVS, wesiaplify HPC service designs and
implemertations. For resourcand job managementKVS can be used to maintain necessary job and
resourcestatusinformatior this iswhatwe are doing nowFor monitoring, KVS can be used to maintain
systemactivity logs. For I/O forwarding in distributed file systems, KVS d@nused to maintain file
metadata, including access authority and modificaBequencesthis has been implemented the
FusionFS distributed file systef4]. In job startup, KVS can be used to disseminatefiguration and
initialization data amongst composti@ol or applicationprocesses; this is under developmenMRNet
[24]. Application developers from Sandia National Laborat§ie] are targeting KVS tesupport local
checkpoint restart.

2.2.1 KVS Simulations

As we have motivated that KVS is a building block éxtremescale system servicesmulation can
then be used up to exascale to narrow the design space for any specific KVS service application before any
implementation has begun. Additionally we can eventually create modular KVS components to allow easy
creation of extremscale servicedVe simulate keyalue stores up to millions of nodes.

Research about reBNVS is impossible at exascakdth millions of nodesbecause not only we lack the
exascale computers, but the experimental results obtained from theorkhlplatforms are ofte
irreproducible due to resource dynanii@4]. Also, with simulations, we could gain insights and conclusions
much faster than we can get throughlrimplementationsTherefore, we fall back to simulations to study
the efficiency and scalability of the proposed architectures and techniques at esdadeseSimulations
have been used extensively as an efficient method to achieve reliable reselteral areas of computer
science for decades, such as microprocessor design, network protocol design, and scheduling. Discrete event
simulation (DES)35] utilizes a mathematical model of a physical system to portray state changes at precise
simulated time. In DES, the operations of a system are represented as a chronological sequence of events. A
variation of DES is parallel DES (PDE$36], which takes advantage of the mamgre architecture to
access larger amount of memory and processor capacities, and to be able to handle even more complex
systems in less erd-end time. However, PDES adds significant complexity to the simulations, adds
consistency challenges, requires more expensive hardware, and often does not have linear scalability as
resources are increased

We have built a discretevent simulator of keyalue stores on top of the peer to peer system simulator,
PeerSin{43]. Each simulation consists of millions of clients that connect to timoissafsharedservers, the
number of clients and servers are configurable, and how client selects a server can be preconfigured or
random, and is easily modifiedhe workload for the KVS simulation is a stream of PUTs and GETs. At
simuation start, we magl unsyrcthronized clients by having each simulated client stall for a random time
before submitting its requests. This step is skipped when modeling synchronized clients. At this point, each
client connects to a server (as described below) and sendsa@ymahi(or blocking) GET or PUT requests
as specified bya workload file. After a client receives successful responses to all its requests, tite clie
server connection is closefervers are modeled by two queues: a communication queue for sending and
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recaeving messages and a processing queue for handling incoming requests that can be satisfied locally.
Requests not handled locally are forwarded to another server. The two queues are processed concurrently,
however the requests within one queue are procasspeentially. Since clients send requests synchronously,

each serveré6és average number of queued requests is e
for.

For ou distributed architectures. and deoe OUr simulator supports two mechanisms for server
selection. In the first mechanismlient selectioneach client has a membership list of all servers; a client
selects a server by hashing the request key and using the hash as an index into thst. skiteenditively, a
client may choose a random server to service their requests. In the second meskavnésraelectioneach
server has the membership list of part or all of the servers and clients submit requests to a dedicated server.
Client selecthn has the benefit of lower latency, but leads to significant overhead in updating the
membership list when servers f@kerver selectigron the other hand, puts a heavier burden on the servers.

Our current simulator allows us to explore the presfypdescribed KVSarchitecturesnamelyCsingie Ciree
dic anddghorg here we assume a centralized data modedfge andcye. and a distributed data model fiy
and denore The simulator is extendable to other network and data models. The aboves maaddbe
configured with Nway replication for the recovery model and either eventuairong for the consistency
model

2.2.2 Validation of KVS simulations

We validate our simulator againstdweal systems: a zetwp KVS, ZHT [18], and an opesource
implementation of Amazon DynanikVs, Voldemort[27]. Both systems serve asilding block for system
services. ZHT is usetb manage distributed resource and job metadata in SLURN}and MATRIX
[21][87], andto manage metadia of file systems (FusionH#&4]), while Voldemort isused to store data for
the LinkedIn professional network.

100%
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100% m,
-=—normalized efficiency (ZHT) o \\
90 -
= normalized efficiency (Simulation) : \\._,,./-——-""
T " - |
- " 80% .
——normalized difference
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50% 0% ~=-normalized efficiency (Voldemort)
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Figure 3: Validation of the keyalue store simulations against ZHT avididemort

In the case of validating against ZHMie simulator was configured toatch the client selection that was
implemented in ZHT. ZHTwas runon the IBM Blue Gene/P machine (BG/P) Argonne National
Laboratorywith up to 8K nodes and 32K cord&/e used the published netwoparameters of BG/P in our
simulator. We used the same workload as tisad to in ZHT: each node has a client anserver, each
client submitslOK requests with URD, the length of theykis 128 bits, and the messagime is 134bytes.
The result inFigure 3 (left) shows that our simulatenatches ZHT with up to the largestale (8K nodes
with 32K cores)that ZHT was run. The biggest differenaas only 15% at large scal@he ZHT curve
depictsdecreasing effiency after 1024 nodes, becawessrh rack of BG/P has 1024 nodesthivi 1024
nodes (one rack), tteommunication overhead is small and relatively constant, leéaloanstant efficiency
(75%). After 1024nodes, the communication spandltiple racks, leading to more overhead and decreasing
efficiency.

In the case of Voldemort, we fosed on validating the eventu@insistency model of the simulator. The
simulator wa configured tanatch the server selectioh modd, with each server b&ed by 2replicas and
responsible for 1024 cli¢s, and an associated event@isistency protocol with versioningdareadrepair.
We ran Voldemorbn the Kodiak cluster from PR@H45] with up to 800 servers, arf@D0k clients. Each
client submittedlO random requests. As shownHigure 3 (right part) our simulation results matdhe
results from the actual rwf Voldemort within 10% up to 256 nesl Athigher scales, due to resoumesr
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subscription, an acute degeal i on i n Vol d evasoobseréedReseurcé ovesubsanptog
means that we ran way toaany client processes (up to 1k) ore@hysical node. At the largestale (800
servers and 800 nodes)eth will be 1k client processesnning on each node, leading to serious resource
oversubscripibn.

Given the good validation results, we beéi¢hat the simulator can offeonvincible performance results
of the varias architectural featurase are interested in. This allows usweigh the service architectures
and the overheads that are indubgdhe various features.

2.2.3 Simulation with Real Service Workloads
We run simulations with three workloads obtained fr

and 1 /O forwarding. The specification of each wor kI o

(1) Job Laumehjob [ aunch workload is obtained by moni
and client during a MPI job |l aunch. Though the se
the messages to and from the cfl i®eanwers hoturl Wc tber a e:
in turn drives the communication between the di st
control messages from the distributed servers (Ge
the servers (Put).

(2 Moni t oThengwonitoring workload is obtained from a 1
was then cat egtoype e(dd ebryestpiarsgg atghaen dk cyount (denoting
of each message). This distribdtitbatwas ftthhenpl es ed
domi nat ed.
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Figure 4: di (left) and dyorq (right) with real workloads

Fi géigslreows the efficiency of these workldgdefwi)th bo
andlpocdi ot see that for job |l aunch and | /O forwarding

worse than strong consi stency. -Inhosst iWRDb efcoaru skeo tthh ersee
type and the key. The ratiosob0t&@®w nomhBér 1w%ff Getjob
57.6% to 42.4% for I/ O forwarding. For the monitorin
consistency because all the r-Egaeknheswlaeedg Pant tmepes a g
the olheepNicas in strong @aln S4 csktneonwcl ye dwghreerneta smejsussatg eR
ot helr replicas in eventual consistency. Another fact

K. Wang,Dissertation Proposal Page 7 of 33



the | owest because the tked, swhiceh ilseadd tumigoamllyoadk
The above results demonstrate that our simulator [
services as |l ong as the workloads of these services
true hfforHPC services we have investigated.

The conclusion we draw is that the centralized serv
are necessary to reach exascale. When there are a
exasgdalldy connedg) eactt wplollyogycdl es very wel/l under mc
di fferent replication and consistency model s, t hough
everyonebs member ship | iest p alwhte mall ecchguer .t ghpaos mwoaghye s ( whi
moderately with | ess expensive overhead under <churn.
messages, (due to failure/recoventy, regpkstatmessages {
dhowoul d have an advantage. Di ffaeppht cabinemstemalinsmp:
cosn stency i s more s-untabéeved oappluincnatnigonrseadwhi | e e
preferable for appl i catainan sf atshhatr ersepgouisree thinpehs .avai |l al

2.3 Distributed Job Scheduling for Many-Task Computing Workloads

The Manytask computing (MTC]83] paradigm comes from the détaw driven model, and aims to
define and address the challenges of schedulinggfiaieed dataintensive workload$8]. MTC applies
overdecomposition to structure applications as Direct Acyclic Graphs (DAG), in which the vertices are
small discrete tasks and the edges represent the data flows from one task to anothsksTineve fine
granularity in both size (e.g. peore) and durations (e.g. ssbconds to a few seconds), and do not require
strict coordination of processes at job launch as the traditional HPC workloads.

The distributed scheduling architecture for fgr@ined MTC aplications is shown irFigure 5. We
justify that the task scheduling system for MTC will need to be fully distributed to achieve high efficiency,

scalability, and availability. In

this design, each compute node
@ @ @ runs one sakduler and one or
% % % more executors/workers. As at

Crient Chrent Clent exascale, each compute node
_____ BNl would have up to thousands of
cores and the MTC data

- P ~ intensive  workloads have
Scheduler '<7communication»‘ Scheduler ' extremely large amount of fine
1/ \

| grained jobs/tasks with each task
V / requiring one core/thread for a

“~ short amount of time (e.g.

S~al Compute Node Compute Node Pras

~ Fully-Connected millisecond), there would need a
B scheduler on one #dAfato
node forming 1:1 mappindg-he
Figure 5: Distributed scheduling architectures for MTC applicatiol clients would submit workloads
to any random schedulekll the
schedulers are fully connected, and receive workloads to schedule tdsksltexecutors. Therefore,
ideally, the throughput would gain neagptimal linear speedup as the system scales. We abandon the
centralized architecture due to the limited processing capacity and the iingtef-failure issue. We
bypass the hierarchicarchitecture as it is difficult to maintain a tree under failures, and a task may
experience longer latency because it needs to go through multiple hops as opposed to only one in a fully
distributed architecture.
In addition,as we have already motivatétkere is a distributed keyalue storgd17][18] that managse
the entirejob and resource metadata, as well as the state informatiofransparentscalable and fault
tolerant way. Thalistributed KVSshould also be fulhgonnected, and ortgpical configuraton is to ce
locate adistributed KVS servewith a controllefscheduleron the sameomputenode forming ondo-one
mapping, such as shownkigure 5.

2.3.1 Work Stealing

For the fullydistributed architecture of JMS for the figeained MTC applicationspad talancing[29]
is challengingas a scheduler only has knowledge of its own state, and therefore must be done with limited
partial state. Load balancing refers to distributing workloads as evenly as possible across all the

\ ‘ Executor ‘ KVS server
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schedulers/workers, and it is important given that a singhéliidaaded scheduler would lower the system
utilization significantly. This work adopthe work stealing techniqy&9] at the node/scheduler (instead of
core/thread) level. In work stealing, the idle schedulers communicate wighbw's to balance their loads.

Work stealing has been proven as an efficient load balancing technique at thread/core levélciorenult
shared memory machi&9]. It is a pultbased method in which the idle processors try to steal tasks from
the overloaded ones that are randomly selected. This work adopts work stealing at the node level in
distributedenvironment, and modifies it to be adaptive according to the system states at runtime.

Work stealing is proceeded by the idle schedulers stealing workloads from neighbors. As-in fully
distributedarchitecture, every scheduler has a global membelishipherefore, the selection of candidate
neighbors (victims) from which an idle scheduler (thif8P] would steal tasks could be static or
dynamic/random. In tatic mechanism, the neighbors are -getermined and will not change. This
mechanism has limitation that every scheduler is confined to communicate with part of other schedulers. In
dynamic case, whenever a scheduler is idle, it randomly chooses sondatameighbors from the
membership list. The traditional work stealing randomly selewts neighbor to steal tasi30] yielding
poor performance at extreme scales, because the chance that one neighbor would have queued ready task is
low at large scales. In the end, we choose to have a muhipttom neighboselection strategy that
randomly selects seveémeighbors instead of only onand chooses the most heavily loaded one to steal
tasks.This dynamic mechanism introduces some overhead when selecting neighbors; however, we show

that this overhead is minirh@the time complexity isQ(n), wheren is the nunber of neighbors) in
Algorithm 1.

ALGORITHM 1. Dynamic MulttRandom Neighbor Selection (D¥WJL-SEL)

Input: Node id fode_id, number of neighbor@um_neigh, and mmber of nodesnum_nodg and the node arrapgdes.
Output: A collection of neighborsngigh.
bool selectefhum_nodg
for eachiin 0 to num_nodio

selectefi] = FALSE
end
selectefhode_id = TRUE NodeneigHnum_neigh index=-1;
for eachiin 0 to num_neigh do

repeat

index= Random( ) ¥%num_node

until !'selectefindeX;

selectefindeq = TRUE neigHi] = nodegindeX;
end
return neigh

We prove the time complexity ohlgorithm 1 is Q(n), where N is the nurber of neighbors

(num_neigh Let kK be thek th neighbor to be chosembe the number of nodes in the system. The
possibility that one neighbor that has already been chosen is chosen again is:
k-1
p, =——
m
Let i be the number of times to select thén neighbor, the actual value is:

i*(p)" A1 )

So, the expected number of number of times for selectinl thaeighbor:
E=aiip)" @ p)
i=1

Letds say for mnlle asavs coald see later, she enaximum dynamic number of
neighborsk . =~/m =0?, so the maximum

— kmax- 1 okmax _1

P m m 1000
So, for E_, afteri =3,
2
i . o ~ o 1 ~
is(p, )" {1 3=5 8 1 - P 10® e
(p.)" 1 B) &ooo 2 ~&1000 %
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Therefore, we just need to consider1 andi =2,

a1 5,41 5, 1 &
o1 % 5 o1 28+ 1 &1 4
5 Hooo 2 “&ooo 2 100& 2 10@
So, the time complexity to chood@ neighbors is:Q(n) .

After an idle scheduler selects candidate neighbors, it goes through each neighbor in sequential to ask
for #Al oad i nf o mreadytasks),nand triesnto stelal dasks fabl most heavihoverloaded
one. When a scheduler fails to steal tasks from the selected neighbors, because either all selected neighbors
have no more tasks, or the reported extra ready tasks have been exdmnatenstealing happens, the
scheduler waits for a period of time and then does work stealing again. We call this wait time the polling
interval. Algorithm 2 gives the overall work stealing algorithm.

ALGORITHM 2. Adaptive Work Stealing Algorithm (ABAIORKSTEALING)

Input: Node id ode_id, number of neighbor@um_neigh number of nodesnum_nod}g the node arraynpdes, initial poll
interval poll_interval, and the poll interval upper bounabyj.
Output: NULL
while (poll_interval< ub) do
neigh= DYN-MUL -SEL(node_id num_neighnum_nodenode$; most_load_node neigH0];
for each iinlto num_nodel do
if (most_load_node.load neigHi].load) then
most_load_node neigHi];
end
end
if (most_load_nod®ad == 0)then
sleefpoll_interval); poll_interval= poll_intervalx2;
else
num_task_steat number of tasks stolen from most_load_node
if (num_task_steat= 0)then
sleefpoll_interval); poll_interval= poll_intervalx2;
else
poll_interval=1
break;
end
end
end

If the polling interval is fixed, there would be difficulties to set the value with right granularity. If the
polling intenal is set to be too small, at the final stage when there are not many tasks left, many schedulers
would poll neighbors to do work stealing, which would ultimately fail and lead to more work stealing
communications. If the polling interval was set largeugfioto limit the number of work stealing events,
work stealing would not respond quickly to change conditions, and lead to poor load balancing. Therefore,
we implement an adaptive polling interval strategy, in which, the polling interval of a schedilenged
dynamically similar to the exponential back approach irthe TCP networking protocB1]. The default
polling interval isset to be a small value (e.gn$). Once a scheduler successfully steals tasks, the polling
interval of that scheduler is set back to the initial small vdfueescheduler fails to steal tasks, it waits the
time of polling interval and doubles the polling interval and tries to do work stealing again. In addition, we
set an upper bound for the polling interval. Whenever the polling interval hits the uppdr a@ameduler
would not do work stealing anymore. This would reduce the amount of failing work stealing at the final
stage.

The parameters of work stealing alee number of tasks to stetlle number of dynamic neighboend
the polling intervalWe will explore these parameters though simulations up to exascale with millions of
nodes, billions of cores and hundreds of billions of tasks, in order to find the optimal parameter
configurations for work stealing.

2.3.2 Data-Aware Work Stealing

As morefine-grained MTCapplications are becoming datdaensive andexperiencing data explosion
[32] such that tasks are dependent and task execution involves processing large amount of-dataredata
scheduling and load balancing are two indispensable yet orthogonal needs. Migrating tasks randomly
through work stealing would compromise the datzlity and incur significant dataansferring overhead.
On the other hand, struggling to map each task to the location where the data resides is not feasible due to
the complexity of the computation (this mamp is a NPcomplete problen{33]). Furthermore, this
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mapping could lead to poor load balancing due to the potential unbalanced ddiatiistrirhereforeywe
investigate scheduling methods that satisfies be#us and still achieves good performance.
We propose a dataware work

typedef TaskMetaData

{ stealing techniqu§0][88] that is able
int  num_wait_parent; // number of waiting parents to achieve good load balanciagd yet
vector<string>parent_list; // schedulers that run each parent task still tries to best exploit daticality.

vector<string> data_object; // data object name produced by each p The distributed KVS(e g ZHT)COUld
vector<long> data_size; // data object size (byte) produced by each . et
store all the important metiata

parent s . et
long all_data_size; // all data objsize (byte) produced by all parents | information related to a specific task
vector<string> children; // children of this tasks in a dataintensive workload, such as
} TMD; data dependency conditions, and data
Figure 6: Task metadata as value stored inthe Kvs | ocal ity i nformation of

i s task i d, thenirdportart metafata af tha sk that & deédin Figure 6 including the
information such as number of waiting parents, the parent list, the data object and size of each parent, and
the children tasks that are dependent on the current task

Eachscheduler would maintain four local task queues: task waiting giéai¢Q), dedicated local task
ready queuelReady(Q, shared work stealing task ready queB&dadyQ and task complete queue
(CompleteQ. These queues hold tasks in different statesatteastored as metiata indistributedkKVS. A
task is moved from one queue to another when state changes. With these queues, the scheduler can support
scheduling tasks with data dependencies specified by certain DAGs.

(@) Task waiting queue (WaitQ)

Initially, the scheduler would put all the incoming tasks from the client t0\higQ. A threadkees
checking every task in thé/aitQ to see whether the dependency conditions for that task are satisfied by
guerying themetadata from distribute®KVS. The task metaata has been inserted into distributed KVS by
MATRIX client before submitting tasks to schedulers. Specifically, only if the value of the field of
finum_wait_pareidtin the metadata is equal to 0 would the task be ready to run.

(b) Dedicated dcal task readyjueue (LReadyQ)shared work staling task ready queue (SReadyQ
When a task is ready to run, the scheduler makes decision to put it in eithBetdyQor theSReadyQ
according to the size and location of the data required by theTlaskReadyQstores the ready tasks tha
require large volume of datand the majority of the required data is located at the curreet tiuese tasks
could only be scheduleahd executedbcally unless special policy is usetlhe SReady(stores theasks
thatcould be migrated to any scheduler for load balardsipgu r pose; these taspus either
dataor the demandedata volume is sonsall that thetransferring overhead s negl i tpadb | e . The
informationd quer i ed by themumbr of taskaraRaady@Q The pseudecode fordecision
making is given irAlgorithm 3. TMD means task metdata structure defined Figure 6.

ALGORITHM 3. Decision Making to Put a Task in the Right Ready Queue

Input: a ready taskiésk, TMD (tm), a threshold(t), current scheduler idd), LReadyQ SReadyQestimated length dhe task in
second ést task_length

Output: void.

1 if (tm.all_data_sizé€ est_task_lengtk=1t) then

2 SReadyQush(task;

3 else

4 long max_data_size tm.data_sizeat(0);

5 int max_data_scheduler_idx0;

6 for eachi in 1 totm.data_sizesizg) - 1; do

7 if tm.data_sizeat(i) > max_data_sizehen
8 max_data_size tm.data_sizeat(i);

9 max_data_scheduler_idxi;

10 end

11 end

12 if (max_data_sizéest_task_lengtk=t); then
13 SReady@ush(task;

14 else iftm.parent_listat(max_data_scheduler_ijix=id; then
15 LReadyQoush(task);

16 else

17 sen@skto: tm.parent_listat(max_data_scheduler_iyix
18 end

19 end

20 return;
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Thethreshold(t) defines the upper bound of the daensferringrate that is achieved when transmitting
the data for the task. The value equals to a small percentage (e.g. 10% ) multiplyiregptetcainetwork
bandwidth (e.g. 10Gbps) of the system. The percentage also means the ratio betweerrdresidatmg
overhead and the estimated task execution lemgthtdsk_length The smaller the percentage is, the more
likely the tasks could be migrated. As we @oknow ahead how long a task runs, we predict the
est task_lengthas the average length of the prewdasks that have been finished.

Lines 12 decide to put the task BReady(@s the data movement overhead is too small. Otherwise, lines
4-11 find the maximum data object sizémax data _side and the scheduler (indexed at
max_data_scheduler_ijlthat rarthe parent task generating this maximdata objectAs a task could have
multiple parents, it is the best if it runs on the scheduler that has the largest portion of the required data.
Lines 1213 decide to put the task 8Ready(ecause thenax_data_sizés small. Otherwise, lines 145
put the task inLReadyQas the current scheduler is indexedhaix_data_scheduler_id®therwise, lines 16
18 pushthe tasko the corresponding schedulérhen a scheduler receivapushingtask, it pus thetaskin
theLReadyQ

In the executor tere are several executing threads that keep pudidytasks to executd=ach thread
would first pop tasks fronbReadyQ and then pop tasks fro®Readydf the LReadyQis empty. Both
LReadyQand SReadyCare impemented as descending priority queue based on the required data size. The
larger the required data size is, the higher priority the task would be, asthataskjuires larger data size
usually runs longer. When executing a task, the executing threadugries the mewdata for the size and
location of the required data produced by each parent, and then gets the data either from local or remote
nodes. After collecting all the data, the task will &eecuted The number of executing threads is
configumble in practice it is usually configured to be the number of physical cores (a similar strategy was
used in Falkorj15] on the Blue Gene/P supercomputéyd. long as both queues are empty, the scheduler
would start doing work stealing, and the stolen tasks would be put $RtsadyQ

(c) Task complete queueCompleteQ

When a task is done, it is moved to BempleteQ There is another threadsponsible foupdating the
metadata for all the children of each completed task. It first queries thedattaof the completed task to
find out the children, and then updates each &hitdetadata as follows: decreasing thieum_wait_parerit
by 1; adding current scteler id to thefiparent lisb; adding the produced data object name to the
fidata_objedt adding the size of the produced object tofithata sizé; increasing théiall_data_size As
long as thénum_wait_paretitequals td), the task would be readyan.

Scheduling Policies: We define four different scheduling policies for our dmtare scheduling
technique, namely maximized load balancing (MLB), maximized-ldatgity (MDL), rigid load balancing
and datdocality segregation (RLDS), and flexibleal balancing and datacality segregation (FLDS).

(a) maximized load balancingMLB)

MLB considers only the load balancing, and all tbady tasks are put in the SreadyQ to be allowed for
migration. We achieve the MLB policy by tuning the thresha)din( Algorithm 3 to be the maximum
possible value (i.e. LONG_MAX). This is the baseline work stealing strategy without taking into
consideration the data locality.

(b) maximized datdocality (MDL)
MDL only consides datalocality, and all the ready tasks that require input data would be put in
LReadyQ, no matter how big the data is. This is achieved by tuning the threshmoMdorithm 3 to be 0.

(c) rigid load balancing and datdocality segregatior{RLDS)

RLDS sets the threshold (t) Algorithm 3 to be somewhere between 0 and the maximum possible value.
Once a task is put in the LReadyQ of a scheduler, it is confined to be executed locally (this is also true for
the MDL policy).

(d) flexible load balancing and datdocality segregatior(FLDS)

The RLDS policy could have load balancing issues under situations where a task produces large
volumes of data and has many children. For example, for a workload DAG shaped as a fat tree, all the tasks
would be eventually executed on one scheduler thatthensoot task. To avoid the hotspot problem, we
relax the RLDS to a more flexible policy (FLDS) in which tasks could be moved fiReadyQto
SReadyQunder certain circumstance. We set another time threstipldn@l use a monitoring thread in
each schedar to check thd.ReadyQperiodically. If the thread detects that the estimated running time
(est_run_timp of all tasks in the_LReadyQis abovett, it would move some tasks from the bottom of
LReadyQto SReadyQo guarantee that thest run_timeof the rest tasks is belowt. Theest run_timds
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calculated as theEReadyQlength divided by the overall throughput of the scheduler so far. For example,
assuming 100@asks are finished so far and takes 10secl BeadyQcontains 500Qasks, andt=30sec.

We cdculate the number of moving tasks: The throughput =1000/10=100tasks/sec. The
est_run_time5000/100=50sec, 20sec longer thah 20sec takes 20/50=40% ratio, therefore,
40%*5000=200aaks will be moved. As these assumed values are changing with timeptmegnask

count is changing.

2.3.3 SimMatrix: SIMulator for MAny -Task computing execution fabRIc at eXascale

To achieve the goal of developing ngenerationjob scheduling system for MTC applicationse
divide the research work into three steps, narsighulations, real implementations and production systems.
These three steps are intertwined with each other. We first use simulations to explore the feasibility and
efficiency of the proposed architecturadwork stealingtechniques up to extrerseales \ith millions of
nodes.

SimMatrix[37] is a lightweightsimulator thasimulates jobmanagemergystem comprising of millions
of nodes and billions of cores/taskVe have built SimMatrix from scratch, and SimMatrix simulate$ bot
centralized scheduling and figgained fully distributed scheduling architectu@areful consideration was
given to the SimMatrixdesign to ensure that it would scale to exascale lewalsnodest resources in a
singlenode shared memory systewWie valdate SimMatrix against two job management systems, Falkon
[15] and MATRIX [21]. Falkon is a centralized task execution framework for MTC workloads, while
MATRIX is a task scheduling system that has implemented thegfaiaed fullydistributed architecture
and work stealing techniqgu&Ve have studied thdistributed architectureand work stealing technique
through SimMatrix up to-illion nodes, billion cores, and 10®illion tasks.

(a) Validation of SimMatrix against Falkon and MATRIX

SimMatrix is validated against the statef-theart MTC execution fabrics, Falkoiffor centrdized
scheduling) and MATRIX(for distributed scheduling with adaptive work stealing technig#s.set the
number of cores per node to be 4, and the network bandwidth and latency the same as thBMaBkief
Gene/ P machineThe number of &ks is 1&imesand 10Qtimes of the number of all corésr Falkon and
MATRIX respectively.

The validation results are shown kigure 7. We measured SimMatrix (dotted lines) has an average
2.8% higher efficiency than Falkon (solid lines) for several sleep tasks (sleep 1, 2 arkdglirén (left
part) SimMatrix and MATRIX are compared foaw t hr ou g h p ut. Foosleepad wériddacce e p 00
(Figure 7, right part), the simulation matched the real performance data with average 5.85% normalized
difference (abs(SimMatrix MATRIX) / SimMatrix). The reasons for these differences are twofold. Falkon
and MATRIX are reatomplex systems deployed on a real supercomputer. Our simulator makes simplifying
assumptionsfor examplewe increase thaetworkcommunication overhead linearly with the system scale.
It is also difficult to model communication egestion, resource sharing and the effects on performance, and
the variability that comes with real systems. We believe the relatively small differences (2.8% and 5.85%)
demonstrate that SimMatrix is accurate enough to produce convincible results @theadest scales).

100% = e 14000 70%
a0 12000 60%
o S —=-sleep 0 (MATRIX)
TR . \u g = sleep 0 (SimMatrix) 4
2 10000 : i 50%
% = —e—Normalized Difference
2 60% 8 v
S —+1 sec (Falkon) ~#- 1 sec (SimMatrix) \ < 8000 / 40% é
— 3 o —
(3] . . = g (]
= —- N < =
S 200 2 sec (Falkon) 2 sec (SimMatrix) J S 6000 '/ 20% E
4 sec (Falkon) 4 sec (SimMatrix) g /l
= L
—s—Average Difference 4000 / 20%
20% 11.93%
2000 IM»y)/' L — 10%
2.0% 3.6% 2.9% 2.7% g stow /
0% o [39e% 4.71% o%
256 512 1024 2048 256 512 1024 2048 4096
Scale (No. of Cores) Scale (No. of Cores)

Figure 7: Validation of SimMatrix against Falkon and MATRIX

(b) Exploration of Work Stealing Parameter Space
The parameters thaiffects the performance of work stealing are number of tasks td stemberof
neighbors static neighbor vs. dynamic randormighdor selection. Wexplorethemin great detaithrough
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SimMatrix. Eachnodeis configured to hav&024 cores, and the number of tasks is 100 times of the number
of all cores.The workloads wereollectal over a 17month period comprising of 173M tasfa8][39][40].

We filtered out the logs to isolate only the 166&te Bue Gene/ P machine, which netted about 34.8M
tasks with the minimum runtime of 0 seconds, maximum runtime of @2&&conds, average runtime of
95.20 seconds, and standard deviation of 188.08

100% Number of Tasks to Stealln our five groups of
90% BN =steal 1 experiments, steal 1, steal 2, steal log, steal_sqrt,
80% .
on 1\ o\ ~steal 2 steal_half means steal 1, 2, logarithm b2ssquare root,
R 60“/: VUL steal_log and half number of tasks respectively. We set the number of
Same L\ O\ ~steal_sat neighbors of a node to be 2, and uses static neighbors. The
2 e\ \\ \ \\ “osteal_fal changes of the efficiency of each group with respetheo
30% N scale are showim Figure 8. It shows that as the number of
20% BN N nodes increases, the efficiencies of steal 1, steal 2,
10% 101
SSS steal log, steal_sqrt decrease. The efficiency of steal half
NN PSP E S keeps at the value of about 90% up to l@les and
R S

Scale (No. of Nodes) decreases after that. And the decrease speed of steal_half is

the slowestThese results show that stealing half number of

tasks is optimal, which confirms both our intuition and the

results from prior work on work stealifig0]. The reason that steal half is not perfect (efficiency is very low

at large scale) for these experiments is that 2 neighbors of a node is not enough, and starvation can occur for

same nodes that are too far in the id namespace from the original compute node who is receiving all the task

submissions. The conclusion of this group of experiments is that stealing half number of tasks is optimal and

having a small number of static neigibds not sufficient to achieve high efficiency even at modest scales.

We also can generalize that stealing more tasks (less than half) generally produces higher efficiencies.
Number of Neighbors of a Nodélhere are two ways by which the neighbors of denare selected:

static neighbors mean the neighbors (consecutive ids) are determined at first and never change; dynamic

random neighbors mean that each time when does work stealing, a node randomly selects some neighbors.

The results of both neighbor sefien strategies are shown kiigure 9 with the left for static and the right

for dynamic.In our experiments, nb_1, nb_2, nb_log, nb_sqrt, nb_eighth, nb_quar, nb_half means 1, 2,

logarithm base, square root, eighth, a quartealf neighbors of all nodes, respectively.

Figure 8: numbers of tasks to steal

100%‘ 100%
s riﬁ’—q\git:ﬁm o0% ﬁ_\./'\\ \
80% 80%
“-nb_2 \ \ \\l\ \
70% 70% \
~-nb_log \ \ -=nb_1 \
> 60% 2 60%
c nb_sqrt \ \ 5 —-nb_2 \
£ 50% 2 50% N
= ~“nb_eighth \ \ £ 0% nb_log
w 40% w o
“-nb_quar \ \ ~*-nb_sqrt
30% 30%
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10% \\-& 10%
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Scale (No. of Nodes) Scale (No. of Nodes) v

Figure 9: Number of neighbors of a scheduler; the left is for static neighbor selection, and the right is for
dynamic neighbor selection

In static neighbor selectiorfrigure 9, left part), when the number of neighbors is no less than eighth of
all nodes, the efficiency will keep at the value of higher than 87%mwithB 192 nodesd6 scal e.
numbers of static neighbors, the efficiencies could not remain, and will drop down to very small values. We
conclude that the optimal number of static neighbors is eighth of all hodes, as more neighbors do not
improve performance significantly. However, in reality, an eighth of neighbors will likely lead to too many
neighbors to be practical, especially for an exascale system with millions of nodes (meaning 128K
neighbors). In the search for a lower number of needed neighimes¢plore the dynamic multiple random
neighbor selection technique.

In dynamicneighbor selectiorFjgure 9, right part) we first do nb_1 experiment until starting to saturate
(the efficiency is less than 80%), then at which point, start to do nb_2, then nb_log, and ribasqgThe
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resultsshow that nb_1 scales up to 128 nodes, nb_2 scales up tmddés, nb_log scales up to 64kides,
and nb_sqrt scales up to ilbdes, remaining the efficiency at the value about &#n with 1Mnodes in
an exascale system, the square root implies havingeldghbors, a reasonable number of nodes for which
each node to keep track of with modest amounts of resources.

The conclusion drawrabout thesimulation-basedoptimal parameters for the adaptive work stealing is
to steal half the number of tasks from thmeneighbors, and to use the square root number of dynamic
random neighborsOne thing to notice is that the optimal parameters are unnecessary to hold always for all
the workloads. In fact, it is unlikely to get an optimal parameter space for all théoaask Our work
stealing technique has the ability to change these parameters dynamically at runtime in a decentralized way.
Each scheduler observes the system state at runtime according to whether the current work stealing succeeds
or not. If a schedulesteals tasks successfully, then it keeps the optimal parameter configuration; otherwise,
if a scheduler experiences several failures in a row, it can change the suggested parameters. For example, a
scheduler may increase the number of dynamic neighbolisdry2 to reach further so that it has higher
chance to steal tasks.

(c) Scalability of theData-aware Work Stealing

We implemergedthe DAWS technique in SimMatrix. Weonfigured SimMatrix as followseach node
is configured to have 2 cores, each core executes 1000 tasks on average, and each task runs an average time
of 50ms (0 to 100ms) and generates an average data size of 5SMB (0 to ThdB)arameters of work
stealing are configured as the sudgdsoptimal valuesWe scaled the DAWS technique through
SimMatrix up to 128K cores (128M tasks). Each experiment is ruaaat B timesandthe scalabily
results are showim Figure10.

We scale SimMatrix up to 128Koresrunning all the DAGsthe results are shown Figure 10. We
explore four different DAGs, namely Bag of Task (BOT), fianFarOut and Pipeline, whh are
represented ifrigure 10, theleft part. BOT workload is used as a baseline, it includes independent tasks;
Fanln and FarOut DAGs are similar except that they are reverse. The performance of these workloads
depend®n the indegree,oul e gr ee and the dependent data sizes. Pip
where each task within a pipe is dependent on the previous task.

The throughput trergindicate that the DAWS technique has nedirigar scalability with respect to the
scales for all workloads. At 128kore scale, the DAWS achieves high throughput of 2.3M tasks/sec for
BOT, 1.7M tasks/sec for Pipeline, 897.8K tasks/sec FanOut, and 8@.5K tasks/sec fofFarnin,
respectively The trend is likely to hold towarasillion-corescalesandwe will validate in the future.
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Figure 10: Left are different workload DAGSs; Right are the results of running the DAGsghrSimMatrix
Through simulations, we have shown that the proposed DAWS technique has the potential to scale
up to the level of exascale computing.

2.3.4 MATRIX: MAny -Task computing execution fabRIc at eXascale
The simulations bkavesdgtrahisdt rgshhuet dddl @atbigf ect MITE

applicastciadmd |l e uspc atl ;e se x tArl esnoe, the work stealing tech
has the potentiadschbescaicodht pgpaora@mk@ineemetl pe o t he
conclusions and insightsdgaaigread famdnhitm@gloddmermthed u b n ¢

systamgdT @Gmpel hsat hamel [y22IMATRI X
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(&) MATRIX scalability with fine-grained tasks
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Figure 11: Scalability of work stealing algorithm for different granularitiesagks
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Figure 12: Comparisons of MATRIX against Falkon (left) and CloudKon and Sparrow (right)
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For throughput comparison, we use fisleep 00 tasks,
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comparing to CloudKon, and speedup of more than 9 co
MATRI X has Ihead pardmrcing when submitting tasks; whil
send probe messages to push toaplish amd tplhue | cltiasrktss f g

(c) MATRIX with data-aware scheduling

MATRIX has implemented the datavare wok stealingfor scheduling datintensive applications. We
have evaluated MATRIX with both image stacking application in astronomy aipaiegl application in
biometrics, and compared wittalkon datadiffusion techniqug38][49] up to 200core scale. The results
are showrin Figure 13, the left part is for image stacking and the right is fopalts. DAWS stands for
our dataaware work stealing technique.

o

Data Diffusion (GZ) 100% | ®™BestCase (active storage) = Falkon (data diffusion)
2000 —+Data Diffusion (FIT) mBest Case (parallel file system) mDAWS

-=-GPFS (GZ) 90%

5 1800 —=—GPFS (FIT) 0%
E 1600 -#-DAWS 80%
2 1400 0%
< o 60%
g 1200 [
B 1000 g
8 2 40%
7 800 i 300,
E 600 20%
£ 400 = 10%
200 H 0%

0 500x500
1138 2 3 4 5 10 20 30 Ideal 200 CPUs
. 0.1 sec
Locality Experiment
Figure 13: Comparing datsaware work stealing (DAWS) with Falkon dat#fusion
The stacking application conducts the #Astackingdo o

Followed thke workload characterization [49], each task requires a 2MB file, and generates 10KB data of
output. The ratio of the number of tasks to the number of files refers to locality number. The number of
tasks and the number of files for Bdocality are given if49], and each task would run for an average of
158 ms.Figure 13 (left) shows that the time per task of our DAWS technique keeps almost constant as
locality increases at 128 cores, and very close to the ideal running time (158ms). Data Diffusion (GZ)
experienced very large average time when locality is small, andadesr® be close to the ideal time when
locality is 30. The reason is that in DAWS, data is uniformly distributed over compute nodes. The only
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overhead comes from the schedulers making decisions to push tasks in the right spots. While in Data
Diffusion (G2), as data is initially kept in a slower shared file system, the data would be copied to local
disks when needed. When locality is small, the chances that the same piece of data will be reused are low
therefore involving more amount of data access fronshiaeed file system.

All-Pairs describes the behavior of a new function on sets A and sets B. For example, in Biometrics, it
is very important to find out the covariance of two sequences of gene codes. In this workload, all the tasks
are independent, anéeh task execute for 100 ms to compare two 12MB files with one from each set. We
run strongscaling experiments up to 100 nodes with a 500*500 workload size. Therefore, there would be
250K tasks in total. As a task needs two files that may locate atediffeodes at the worst case, file may
need to be transmitteth Figure 13 right part, v see that DAWS improved Data Diffusion b¥.21%

(85.9% vs 75%), and it is quite close to the best case using active storage (85.9% vs 91%). Data diffusion
applies a centralized indeserver for dataware scheduling, wiei our DAWS technique utilizes
distributedKV S that is much more scalable.

As we have shown that our proposed datare work stealing technique can perform well for -data
intensive applications structured as simple DA®s,evaluated more complex synthetic DAGsuch as
those shown ifrigure10left part

MATRIX client is able to generate a specific DAG given the input parameters that describe the DAG,
such as DAG type (BOT, Fdn, FanOut, Pipeline), DAG degree (fan degree, farout degree, and
pipeline size). We run these synthetic DAGs in MATRIX up to 200 cores &#ibg policy. For all the
DAGs, each core executes 1000 tasks on average, and each task runs an average time of 50ms (0 to 100ms)
and generates an average dataaizZMB (0 to 10MB). We set the maximum data transfer rate threst)old (
to be 0.5*10Gbps = 5Gbps,ratio of 0.5 between the datmansferring timeand the estimated task length
We set the initialocal ready queue execution time upper bo(tt)dfor FLDS policy to be 10 sec, and
reduces it by halivhen moving ready tasks fronReadyQo SReadyQand doubles it when work stealing
fails. We set the fain degree, farout degree and pipeline size to be the same value of 10. We set the work
stealing uppebound to be 50 sec, and the polling interval is changed adaptively. In order to cooperate with
the FLDS policy, after the polling interval of work stealing arrives the upper bound (no work stealing
anymore), we set the polling interval back to the ingrahll value only if the threshottlbecomes too small
to allow work stealing again.

4000 =80T Figure 14 shows the throughput results of all
3500 e e the DAGs up to 200 cores and 200K tasks. We
—Fan-in DAG seethat for BOT workloads, we can achieve
nearlyperfect performance,the throughput
numbers imply a 90%+ effiency for BOT
workloads at all scales. This is because tasks are
all run locally without requiring any piece of
data. For the other three DAGs, our technique
shows great scalability, as the throughput
doubles when the scale and workload double.
The throudpput numbers are good, considering
the data size and DAG complexiti€3ut of the
0 20 40 60 8 100 12 140 160 180 200 three DAGSs, Pipeline workloads show the
No. of Cores highest throughput, as each task has at most one
. . child and one parent. The data dependency
Figure 14: MATRIX runs different Benchmark DAG condition is easy to be satisfied. For Fant
DAG, our experiments experiencedaatively long rampup period, as at the beginning, the number of
ready tasks is small. Initially, only the root task is ready to run. As time increases, there would be more and
more taskghat are ready, and we hdzktter utilization. For Fain DAG, it is quite the opposite. At the
beginning tasks were running very fast. But it would get slower and slower, leading to a very long tail. This
is not caused by loaidhbalance In the end, it gets more and more difficialt a task to be ready given the
Fanin DAG shape and properties. This very lgag has worse effect than that is caused by the slow-ramp
up periodfor theFanOut DAG.

Above all, MATRIX shows great scalability running different complex benchmark DAGss
noteworthy that MATRIX is able to run any arbitrary workflow DAG, not just the few examples given in
this paper
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2.4 Distributed Job Scheduling for High-Performance Computing Workloads

Figure 15 shows a partitiofbasedfully -distributedarchitecure of JMS for large scale HPC MPI and
HPC ensemble workloadisteadof using one centralizeatsedulefcontroller to manage all the contpu
daemons (cd) ascentralized
architecture does there are
multiple distributed controllers
with each one managing a

cu.em cnet cnem partition of cd. The controllers
are fully-connected meaning
that each controller is aware of
v all the others The partition
Fully-Connected SIZG (the I‘atIO Of the number Of
controlers to the number of

Controller and Controller and ' Controller and

KVS server KVS Server KVS Server Compute daemonS) is
— T — v T configurable, and can vary

' ' ' according to the different
o applicatiors. For example, for a
largescale  HPC  workload
Figure 15: Distributed scheduling architecture for HPC applicatiol \yhere jobs usually require a
large number of nodes to run,
we can have each controller manage thousands of cd, so that the jobs are likely to be managed and
launched locally (within the partitionfor HPC ensemble workloads where jobs have a wide distribution of
sizes, ve canhave heterogeneous partition sizes for each controller to support diffeiP€hensemble
workloads.

We show how the distributed KVS can be usethin distributed scheduling architectdoe the HPC
applications. The KVS could store the followifkey, value) pairs, as listed ifable 1. For example, a
controller needs to know the free/available resources of all the controllers in order to allocate resources to
jobs; for a specific job, a controller needs to know the invblwentrollers and the compute nodes of each

controller that will launch the job, and to release the resources after the job iSdoree. icontrol |l er i d
the identity (e.g. I P address, node nasme)t hoef fiejaocbh icdod
is a unique identifier for a specific job. To ensu
combinations of AKeyso to generate new AKeyso, such
original controller id +mvolvedcont ol | er i do.
Tablel: Job and Resource Data Stored in DKVS
Key Value Description
controller id free node list Free nodes in a partition

job id original controller id The original controller that is responsible for a submitted job
job id + original controller id involved controller list The controllers that participate in launching a job
job id + original controller id + - . . - . . . .

involved controller id participated node list The nodes irachpartition that are involved in launching a job

2.4.1 Resource Stealing

In the partitionbaseddistributed scheduling architectufieigure 15) of IMS onebig challengeis how
to allocate the most suitable resource for a specific job and hadyrtamically balance theeeds of
resources (free compute nodes) among all the partitioosder to make the best use of all the resources
The challenge comes from thmitation that each controller just has a local view of its own partive.
proposea resource stealing technique that can adaptiealpnce the resources at runtinResurce
stealing refers to a set of techniques of stealisgueedrom other partitions if the local partition cannot
satisfy a spdfic job in terms of job size.

When a controller allocates nodes for a job, it first checks the local free nodes by querying the
distributedKVS. If there are enough free nodes, then the controller directly allocates the nodes; otherwise,
it allocates whatever resources the partitios, lend queries for other partitions to steal resources from
them. The simplest and most straightforward resource stealing technique does random resourge steali
The random resourcgealing is gzen inalgorithm4. As long as a job has not been allocated enough nodes,
the random resource stealing technique randomly selects a controller and tries to steal free nodes from it.
Every timewhen the selected controller has no available nodes, the launching controller sleeps some time
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(sleep_lengthand retries. If the launching controller experiences several failotes_fetry in a row
because the selected controller has no free noded| release the resources it has already allocated to
avoid the resource deadlock that wilhetwise happen in the case whewvo controllers hold part of the
resource for each individual job, but neither can be satisfied. The number of retries aleg¢ghergth

after stealing failure are critical to the performance of the algorithm, especially for many big jobs, where all
the launching controllers try to allocate nodes and steal resources from each other.

ALGORITHM 4. RANDOM RESOURCE STEAING

Input: number of nodes requiredm_node_reg number of nodes allocatechgm_nodealloc), number of controllersnim_ct),
controller membership ligttl_id[num_cft]), sleep lengthsleep_length) number of retiesnum_retry.
Output: list of involvedcontroller ids fjst_ctl_id_inv), participated nodesf each involved controllgpart_nodg]).
num_try= 0; num_ctl_inv= 0; default sleep length= sleep length
while .-num_node_allo& num_node_rego
sel ctl_idx= ctl_id[Random(num_ct)]; sel ctl_node= distributed KVS _lookup(sel ctl_id);
if (sel ctl_node!=NULL ) then
num_more_node num_node_re{ -num_node_allg;
again.  num_free_node sel ctl_nodenum_free_node
if (num_free_node 0)then
num_try= 0; sleep length= default sleep length
num_nodetry = num_free_noel> num_more_nod@num_more_nodenum_freenode
list_node= allocate(sel_ctl_node, num_node_}ry
if (list_node!= NULL ) then
«num_node_allog= num_nodetry; part_nodg¢num_ctl_inw+] = list_node list_ctl_id_invadd(remote_ctl_ig;
else
gotoagain;
end
else
if (++num_try>num_retry do
releasélist_ctl_id_iny, part_nodg; -num_node_alloe 0; sleep length= default sleep length
else
sleef{sleep_lengt)) sleep length*= 2;
end
end
end
end
return list_ctl_id_inv, part_node

Therandom resource stealing algorithm wefiae for jobs whose sizes are less or about thetparti
size. Besides, the free resources could be balanced among all the partitions quickly and dynamically during
runtime due to thelistributedand random features of the resource stealing technique. However, for big
jobs (e.g. fulscale jobs)or under thecase of high system utilization where the system has few free nodes,
it may take forever to allocate enouffke nodesWe will devise a monitorindpased weakly consistent
resource stealing technique in the future work to resolve thegelbalocation and high systentilization
issues.

2.4.2 SLURM-++: a distributed JMS for HPC MPI and HPC ensemble Workloads
SLURM+ +parst-hat sfeufidli yt rFbgta ®8d8MS t at bet-8 mglge HPC MPI
applications, and the HPC ensemble workloads. SLURM
integrating t he ZHT KVS for
a-small-job (SLURM++ (50:1) | SLURM) managemeat scal abl e and resil.i
—~medium-job (SLURM++ (50:1) / SLURM) SLURM+ + i s comprised of mul ti pI
--large-job (SLURM++ (50:1) / SLURM) each one partici pating in jOb I
b Il aunching, while ZHT is us
SLURM daemonsd state that i s |
ntroll eratemlReisonr s ol ved by
n the atomic compare and swap
LURM+ + has i mpl ement ed t he r e
tealing technique t o achieve
haring anwe kaolmpaoiedg.SLURM++  wi
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SLURM by 10X in tThmremsudt st lin @udepwn. i n

The micrebenchmarkcontairs independentfisleep @ H P C that adgusre different number of
compute nodes per jolhhe partition size is configad asb0; at the largest scale (500 noddgkg number
of controllers is 10We will use SLURM++ (M:N) to specify the ratio of the number of controller to the
number of slurmds, where M is the number of slurmds and N is the number of contmllenisas
SLURM++ (50:1), SLURM++ (1:1).We conducted >»@eriments with three workloads: smplb
workloads 50 jobs per controllerandjob size is 1 node mediumjob workloads (50 jobs per controller,
andjob size is 150 node¥ and bigjob workloads (20 jobs per controller, ajub size is25-75 nodes.
Figure 16 shows that not only does SLURM++ outperform SLURM in nearly all cases, but the
performance slowdown due to increasingly larger jobs at large scale is better for SLURM++ by 2X to 11X
dependingon the job size. The reason that large jobs perform worse than medium jobs is because the
larger the jobs are, the more extensively they compete resources. For small jobs, SLURM++'s performance
is bounded by SLURM job launching procedure leading to medlest improvement. Another fact is that
as the scale increasethe throughput speedup is also increasing. This indicates that at larger scales,
SLURM++ would outperform SLURM even more.

2.5 Production Systems

The ultimategoal of our work is to run real scientific applications through the job management systems
we haveimplemented namely MATRIX and SLURM++We are currently orthe way to pushboth
MATRIX and SLURM++ to be production systems. MATRIX is expected to be gedlon the machines
in ArgonneNational Laboratory (ANL) and the Clowhvironmentsand SLURM++ igjoingto be used in
the production systenmast LANL. We should be able to finish the production systemghegytime of my
Ph.D graduation

MATRIX will be integrated with the Swift proje¢?] in ANL and University of Chicago. Swift is
parallel programming systerthat will help MATRIX interpret largescale scientific applications as
looselycoupled parallel tasks with the DAG #fastions. MATRIX then schedules the DAGs in a
distributed way to achieve high performancethaCloud, with the help of dataware schedulingye are
working on extend MATRIXto support the distributed scheduling of Map/Reduce styledidiztasive
workloads, as opposed to the current centralized Hadoop schedwlstgm [50]. We will utilize
distributed file systems, such as FuSo@4] and HDFS [51], to help MATRIX manage data in a
distributed, transparergcalable, and reliable way.

We arealsonow working on enabling SLURM++ to run real HPC MPI applications. By the time of
writing thisdocumentwe have been able to rurasicMPI applications with SLURM++. Wereserved the
whole communication layer of SLURNL1] (which supports thecheduling of MPI applications), and
modified the original controller (i.e. slurmctld) to be distributed and to use ZHT for distributaadaces
management. We atesting SLURM++ with more MPI applications at large scales.

3. Related Work

This sectionintroduces the related work of our proposal, whichvers a wide range of research topics
and areasThe related worlkcould be dividedinto severalaspect, namelytraditional batckscheduling
systems light-weight task scheduling systemiad balancingdataaware scheduling, andistributed
systems simulations.

3.1 Traditional batch -scheduling systems

Traditional batckscheduling systems are batsémpled specific for largecale HPC applications.
Examplesof these systems are SLUR1], Condor[12], PBS[13], andCobalt[52]. SLURM is one of
the most popular traditional batch schedulers, which uses a centralized controller (slurmctld) to manage
compute nodes that run daemons (slurmd). SLURM does have scalable job launch via a tree based overlay
networkrooted at rard0, but as we have shown in our evaluation, the performance of SLURM remains
relatively constant as more nodes are added. This implies that as scales grow, the scheduling cost per node
increases, requiring coarser granularity workloads tota@i efficiency. SLURM also has the ability to
configuoeemaofnsaiVver for resilience, but tCbnds doesnodt
was developed as one of the earliest JIMSs, to harness the unused CPU cycles on workstatigns for
running batch jobs. dttable Batch System (PB8)as originally developed at NASA Ames to address the
needs of HPC, which is a highly configurable product that manages batch aratiiverjobs, and adds
the ability to signal, rerun and alter joh$SF Batch[53] is the loadsharing and batequeuing component
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of a set of workloagnanagement tools. All of these systems are designed for either HPC or HTC
workloads, and generally have high scheduling overhe@ther JMSs, such as Colal?], typically used

on supercompers lack the granularity of scheduling jobs at afmbre level. All of them have centralized
architecture with a single controller managing all the compute daemons. They take scheduling algorithms
as priority over supporting fingrained tasks. The centralized architecture works fine for HPC environment
where the number of jobs is not large, and each job is big. As the distributed system scales to exascale, and
the applications become more figeained, these centralized schedulers have bottleneck in both scalability
and availability. The ubiquitous batdtheduler, SLURM, reports maximum throughput of 500 jobs/sec,
which does not meet the need of millions tasks / sec required by exascale computing.

3.2 Light -weight task scheduling systems

Light-weight task scheduling systems have also been under developweerthe last several years,
sud as Falkorj15], Mesos[54], Omegd55], Sparrow[46], CloudKon[47] and Yarn56]).

Falkon [15] is a centralized task scheduler with the support of hierarchical scheduling for MTC
applications, which can scale and perform magnitude orders better than centralized batch schedulers.
However, it has problems to scale to even a petascale system, ani@rdrehical implementation of
Falkon suffered from poor load balancing under failures or unpredictable task execution times.

Mesos[54] is platform for sharingasource between multiple diverse cluster computing frameworks to
schedule tasks. Mesos allows frameworks to achievelatzdiity by taking turns reading data stored on
each machine. Mesos uses delay scheduling policy, and frameworks wait for a limgetb thoquire
nodes storing their data. However, this approach causes significant waiting time before a task could be
scheduled, especially when the required data is large.

Sparrow[46] is similar to our work in that it implemented distributed load balancing for weighted fair
shares, and supported the constraint that each task needs toelselent with input data, for figrained
subsecond tasks. However, in $pav, each scheduler is aware of all the compute daemons, this design
can cause a | ot of resource contentions when the
implements pushing mechanism with early binding of tasks to workers. Each scheduler mudiige
compute nodes and assigns tasks to the least overloaded one. This mechanism sutfglptobiem
under heterogeneous workloadd)] due to early binding of tasks to worker resources. We have compared
Sparrow and the basic MATRIX without dedsvare scheduling technique usingterogeneous workloads
in [47], and MATRIX outperforms Sparrow by 9X. Furthermore, there is an implementation barrier with
Sparrow as it is developed in Java, which has little suppbigh-end computing systns.

CloudKon [47] has similar architecture as MATRIX, except that CloudKon focuses on the Cloud
environment, and reliesn the Cloud services, SQ4&8] to do distributeddad balancing, and DynamoDB
[25] as the DKVS to keep task metadata. Relying on the Cloud services could facilitate the easier
development, at the cost of potential performance and control. Furthermore, CloudKon has deggendenc
on both Java and Cloud services, which makes its adoptldgtirend computing impractical

3.3 Load balancing

Most parallel programming systems require load balancing, which can be used to optimize resource
utilization, data movement, power consumptionany combination of these. Load balancing strategies can
be divided into two broad categorieshose for applications where new tasks are created and scheduled
during execution (i.e. task scheduling) and those for iterative applicatiinpersistentoad pattern$s57].
Centralized load balancing has been extenstudied in the past (JS[B8], leastwork-left [59], SITA
[60]), but they all suffered fromgwr scalability and resilierec

Distributed Load balancing is the technique of distributing computational and communication loads
evenly across processors of a parallel machine, or across nodes of a supercomputer, so that no single
processor or computing node is overloaded. Clients woeldble to submit work to any queue, and each
gueue would have the choice of executing the work locally, or forwarding the work to another queue based
on some function it is optimizing. Although distributed load balancing at extreme scales of millions of
nodes and billions of threads of execution is likely a more scalable and resilient solution, there are many
challenges that must be addressed (e.g. utilization, partitioning). Fully distributed strategies have been
proposed, including neighborhood averggatheme (ACWNJ61][62][63][64] In [64], several distributed
and hierarchical load balancing strategies are studied, such as Sender/Receiver Initiated Diffusion
(SID/RID), Gradient Model (GM) and a Hierarchical Balancing Method (HBM). Other hierarchical
strategies are explored B3] and[65].
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Charm++57] supports centralized, hierarchical and distributed load balancing. It has demonstrated that
centralized strategies work at scales of thousarfighrocesors for NAMD. In[57], the authors present an
automatic dynamic hierarchical load balancing method for Charm++, which scales up-tor#6kon a
Sun Constellation supercompufer a synthetic benchmarlhis pagr [66] describes a fullydistributed
algorithm for loadbalancing that uses paatiinformation about the globatate of the system to ferm
load balancingThis algaithm, referred to as GrapmelB, first conductsglobal information propaation
using a lightweight algithm inspired by epidemif67] algorithms, andhen transfersvork units using a
randomized algrithm. It has scaled th&rapevineLB algorithm up to 131,02 cores of BlueGene/Q
supercomputer in the Charm++ framewoHowever, this algorithm doesih work well for irregular
applications that require dynamic loalancingtechniques

Work stealingrefers to a distributed load balancing approach in which processors needing work steal
computational tasks from other processors. Work stealing has beératusmall scales successfully in
parllel languages such as Ci[k8], to load balance threads on skitanmemory parallel machines
[29][30][69]. Theoretical work has proved that a watiealing scheduler can achieve execution space, time,
and communication bounds all witha constant factor of optim$29][69]. However, the scalability of
work stealing has not been well explored on modern {acgée syems. In particular, concerns exist that
the randomized work stealing can lead to long idle times and poab#itglon largescale clusterf30].

The work doneby Diana et. al if30] hasscalel work stealing to & procesors using the PGAS
programmingmodel andthe RDMA technique A hierarchicaltechniquethat improvedDianas work
describedwork stealingas retetive work stealing This techniquéhasscalal work stealing to oer 150K
cores by utilizing the persistenceprinciple iteratively to achievethe load balaring of taskbased
applications[70]. However, hrough simulations, our work shows that work stealing with optimal
parameters works Weat exascale levelwith 1-billion cores

3.4 Data-aware scheduling

Falkon implemente a data diffusion approacf88] to schedule datmtensive workloads. Data
diffusion acquires compute and storage resources dynamically, replicates data irerésmgamsand, and
schedules computations close to data. However, Falkon used a centralized index server to store the
metadata, as opposed to our distributed\kaye store, which leads to poor scaldpili

Quincy[71] is a flexible framework for scheduling concurrent distributed jobs withdnan resource
sharing. Quincy tries to find optimal solutions of scheduling jobs undeflazhty and load balancing
constraints by mapping the problem to a graph data structure. Even thoudgitahe/aremotivation of
Quincy is similar to our work, it takes significant amount of time to find the optimal solution of the graph
that combines both load balancing and dgatare scheduling.

Dryad [72] is a generapurpose distributed execution engine for coapsened datgarallel
applications. Dryad is similar with our work in thatsupports running of applications structured as
workflow DAGs. However like the Hadoop schedul¢s0], Dryad does centralized scheduling with a
centralized metaata management that greedily maps tasks to the where the data residess weittter
fair nor scalable.

SLAW [73] is a scalable localitpware adaptive work esaling scheduler that supports both wérkt
and helgfirst policies [74] adaptively at runtime on a ptask basis. Though SLAW aimed to address
issues (e.g. localitpbliviousness, fixed task scheduling policy) that limit the scalability of work stealing, it
focuses on the core/thread level. The technique would unlikely to hold fordaeade distributed systems.

Another work[75] that did dateaware work stealing is sitar to us in that it uses both dedicated and
share queues. However, it relies on the X10 globatesddspace programming modé6] to statically
expose the datlocality information and distingsh between locatiesensitive ad locationflexible tasks
at beginning. Once the daltzcality information of a task is defined, it remains unchanged. This is not
adaptive to various daiatensive workloads.

3.5 Distributed systems simulations
There are a vast number of distributed and pe@eer system simulation frameworks, which are
typically performed at two different levels of abstraction: application level, which treats the network as just
a series of nodes andges, such as GridSif7], SimGrid[34] and PeerSin¥3]; and packet level, which
models the details of the undeny network, sah as OMNET++78], and OverSinfi79].
SimGrid [34] provides functionalities for the simulation of distributed applications in hetecoys
distributed environment§i mGr i d now uses PDES and c|Howews, itt o have
has consistency challenge and is unpredictable. It is neither suitable to run exascale MTC applications, due
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to the complex parallelisnGridSim [77] is developed based on SimJg88] and allows simulation of
entities in parallel and distributed computing systems, such as users, resources, and resource brokers
(schedulers). A resource can be a single processor orpnoutessor with shared or distributed memory
and managed biyme or space shared schedulétewever GridSim and SimJava use mhireading with
one thread per simulated element (cluster), this heaight threading property makes them impossible to
reach extreme scales of millions nodes or billions of cores on a single-shamnealy system. Our prevus
work [37] showed that GridSim could simulate no more than 256 nodes, and SimGrid simulated only 64K
nodes while consuming 256GB memory.

PeerSim[43] is a peer to peer system simulator thappors for extreme scalzlity and dynamicity.
Among the two simulation engines it provides, we use the disevetet simulation (DESgngine because
it is more scalable ahrealistic compared to the cydbased one for largecale simulationSOMNeT++[78]
is an extensible, modular, componéased C++ simulation library and framework, primarily for building
network simulators. Built on top of OMNeT++, OverSifn9] uses DES to simulate exchange and
processing of network messagddl of PeerSim OMNet++ and OverSim have standard Chofd2]
protocol implementation, we compared them and found that PeerSim is much faster and consumes much
less memory.

4. Accomplishmentsand Conclusions

We highlight the current state ofthe proposed worktowards developing nexgeneration job
management sgem forextremescalecomputing The papers that have been published aramaortant
metric to measure the progremsd to highlight theaccomplishmentachievedso far We thendraw the
conclusions achieved so far.

4.1 Accomplishments

So far, we haveachieved several accomplishments. Wéwised the generic taxonomyr distributed
system services; we proposed that-kajue store is a viable building blockrfextremescale system
service; ve have built a systematic discrete simulation environmdich helps us devetosimulators fast
and efficient; we haveevelopedSimMatrix, a keyvalue store simulator, and a simulator of SLURM++
(refereed as SIMSLURM++YWe thenscaled these simulators up to exascale with millions of néaes.
the real implemetatiors, we have prototyped two job management systems, namely MATRIX for fine
grained MTC applications, and SLURM++ for HPC MPI and HPC ensemble workMébave scaled
MATRIX up to 1024 nodes (4096 cores), and SLURM++ up to 500 nodes using benclywaokikhoads
and some easy application workloade papers and documents that have been published based on our
working progress are listed as follows:

ConferencePapers
(1) Ke Wang, Xiaobing Zhou, Tonglin Libongfang ZhaoMichael Lang, loan Raicii Opt i mi zi ng
Load Balancing and Dafaocality with Dataa war e Schedul i /2014, | EEE Bi gDat
(2) Ke Wang, Xiaobing Zhou, Hao Chen, Mi chael Lang, I
Management Systems for Extreme S2084 e Ensembl e Con
(3) Ke Wang, Abhi shek Kul karni , Mi chael Lang, Dorian Ar

Explore Distributed Key/alue Stores for Extrem8c al e Systems Serviceso,
Supercomputing/SC 2013

(4) Ke Wang, Kevin Brandstatter, | o a MAng-daskcaomputifigSi mMat r i X
execution fabRlc at eXascaleo, ACM HPC 2013.

(5) KeWang, Anupam Rajendran, Kevin Brandstatter, Zhao Z
Exascale with Mamsfas k Computi ngo, Doctor al Showcase, | EI
2012.

(6) Dongfang Zlao, Zhao Zhang, Xiaobing Zhou, Tonglin Kie Wang, Dries Kimpe, Philip Carns,
Robert Ross, and loan Raicu. "FusionFS: Towards Supporting-llatesive Scientific
Applications on Extrem&cale HighPerformance Computing Systems”, IEEE International
Confeence on Big Data 2014

(7) Iman Sadooghi, Sandeep Palur, Ajay Anthony, Isha Kapur, Karthik Belagodu, Pankaj Purandare,
Kiran Ramamurty,Ke Wang, l oan Raicu. AAchieving Efficient
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Message Queues in the Cloud for Margsk Computing andHigh-Per f or mance Comput i n
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2014

(8) Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhide, Wang, Anupam Rajendran,

Zhao Zhang, | 0 an -ReightRaliable Pesistdnt Dyramid. Scajable Zbop
Distributed Hash Tabl eo, | EEE I nternational Par
(IPDPS) 2013.

(9) Dongfang Zhao, Da Zhandfe Wang, |l oan Raicu. ARXSi m: Exploring

Systems through Simuat i ons 6, ACM HPC 2013.
Workshop Papers

(10) Ke Wang, Zhangji e Ma, | 0 a ATadk €amputing Wirkibads en alPetaflgp Ma n y
| BM Blue Gene/ P Supercomputero, | EEE CloudFIlow 20
Extended Abstracts andPosters:
(11) Ke Wang, |l oan Rai cu.-AwdrdloddiBalanding througta Distributed Queues and
Key/ Val ue St or e s ,h Aftea Systein Réseach Werkshog (6CASR)g2014
(12) Ke Wang, Abhi shek Kul karni, Xiaobing Zhou, Mi chael L s

Explore Distributed Key al ue St ores for Exascale System Servi
System Research WorkshopG&SR), 2013.

(13) Ke Wang, Kevi n Brandstatter, Il oan Rai-Task computhg mMat r i x:
execution fabRlc at eXascal eso, 1st Greater Chi ce
2012.

(14) Anupam Rajendrarke Wang,| oan Rai cu. fMgioRpulng exdtitionyfabRIc
for eXtreme scaleso, 2nd Greater Chicago Area Sys

(15) Abhishek Kulkarnj Ke Wang, Michael Lang. A Ex pl oring the Design Tradeo
System Servi ces , LANE Sumgédr St&lemsrRostea Sassion beld at LANL
during August, 2012

Journal Papers under Review

(16) Ke Wang, Anupam Rajendran, Xiaobing Zhou, Kiran Ramamurthy, Iman Sadooghi, Michael
Lang, | oan Rai c uBalandinD iwitht Adaptlvas Warkd Stealiogafat MaiTyask
Computing on BillionCo r e Sy st eemeanat Joutnal df @€M Transactions on Parallel
Computing (TOPC), 2014.

(17) KeWang,Dor i an Arnol d, Mi chael Lang, |l oan Rai cu. i De
Ex ascal e ullgrsaviematslournal of IEEE Transactions on Parallel and Distributed
Systems (TPDS), 2014.

(18) Ke Wang, Kan Qiao, PrasannBalasubramani, Tonglin Li, Iman Sadooghi, Xiaobing Zhou,
Mi chael Lang, {badaaced aRd lioclitgwarefiScheduling for Datatensive
Workloads at Extrem& c al es o0, Jour nal of Clust.er Computing,

Also, there are somechrical reports ([21][84][85][86]) that we havgublished online

4.2 Conclusions

According to the progress we have achieved so fagrevable tanake the following conclusions.

Fully distributed architectures are Scalable We showed thatthe fully -distributed architectures are
potential to scaléowards extremscalesthrough simulationsOne architecturés the 1:1 mapping finre
grained fullydistributed architecture for MTC applications. We simulated this architecture through
SimMatrix, and scaled it up to millions of nodes, billions of cores and hundreds of billions of tasks. The
other architecturés the partitionbased fullydistributed architecture of JMS for HPC MPI and HPC
ensemble workloads. We simulated this architecture through theakey store simulations up to millions
of nodes, and concluded that this is scalable with moderate amount ofyases$alistributed features.
These two architectures have been validated througM#ERIX job scheduling system up to 1204
nodes , and thELURM++ resource managemesystemup to 500 nodesespectively

Key-value stores are a building block for extremescale system servicesWe motivated that key
value stores (KVS) are a viable building block éstremescaleHPC system servicesThis statementays
the foundations for developing distributed system services that are highly available, scalable and reliable at
extremescales.We decomposed the services into their basic building blocks davised a general
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