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Abstract: Cloud computingis an emerging computing paradighat can offer
unprecedented scalability and resources on demand, againisg significant
adoption in the science communitt the same timescientific workflow man-
agement systems provide essential supaodt functionalityto scientific comp-
ting, such as management of data and task dependencies, job scheduling-and ex
cution, provenance trackingfault tolerance Migrating scientific workflow
managemenisystemsfrom traditional Grid computing envionmens into the
Cloud would enablea much broader user basectinducttheir scietific research
with ever increasing data scale and analysis complekhis papemresens our
experience irintegmting the Swift scientific workflow management system with
the OpenNebula Cloud platforrvhich supports workflow specification andisu
mission, ordemand virtual cluster provisioning, higlroughput task scheduling
and execution, and efficient and scatabdsource managementthe Cloud We
set up a series of experiments to demonstrate the capability oftegrationand
use aMODIS imageprocessingvorkflow as a showcase of the implementation.
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1 Introduction

Scientific workflow management systems (SWFMS) have been provem esse
tial to scientific computing as they provide functionalities such as workflowi-spec
fication, process coordination, job scheduling amdcution, provenance tracking
[64], fault tolerance etcSWFMS in factrepresent subset oMany-Task Comp-
ting (MTC) [61] workloads.MTC is reminiscent oHigh-Throughput Computing
but it differs in the enphasis of using many computing resources over shoit per
ods of time to ecomplish many computational tks (i.e. including both depen
ent and indperdent tasks), where the primary metrics are measured in seconds
(e.g. FLOPS, tasks/s, MB/s 1/O rates), as opposed to operations (e.g. jobs) per
month. MTC @notes higkhperformance computations comprising multigistinct
activities, caipled via file systemor memoryto-memory transferoperations
Tasks may be small or large, urdpessor or mitiprocessor, computtensive or
dataintensive. The set of tasks may be staticyorasnic, homogeneous or heier
gereous, loosely copled or tightlycoupled. The aggregate number of tasks,mgqua
tity of computing, and ames of data may bexiemely large[62]. MTC in-
cludes loosely coupledpplications that are g®rally communietion-intensive
but not naturally expressed using standardsage pasng intaface commonly
found in HPC, drawing attgion to the many comyations that are heterogeneous
but not "hapgy" pardlel. [63] There areunprecederted chédlengesraisedfor tra-
ditional séentific workflows, as the da scale and congpation camplexity are
growing exponentially. The ETL (Extration-TransformationA_oading), stoage,
retrieval, anbysis and application upon the huge amountsatd dre beyond the
capability of tradtional data pocessing mfrastructures.The community has
coined this as Big Datand it is often associated with the Cloud Computing-par
digm.

As an emerging computing paradigm, Clocmimputing [6] is gaining &-
mendous momentum in both academia and industry: not long after Amazon
opened its Elastic Computing Cloud (EC2) to the public, Google, IBM, and M
crosoft all released their Cloud platforms one after another. Meanwhile, several
open source Cloud platforms, such as Hadf{®8], OpenNebula [1], Eucalyptus
[34], Nimbus [22], and OpenStack [2], become available with fast growth of their
own communitiesThere are a couple of major benefits and advantages that are
driving the widespreaddoption of the Cloud computing paradigh):Easy access
to resources: resources are offered as services and can be accessed over Internet.
For instance, with a credit card, you can get access to Amazon EC2 vigual m
chines immediately; 2) Scalability aemand: once an application is deployed o
to the Cloud, the application can be automatically made scalable by provisioning
the resources in the Cloud on demand, and the Cloud takes care of scaling out and
in, and load balancing; 3) Better resource utilaat Cloud platforms can coard
nate resource utilization according to resource demand of the applications hosted
in the Cloud; and 4) Cost saving: Cloud users are charged based on their resource



usage in the Cloud, they only pay for what they use, artteif aipplications get

optimized, that will be reflected into a lowered cost immediately.

Theoretically, to address the big data problenthénabovescientific comj-
ting areas, scientists and application developers siraply refactor all the exis
ing workflow applications into the Clal computing paradigm, whicBound
straightforward but in realitis impractical. As traditional scientific workflowpa
plications have been mature during many years'’
complicated application ffic and consisbf massive computing processasch as
organization, distribution, coordination and parallel processing. Transforming
these scientific workflows will not only cost scientists and developers much time,
but alsorequiremanual handihg of all the integration details with various umee
lying Cloud platforms.

An alternative for researchers is to integrate scientific workflow management
systems with Clouds, leveraging the functionalities of both Cloud computing and
SWFMSs to provide a Cloud wotkfv platform as a service for big dataopr
cessing. In this solution, not only the challenges for traditional scientifi&-wor
flows can be dealt withthe researchers caisoconcentrate on applications and
utilize the integration pitform to process massiwdatain Clouds. As workflow
management systems are diverse in many aspects, such as workflow models,
workflow languages, workflow engines, and so on, and each workflow system e
gine may depend on one specific Distributed Computing Infrastructures (DCIs),
porting a workflow management system to run on another DCI may cost a large
quantity of extra effort. We would like to free researchers from complicated int
gration details, such as Cloud resource provisioning, task scheduling and so on,
and provide thenwith the convenience and transparencyatscalable big data
processing platform, therefore we propose a service framework to standardize the
integration between SWFMSs and Cloud platforms, breaking the limitations that a
specific SWFMS is bound to a pauiar DCI or Cloud environment. We define a
series of components and interfaces to normalize the interactions between diffe
ent workflow management subsystems.

This paper extends earlier woil2] in which weidentified various challeg
es associated withnigrating and adapting an SWFMS in the Cloud. In this paper,
we present an entb-end approach that addresses the integration of Swift, an
SWFMS that has broad application in Grids and supercomputers, with the
OpenNebula Cloud platfornThe integration cosrs all the major aspects involved
in workflow management in the Cloud, from cliesitle workflow submission to
the underlying Cloud resource management

Thi s pnajgreontfibstions are:

1. We analyzé¢he challengesor traditional scientific workflowsin the Grid eni
ronment, and pposed a structuredpproachto migrating a SWFMSinto the
Cloud

2. We ntegrateSwift with OpenNebula, in order to coordinate and automaite sc
entific analysis and discovery



3. We poposea virtual cluster provisioning mecham that could recycle Cloud
virtual machine instances

4. We pesenta use casas a showcase of the implementation

The rest of the paper is organized as followsthianext section, we discuss
the challenges of traditional scientific workflows and analjlze available sot
tions to thechallengesin the integration sction, we introduce a service fram
work for the integration c8WFMSs and Cloud platforms amgtesent our entb-
end integration of Swift and Opeebula. Inthe performance evaluatiosection,
we set up a series of experimemntsanalyze the integration amtmonstratehe
implementatiorusing a NASA MODIS image processing workfloM the related
work section, we discuss related work migrating scientific workflow managp-
mentsystems fromhe Grid to the Cloudn the last sction, we draw our conai
sions and discuss future work.

2 Challenges and Available Solutions

In this section, we discuss the challenges of utilizing traditional scientific
workflows to deal with big data problems and gmal thre available solutions to
thechallenges.

2.1 Challenges for Traditional Scientific Workflows

Scientific workflow systems have been formerly applied over a numbet of e
ecution environmentsuch as workstations, clustéesids, and supercomputeis
contast to Cloud environment, running workflows in theseironmens are fa-
ing a series of obstacles when dealing with big data problésjsificluding data
scale and computation complexitgsource provisioning,atlaboration inhetero-
geneougnvironmens, etc.

2.1.1 Data Scale and Computation Complexity

The execution of scientific workflows often conswsrand produce huge
amounts of distributed data objects. Thels¢a objects can be of primitive or
complex types, files idlifferent sizes and formats, databaables, or data objects
in other formsAt present,he scienti fic community is
coming from experiments, simulations, networks, sensors, and satellites, and the
data that needs to be processed generally grows faster thantatomal e-
sources and their speedhd data scale and managemt in big dateeraare le-
yond the capability ofraditional workflowsas they depend on traditional iafr
structure for resource provisioningcheduling and computindgror example,ri
high enegy physics, the Large Hadron Collidgl] at CERN can generate more
than 100TB of collision data per second; In bioinformatics, GenBnkne of
the largest DNA databases, already hosts over 120 billion bases, the European
Molecular Biology and Bioinfanatics Institute Laboratory (EMBL) hosts 14 PB
of data, and the numbers are expected to double evE2yn®onths.
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In addition to data scale, science analysis and processing complexity is also
growing exponentially. Scientists are now attempting calaratrequiring orders
of magnitude more computing and communication than was possible only a few
years ago. For instance, in bioinformatics a protein simulation prol#28hiri-
volves running many instances of a structure prediction simulation, each fwith di
ferent random initial conditions and performs multiple rounds. Given a couple of
proteins and parameter options, the simulation can easily scale up to 100,000
rounds. In cancer drug design, protein docking can involve millions of 3D-stru
tures and have aintime up to tens of CPU years. To enable the storage ahd ana
ysis of such large quantities of data and to achieve rapid turnaround, data and
computation may need to be distributed over thousands or even tens of thousands
of computation nodes.
2.1.2 Resource Provisioning

Resource provisioning represents the functionality and mechanism oftalloca
ing computing resource, storage space, network bandwidth, etc., to scientific
workflows. As cluster/Grid environmentrenot adept at providing the workflows
with smootlly dynamic resource allocation, the resource provisioned to a-scie
tific workflow is fixed once the workflow has been deployed to execute, which
may in return restrict the scale of science problems that can be handledksy wor
flows. Moreover, the scale oésource isipbounded by the size of a dedicated r
source pool with limited resource sharing extension in the form of virtual iergan
zations.Meanwhile, therepresentation of resources in the context of scientific
workflows is also bothéng the scientists46], as theymust be able to recognize
the supported types oésources and toolsor instance, theesource in Taverna is
awebservicewhich usuallylimitsthe use of many scientific resources thagnot
represented asebservices

To break througlthe limitations introduced by traditional resource provisio
ing strategy, some works have been focused onpgpmaches for automatedopr
visioning, including the Context BrokerJ2] from the Nimbus project, which pu
ported t he -clioknvictiglptclods t‘eorn"e t hat all owed clients
large virtual cluster launches in simple steps. The Wrangler sy&gnwps a
similar implementation that allowed users to describe a desired virtual cluster in
XML format, and send to a web service, whictmanaged the provisioning ofrvi
tual machines and the deployment of software and services. It was also capable of
interfacing with many differentloudresource providers.
2.1.3 Collaboration in Heterogeneous Environments

Collaboration refers to the interactiohstweena workflow management sy
tem andthe execution environment, such as resource access, resourcepstatus
ception load balance and so ods more and more scientific reseapmiojects le-
come collaborative in nature and involve multiple geograplyicdistributed
organizationsyhich bring a variety of challenges to scientists and applicaten d
velopers to handle the collaboration in heterogeneous environments.

The management of resour@jthority authenticatignsecurity, etc., can be
very complcated, as scientific workflow applications are normally executed in



cluster/Grid environmentswhere accessible computing resources and storage
space are located in various management doma@hmes.execubn of traditional
workflows is also influenced by #hheterogeneouperformance of computinge¥
source due to the varied configuration of physical machines. In addition, in Grid
environment, the status of physical machines is uncontrollable, switching among
online (the machine is started up and connectadadsrid), offline (the machine

is powered off or disconnected), busy (the machine is executing other tasks), etc.,
making it extremely difficult to maintain load balance.

2.2 Moving Workflow Applications to the Cloud

Cloud computing has been widely adopteddlvethe everincreasing cm-
puting and storage problems arising in the Internet Bgeaddress the challenges
of dealing withpetascale scientific problemis scientific workflow solutionswe
can moveworkflow applications into Cloud, usinfpr instance the MapReduce
computing model to reconstruct the formerly applied workflow specifications.
MapReduce provides a very simple programming model and powerful runtime
system for the processing of large datasets. The programming model is based on
justtwolkey functions: “map” and “reduce,
The runtime system automatically partitions input data and schedules the exec
tion of programs in a large cluster of commodity machidedified applications
to fully leverage theunprecedented scalability and resources on denwffeted
by theCloudwithout introducing extra management overheads.

Despite all the advantages of transforming traditional workflow applications
into Cloudbased applicationshere are stilmanydrawbaclk and unsolved obst
cles:

1) Cloud computing cannot benefit from tHistinguisted features provided
by SWFMSs, includingnanagement of data and task dependencies, job $ehedu
ing and exediibn, provenance tracking, etcThe challenges for big dataopr
cessig in Cloud remain unsolved and are still bothering developers and tesearc
ers.

2) Utilizing the certain data flow suppoudffered byMapReduceto refactor
traditional workflow applications requisepplication logic to be rewritten tolfo
low the mapredu@e-merge programming modehcientists and application déve
opersneed to fully understand the applications and port the applications before
they can leverage the parallel computing infrastructure.

3) Largescale workflovs, especiallydataintensive scieiific workflows may
require far mordunctionality and flexibility than MapReduce can provide, and the
implicit semantics incurred by a workflow specification goes far more than just
the “map” and “reduce” operati omso, for instanc
compute node and data partitions, runtime optimization, retry on error, smart re
run, etc.

4) Once we decide to migrate workflow applications to Cloud computing, we
need to reconstruct the data beprgcessedo be able tde stored in partitioned
fashion, such as in GFS, or HDFS, so that the partitions can be operated-in para

borrowed



lel, which may introduce &temendous amount of wotk scientists and apphe
tion developers.

5) Revising workflow applications to be capable of executing in Cloud pla
forms makes new requests to scientists and application developers, as they need to
grasp new programing model and techniques instead of using afeeailiar
workflow pattern, which may cost large amount of time beyond the research to
ics. Moreover, theisks asociated with vendor loek cannot be ignored.

2.3 Migrating Workflow Management into the Cloud

To avoid the disadvantages brought by moving workflow applications directly
to the Cloud, we may try to integrate workflow management systems tivéh
Cloud to povide a Cloud workflow platform as a service for big data processing
Once we decide to integrate SWFMS with Cloud computivegmay deploy the
whole SWFMS inside the Cloud and acceke scientific workflow computation
via a Web browser. A distinct featiof this solution is that no software insall
tion is needed for a scientist and the SWFMS can fully take advantage of all the
services provided in a Cloud infrastructure. Moreover, the Chasttd SWFMS
can provide highly scalable scientific workflowsdatask management as services,
providing one kind of Softwarasa-Service(SaaS). One concern the user might
have is the economic cost associated with the necessity of using Cloud on a daily
basis, the dependency on the availability and reliability ®Gloud, as well as the
risk associated with vendor lodk.

To provide a good balance between system performance and usainilidy
ternative for researchers is émcapsulate the management of computation, data,
and storage and other resources the Cloud, while the workflow specification,
submission, presentation and visualizatiemainoutside the Cloutb support the
key architectural requirement of user interface customizability and user interaction
support.The benefit ofadopting the solutioto manag and runscientific wok-
flows on top ofthe Cloudcan be multifold:

1) The scale of scientific problems that can be addressed by scientife wor
flows can beyreatly increased compareddaster/Grid environments, which was
previously upboundedybthe size of a dedicated resource pool with limited r
source sharing extension in the form of virtual organizatiGtsud platforms can
offer vast amount of computing resources as well as storage space for siiich appl
cations, allowing scientific discoves to be carried out in a much larger scale.

2) Application deployment can be made flexible and convenient. With bare
metal physical servers, it is not easy to change the application degitgnd the
underlying supporting platform. However with virtuation technology in a
Cloud platform, different application environments can be eithefigmded in wi-
tual machine (VM) images, or deployed dynamically onto VM instances.

3) The ondemand resource allocation mechanisnth@ Cloudcan improve
resourceutilization and change the experience of end users for improvednrespo
sivenessCloud-based workflow applications can get resources allocated daccor
ing to the number of nodes at each workflow stage, instead of reserving a fixed



number of resources upfror@loud workflows can scale out and in dynamically,
resultingin fast turraround time for end users.

4) Cloud computing provideswuch larger room for the tragdf between pe
formance and cost. The spectrum of resource investment now ranges friem ded
catedprivate resources, a hybrid resource pool combining local resourceeand r
mote Clouds, andfull outsourcing of computing and storage to puliipuds.
Cloud computing not only provides the potential of solving largeale scientific
problems, but also brgs the opportunity to improve the performance/cost ratio.

5) Although migratingscientific workflow management to Cloud matro-
duce extra management overheaddoud computing now can leverage the a
vantages carried about with SWFMSs (e.g. workflow ag@ment, pvenance
tracking etc.).

3 Integration of Swift and OpenNebula

In this section, we talk about our etmend approach in integrating Swift
with the OpenNebula Cloud platform. Before we go into further details ohthe i
tegration, we willfirst introduce the referencervice framework that we propose
to migrate scientific workflows to various Cloud platforms.

3.1 The Service Framework

We propose aeferenceservice framework that addresses the abova-me
tioned challenges and covers all the major aspewolved in the migration and
integration of SWFMS into the Cloudfrom client-side workflow specification,
servicebased workflow submission and management, task scheduling and exec
tion, to Cloud resource managemertd provisioningAs illustratedin Fig. 2 the
service framework includes 4 layers, 7 components and 6 interfaces. Detailed d
scription of the service framework is made public at our website

The first layer is thdnfrastructureLayer, which consists of multiple Cloud
platforms with the underlying server, storage and network resources. The second
layer is called theMiddleware Layer. This layer consists of three subsystems:
Cloud Resource Manager, Scheduling Management Servic&aakdScheduling
Frameworks The third layer, called th8erviceLayer, consists o€loud Work-
flow Management Service anforkflow Engines Finally, the fourth layer the
Client Layer, consists of the WorkfloBpecification & Submission and the VWer
flow Presentation & Visualizatiosubsystem. Theerviceframeworkwould help
tobreak through workfl ows’ dependence on the un;
and take advantage of the scalability anddemand resource allocation of the
Cloud.

We present a layed servicdrameworkfor the implementation and appdic
tion of integrating SWFMS into manifold Cloud platforms, which can alsopbe a

1 http://www.clouduestc.cn/projects/serviceframework/index.html



plicable when deploying a workflow system in Grid environments. The separation
of each layer enables abstractions and diffeindependent implementations for
each layer, and provides the opportunity for scientists to develop a stabla-and f
miliar problem solving environment where rapid technologies can be leveraged
but the details of which are shielded transparently fronstentists who need to
focus on science itself. The Interfaces defined in the framework is flexible and
customizable for scientists to expand or modify according to their own specified
requirements and environments.

Workflow Specification Workflow Presentation
& Submission & Visualization ;
- Client Layer
S
y 3

Is i Workflow
Engines
e ———— Service Layer

Cloud Workflow
Management Service

1
] [}
Cloud Resource pelee Task Scheduling | |}
Management i
Manager . Frameworks i
Service e
_ ’\\14 Middleware Layer/
Cloud ﬁ‘latforms ' *
o
i (=)
Storage Network Servers Infrastructure Layer

Fig. 1. The Service Framework

3.2 Integration Architecture and Implementation

Based on the service framework, wevise an entb-end integration
proach that addresses the afosmtioned challenges. We call it etedend ke-
cause it covers all the major aspects involved in the integration, including a client
side workflow subrission tool, a Cloud workflow management service tlat a
cepts the submissions, a Cloud Resource Manager (CRM) that accepts resource
requests from the workflow service and dynamically instantiates a Falkon virtual
cluster, and a cluster monitoring servitatt monitors the health of the acquired
Cloud resources.

As illustrated in Fig. 3the integrationarchitectureconsists of four layers. At
the client layer, we provide a cliestde development and submission tool fpfr a
plication specification and subssion. At the service layer, a Cloud workflow
service based on the Swift workflow management system [32] is presented as a
gateway to the Cloud platform underneath. At the middleware layer, a few co
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ponents are integrated seamlessly to bridge the gap dretive service layer and

the underlying infrastructure layer. The components include a Cloud resource
manager, a virtual cluster provisioner, and a task execution service. The Cloud
workflow service accepts workflow submissions from the client tool, arkesna
resource requests to the Cloud resource manager, which in turn provisions a virt
al cluster ordemand and also deploys the Falkon [27] execution service into the
cluster. Individual jobs from the workflow service are then passed onto the Falkon
servicefor parallel execution within the virtual cluster, and results delivered back
to the workflow service. At the infrastructure layer, we choose the OpenNebula
Cloud platform to manage Cloud datacenter resources such as servers, network
and storage.

Client Client App
Service Cloud Workflow Service
Cloud . Falkon
Middleware = Resource Vliu?igill;zter Execution
Manager prov & Service
Cloud Platforms
Infrastructure | (1NN @D @D <

L mimEmm - S

Storage Network Servers

Fig. 2 ThelntegrationArchitecture

3.2.1 The Swift Workflow Management System

Swift is a system that bridges scientific workflows with paraitehputing It
is a parallel programming tool for rapid and reliable specification, execution, and
management of largecale science and engineering workflows. Swift takes a
structured approach to workflow specification, scheduling, and executiom-It co
sists of a simple scripting language called SwiftScript for concise specification of
complex parallecomputations based on dataset typing and iterations [31], and
dynamic dataset mappings for accessing laigge datasets represented in diverse
data formats. The runtime system provides an efficient workflow engine for
scheduling and load balancing, aiba@an interact with various resource maeag
ment systems such as PBS and Condor for task execution.

The Swift system architecture consists of four major components: Program
Specification, Scheduling, Execution, and Provisioning, as illustrated in4Fig.
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Computations are specified in SwiftScript, which has been shown to be simple yet
powerful. SwiftScript programs are compiled into abstract computation plans,
which are then scheduled for execution by the workflow engine onto provisioned
resources. Resowqrovisioning in Swift is very flexible, tasks can be scheduled
to execute on various resource providers, where the provider interface gan be i
plemented as a local host, a cluster, a nuitd Grid, or the Amazon EC2 service.

The four major componentd the Swift system can be easily mapped into the
four layers in the reference architecture: the specification falls into the Rresent
tion Layer, although SwiftScript focuses more on the parallel scripting aspect for
user interaction than on Graphical regentation; the scheduling components co
respond to the Workflow Management Layer; the execution components maps to
the Task Management layer; and the provisioning layer can be thought as mostly
in the Operational Layer.

Specification Scheduling Execution Provisioning
Abstract Execution Engine (" : < Resour;i .
computation —»|  (Karajanw/  — Yrual odelo) > Provisioner
. G Swift Runtime) —» £ { I
4? vy y Y ile !
e v v v
SwiftScript O © @ fauncher)| PP
Compiler < p{ C i |
SwiftI:untime Provenance ‘ ‘
2 i““ data f"iz_ ¢
Virtual Data  i«-. - launcher APP
Catalog k | Status reporting F2 )]
--------------- ; Provenance <—+~~
? _____ Provenance - -fl  data <+ ‘\ ﬂlg‘sn ‘ Cloud

collector

S—

Fig. 3 Swift System Architecture

3.2.2 The OpenNebula Cloud Platform

We integrate Swift with the OpenNebula Cloud platform. We choose
OpenNebula for our implementation because it has a flexible architecture and is
easy to customize, and also because it providesdd g®ils and service interfaces
that are handjor the integrationWe have also integratesith other Cloud pl&
formssuch as Amazon EC2 and Eucalypitusimilar means.

OpenNebula is a fully opensource toolkit to build laaS private, public and
hybrid Clouds, and a modular system that can implement a variety of Cloud arch
tectures and can interface with multiple datacenter services. OpenNebuls- orche
trates storage, network, virtualization, monitoring, and security technologies to
deploy multitier servces [38][39] as virtual machines on distributed infrastru
tures, combining both datacenter resources and remote Cloud resources, according
to allocation policies.

The OpenNebula internal architectes shown in Fig. 53an be divided into
three layersDrivers, Core and Tool0]:
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1. Tools: This layer contains tools distributed with OpenNebula, such as the
CLlI, the scheduler, the libvirt APl implementation or the Cloud RESTful
interfaces, and also third party tools that can be easily created using the
XML -RPC interface or the OpenNebula client API.

2. Core: The core consists of a set of components to control and monitor
virtual machines, virtual networks, storage and hosts. The management of
VMs, storage devices and virtual network is implemented in this laye
invoking a suitable driver.

3. Drivers: This layer is responsible for directly interacting with specific
middleware (e.g. virtualization hypervisor, file transfer mechanisms or
information services). It is designed to pligdifferent virtualization,
storage and monitoring technologies and Cloud services into the core.

Command Line
Interface

VM Host VN
Manager | Manager | Manager

Fig. 4 The OpenNebula Architecture

3.2.3 Key Components

The client submission tool: The client submission tool is a standalone java
application that provides an IDBrf workflow development, and allows users to
edit, compile, run and submit SwiftScripts. Scientists and application developers
can write their scripts in this environment and also test run their workflows-on |
cal host, before they make final submissiamghie Swift Cloud service to run in
the Cloud. For submission, it provides multiple submission options: exeuatite i
mediately, execute at a fixed time point, or execute recurrently (per day, per week
etc.). We give a screenshot of the tool in.Eigwhich $iows the current status of
workflows submitted to the Cloud service.

One of the key components of the system isShét Cloud workflow man-
agement servicghat acts as an intermediary between the wovkitlient and the
backend Cloud Resource Manager. The service has a Web interface for eanfigur
tion of the service, the resource manager and application environmesigpdirts
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the following functionalities: SwiftScript programming, SwiftScript compdati
workflow scheduling, resource acquisition, and status monitoring. In addition, the
service also implements fadtilerance mechanisnf screenshot of the service
that visualizes workflow execution progress is shown in Fig

4 Cient e 00

File Edit Action config Help

¥ Root @0 wb ® W http://172 16254 104:8080/ clondswi £t/ job himPaction=toSwift_clientdlangmage=en us
" l¢ Molecular Dynamics
- || MODIS Workflow +-  Name Status Total Time Start Time End time

MODIS Image roceseing  Watting

Clsters:  Falkonl Plan:
Email:  yingyong@gmailcom Hode: greeting

Node: countwords Waiting

+ CHARMMI1 Waiting
+ | MolDyn Watting

Proparty

Fig. 5. The Client Tool

WorkFlow

Basageaent And greeting

Mons terisg

Sabwission And

countwords

countwords2

Fig. 6. The Cloud Workflow Management Service

The Cloud Resource Manage(CRM) accepts resource requests from the
Cloud workflow management service, and is in charge of interfacing with
OpenNebula and provisioning Falkon virtual clusters dynamicalilygavorkflow
service.The process is illustrated in Fig. I8.addition, it also monitors the virtual
clusters. The process to start a Falkon virtual cluster is as follows:
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1) CRM provides a service interface to the workflow service, the latter nzakes
resouce request to CRM.

2) CRM initializes and maintains a pool of virtual machines, the numbenr-of vi
tual machines in the pool can be set via a config file, Ganglia is started on
each virtual machine to monitor CPU, memory and 10.

3) Upon a resource request from thierkflow service:

a) CRM fetches a VM from the VM pool and starts the Falkon service in
that VM.

b) CRM fetches another VM and starts the Falkon worker in that VM, and
also makes that worker register to the Falkon service.

c) CRM repeats step b) until all the Fatk workers are started and regi
tered

d) If the VMs in the pool are not enough, then CRM will make resowgce r
quest to the underlying OpenNebula platform to create more VM mistan
es.

4) CRM returns the end point reference of the Falkon server to the workflow
savice, and the workflow service can now dispatch tasks to the Falkoo-exec
tion service.

5) CRM starts the Cluster Monitoring Service to monitor the health of the
Falkon virtual cluster. The monitoring service checks heartbeat from all the
VMs in the virtual tuster, and will restart a VM if it goes down. If the restart
fails, then for a Falkon service VM, it will get a new VM and start Falkon
service on it, and have all the workers register to the new service. For a
Falkon worker VM, it will replace the workeand also delete the failed VM.

6) Note that we also implement an optimization technique to speed up the
Falkon virtual cluster creation. When a Falkon virtual cluster is decemmi

sioned, we change its stactivated t o “standby”, an
7) When CRMreceives resource request from the workflow service, it checks if
there is a “standby” Falkon cluster, i f so,

Falkon service directly to the workflow service, and also checks the number

of the Falkon workers already the cluster.

a) If the number is more than requested, then the surplus workers age dere
istered and put into the VM pool.

b) If the number is less than required, then VMs will be pulled from the VM
pool to create more workers.

As for the management of VM images, VM instances, and VM network,
CRM interacts with and relies on the underlying OpenNebula Cloud platform. Our
resource provisioning approach takes into consideration not only the dynamic cr
ation and deployment of a virtual cluster with a retmyse execution service,
but also efficient instantiation and-vse of the virtual cluster, as well as the imon
toring and recovery of the virtual cluster. We demonstrate the capability and eff
ciencyof our integration using a small scale experiment setup.
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4 Performance Evaluation

In this section, we demonstrate and analyze our integration approach using a
NASA MODIS image processing workflow. The NASA MODIS datd8&] we
use is a set of satelliteréed data blocks, each block is of size around 5.5MB, with
digits indicating the geological feature of each point in that block, such as water,
sand, green land, urban area, etc.

4.1 The MODIS Image Processing Workflow

The workflow (illustrated in Fig9) takes a set of such blocks, gets the size of
the urban area in each of the blocks, analyzes and picks the top 12 of the blocks
that have the largest urban area, converts them into displayable formas-and a

sembles them into a single PNG file.

analyzeLandUse

50

12

Fig. 8. MODIS Image Processing Workflow
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4.2 Experiment Configuration

We usea small cluster setting for the experiments, which inclugiesa-
chines each configured with Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB
memory, 500GB HDD, and connedt&ith Gigabit Ethernet LAN. The operating
system is Ubuntu 10.04.1, with OpenNebula 2.2 installed. The configuration for
each VM is 1 core, 1.5GB memory, 20GB HDD, and we use KVM as the hyperv
sor. One of the machines is used as the frontend which hesigtkflow service,
the CRM, and the monitoring service. The other 5 machines are used to instantiate
VMs, and each physical machine can host up to 2 VMs, so at most 10 VMs can be
instantiated in the environmenthe configuration of the experiment isugitrated
in Fig. 10.Although the cluster size is not significant, we believe it demonstrates
the essence of our cluster recycling mechanism.
Virtual Machine cluster

FrontEnd:
Cloud Workflow Service

x \
Cloud Resource Manager — ? < :\"" > :,
. . . o
Cluster Monitoring Service S X = = X
Nodel Node2  Node3 Node4 Node5

Physical Machine cluster
Fig. 9. Experiment Configuration

4.3 Experiment Results

In our experiment, we contrahé workload by changing the number of input
data blocks, the resource required, and the submission type (serial submission or
parallel submission). So there are three dependent variables. We design the expe
iment by making two of the dependent variablesstant, and changing the other.

We run three types of experiments:

1. The serial submissioaxperiment

2. The parallel submissioaxperiment

3. The different number of data bloc&gperiment
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In all the experiments, VMs are pirstantiated and put in the VM podlhe
time to instantiate a VM is around 42
the VMs created.

4.3.1 The serial submission experiment

In the serial submission experiment, we first measure the base line for server
creation time, worker creation time amebrker registration time. We create a
Fal kon virtual cluster with 1 server
reuse the virtual cluster.

In Fig. 11, we can observe that the server creation time is quite stable, around
4.7s every time. Worker eation time is also stable, around 0.6s each, and for
worker registration, the first one takes about 10s, and for the rest, about 1s each.

For the rest of the serial submission, we submit a workflow after the previous
one has finished to test virtual des recycling, where the input data blocles r
main fixed.

In Fig. 12, the resources required are one Falkon server with 5 workers, one
server with 3 workers and one server with 1 worker. We can see that forcthe se
ond and third submissions, the workeeation and server creation time are zero,
only the surplus workers need to-dgister themselves.

30

25 -

20 —_—
_
z o
“E' 15 1 — worker registration
* 10 4— __ B worker creation

I B server creation
5 :I l
0 - T : -
1 3 5 7 9
worker number

Fig. 10. The Base Lindor Cluster Creation

In Fig. 13, the resources required are in the reverse order of those ihZig.
Each time two extra Falkon workers need to be created and registered, and the
time taken are roughly the same. These experiments show that the Falkon virtual
cluster can beerused after it is being created, and worker resources cag-be d
namically removed or added.

seconds a

and

var yi
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Fig. 11. Serial Submission, Decreasing Resource Required
18
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14
12
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Fig.12. Serial Submission, Increasing Resource Required

In Fig. 14, we first request a virtual cluster with 1 server and 9 workers, we
then make 5 parallel requests for virtual clusters with 1 server and 1 worker. We
can observe that one of these requests is satisfied using the existing virtual cluster,
where the other 4 are created-demand. In this case, it takes some time to de
regider all the 8 surplus workers, which makes the total time comparable to on
demand creation of the cluster.
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Fig. 13. Serial Submission, Mixed Resource Required

4.3.2 The parallel submission experiment

In the parallel submission expewnt, we submit multiple workflows at the
same time in order to measure the maximum parallelism (the number of-concu
rent workflows that can be hosted in the Cloud platform) in the environment.

First, we submit resource requests with 1 server and 2 vgriked the ma
imum parallelism is up to three. In Table 1, we show the results for thei-exper
ment, in which we make resource requests for 1 virtual cluster, 2 virtual clusters, 3
virtual clusters and 4 virtual clusters.

TABLE 1 Parallel Submission, 1 Servand2 Workers

# of Clusters| ServerCreation | Worker Creation | WorkerRegistration
1 4624ms 1584ms 11305ms
> 4696ms 2367ms 11227ms

445ms 0 0
4454ms 1457ms 11329ms
3 488ms 0 0
548ms 0 0
521ms 0 0
4 585ms 0 0
686ms 0 0
submission failed

For the request of 2 virtual clusseiit can reuse the one released by the early
request, and the time to initialize the cluster is significantly less than fresh creation
(445ms vs. 4696ms). It has to create theosd cluster ordemand. For the-4
virtual-cluster request, since all the Vidsources are used up by the first 3selu
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ters, the & cluster creation would fail asxgected. When we change resouree r
guests to 1 server and 4 workers, the maximum parallelism is two, and the request
to create a third virtual cluster also fails. Siree VM pool has a maximum of

ten virtual machines, it's easy tepdain why this has happened. This experiment
shows that our integrated system can maximize the cluster resources assigned to
workflows to achieve efficient ilization of resources.

4.3.3 Different number of data blocks experiment

In this experiment, we change the number of input data blocks from 50 blocks
to 25 blocks, and measure the total execution time with varying number lof wor
ers in the virtual cluster.

In Fig. 15, we can observe that with the increase of the number of workers,
the execution time decreases accordingly (i.e. execution efficiency improves),
however at 5 workers to process the workflow, the system reaches efficiency peak.
After that, the execidn time goes up with more workers. This means thatrthe i
provement can’t subsidize the management
worker. The time for server and worker creation, and worker registration remain
unchanged when we change the inpué g&s have been shown in Fidl). The
experiment indicates that while our virtual resource provisioning overhead is well
controlled, we do need to carefully determine the number of workers used in the
virtual cluster to achieve resource utilization eiuty.

300

250

200

150

time(s)

100

50

0

A

N

X
\‘ =tr=50 blocks

==¢=25 blocks

worker number

Fig. 14. Different Input Sizes

5 Related Work

Systems such as Taverna [11], Kepler [9], Vistrail8][Pegasus [8], Swift
[32], and VIEW [%] have seen wide adoptidm various disciplines such &hys-
ics, Astronomy,Bioinformatics,Neurosciencekarth Science,and Social Science.

and

r
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In Table 2 we list some use cases that focused on applying SWFMSs to execute
dataintensive applications.
TABLE 2 UseCases oSWFMSs

SWEMSs | Application Fields Use Cases
Swift Climate Science Climate Data Analysid.3]
Taverna Bioinformatics Single Nucleotid_e Polymorphisms
Analysi§14]
Vistrails Earth Science NASA Earth Exchangfl5]
Kepler Physics Hyperspectral image processiigy]
VIEW MedicalScience Neurological disorder diagno§s]

There are someearly explorers that try to evaluate the feasibility, perfo
mance, and adaptation of running data intensive and HPC applications on Clouds
or hybrid Grid/Cloud environments. Palankar et al. [17] evaluated the feasibility,
cost, availabilityand per for mance of wusing Amazon
age support to data intensive applications, and also identified a set of additional
functionalities that storage services targeting -latiensive science applications
should support. Oliveira etl. [35] evaluated the performance ofR&y Crysté
lography workflow using SciCumulus middleware with Amazon EC2. Wang et al.
[36] presented their early definition and experience of scientific Cloud computing
in the Cumulus project by merging existing Gimndrastructures with new Cloud
technologies. These studies provide good source of information about Cloud pla
form support for science applications. Other studies investigated the execution of
real science applications on commercial Clouds [19] [20], imbsting HPC p-
plications, and compared the performance and cost against Grid environments.
While such applications indeed can be ported to a Cloud environment, Cleud ex
cution doesn’'t show significant baenefit due
ture.

There have been a couple of researcherhithae been investigating techniques
for deploying datantensive workflows in the cloud using unique architectures
that are difficult to deploy on traditional platforms, such as d#8s57]. Mean-
while, some o¢her researchefocused on developing new algorithms for wor
flows to take advantage of the unique pricing model and elasticity of infrastructure
clouds[49-53], and investigatingiew cloud workflowscheduling algorithms that
optimize for cost, performancand other qualitypf-service metric$58 —60].

Gideon Juveet al.havestudied the cost and performance of workflows in the
cloud via simulation{24], using an experimental Nimbus clo{i#5], individual
Elastic Compute Cloud (EC2) nodg28], and a vaety of different intermediate
storage systems on EQZ3]. Christian Vecchiolat al.have done similar invest
gations on EC2 and Grid50064]. These studies primarily analyt¢he perfo-
mance and cost of workflows in the cloud, rather than the praetiparience of
deploying worklows in the cloud To address theshortags, Gideon Juveet al
[41] alsorelated the practical experience of trying to run a nontrivial scientific
workflow application on three different infrastructures and compare the benefits
and challenges of each platform.

s S3
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M. Kozlovszkyet al.[42] introduced a convenient way for sharing, intégra
ing and executing different workflows in heterogeneousastructure envim-
ments The papeexplained in detaihow to enable generidCl compaibility for
grid workflow management systems (such as ASKALOMQTEUR, gUSE/WS
PGRADE, etc.) on jolbevel and indirectly on workflow levelThe generic DCI
Bridge service enables the execution of jolmso existing major DCI platforms
(such as Service Giggd Desktop Grids, Web services, or even Clbaded DCIs).
The CODA framework[16] was designed and implementedsiepport big data
analytics inCloud computing Important functions, such agrkflow scheduling,
data localityresource provisioning, and miboring functions had been integrated
into the frameworkThrough the CODA frameworkhe workflows ould be eas
ly composed anéfficiently executed in Amazon ECt order to addresgerfor-
mance and cost issues of big data processingauds,Long Wang et al. [S]pre-
seneda novel design of adaptive workflow management systé@inh includel a
data mining based prediction model, workflssheduler, and iteratiarontrols to
optimize the data processing varative workflow tasks.

Those works mentigd aboveareimportant as they providealuable exper
enceon migrating traditional scientific workflows to various Cloud platforms.
However,a normalizedendto-endintegrationapproachs still missing.We pre-
sent an endo-end approach that addresshe tntegration of Swift, an SWFMS
that has broad application in Grids and supercomputers, with the OpenNebula
Cloud platform. The integration covers all the major aspects involved in workflow
management in the Cloudhcluding a client side workflow subngi®n tool, a
Cloud workflow management service, a Cloud Resource Manager (CRM), and a
cluster monitoring service

6 Conclusion and Future Work

As nore and morescientific applicationsare migraing into Cloud, it is im-
perativeto also migrate SWFMSs into @lid totake advantage of Cloud scallabi
ity, and alsoto handlethe everincreasing data scale and analysis complexity of
such applicationsCloud offers unprecedented scalability to workflow systems,
and could potentially change the way we perceive andumirscientific exper
ments. The scale and complexity of the science problems that can be handled can
be greatly increased on the Cloud, and thelemand nature of resource akec
tion on the Cloud will also help improve resource utilization and user iexget

We first introduce our service framework for integrating SWFMSs into Cloud
computing platforms. Then wpresent our early effort imtegratingthe Swift
workflow managemensystem withthe OpenNebula Cloud platform, in which a
Cloud workflow mangement service, a Cloud resource manager, and a cluster
monitoring service are developed. We allgmonstratéhe functionality and eif
ciency of our approachising a set of experiments and raalworld scientific
workflow.
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For future workwe areworking on a common interface that will facilitatiee
integration of Swift withother Cloud platforms such as Amazon EC2 @mn-
stack We will also investigate commonality in migrating other SWFMSs into
Cloud, i.e. ways to offer SWFMSs as a service and tolerthbm to interact with
the underlying Cloud resource¥®/e will also leverage distributed storage for VM
imagesfor more efficient acces@and conduct large scale experiments to look at
ways to improve VM instantiation, virtual cluster creation and workfexew-
tion. We are also exploring redesigning workflow systems from the ground-up u
ing Cloud Computing building blocks, such as E®8], SQS[66], DynamoDB
[67], S3[65], and CloudWatcti68], in order to deliver a lightveight, fast, and
distributed wokflow system that should st&a along with the largest cloud iafr
structures [44].
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