
Next Generation Job Management Systems for Extreme-
Scale Ensemble Computing

Ke Wang
Illinois Institute of Technology

Chicago IL, 60616, USA

kwang22@hawk.iit.edu

Xiaobing Zhou
Illinois Institute of Technology

Chicago IL, 60616, USA

xzhou40@hawk.iit.edu

Hao Chen
Illinois Institute of Technology

Chicago IL, 60616, USA

hchen71@hawk.iit.edu

Michael Lang
Los Alamos National Laboratory

Los Alamos UM, 87544, USA

mlang@lanl.org

Ioan Raicu
Illinois Institute of Technology

Chicago IL, 60616, USA

iraicu@cs.iit.edu

ABSTRACT

With the exponential growth of supercomputers in parallelism,

applications are growing more diverse, including traditional large-

scale HPC MPI jobs, and ensemble workloads such as finer-

grained many-task computing (MTC) applications. Delivering

high throughput and low latency for both workloads requires

developing a distributed job management system that is

magnitudes more scalable than today’s centralized ones. In this

paper, we present a distributed job launch prototype, SLURM++,

which is comprised of multiple controllers with each one

managing a partition of SLURM daemons, while ZHT (a

distributed key-value store) is used to store the job and resource

metadata. We compared SLURM++ with SLURM using micro-

benchmarks of different job sizes up to 500 nodes, with excellent

results showing 10X higher throughput. We also studied the

potential of distributed scheduling through simulations up to

millions of nodes.

Categories and Subject Descriptors

D.4.7 [System Design]: Organization and Design – distributed

systems.

General Terms

Performance, Design, Algorithm.

Keywords

Job management systems, job launch, scheduling, key-value store.

1. INTRODUCTION
Exascale machines will have billions of concurrent threads of

execution [1]. With this extreme magnitude of parallelism,

ensemble computing is one way to efficiently use the machines

without requiring full-scale jobs. Ensemble computing would

combine the traditional HPC workloads that are large-scale

applications using MPI [2] as the communication method, with

the ensemble workloads that support the investigation of

parameter sweeps using many more but smaller-scale coordinated

jobs [3]. Given the significant decrease of Mean-Time-To-Failure

[4][5] at exascale, ensemble workloads should be resilient because

failures affect a smaller part of the machines.

One example of ensemble workloads comes from the MTC [6][7]

paradigm. MTC applications have orders of magnitude larger

number of jobs/tasks (e.g. billions) with finer granularity in both

size (e.g. per-core) and duration (e.g. sub-second to hours) [8] .

The tasks do not require strict coordination of processes at job

launch as the HPC workloads do. Furthermore, these applications

could be data-intensive in nature [9]. Applications that

demonstrate characteristics of MTC cover various domains, such

as astronomy, bioinformatics, medical imaging and climate

modeling [10], and have been run in clusters, grids,

supercomputers, and clouds [11].

The job management systems (JMS) for extreme-scale ensemble

computing will need to be available and scalable in order to

deliver the extremely high throughput and low latency. However,

today’s batch schedulers (e.g. SLURM [12], Condor [13], PBS

[14], SGE [15]) have centralized architecture that is not well

suited for the demands, due to both bounded scalability and

single-point-of-failure. A popular JMS, SLURM, reported

maximum throughput of 500 jobs/sec [16]; however, we will need

much higher job scheduling rates (e.g. millions jobs/sec) for next-

generation JMS, considering the significant increase of scheduling

size and the much finer job granularity. This paper proposes a

distributed architecture that supports JMS at extreme-scales.

We implemented a distributed job launch prototype (SLURM++)

with multiple controllers participating in allocating resources and

launching jobs – an extension to the open source batch scheduler

SLURM [12]. We utilized distributed key-value stores (DKVS),

specifically ZHT [17], to keep the job and resource metadata. The

general use of DKVS in building distributed system services was

proposed, and evaluated through simulation in our previous work

[18]. We compared SLURM++ with SLURM using micro-

benchmarks of different job sizes up to 500 nodes, with excellent

results showing 10X higher throughput. In addition, we developed

a simulator of SLURM, SimSLURM++, which enables us to

study the performance towards exascale with millions of nodes.

2. DISTRIBUTED ARCHITECTURE
The architecture of the next-generation JMS is shown in Figure 1.

There will be multiple controllers with each one managing a

partition of compute daemons (cd). The controllers are fully-

connected. In addition, a distributed data storage system is

deployed to manage the entire job and resource metadata in a

scalable and reliable way.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
HPDC'14, June 23 - 27 2014, Vancouver, BC, Canada

Copyright 2014 ACM 978-1-4503-2749-7/14/06…$15.00.

http://dx.doi.org/10.1145/2600212.2600703

cd cd cd

…

controller and data server controller and data server

cd cd cd

…

controller and data server

cd cd cd

…

…Fully-Connected

Figure 1: Architecture for distributed JMS; "cd" refers to

compute daemon

The partition size (number of cd a controller manages) is

configurable. For a large-scale HPC workload, the partition size

could be thousands; for MTC tasks, the partition size could be one

which has the 1:1 mapping (millions of controllers and cds at

exascale). We can also have heterogeneous partition sizes.

The distributed storage system could be a DKVS. Each controller

would be initialized as a DKVS client, which then uses the simple

client APIs (e.g. “lookup”, “insert”, “remove”) to communicate

with the servers to query and modify the job and resource

information, and the system state information transparently.

We propose the Resource Stealing technique to balance free “cd”

in all the partitions. We implemented a simple random resource

stealing algorithm. A controller first checks the local free nodes

when launching a job. If there are enough available nodes, the

controller directly allocates the nodes; otherwise, it allocates

whatever resources the partition has, and randomly queries for

other partitions (through a “lookup” operation) to steal resources.

If the launching controller experiences several failures in a row

due to the selected victims have no free nodes, it will release the

resources it has already allocated.

One problem of resource stealing technique is the Resource

Conflict that happens when different controllers try to modify the

same resource. We implement the traditional compare and swap

atomic instruction [19] as a normal operation in the ZHT. As ZHT

serializes requests at one server, this operation guarantees that

only one controller could modify a specific resource at one time.

2.1 SLURM++ PROTOTYPE
We developed a distributed job launch prototype, SLURM++,

which serves as a core part for JMS. We adopted the open source

SLURM [12], and extended it with multiple controllers

participating in allocating resources and launching jobs. We used

the ZHT DKVS to keep the job and resource metadata.

SLURM++ is directly extended from SLURM. SLURM has a

centralized controller (slurmctld) manage all the cds (slurmd).

SLURM keeps all the metadata in a centralized local file system.

Upon receiving a job, the slurmctld first looks up the global file

system to allocate resource. Once a job gets its allocation, it can

be launched via a tree-based network rooted at rank-0 slurmd.

In SLURM++, we developed a light-weight distributed controller

that can directly talk with slurmds. We utilize the whole slurmd,

preserve the hierarchical job launching part unchanged. In

addition, each controller is initialized as a ZHT client, and can call

the ZHT client APIs to query and modify the job and resource

information. Upon receiving all the slurmds’ registration

messages within a partition, the controller inserts the available

nodes to ZHT server. Then, the controllers randomly steal

resources from each other when needed.

We developed SLURM++ in C. We implemented the controller

code, which summed to around 5K lines of code; we put the

controller and ZHT directly in the SLURM source file, and named

the whole prototype SLURM++. The source code is available at

the GitHub website: https://github.com/kwangiit/SLURMPP.

SLURM++ has dependencies on Google Protocol Buffer [20],

ZHT [17], and SLURM [12].

2.2 SimSLURM++ SIMULATOR
In order to study the scalability of the proposed architecture, we

developed a simulator of SLURM++, SimSLURM++, which

consists of multiple nodes, and each node has different roles to

play (controller, ZHT server, compute daemon). There are two

parallel queues in each simulated node: a communication queue

for sending and receiving messages, and a processing queue for

handling requests locally. The two queues operate in parallel,

while within one queue, the requests are processed sequentially.

We followed the simulation work we did before [18][21][22] to

build SimSLURM++. SimSLURM++ is a discrete event simulator

[23] that was built on top of peersim, a scalable peer-to-peer

simulator that offers the framework and functionality of

simulating distributed systems. SimSLURM++ is developed in

Java, and has about 1500 lines of code, along with the peersim

1.5.0 codebase package. The source code is available at the

GitHub website: https://github.com/kwangiit/SimDJL. There are

no other dependencies.

3. EVALUATION
We evaluate SLURM++ by comparing it with SLURM using

micro-benchmarks containing “sleep 0” jobs on the Kodiak cluster

from the Parallel Reconfigurable Observational Environment at

Los Alamos National Laboratory [24] up to 500 nodes. We used

SLURM version 2.6.5, the latest version when we ran experiments.

We also run SimSLURM++ up to exascale with millions of nodes

using real application traces with different configurations on the

machine fusion.cs.iit.edu at IIT [18].

3.1 SLURM++ vs SLURM
The micro-benchmark contains independent “sleep 0” HPC jobs

that require different number of compute nodes per job. The

partition size is configured as 50; at the largest scale (500 nodes),

the number of controllers is 10. We will use SLURM++ (M:N) to

specify the ratio of the number of controller to the number of

slurmds, where M is the number of slurmds and N is the number

of controllers, such as SLURM++ (50:1), SLURM++ (1:1).

We conducted experiments with three workloads: small-job

workloads (50 jobs per controller, and job size is 1 node),

medium-job workloads (50 jobs per controller, and job size is 1-

50 nodes), and big-job workloads (20 jobs per controller, and job

size is 25-75 nodes). Figure 2 shows that not only does

SLURM++ outperform SLURM in nearly all cases, but the

performance slowdown due to increasingly larger jobs at large

scale is better for SLURM++ by 2X to 11X depending on the job

size. The reason that large jobs perform worse than medium jobs

is because the larger the jobs are, the more extensively they

compete resources. For small jobs, SLURM++'s performance is

bounded by SLURM job launching procedure leading to the

smallest improvement. Another fact is that as the scale increases,

the throughput speedup is also increasing. This indicates that at

larger scales, SLURM++ would outperform SLURM even more.

Figure 2: Throughput comparison with different workloads

3.2 Evaluation through SimSLURM++
This section presents the evaluation of the scalability of our

proposed work through SimSLURM++ towards millions of nodes.

3.2.1 SimSLURM++ HPC Configuration (1024:1)
We configured SLURM++ with 1024:1 mapping. The workload

comes from real applications run on the ANL Blue Gene/P

machine, during an 8-month period [25]. There are 68,936 jobs.

At each scale, we generated a workload with all jobs that preserve

the job size distribution of the original workload by applying the

job size percentage of the machine size. In addition, we reduced

the job duration by 1M times to reduce the job duration

granularity to pose significant challenge on launching jobs.

Figure 3: SimSLURM++ (1024:1) throughput and latency

Figure 3 shows the throughput and per-job average latency of

SimSLURM++ with HPC configuration. We see that the

throughput is increasing with the system scale. This shows that

the proposed architecture is scalable. At the meanwhile, the per-

job average latency increases moderately from 1024-node to

65536-node.

3.2.2 SimSLURM++ MTC Configuration (1:1)
We also evaluate SimSLURM++ up to millions of nodes with

MTC orientation. The workload is micro-benchmark: each

controller handles 10 “sleep 0” jobs, and each job requires 1 or 2

nodes. Figure 4 shows the throughput and per-job average latency

of SimSLURM++ with MTC configuration. We see that the

throughput is increasing perfectly with the system scale. At 1M-

node scale, SimSLURM++ achieves throughput as high as 1.75M

jobs/sec, which is very promising. At the same time, the per-job

average latency increases trivially from 4-node to 1M-node. These

results satisfy the requirements of high throughput and low

latency of next-generation JMS for exascale ensemble computing.

Figure 4: SimSLURM++ (1:1) and latency

4. RELATED WORK
There are other projects that have explored efficient job launch

mechanisms. STORM [26] leveraged the hardware collective

available in the Quadrics QSNET interconnect to broadcast the

binaries to the compute nodes. However, the server is a single-

point-of-failure. LIBI/LaunchMON [27] is a scalable

bootstrapping service where a tree is used to establish a single

process on each compute node. This is a centralized service with

no failover or no persistent daemons or state, therefore if a failure

occurs they can just re-launch. PMI [28] is the process

management layer in MPICH2. It uses a KVS to store job and

system information. But the KVS is centralized.

The light-weight task execution frameworks that are developed

specifically for ensemble MTC workloads are Falkon [29], a

centralized task execution fabric with the support of hierarchical

scheduling, and MATRIX [30][31][32], a distributed task

execution framework that uses work stealing [33] for load

balancing. Though Falkon can deliver tasks at thousands of

task/sec for MTC workloads, it is not sufficient for exascale

systems and it lacks support for HPC workloads. Another fine

grained framework that schedules sub-second tasks for data

centers is Sparrow [34]. Though MATRIX and Sparrow have

shown great scalability for MTC workloads, neither of them

supports HPC workloads.

5. CONCLUSIONS AND FUTURE WORK
Extreme-scale supercomputers require next-generation JMS to be

fully distributed that can be much more scalable to deliver jobs

with much higher throughput. We have shown that DKVS is a

valuable building block to allow scalable job launch. The

performance is more preferable (10X) than the centralized

production system. Furthermore, our simulation results showed

that the distributed architecture resulted in great scalability trends

towards extreme-scales supporting both MTC and HPC workloads.

In future work, we will explore several techniques, such as

caching and distributed monitoring, and MPI applications in both

SLURM++ and SimSLURM++ to improve our work. Additions to

this work would also include the investigations of distributed

power-aware job launch at the core level. Currently, SLURM++

allocates the whole node to a job. In the future, we will over-

decompose a node, and launch jobs at the core level in order to

save power. Another extension would be to integrate SLURM++

with the MTC task execution fabric, MATRIX [30] (and/or the

SimMatrix simulator [35]), and study different job scheduling

algorithms for both MTC and HPC workloads [36][37].

6. ACKNOWLEDGMENTS
This work was supported by the U.S. Department of Energy

(DOE) contract AC52-06NA25396, and in part by the National

Science Foundation (NSF) under award CNS-1042543 (PRObE).

We thank Morris Jette and Danny Auble from SchedMD for their

help and suggestions about SLURM, and Tonglin Li for his help

with ZHT.

7. REFERENCES
[1] V. Sarkar et al. “ExaScale Software Study: Software

Challenges in Extreme Scale Systems”, ExaScale Computing

Study, DARPA IPTO, 2009.

[2] M. Snir et al. “MPI: The Complete Reference,” MIT Press,

1995.

[3] Y. Zhao et al. “Swift: Fast, Reliable, Loosely Coupled

Parallel Computation,” IEEE Workshop on Scientific

Workflows 2007.

[4] D. Zhao et al. “Exploring reliability of exascale systems

through simulations.” ACM HPC 2013.

[5] I. Raicu et al. “Making a Case for Distributed File Systems at

Exascale,” ACM Workshop on LSAP, 2011.

[6] I. Raicu. "Many-Task Computing: Bridging the Gap between

High Throughput Computing and High Performance

Computing", Computer Science Department, University of

Chicago, Doctorate Dissertation, March 2009.

[7] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M.

Hategan, K. Iskra, P. Beckman, I. Foster. "Extreme-scale

scripting: Opportunities for large task-parallel applications

on petascale computers", Scientific Discovery through

Advanced Computing Conference (SciDAC09) 2009

[8] K. Wang et al. “Modeling Many-Task Computing Workloads

on a Petaflop IBM Blue Gene/P Supercomputer.” IEEE 27th

International Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW) 2013.

[9] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C.M.

Moretti, A. Chaudhary, D. Thain. "Towards Data Intensive

Many-Task Computing", book chapter in "Data Intensive

Distributed Computing: Challenges and Solutions for Large-

Scale Information Management", IGI Global Publishers,

2009

[10] I. Raicu et al. “Middleware Support for Many-Task

Computing,” Cluster Computing Journal, 2010.

[11] Y. Zhao, I. Raicu, S. Lu, X. Fei. "Opportunities and

Challenges in Running Scientific Workflows on the Cloud",

IEEE International Conference on Network-based

Distributed Computing and Knowledge Discovery (CyberC)

2011

[12] M. A. Jette et al. “SLURM: Simple Linux utility for resource

management.” JSSPP 2003, pages 44–60, June 24, 2003.

[13] D. Thain et al. “Distributed Computing in Practice: The

Condor Experience” Concurrency and Computation: Practice

and Experience 17 (2-4), pp. 323-356, 2005.

[14] B. Bode et al. “The Portable Batch Scheduler and the Maui

Scheduler on Linux Clusters,” Usenix, 4th Annual Linux

Showcase & Conference, 2000.

[15] W. Gentzsch et al. “Sun Grid Engine: Towards Creating a

Compute Power Grid,” 1st International Symposium on

Cluster Computing and the Grid, 2001.

[16] M. Jette and Danny Auble, “SLURM: Resource Management

from the Simple to the Sophisticated”, Lawrence Livermore

National Laboratory, SLURM User Group Meeting, October

2010.

[17] T. Li et al. “ZHT: A Light-weight Reliable Persistent

Dynamic Scalable Zero-hop Distributed Hash Table”, IEEE

IPDPS, 2013.

[18] K. Wang et al. “Using Simulation to Explore Distributed

Key-Value Stores for Extreme-Scale Systems Services,”

IEEE/ACM Supercomputing/SC 2013.

[19] T. L. Harris et al. “A Practical Multi-Word Compare-and-

Swap Operation,” In Proceedings of the 16th International

Symposium on Distributed Computing, pp 265-279,

Springer-Verlag. 2002.

[20] Google. “Google Protocol Buffers,” available at

http://code.google.com/apis/protocolbuffers/, 2013.

[21] K. Wang et al. “Exploring Design Tradeoffs for Exascale

System Services through Simulation.” Tech Report, LANL

2013.

[22] K Wang et al. “Centralized and Distributed Job Scheduling

System Simulation at Exascale.” Tech Report, IIT, 2011.

[23] J. Banks et al. “Discrete-event system simulation - fourth

edition.” Pearson 2005.

[24] G. Grider. “Parallel Reconfigurable Observational

Environment (PRObE),” available from http://www.nmc-

probe.org, October 2012.

[25] Available online:

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

[26] E. Frachtenberg et al. “Storm: Scalable resource

management for large-scale parallel computers.” IEEE

Transactions on Computers, 55(12), 1572-1587, 2006.

[27] J. D. Goehner et al. “LIBI: A Framework for Bootstrapping

Extreme Scale Software Systems”. Parallel Computing,

2012.

[28] P. Balaji et al. “PMI: A scalable parallel process-

management interface for extreme-scale systems”. In Recent

Advances in the Message Passing Interface (pp. 31-41).

Springer Berlin Heidelberg, 2010.

[29] I. Raicu et al. “Falkon: A Fast and Light-weight tasK

executiON Framework,” IEEE/ACM SC 2007.

[30] K. Wang et al. “MATRIX: MAny-Task computing execution

fabRIc at eXascale,” tech report, IIT, 2013.

[31] K. Wang et al. “Paving the Road to Exascale with Many-

Task Computing.” Doctor Showcase, IEEE/ACM SC 2012.

[32] I. Sadooghi et al. “Achieving Efficient Distributed

Scheduling with Message Queues in the Cloud for Many-

Task Computing and High-Performance Computing.”

IEEE/ACM CCGrid, 2014.

[33] J. Dinan et al. “Scalable work stealing”, IEEE/ACM SC

2009.

[34] K. Ousterhout et al. “Sparrow: Distributed, Low Latency

Scheduling,” SOSP ’13, Farmington, Pennsylvania, USA.

[35] K. Wang et al. “SimMatrix: Simulator for MAny-Task

computing execution fabRIc at eXascales,” ACM HPC 2013.

[36] K. Ramamurthy et al. “Exploring Distributed HPC

Scheduling in MATRIX.” Tech Report, IIT, 2013.

[37] X. Zhou et al. “Exploring Distributed Resource Allocation

Techniques in the SLURM Job Management System.” Tech

Report, IIT, 2013.

