
Migrating Scientific Workflow Management

Systems from the Grid to the Cloud

Yong Zhao
1
, Youfu Li

1
, Ioan Raicu

2
, Cui Lin

3
, Wenhong Tian

1
, Ruini Xue

1

1
School of Computer Science and Engineering, Univ. of Electronic Science and Technology

of China, Chengdu, China

2
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

3
Department of Computer Science, California State University, Fresno CA, USA

yongzh04@gmail.com, youfuli.fly@gmail.com, iraicu@cs.iit.edu, clin@csufresno.edu,

tian_wenhong@uestc.edu.cn, xueruini@gmail.com

Abstract: Cloud computing is an emerging computing paradigm that can offer

unprecedented scalability and resources on demand, and is gaining significant

adoption in the science community. At the same time, scientific workflow man-

agement systems provide essential support and functionality to scientific compu-

ting, such as management of data and task dependencies, job scheduling and exe-

cution, provenance tracking, fault tolerance. Migrating scientific workflow

management systems from traditional Grid computing environments into the

Cloud would enable a much broader user base to conduct their scientific research

with ever increasing data scale and analysis complexity. This paper presents our

experience in integrating the Swift scientific workflow management system with

the OpenNebula Cloud platform, which supports workflow specification and sub-

mission, on-demand virtual cluster provisioning, high-throughput task scheduling

and execution, and efficient and scalable resource management in the Cloud. We

set up a series of experiments to demonstrate the capability of our integration and

use a MODIS image processing workflow as a showcase of the implementation.

Keywords: Cloud workflow; Virtual Cluster Provisioning; Workflow-as-a-

Service; Swift; OpenNebula

mailto:yongzh04@gmail.com
mailto:youfuli.fly@gmail.com
mailto:iraicu@cs.iit.edu
mailto:clin@csufresno.edu
mailto:tian_wenhong@uestc.edu.cn
mailto:xueruini@gmail.com

2

1 Introduction

 Scientific workflow management systems (SWFMS) have been proven essen-

tial to scientific computing as they provide functionalities such as workflow speci-

fication, process coordination, job scheduling and execution, provenance tracking

[64], fault tolerance etc. SWFMS in fact represent a subset of Many-Task Compu-

ting (MTC) [61] workloads. MTC is reminiscent of High-Throughput Computing,

but it differs in the emphasis of using many computing resources over short peri-

ods of time to accomplish many computational tasks (i.e. including both depend-

ent and independent tasks), where the primary metrics are measured in seconds

(e.g. FLOPS, tasks/s, MB/s I/O rates), as opposed to operations (e.g. jobs) per

month. MTC denotes high-performance computations comprising multiple distinct

activities, coupled via file system or memory-to-memory transfer operations.

Tasks may be small or large, uniprocessor or multiprocessor, compute-intensive or

data-intensive. The set of tasks may be static or dynamic, homogeneous or hetero-

geneous, loosely coupled or tightly coupled. The aggregate number of tasks, quan-

tity of computing, and volumes of data may be extremely large [62]. MTC in-

cludes loosely coupled applications that are generally communication-intensive

but not naturally expressed using standard message passing interface commonly

found in HPC, drawing attention to the many computations that are heterogeneous

but not "happily" parallel. [63] There are unprecedented challenges raised for tra-

ditional scientific workflows, as the data scale and computation complexity are

growing exponentially. The ETL (Extraction-Transformation-Loading), storage,

retrieval, analysis and application upon the huge amounts of data are beyond the

capability of traditional data processing infrastructures. The community has

coined this as Big Data, and it is often associated with the Cloud Computing para-

digm.

 As an emerging computing paradigm, Cloud computing [6] is gaining tre-

mendous momentum in both academia and industry: not long after Amazon

opened its Elastic Computing Cloud (EC2) to the public, Google, IBM, and Mi-

crosoft all released their Cloud platforms one after another. Meanwhile, several

open source Cloud platforms, such as Hadoop [33], OpenNebula [1], Eucalyptus

[34], Nimbus [22], and OpenStack [2], become available with fast growth of their

own communities. There are a couple of major benefits and advantages that are

driving the widespread adoption of the Cloud computing paradigm: 1) Easy access

to resources: resources are offered as services and can be accessed over Internet.

For instance, with a credit card, you can get access to Amazon EC2 virtual ma-

chines immediately; 2) Scalability on demand: once an application is deployed on-

to the Cloud, the application can be automatically made scalable by provisioning

the resources in the Cloud on demand, and the Cloud takes care of scaling out and

in, and load balancing; 3) Better resource utilization: Cloud platforms can coordi-

nate resource utilization according to resource demand of the applications hosted

in the Cloud; and 4) Cost saving: Cloud users are charged based on their resource

3

usage in the Cloud, they only pay for what they use, and if their applications get

optimized, that will be reflected into a lowered cost immediately.

 Theoretically, to address the big data problems in the above scientific compu-

ting areas, scientists and application developers may simply refactor all the exist-

ing workflow applications into the Cloud computing paradigm, which sounds

straightforward but in reality is impractical. As traditional scientific workflow ap-

plications have been mature during many years’ development and always involve

complicated application logic and consist of massive computing processes such as

organization, distribution, coordination and parallel processing. Transforming

these scientific workflows will not only cost scientists and developers much time,

but also require manual handling of all the integration details with various under-

lying Cloud platforms.

 An alternative for researchers is to integrate scientific workflow management

systems with Clouds, leveraging the functionalities of both Cloud computing and

SWFMSs to provide a Cloud workflow platform as a service for big data pro-

cessing. In this solution, not only the challenges for traditional scientific work-

flows can be dealt with, the researchers can also concentrate on applications and

utilize the integration platform to process massive data in Clouds. As workflow

management systems are diverse in many aspects, such as workflow models,

workflow languages, workflow engines, and so on, and each workflow system en-

gine may depend on one specific Distributed Computing Infrastructures (DCIs),

porting a workflow management system to run on another DCI may cost a large

quantity of extra effort. We would like to free researchers from complicated inte-

gration details, such as Cloud resource provisioning, task scheduling and so on,

and provide them with the convenience and transparency to a scalable big data

processing platform, therefore we propose a service framework to standardize the

integration between SWFMSs and Cloud platforms, breaking the limitations that a

specific SWFMS is bound to a particular DCI or Cloud environment. We define a

series of components and interfaces to normalize the interactions between differ-

ent workflow management subsystems.

 This paper extends earlier work [12] in which we identified various challeng-

es associated with migrating and adapting an SWFMS in the Cloud. In this paper,

we present an end-to-end approach that addresses the integration of Swift, an

SWFMS that has broad application in Grids and supercomputers, with the

OpenNebula Cloud platform. The integration covers all the major aspects involved

in workflow management in the Cloud, from client-side workflow submission to

the underlying Cloud resource management.

 This paper’s major contributions are:

1. We analyze the challenges for traditional scientific workflows in the Grid envi-

ronment, and proposed a structured approach to migrating a SWFMS into the

Cloud.

2. We integrate Swift with OpenNebula, in order to coordinate and automate sci-

entific analysis and discovery.

4

3. We propose a virtual cluster provisioning mechanism that could recycle Cloud

virtual machine instances.

4. We present a use case as a showcase of the implementation.

 The rest of the paper is organized as follows: In the next section, we discuss

the challenges of traditional scientific workflows and analyze the available solu-

tions to the challenges. In the integration section, we introduce a service frame-

work for the integration of SWFMSs and Cloud platforms and present our end-to-

end integration of Swift and OpenNebula. In the performance evaluation section,

we set up a series of experiments to analyze the integration and demonstrate the

implementation using a NASA MODIS image processing workflow. In the related

work section, we discuss related work in migrating scientific workflow manage-

ment systems from the Grid to the Cloud. In the last section, we draw our conclu-

sions and discuss future work.

2 Challenges and Available Solutions

 In this section, we discuss the challenges of utilizing traditional scientific

workflows to deal with big data problems and analyze the available solutions to

the challenges.

2.1 Challenges for Traditional Scientific Workflows

 Scientific workflow systems have been formerly applied over a number of ex-

ecution environments such as workstations, clusters/Grids, and supercomputers. In

contrast to Cloud environment, running workflows in these environments are fac-

ing a series of obstacles when dealing with big data problems [45], including data

scale and computation complexity, resource provisioning, collaboration in hetero-

geneous environments, etc.

2.1.1 Data Scale and Computation Complexity

 The execution of scientific workflows often consumes and produces huge

amounts of distributed data objects. These data objects can be of primitive or

complex types, files in different sizes and formats, database tables, or data objects

in other forms. At present, the scientific community is facing a “data deluge” [7]

coming from experiments, simulations, networks, sensors, and satellites, and the

data that needs to be processed generally grows faster than computational re-

sources and their speed. The data scale and managemnent in big data era are be-

yond the capability of traditional workflows as they depend on traditional infra-

structure for resource provisioning, scheduling and computing. For example, in

high energy physics, the Large Hadron Collider [4] at CERN can generate more

than 100TB of collision data per second; In bioinformatics, GenBank[3], one of

the largest DNA databases, already hosts over 120 billion bases, the European

Molecular Biology and Bioinformatics Institute Laboratory (EMBL) hosts 14 PB

of data, and the numbers are expected to double every 9-12 months.

5

 In addition to data scale, science analysis and processing complexity is also

growing exponentially. Scientists are now attempting calculations requiring orders

of magnitude more computing and communication than was possible only a few

years ago. For instance, in bioinformatics a protein simulation problem [29] in-

volves running many instances of a structure prediction simulation, each with dif-

ferent random initial conditions and performs multiple rounds. Given a couple of

proteins and parameter options, the simulation can easily scale up to 100,000

rounds. In cancer drug design, protein docking can involve millions of 3D struc-

tures and have a runtime up to tens of CPU years. To enable the storage and anal-

ysis of such large quantities of data and to achieve rapid turnaround, data and

computation may need to be distributed over thousands or even tens of thousands

of computation nodes.

2.1.2 Resource Provisioning

 Resource provisioning represents the functionality and mechanism of allocat-

ing computing resource, storage space, network bandwidth, etc., to scientific

workflows. As cluster/Grid environments are not adept at providing the workflows

with smoothly dynamic resource allocation, the resource provisioned to a scien-

tific workflow is fixed once the workflow has been deployed to execute, which

may in return restrict the scale of science problems that can be handled by work-

flows. Moreover, the scale of resource is upbounded by the size of a dedicated re-

source pool with limited resource sharing extension in the form of virtual organi-

zations. Meanwhile, the representation of resources in the context of scientific

workflows is also bothering the scientists [46], as they must be able to recognize

the supported types of resources and tools. For instance, the resource in Taverna is

a web service which usually limit s the use of many scientific resources that are not

represented as web services.

 To break through the limitations introduced by traditional resource provision-

ing strategy, some works have been focused on the approaches for automated pro-

visioning, including the Context Broker [22] from the Nimbus project, which sup-

ported the concept of “one-click virtual cluster” that allowed clients to coordinate

large virtual cluster launches in simple steps. The Wrangler system [23] was a

similar implementation that allowed users to describe a desired virtual cluster in

XML format, and send it to a web service, which managed the provisioning of vir-

tual machines and the deployment of software and services. It was also capable of

interfacing with many different Cloud resource providers.

2.1.3 Collaboration in Heterogeneous Environments

 Collaboration refers to the interactions between a workflow management sys-

tem and the execution environment, such as resource access, resource status per-

ception, load balance and so on. As more and more scientific research projects be-

come collaborative in nature and involve multiple geographically distributed

organizations, which bring a variety of challenges to scientists and application de-

velopers to handle the collaboration in heterogeneous environments.

 The management of resource, authority authentication, security, etc., can be

very complicated, as scientific workflow applications are normally executed in

6

cluster/Grid environments, where accessible computing resources and storage

space are located in various management domains. The execution of traditional

workflows is also influenced by the heterogeneous performance of computing re-

source due to the varied configuration of physical machines. In addition, in Grid

environment, the status of physical machines is uncontrollable, switching among

online (the machine is started up and connected to the Grid), offline (the machine

is powered off or disconnected), busy (the machine is executing other tasks), etc.,

making it extremely difficult to maintain load balance.

2.2 Moving Workflow Applications to the Cloud

 Cloud computing has been widely adopted to solve the ever-increasing com-

puting and storage problems arising in the Internet age. To address the challenges

of dealing with peta-scale scientific problems in scientific workflow solutions, we

can move workflow applications into Cloud, using for instance the MapReduce

computing model to reconstruct the formerly applied workflow specifications.

MapReduce provides a very simple programming model and powerful runtime

system for the processing of large datasets. The programming model is based on

just two key functions: “map” and “reduce,” borrowed from functional languages.

The runtime system automatically partitions input data and schedules the execu-

tion of programs in a large cluster of commodity machines. Modified applications

to fully leverage the unprecedented scalability and resources on demand offered

by the Cloud without introducing extra management overheads.

 Despite all the advantages of transforming traditional workflow applications

into Cloud-based applications, there are still many drawbacks and unsolved obsta-

cles:

 1) Cloud computing cannot benefit from the distinguished features provided

by SWFMSs, including management of data and task dependencies, job schedul-

ing and execution, provenance tracking, etc.. The challenges for big data pro-

cessing in Cloud remain unsolved and are still bothering developers and research-

ers.

 2) Utilizing the certain data flow support offered by MapReduce to refactor

traditional workflow applications requires application logic to be rewritten to fol-

low the map-reduce-merge programming model. Scientists and application devel-

opers need to fully understand the applications and port the applications before

they can leverage the parallel computing infrastructure.

 3) Large-scale workflows, especially data-intensive scientific workflows may

require far more functionality and flexibility than MapReduce can provide, and the

implicit semantics incurred by a workflow specification goes far more than just

the “map” and “reduce” operations, for instance, the mapping of computation to

compute node and data partitions, runtime optimization, retry on error, smart re-

run, etc.

 4) Once we decide to migrate workflow applications to Cloud computing, we

need to reconstruct the data being processed to be able to be stored in partitioned

fashion, such as in GFS, or HDFS, so that the partitions can be operated in paral-

7

lel, which may introduce a tremendous amount of work to scientists and applica-

tion developers.

 5) Revising workflow applications to be capable of executing in Cloud plat-

forms makes new requests to scientists and application developers, as they need to

grasp new programing model and techniques instead of using already-familiar

workflow pattern, which may cost large amount of time beyond the research top-

ics. Moreover, the risks associated with vendor lock-in cannot be ignored.

2.3 Migrating Workflow Management into the Cloud

 To avoid the disadvantages brought by moving workflow applications directly

to the Cloud, we may try to integrate workflow management systems with the

Cloud to provide a Cloud workflow platform as a service for big data processing.

Once we decide to integrate SWFMS with Cloud computing, we may deploy the

whole SWFMS inside the Cloud and access the scientific workflow computation

via a Web browser. A distinct feature of this solution is that no software installa-

tion is needed for a scientist and the SWFMS can fully take advantage of all the

services provided in a Cloud infrastructure. Moreover, the Cloud-based SWFMS

can provide highly scalable scientific workflows and task management as services,

providing one kind of Software-as-a-Service (SaaS). One concern the user might

have is the economic cost associated with the necessity of using Cloud on a daily

basis, the dependency on the availability and reliability of the Cloud, as well as the

risk associated with vendor lock-in.

 To provide a good balance between system performance and usability, an al-

ternative for researchers is to encapsulate the management of computation, data,

and storage and other resources into the Cloud, while the workflow specification,

submission, presentation and visualization remain outside the Cloud to support the

key architectural requirement of user interface customizability and user interaction

support. The benefit of adopting the solution to manage and run scientific work-

flows on top of the Cloud can be multifold:

 1) The scale of scientific problems that can be addressed by scientific work-

flows can be greatly increased compared to cluster/Grid environments, which was

previously upbounded by the size of a dedicated resource pool with limited re-

source sharing extension in the form of virtual organizations. Cloud platforms can

offer vast amount of computing resources as well as storage space for such appli-

cations, allowing scientific discoveries to be carried out in a much larger scale.

 2) Application deployment can be made flexible and convenient. With bare-

metal physical servers, it is not easy to change the application deployment and the

underlying supporting platform. However with virtualization technology in a

Cloud platform, different application environments can be either pre-loaded in vir-

tual machine (VM) images, or deployed dynamically onto VM instances.

 3) The on-demand resource allocation mechanism in the Cloud can improve

resource utilization and change the experience of end users for improved respon-

siveness. Cloud-based workflow applications can get resources allocated accord-

ing to the number of nodes at each workflow stage, instead of reserving a fixed

8

number of resources upfront. Cloud workflows can scale out and in dynamically,

resulting in fast turn-around time for end users.

 4) Cloud computing provides much larger room for the trade-off between per-

formance and cost. The spectrum of resource investment now ranges from dedi-

cated private resources, a hybrid resource pool combining local resource and re-

mote Clouds, and full outsourcing of computing and storage to public Clouds.

Cloud computing not only provides the potential of solving larger-scale scientific

problems, but also brings the opportunity to improve the performance/cost ratio.

 5) Although migrating scientific workflow management to Cloud may intro-

duce extra management overheads, Cloud computing now can leverage the ad-

vantages carried about with SWFMSs (e.g. workflow management, provenance

tracking, etc.).

3 Integration of Swift and OpenNebula

 In this section, we talk about our end-to-end approach in integrating Swift

with the OpenNebula Cloud platform. Before we go into further details of the in-

tegration, we will first introduce the reference service framework that we propose

to migrate scientific workflows to various Cloud platforms.

3.1 The Service Framework

 We propose a reference service framework that addresses the above men-

tioned challenges and covers all the major aspects involved in the migration and

integration of SWFMS into the Cloud, from client-side workflow specification,

service-based workflow submission and management, task scheduling and execu-

tion, to Cloud resource management and provisioning. As illustrated in Fig. 2, the

service framework includes 4 layers, 7 components and 6 interfaces. Detailed de-

scription of the service framework is made public at our website
1
.

 The first layer is the Infrastructure Layer, which consists of multiple Cloud

platforms with the underlying server, storage and network resources. The second

layer is called the Middleware Layer. This layer consists of three subsystems:

Cloud Resource Manager, Scheduling Management Service and Task Scheduling

Frameworks. The third layer, called the Service Layer, consists of Cloud Work-

flow Management Service and Workflow Engines. Finally, the fourth layer – the

Client Layer, consists of the Workflow Specification & Submission and the Work-

flow Presentation & Visualization subsystem. The service framework would help

to break through workflows’ dependence on the underlying resource environment,

and take advantage of the scalability and on-demand resource allocation of the

Cloud.

 We present a layered service framework for the implementation and applica-

tion of integrating SWFMS into manifold Cloud platforms, which can also be ap-

1 http://www.cloud-uestc.cn/projects/serviceframework/index.html

9

plicable when deploying a workflow system in Grid environments. The separation

of each layer enables abstractions and different independent implementations for

each layer, and provides the opportunity for scientists to develop a stable and fa-

miliar problem solving environment where rapid technologies can be leveraged

but the details of which are shielded transparently from the scientists who need to

focus on science itself. The Interfaces defined in the framework is flexible and

customizable for scientists to expand or modify according to their own specified

requirements and environments.

Fig. 1. The Service Framework

3.2 Integration Architecture and Implementation

 Based on the service framework, we devise an end-to-end integration ap-

proach that addresses the aforementioned challenges. We call it end-to-end be-

cause it covers all the major aspects involved in the integration, including a client

side workflow submission tool, a Cloud workflow management service that ac-

cepts the submissions, a Cloud Resource Manager (CRM) that accepts resource

requests from the workflow service and dynamically instantiates a Falkon virtual

cluster, and a cluster monitoring service that monitors the health of the acquired

Cloud resources.

 As illustrated in Fig. 3, the integration architecture consists of four layers. At

the client layer, we provide a client-side development and submission tool for ap-

plication specification and submission. At the service layer, a Cloud workflow

service based on the Swift workflow management system [32] is presented as a

gateway to the Cloud platform underneath. At the middleware layer, a few com-

10

ponents are integrated seamlessly to bridge the gap between the service layer and

the underlying infrastructure layer. The components include a Cloud resource

manager, a virtual cluster provisioner, and a task execution service. The Cloud

workflow service accepts workflow submissions from the client tool, and makes

resource requests to the Cloud resource manager, which in turn provisions a virtu-

al cluster on-demand and also deploys the Falkon [27] execution service into the

cluster. Individual jobs from the workflow service are then passed onto the Falkon

service for parallel execution within the virtual cluster, and results delivered back

to the workflow service. At the infrastructure layer, we choose the OpenNebula

Cloud platform to manage Cloud datacenter resources such as servers, network

and storage.

Fig. 2 The Integration Architecture

3.2.1 The Swift Workflow Management System

 Swift is a system that bridges scientific workflows with parallel computing. It

is a parallel programming tool for rapid and reliable specification, execution, and

management of large-scale science and engineering workflows. Swift takes a

structured approach to workflow specification, scheduling, and execution. It con-

sists of a simple scripting language called SwiftScript for concise specification of

complex parallel computations based on dataset typing and iterations [31], and

dynamic dataset mappings for accessing large-scale datasets represented in diverse

data formats. The runtime system provides an efficient workflow engine for

scheduling and load balancing, and it can interact with various resource manage-

ment systems such as PBS and Condor for task execution.

 The Swift system architecture consists of four major components: Program

Specification, Scheduling, Execution, and Provisioning, as illustrated in Fig. 4.

11

Computations are specified in SwiftScript, which has been shown to be simple yet

powerful. SwiftScript programs are compiled into abstract computation plans,

which are then scheduled for execution by the workflow engine onto provisioned

resources. Resource provisioning in Swift is very flexible, tasks can be scheduled

to execute on various resource providers, where the provider interface can be im-

plemented as a local host, a cluster, a multi-site Grid, or the Amazon EC2 service.

 The four major components of the Swift system can be easily mapped into the

four layers in the reference architecture: the specification falls into the Presenta-

tion Layer, although SwiftScript focuses more on the parallel scripting aspect for

user interaction than on Graphical representation; the scheduling components cor-

respond to the Workflow Management Layer; the execution components maps to

the Task Management layer; and the provisioning layer can be thought as mostly

in the Operational Layer.

Fig. 3 Swift System Architecture

3.2.2 The OpenNebula Cloud Platform

 We integrate Swift with the OpenNebula Cloud platform. We choose

OpenNebula for our implementation because it has a flexible architecture and is

easy to customize, and also because it provides a set of tools and service interfaces

that are handy for the integration. We have also integrated with other Cloud plat-

forms such as Amazon EC2 and Eucalyptus in similar means.

 OpenNebula is a fully open-source toolkit to build IaaS private, public and

hybrid Clouds, and a modular system that can implement a variety of Cloud archi-

tectures and can interface with multiple datacenter services. OpenNebula orches-

trates storage, network, virtualization, monitoring, and security technologies to

deploy multi-tier services [38] [39] as virtual machines on distributed infrastruc-

tures, combining both datacenter resources and remote Cloud resources, according

to allocation policies.

 The OpenNebula internal architecture (as shown in Fig. 5) can be divided into

three layers: Drivers, Core and Tools [40]:

12

1. Tools: This layer contains tools distributed with OpenNebula, such as the

CLI, the scheduler, the libvirt API implementation or the Cloud RESTful

interfaces, and also third party tools that can be easily created using the

XML -RPC interface or the OpenNebula client API.

2. Core: The core consists of a set of components to control and monitor

virtual machines, virtual networks, storage and hosts. The management of

VMs, storage devices and virtual network is implemented in this layer by

invoking a suitable driver.

3. Drivers: This layer is responsible for directly interacting with specific

middleware (e.g. virtualization hypervisor, file transfer mechanisms or

information services). It is designed to plug-in different virtualization,

storage and monitoring technologies and Cloud services into the core.

Fig. 4 The OpenNebula Architecture

3.2.3 Key Components

 The client submission tool: The client submission tool is a standalone java

application that provides an IDE for workflow development, and allows users to

edit, compile, run and submit SwiftScripts. Scientists and application developers

can write their scripts in this environment and also test run their workflows on lo-

cal host, before they make final submissions to the Swift Cloud service to run in

the Cloud. For submission, it provides multiple submission options: execute im-

mediately, execute at a fixed time point, or execute recurrently (per day, per week

etc.). We give a screenshot of the tool in Fig. 6, which shows the current status of

workflows submitted to the Cloud service.

 One of the key components of the system is the Swift Cloud workflow man-

agement service that acts as an intermediary between the workflow client and the

backend Cloud Resource Manager. The service has a Web interface for configura-

tion of the service, the resource manager and application environments. It supports

13

the following functionalities: SwiftScript programming, SwiftScript compilation,

workflow scheduling, resource acquisition, and status monitoring. In addition, the

service also implements fault-tolerance mechanism. A screenshot of the service

that visualizes workflow execution progress is shown in Fig. 7.

Fig. 5. The Client Tool

Fig. 6. The Cloud Workflow Management Service

 The Cloud Resource Manager (CRM) accepts resource requests from the

Cloud workflow management service, and is in charge of interfacing with

OpenNebula and provisioning Falkon virtual clusters dynamically to the workflow

service. The process is illustrated in Fig. 8. In addition, it also monitors the virtual

clusters. The process to start a Falkon virtual cluster is as follows:

14

1) CRM provides a service interface to the workflow service, the latter makes a

resource request to CRM.

2) CRM initializes and maintains a pool of virtual machines, the number of vir-

tual machines in the pool can be set via a config file, Ganglia is started on

each virtual machine to monitor CPU, memory and IO.

3) Upon a resource request from the workflow service:

a) CRM fetches a VM from the VM pool and starts the Falkon service in

that VM.

b) CRM fetches another VM and starts the Falkon worker in that VM, and

also makes that worker register to the Falkon service.

c) CRM repeats step b) until all the Falkon workers are started and regis-

tered.

d) If the VMs in the pool are not enough, then CRM will make resource re-

quest to the underlying OpenNebula platform to create more VM instanc-

es.

4) CRM returns the end point reference of the Falkon server to the workflow

service, and the workflow service can now dispatch tasks to the Falkon execu-

tion service.

5) CRM starts the Cluster Monitoring Service to monitor the health of the

Falkon virtual cluster. The monitoring service checks heartbeat from all the

VMs in the virtual cluster, and will restart a VM if it goes down. If the restart

fails, then for a Falkon service VM, it will get a new VM and start Falkon

service on it, and have all the workers register to the new service. For a

Falkon worker VM, it will replace the worker, and also delete the failed VM.

6) Note that we also implement an optimization technique to speed up the

Falkon virtual cluster creation. When a Falkon virtual cluster is decommis-

sioned, we change its status to “standby”, and it can be re-activated.

7) When CRM receives resource request from the workflow service, it checks if

there is a “standby” Falkon cluster, if so, it will return the information of the

Falkon service directly to the workflow service, and also checks the number

of the Falkon workers already in the cluster.

a) If the number is more than requested, then the surplus workers are dereg-

istered and put into the VM pool.

b) If the number is less than required, then VMs will be pulled from the VM

pool to create more workers.

 As for the management of VM images, VM instances, and VM network,

CRM interacts with and relies on the underlying OpenNebula Cloud platform. Our

resource provisioning approach takes into consideration not only the dynamic cre-

ation and deployment of a virtual cluster with a ready-to-use execution service,

but also efficient instantiation and re-use of the virtual cluster, as well as the moni-

toring and recovery of the virtual cluster. We demonstrate the capability and effi-

ciency of our integration using a small scale experiment setup.

15

Fig. 7. The Cloud Resource Manager

4 Performance Evaluation

 In this section, we demonstrate and analyze our integration approach using a

NASA MODIS image processing workflow. The NASA MODIS dataset [30] we

use is a set of satellite aerial data blocks, each block is of size around 5.5MB, with

digits indicating the geological feature of each point in that block, such as water,

sand, green land, urban area, etc.

4.1 The MODIS Image Processing Workflow

 The workflow (illustrated in Fig. 9) takes a set of such blocks, gets the size of

the urban area in each of the blocks, analyzes and picks the top 12 of the blocks

that have the largest urban area, converts them into displayable format, and as-

sembles them into a single PNG file.

Fig. 8. MODIS Image Processing Workflow

16

4.2 Experiment Configuration

 We use a small cluster setting for the experiments, which includes 6 ma-

chines, each configured with Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB

memory, 500GB HDD, and connected with Gigabit Ethernet LAN. The operating

system is Ubuntu 10.04.1, with OpenNebula 2.2 installed. The configuration for

each VM is 1 core, 1.5GB memory, 20GB HDD, and we use KVM as the hypervi-

sor. One of the machines is used as the frontend which hosts the workflow service,

the CRM, and the monitoring service. The other 5 machines are used to instantiate

VMs, and each physical machine can host up to 2 VMs, so at most 10 VMs can be

instantiated in the environment. The configuration of the experiment is illustrated

in Fig. 10. Although the cluster size is not significant, we believe it demonstrates

the essence of our cluster recycling mechanism.

Fig. 9. Experiment Configuration

4.3 Experiment Results

 In our experiment, we control the workload by changing the number of input

data blocks, the resource required, and the submission type (serial submission or

parallel submission). So there are three dependent variables. We design the exper-

iment by making two of the dependent variables constant, and changing the other.

We run three types of experiments:

1. The serial submission experiment

2. The parallel submission experiment

3. The different number of data blocks experiment

17

 In all the experiments, VMs are pre-instantiated and put in the VM pool. The

time to instantiate a VM is around 42 seconds and this doesn’t change much for all

the VMs created.

4.3.1 The serial submission experiment

 In the serial submission experiment, we first measure the base line for server

creation time, worker creation time and worker registration time. We create a

Falkon virtual cluster with 1 server, and varying number of workers, and we don’t

reuse the virtual cluster.

 In Fig. 11, we can observe that the server creation time is quite stable, around

4.7s every time. Worker creation time is also stable, around 0.6s each, and for

worker registration, the first one takes about 10s, and for the rest, about 1s each.

 For the rest of the serial submission, we submit a workflow after the previous

one has finished to test virtual cluster recycling, where the input data blocks re-

main fixed.

 In Fig. 12, the resources required are one Falkon server with 5 workers, one

server with 3 workers and one server with 1 worker. We can see that for the sec-

ond and third submissions, the worker creation and server creation time are zero,

only the surplus workers need to de-register themselves.

Fig. 10. The Base Line for Cluster Creation

 In Fig. 13, the resources required are in the reverse order of those in Fig. 12.

Each time two extra Falkon workers need to be created and registered, and the

time taken are roughly the same. These experiments show that the Falkon virtual

cluster can be re-used after it is being created, and worker resources can be dy-

namically removed or added.

18

Fig. 11. Serial Submission, Decreasing Resource Required

Fig. 12. Serial Submission, Increasing Resource Required

 In Fig. 14, we first request a virtual cluster with 1 server and 9 workers, we

then make 5 parallel requests for virtual clusters with 1 server and 1 worker. We

can observe that one of these requests is satisfied using the existing virtual cluster,

where the other 4 are created on-demand. In this case, it takes some time to de-

register all the 8 surplus workers, which makes the total time comparable to on-

demand creation of the cluster.

19

Fig. 13. Serial Submission, Mixed Resource Required

4.3.2 The parallel submission experiment

 In the parallel submission experiment, we submit multiple workflows at the

same time in order to measure the maximum parallelism (the number of concur-

rent workflows that can be hosted in the Cloud platform) in the environment.

 First, we submit resource requests with 1 server and 2 workers, and the max-

imum parallelism is up to three. In Table 1, we show the results for the experi-

ment, in which we make resource requests for 1 virtual cluster, 2 virtual clusters, 3

virtual clusters and 4 virtual clusters.

TABLE 1 Parallel Submission, 1 Server and 2 Workers

of Clusters Server Creation Worker Creation Worker Registration

1 4624ms 1584ms 11305ms

2
4696ms 2367ms 11227ms

445ms 0 0

3

4454ms 1457ms 11329ms

488ms 0 0

548ms 0 0

4

521ms 0 0

585ms 0 0

686ms 0 0

submission failed

 For the request of 2 virtual clusters, it can re-use the one released by the early

request, and the time to initialize the cluster is significantly less than fresh creation

(445ms vs. 4696ms). It has to create the second cluster on-demand. For the 4-

virtual-cluster request, since all the VM resources are used up by the first 3 clus-

20

ters, the 4
th
 cluster creation would fail as expected. When we change resource re-

quests to 1 server and 4 workers, the maximum parallelism is two, and the request

to create a third virtual cluster also fails. Since our VM pool has a maximum of

ten virtual machines, it's easy to explain why this has happened. This experiment

shows that our integrated system can maximize the cluster resources assigned to

workflows to achieve efficient utilization of resources.

4.3.3 Different number of data blocks experiment

 In this experiment, we change the number of input data blocks from 50 blocks

to 25 blocks, and measure the total execution time with varying number of work-

ers in the virtual cluster.

 In Fig. 15, we can observe that with the increase of the number of workers,

the execution time decreases accordingly (i.e. execution efficiency improves),

however at 5 workers to process the workflow, the system reaches efficiency peak.

After that, the execution time goes up with more workers. This means that the im-

provement can’t subsidize the management and registration overhead of the added

worker. The time for server and worker creation, and worker registration remain

unchanged when we change the input size (as have been shown in Fig. 11). The

experiment indicates that while our virtual resource provisioning overhead is well

controlled, we do need to carefully determine the number of workers used in the

virtual cluster to achieve resource utilization efficiency.

Fig. 14. Different Input Sizes

5 Related Work

 Systems such as Taverna [11], Kepler [9], Vistrails [10], Pegasus [8], Swift

[32], and VIEW [26] have seen wide adoption in various disciplines such as Phys-

ics, Astronomy, Bioinformatics, Neuroscience, Earth Science, and Social Science.

21

In Table 2, we list some use cases that focused on applying SWFMSs to execute

data-intensive applications.

TABLE 2 Use Cases of SWFMSs

SWFMSs Application Fields Use Cases

Swift Climate Science Climate Data Analysis[13]

Taverna Bioinformatics
Single Nucleotide Polymorphisms

Analysis[14]

Vistrails Earth Science NASA Earth Exchange [15]

Kepler Physics Hyperspectral image processing [37]

VIEW Medical Science Neurological disorder diagnosis[48]

 There are some early explorers that try to evaluate the feasibility, perfor-

mance, and adaptation of running data intensive and HPC applications on Clouds

or hybrid Grid/Cloud environments. Palankar et al. [17] evaluated the feasibility,

cost, availability and performance of using Amazon’s S3 service to provide stor-

age support to data intensive applications, and also identified a set of additional

functionalities that storage services targeting data-intensive science applications

should support. Oliveira et al. [35] evaluated the performance of X-Ray Crystal-

lography workflow using SciCumulus middleware with Amazon EC2. Wang et al.

[36] presented their early definition and experience of scientific Cloud computing

in the Cumulus project by merging existing Grid infrastructures with new Cloud

technologies. These studies provide good source of information about Cloud plat-

form support for science applications. Other studies investigated the execution of

real science applications on commercial Clouds [19] [20], mostly being HPC ap-

plications, and compared the performance and cost against Grid environments.

While such applications indeed can be ported to a Cloud environment, Cloud exe-

cution doesn’t show significant benefit due to the applications’ tightly coupled na-

ture.

There have been a couple of researcher that have been investigating techniques

for deploying data-intensive workflows in the cloud using unique architectures

that are difficult to deploy on traditional platforms, such as grids [55–57]. Mean-

while, some other researches focused on developing new algorithms for work-

flows to take advantage of the unique pricing model and elasticity of infrastructure

clouds [49-53], and investigating new cloud workflow-scheduling algorithms that

optimize for cost, performance, and other quality-of-service metrics [58 –60].

 Gideon Juve et al. have studied the cost and performance of workflows in the

cloud via simulation [24], using an experimental Nimbus cloud [25], individual

Elastic Compute Cloud (EC2) nodes [28], and a variety of different intermediate

storage systems on EC2 [43]. Christian Vecchiola et al. have done similar investi-

gations on EC2 and Grid5000 [54]. These studies primarily analyzed the perfor-

mance and cost of workflows in the cloud, rather than the practical experience of

deploying workflows in the cloud. To address the shortages, Gideon Juve et al

[41] also related the practical experience of trying to run a nontrivial scientific

workflow application on three different infrastructures and compare the benefits

and challenges of each platform.

22

 M. Kozlovszky et al. [42] introduced a convenient way for sharing, integrat-

ing and executing different workflows in heterogeneous infrastructure environ-

ments. The paper explained in detail how to enable generic DCI compatibility for

grid workflow management systems (such as ASKALON, MOTEUR, gUSE/WS-

PGRADE, etc.) on job level and indirectly on workflow level. The generic DCI

Bridge service enables the execution of jobs onto existing major DCI platforms

(such as Service Grids, Desktop Grids, Web services, or even Cloud based DCIs).

The CODA framework [16] was designed and implemented to support big data

analytics in Cloud computing. Important functions, such as workflow scheduling,

data locality, resource provisioning, and monitoring functions, had been integrated

into the framework. Through the CODA framework, the workflows could be easi-

ly composed and efficiently executed in Amazon EC2. In order to address perfor-

mance and cost issues of big data processing on Clouds, Long Wang et al. [5] pre-

sented a novel design of adaptive workflow management system which included a

data mining based prediction model, workflow scheduler, and iteration controls to

optimize the data processing via iterative workflow tasks.

 Those works mentioned above are important as they provide valuable experi-

ence on migrating traditional scientific workflows to various Cloud platforms.

However, a normalized, end-to-end integration approach is still missing. We pre-

sent an end-to-end approach that addresses the integration of Swift, an SWFMS

that has broad application in Grids and supercomputers, with the OpenNebula

Cloud platform. The integration covers all the major aspects involved in workflow

management in the Cloud, including a client side workflow submission tool, a

Cloud workflow management service, a Cloud Resource Manager (CRM), and a

cluster monitoring service.

6 Conclusion and Future Work

 As more and more scientific applications are migrating into Cloud, it is im-

perative to also migrate SWFMSs into Cloud to take advantage of Cloud scalabil-

ity, and also to handle the ever increasing data scale and analysis complexity of

such applications. Cloud offers unprecedented scalability to workflow systems,

and could potentially change the way we perceive and conduct scientific experi-

ments. The scale and complexity of the science problems that can be handled can

be greatly increased on the Cloud, and the on-demand nature of resource alloca-

tion on the Cloud will also help improve resource utilization and user experience.

 We first introduce our service framework for integrating SWFMSs into Cloud

computing platforms. Then we present our early effort in integrating the Swift

workflow management system with the OpenNebula Cloud platform, in which a

Cloud workflow management service, a Cloud resource manager, and a cluster

monitoring service are developed. We also demonstrate the functionality and effi-

ciency of our approach using a set of experiments and a real-world scientific

workflow.

23

 For future work, we are working on a common interface that will facilitate the

integration of Swift with other Cloud platforms such as Amazon EC2 and Open-

stack. We will also investigate commonality in migrating other SWFMSs into

Cloud, i.e. ways to offer SWFMSs as a service and to enable them to interact with

the underlying Cloud resources. We will also leverage distributed storage for VM

images for more efficient access, and conduct large scale experiments to look at

ways to improve VM instantiation, virtual cluster creation and workflow execu-

tion. We are also exploring redesigning workflow systems from the ground up us-

ing Cloud Computing building blocks, such as EC2 [68], SQS [66], DynamoDB

[67], S3 [65], and CloudWatch [68], in order to deliver a light-weight, fast, and

distributed workflow system that should scale along with the largest cloud infra-

structures [44].

Acknowledgments

 This paper is supported by the key project of National Science Foundation of

China No. 61034005 and No. 61272528.

7 References

[1] OpenNebula, [Online]. Available: http://www.OpenNebula.org, 2014

[2] Openstack, [Online]. Available: http://www.openstack.org, 2014

[3] GenBank, [Online]. Available: http://www.ncbi.nlm.nih.gov/genbank, 2014

[4] Large Hadron Collider, [Online]. Available: http://lhc.web.cern.ch, 2014

[5] Wang L, Duan R, Li X, et al. An Iterative Optimization Framework for Adaptive Workflow Man-

agement in Computational Clouds[C]//Trust, Security and Privacy in Computing and Communi-

cations (TrustCom), 2013 12th IEEE International Conference on. IEEE, 2013: 1049-1056.

[6] I. Foster, Y. Zhao, I. Raicu, S. Lu. “Cloud Computing and Grid Computing 360-Degree Com-

pared,” IEEE Grid Computing Environments (GCE08) 2008, co-located with IEEE/ACM Super-

computing 2008. Austin, TX. pp. 1-10

[7] G. Bell, T. Hey, A. Szalay, Beyond the Data Deluge, Science, Vol. 323, no. 5919, pp. 1297-1298,

2009.

[8] E. Deelman et al. Pegasus: A framework for mapping complex scientific workflows onto distrib-
uted systems, Scientific Programming, vol. 13, iss. 3, pp. 219-237. July 2005.

[9] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y. Zhao,

Scientific workflow management and the Kepler system, Concurrency and Computation: Practice
and Experience,Special Issue: Workflow in Grid Systems, vol. 18, iss. 10, pp. 1039–1065, 25

August 2006.

[10] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger and H. T. Vo, Managing Rap-
idly-Evolving Scientific Workflows, Provenance and Annotation of Data, Lecture Notes in Com-

puter Science, 2006, vol. 4145/2006, 10-18, DOI: 10.1007/11890850_2

[11] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn, “Taverna: a tool
for building and running workflows of services,” Nucleic Acids Research, vol. 34, iss. Web Serv-

er issue, pp. 729-732, 2006.

[12] Y. Zhao, X. Fei, I. Raicu, S. Lu, Opportunities and Challenges in Running Scientific Workflows
on the Cloud, IEEE International Conference on Cyber-enabled distributed computing and

knowledge discovery (CyberC), pp. 455-462, 2011.

24

[13] Woitaszek, M., Dennis, J., Sines, T. Parallel High-resolution Climate Data Analysis using Swift.

4th Workshop on Many-Task Computing on Grids and Supercomputers 2011.

[14] Damkliang K, Tandayya P, Phusantisampan T, et al. Taverna Workflow and Supporting Service
for Single Nucleotide Polymorphisms Analysis[C]//Information Management and Engineering,

2009. ICIME'09. International Conference on. IEEE, 2009: 27-31.

[15] Zhang J, Votava P, Lee T J, et al. Bridging VisTrails Scientific Workflow Management System to
High Performance Computing[C]//Services (SERVICES), 203 IEEE Ninth World Congress on.

IEEE, 2013: 29-36.

 [16] Chaisiri S, Bong Z, Lee C, et al. Workflow framework to support data analytics in cloud compu-

ting[C]//Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on. IEEE, 2012: 610-613.

[17] M. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel. Amazon S3 for science grids: a viable solu-
tion? In Proceedings of the 2008 international workshop on Data-aware distributed computing

(DADC '08), pp. 55-64, 2008.

[18] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, D. H. Epema, “Performance
Analysis of Cloud Computing Services for Many-Tasks Scientific Computing,” IEEE Transac-

tions on Parallel and Distributed Systems, pp. 931-945, June, 2011.

[19] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science on the
Cloud: the Montage example. In Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting, SC ’08, pp. 50:1–50:12, Piscataway, NJ, USA, 2008.

[20] C. Vecchiola, S. Pandey, and R. Buyya. High-Performance Cloud Computing: A View of Scien-
tific Applications. In International Symposium onParallel Architectures, Algorithms, and Net-

works, pp. 4-16, 2009.

[21] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon et al. Performance Analysis of High Per-
formance Computing Applications on the Amazon Web Services Cloud. In CloudCom, IEEE, pp.

159–168, 2010.

[22] Keahey, K., and T. Freeman. Contextualization: Providing One-click Virtual Clusters. in eSci-

ence. 2008, pp. 301-308. Indianapolis, IN, 2008.

[23] G. Juve and E. Deelman. Wrangler: Virtual Cluster Provisioning for the Cloud. In HPDC, pp.
277-278, 2011.

[24] Deelman E, Singh G, Livny M, et al. The cost of doing science on the cloud: the montage exam-

ple[C]//Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 2008:
50.

[25] Hoffa C, Mehta G, Freeman T, et al. On the use of cloud computing for scientific work-

flows[C]//eScience, 2008. eScience'08. IEEE Fourth International Conference on. IEEE, 2008:
640-645.

[26] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, F. Fotouhi, ñService-Oriented Architecture for

VIEW: a Visual Scientific Workflow Management System,ò In Proc. of the IEEE 2008 Interna-
tional Conference on Services Computing (SCC), pp.335-342, Honolulu, Hawaii, USA, July

2008.

[27] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: a Fast and Light-weight tasK

executiON framework,ò IEEE/ACM SuperComputing 2007, pp. 1-12.

[28] Juve G, Deelman E, Vahi K, et al. Scientific workflow applications on Amazon EC2[C]//E-

Science Workshops, 2009 5th IEEE International Conference on. IEEE, 2009: 59-66.

 [29] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, Allan Espinosa, Mihael Hategan, Ben

Clifford, Ioan Raicu, “Parallel Scripting for Applications at the Petascale and Beyond,” IEEE

Computer Nov. 2009 Special Issue on Extreme Scale Computing, vol. 42, iss. 11, pp. 50-60,
2009.

[30] NASA MODIS dataset, [Online]. Available: http://modis.gsfc.nasa. gov/, 2013.

[31] Y. Zhao, J. Dobson, I. Foster, L. Moreau, M. Wilde, “A Notation and System for Expressing and
Executing Cleanly Typed Workflows on Messy Scientific Data,ò SIGMOD Record, vol. 34, iss. 3,

pp. 37-43, September 2005.

25

[32] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski, I. Raicu, T. Stef-Praun, M.

Wilde. “Swift: Fast, Reliable, Loosely Coupled Parallel Computation,” IEEE Workshop on Sci-

entific Workflows 2007, pp. 199-206.

[33] Hadoop, [Online]. Available: http://hadoop.apache.org/, 2012

[34] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov. The

Eucalyptus Open-Source Cloud-Computing System, 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, CCGRID '09, pp. 124-131, 2009.

[35] Oliveira, D. Ocaña, K., Ogasawara, E., Dias, J., Baião, F., Mattoso, M., A Performance Evalua-

tion of X-Ray Crystallography Scientific Workflow Using SciCumulus. IEEE CLOUD 2011, pp.

708-715.

[36] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl, "Scientific Cloud Com-

puting: Early Definition and Experience," in 10th IEEE International Conference on High Per-
formance Computing and Communications, HPCC '08. , pp. 825-830, 2008.

[37] Zhang J. Ontology-driven composition and validation of scientific grid workflows in Kepler: a

case study of hyperspectral image processing[C]//Grid and Cooperative Computing Workshops,
2006. GCCW'06. Fifth International Conference on. IEEE, 2006: 282-289.

[38] R. Moreno-Vozmediano, R.S. Montero, I.M. Llorente. "Multi -Cloud Deployment of Computing

Clusters for Loosely-Coupled MTC Applications", IEEE Transactions on Parallel and Distributed
Systems. 22(6), pp.924-930, 2011.

[39] R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. "An Elasticity Model for High

Throughput Computing Clusters", J. Parallel and Distributed Computing. 71(6), pp.750-757,
2011.

[40] OpenNebula Architecture, http://www.opennebula.org/documentation:archives:rel2.2:archit-

ecture, 2013.

[41] Juve G, Rynge M, Deelman E, et al. Comparing FutureGrid, Amazon EC2, and Open Science

Grid for Scientific Workflows[J]. Computing in Science & Engineering, 2013, 15(4): 20-29.

[42] M. Kozlovszky, K. Karóczkai, I. Márton, A. Balasko, A. C. Marosi, and P. Kacsuk, “Enabling

Generic Distributed Computing Infrastructure Compatibility for Workflow Management Sys-

tems”, Computer Science, vol. 13, no. 3, p. 61, 2012.

[43] Juve G, Deelman E, Vahi K, et al. Data sharing options for scientific workflows on amazon

ec2[C]//Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE Computer Society, 2010: 1-9.

[44] I. Sadooghi, I. Raicu. "CloudKon: a Cloud enabled Distributed tasK executiON framework", Illi-

nois Institute of Technology, Department of Computer Science, PhD Oral Qualifier, 2013

[45] Juve G, Deelman E. Scientific workflows in the cloud[M]//Grids, Clouds and Virtualization.
Springer London, 2011: 71-91.

[46] Lacroix Z, Aziz M. Resource descriptions, ontology, and resource discovery[J]. International

Journal of Metadata, Semantics and Ontologies, 2010, 5(3): 194-207.

[47] Service Framework, [Online]. Available: http://www.cloud-uestc.cn/projects/serviceframework/

index.html

[48] Lin C, Lu S, Lai Z, et al. Service-oriented architecture for VIEW: a visual scientific workflow
management system[C]//Services Computing, 2008. SCC'08. IEEE International Conference on.

IEEE, 2008, 1: 335-342.

[49] Lin C, Lu S. Scheduling scientific workflows elastically for cloud computing[C]//Cloud Compu-
ting (CLOUD), 2011 IEEE International Conference on. IEEE, 2011: 746-747.

[50] Mao M, Humphrey M. Auto-scaling to minimize cost and meet application deadlines in cloud

workflows[C]//Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2011: 49.

[51] Oliveira D, Ogasawara E, Ocaña K, et al. An adaptive parallel execution strategy for cloudК
based scientific workflows[J]. Concurrency and Computation: Practice and Experience, 2012,

24(13): 1531-1550.

26

[52] Papuzzo G, Spezzano G. Autonomic management of workflows on hybrid grid-cloud infrastruc-

ture[C]//Proceedings of the 7th International Conference on Network and Services Management.

International Federation for Information Processing, 2011: 230-233.

[53] Reynolds C J, Winter S, Terstyanszky G Z, et al. Scientific workflow makespan reduction

through cloud augmented desktop grids[C]//Cloud Computing Technology and Science (Cloud-

Com), 2011 IEEE Third International Conference on. IEEE, 2011: 18-23.

[54] Vecchiola C, Pandey S, Buyya R. High-performance cloud computing: A view of scientific appli-

cations[C]//Pervasive Systems, Algorithms, and Networks (ISPAN), 2009 10th International

Symposium on. IEEE, 2009: 4-16.

[55] Yuan D, Yang Y, Liu X, et al. On-demand minimum cost benchmarking for intermediate dataset

storage in scientific cloud workflow systems[J]. Journal of Parallel and Distributed Computing,

2011, 71(2): 316-332.

[56] Çatalyürek Ü V, Kaya K, Uçar B. Integrated data placement and task assignment for scientific

workflows in clouds[C]//Proceedings of the fourth international workshop on Data-intensive dis-

tributed computing. ACM, 2011: 45-54.

[57] Wang J, Korambath P, Altintas I. A physical and virtual compute cluster resource load balancing

approach to data-parallel scientific workflow scheduling[C]//Services (SERVICES), 2011 IEEE

World Congress on. IEEE, 2011: 212-215.

[58] Tolosana-Calasanz R, BañAres J Á N, Pham C, et al. Enforcing QoS in scientific workflow sys-

tems enacted over Cloud infrastructures[J]. Journal of Computer and System Sciences, 2012,

78(5): 1300-1315.

[59] Bessai K, Youcef S, Oulamara A, et al. Bi-criteria workflow tasks allocation and scheduling in

Cloud computing environments[C]//Cloud Computing (CLOUD), 2012 IEEE 5th International

Conference on. IEEE, 2012: 638-645.

[60] Ostermann S, Prodan R. Impact of variable priced cloud resources on scientific workflow sched-

uling[M]//Euro-Par 2012 Parallel Processing. Springer Berlin Heidelberg, 2012: 350-362.

[61] Ioan Raicu. "Many-Task Computing: Bridging the Gap between High Throughput Computing

and High Performance Computing", Computer Science Department, University of Chicago, Doc-

torate Dissertation, March 2009

[62] Ioan Raicu, Ian Foster, Yong Zhao, Alex Szalay, Philip Little, Christopher M. Moretti, Amitabh

Chaudhary, Douglas Thain. "Towards Data Intensive Many-Task Computing", book chapter in

"Data Intensive Distributed Computing: Challenges and Solutions for Large-Scale Information
Management", IGI Global Publishers, 2009

[63] Michael Wilde, Ioan Raicu, Allan Espinosa, Zhao Zhang, Ben Clifford, Mihael Hategan, Kamil

Iskra, Pete Beckman, Ian Foster. "Extreme-scale scripting: Opportunities for large task-parallel
applications on petascale computers", Scientific Discovery through Advanced Computing Con-

ference (SciDAC09) 2009

[64] Dongfang Zhao, Chen Shou, Tanu Malik, Ioan Raicu. “Distributed Data Provenance for Large-
Scale Data-Intensive Computing”, IEEE Cluster 2013

[65] Ioan Raicu, Pete Beckman, Ian Foster. “Making a Case for Distributed File Systems at Exascale”,

ACM Workshop on Large-scale System and Application Performance (LSAP), 2011

[66] Dharmit Patel, Faraj Khasib, Iman Sadooghi, Ioan Raicu. "Towards In-Order and Exactly-Once

Delivery using Hierarchical Distributed Message Queues", 1st International Workshop on Scala-

ble Computing For Real-Time Big Data Applications (SCRAMBL'14) 2014

[67] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang, Anupam Rajendran,

Zhao Zhang, Ioan Raicu. “ZHT: A Light-weight Reliable Persistent Dynamic Scalable Zero-hop

Distributed Hash Table”, IEEE International Parallel & Distributed Processing Symposium
(IPDPS) 2013

[68] Iman Sadooghi, Sandeep Palur, Ajay Anthony, Isha Kapur, Karthik Belagodu, Pankaj Purandare,

Kiran Ramamurty, Ke Wang, Ioan Raicu. "Achieving Efficient Distributed Scheduling with Mes-
sage Queues in the Cloud for Many-Task Computing and High-Performance Computing", 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2014

