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Abstract: Cloud computing is an emerging computing paradigm that can offer 

unprecedented scalability and resources on demand, and is gaining significant 

adoption in the science community. At the same time, scientific workflow man-

agement systems provide essential support and functionality to scientific compu-

ting, such as management of data and task dependencies, job scheduling and exe-

cution, provenance tracking, fault tolerance. Migrating scientific workflow 

management systems from traditional Grid computing environments into the 

Cloud would enable a much broader user base to conduct their scientific research 

with ever increasing data scale and analysis complexity. This paper presents our 

experience in integrating the Swift scientific workflow management system with 

the OpenNebula Cloud platform, which supports workflow specification and sub-

mission, on-demand virtual cluster provisioning, high-throughput task scheduling 

and execution, and efficient and scalable resource management in the Cloud. We 

set up a series of experiments to demonstrate the capability of our integration and 

use a MODIS image processing workflow as a showcase of the implementation. 
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1 Introduction 

 Scientific workflow management systems (SWFMS) have been proven essen-

tial to scientific computing as they provide functionalities such as workflow speci-

fication, process coordination, job scheduling and execution, provenance tracking 

[64], fault tolerance etc. SWFMS in fact represent a subset of Many-Task Compu-

ting (MTC) [61] workloads. MTC is reminiscent of High-Throughput Computing, 

but it differs in the emphasis of using many computing resources over short peri-

ods of time to accomplish many computational tasks (i.e. including both depend-

ent and independent tasks), where the primary metrics are measured in seconds 

(e.g. FLOPS, tasks/s, MB/s I/O rates), as opposed to operations (e.g. jobs) per 

month. MTC denotes high-performance computations comprising multiple distinct 

activities, coupled via file system or memory-to-memory transfer operations. 

Tasks may be small or large, uniprocessor or multiprocessor, compute-intensive or 

data-intensive. The set of tasks may be static or dynamic, homogeneous or hetero-

geneous, loosely coupled or tightly coupled. The aggregate number of tasks, quan-

tity of computing, and volumes of data may be extremely large [62]. MTC in-

cludes loosely coupled applications that are generally communication-intensive 

but not naturally expressed using standard message passing interface commonly 

found in HPC, drawing attention to the many computations that are heterogeneous 

but not "happily" parallel. [63] There are unprecedented challenges raised for tra-

ditional scientific workflows, as the data scale and computation complexity are 

growing exponentially. The ETL (Extraction-Transformation-Loading), storage, 

retrieval, analysis and application upon the huge amounts of data are beyond the 

capability of traditional data processing infrastructures. The community has 

coined this as Big Data, and it is often associated with the Cloud Computing para-

digm.  

 As an emerging computing paradigm, Cloud computing [6] is gaining tre-

mendous momentum in both academia and industry: not long after Amazon 

opened its Elastic Computing Cloud (EC2) to the public, Google, IBM, and Mi-

crosoft all released their Cloud platforms one after another. Meanwhile, several 

open source Cloud platforms, such as Hadoop [33], OpenNebula [1], Eucalyptus 

[34], Nimbus [22], and OpenStack [2], become available with fast growth of their 

own communities. There are a couple of major benefits and advantages that are 

driving the widespread adoption of the Cloud computing paradigm: 1) Easy access 

to resources: resources are offered as services and can be accessed over Internet. 

For instance, with a credit card, you can get access to Amazon EC2 virtual ma-

chines immediately; 2) Scalability on demand: once an application is deployed on-

to the Cloud, the application can be automatically made scalable by provisioning 

the resources in the Cloud on demand, and the Cloud takes care of scaling out and 

in, and load balancing; 3) Better resource utilization: Cloud platforms can coordi-

nate resource utilization according to resource demand of the applications hosted 

in the Cloud; and 4) Cost saving: Cloud users are charged based on their resource 
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usage in the Cloud, they only pay for what they use, and if their applications get 

optimized, that will be reflected into a lowered cost immediately. 

 Theoretically, to address the big data problems in the above scientific compu-

ting areas, scientists and application developers may simply refactor all the exist-

ing workflow applications into the Cloud computing paradigm, which sounds 

straightforward but in reality is impractical. As traditional scientific workflow ap-

plications have been mature during many years’ development and always involve 

complicated application logic and consist of massive computing processes such as 

organization, distribution, coordination and parallel processing. Transforming 

these scientific workflows will not only cost scientists and developers much time, 

but also require manual handling of all the integration details with various under-

lying Cloud platforms. 

 An alternative for researchers is to integrate scientific workflow management 

systems with Clouds, leveraging the functionalities of both Cloud computing and 

SWFMSs to provide a Cloud workflow platform as a service for big data pro-

cessing. In this solution, not only the challenges for traditional scientific work-

flows can be dealt with, the researchers can also concentrate on applications and 

utilize the integration platform to process massive data in Clouds. As workflow 

management systems are diverse in many aspects, such as workflow models, 

workflow languages, workflow engines, and so on, and each workflow system en-

gine may depend on one specific Distributed Computing Infrastructures (DCIs), 

porting a workflow management system to run on another DCI may cost a large 

quantity of extra effort. We would like to free researchers from complicated inte-

gration details, such as Cloud resource provisioning, task scheduling and so on, 

and provide them with the convenience and transparency to a scalable big data 

processing platform, therefore we propose a service framework to standardize the 

integration between SWFMSs and Cloud platforms, breaking the limitations that a 

specific SWFMS is bound to a particular DCI or Cloud environment. We define a 

series of components and interfaces to normalize the interactions between differ-

ent workflow management subsystems. 

 This paper extends earlier work [12] in which we identified various challeng-

es associated with migrating and adapting an SWFMS in the Cloud. In this paper, 

we present an end-to-end approach that addresses the integration of Swift, an 

SWFMS that has broad application in Grids and supercomputers, with the 

OpenNebula Cloud platform. The integration covers all the major aspects involved 

in workflow management in the Cloud, from client-side workflow submission to 

the underlying Cloud resource management.  

 This paper’s major contributions are:  

1. We analyze the challenges for traditional scientific workflows in the Grid envi-

ronment, and proposed a structured approach to migrating a SWFMS into the 

Cloud. 

2. We integrate Swift with OpenNebula, in order to coordinate and automate sci-

entific analysis and discovery. 
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3. We propose a virtual cluster provisioning mechanism that could recycle Cloud 

virtual machine instances. 

4. We present a use case as a showcase of the implementation. 

 The rest of the paper is organized as follows: In the next section, we discuss 

the challenges of traditional scientific workflows and analyze the available solu-

tions to the challenges. In the integration section, we introduce a service frame-

work for the integration of SWFMSs and Cloud platforms and present our end-to-

end integration of Swift and OpenNebula. In the performance evaluation section, 

we set up a series of experiments to analyze the integration and demonstrate the 

implementation using a NASA MODIS image processing workflow. In the related 

work section, we discuss related work in migrating scientific workflow manage-

ment systems from the Grid to the Cloud. In the last section, we draw our conclu-

sions and discuss future work. 

2 Challenges and Available Solutions 

 In this section, we discuss the challenges of utilizing traditional scientific 

workflows to deal with big data problems and analyze the available solutions to 

the challenges. 

2.1 Challenges for Traditional Scientific Workflows 

 Scientific workflow systems have been formerly applied over a number of ex-

ecution environments such as workstations, clusters/Grids, and supercomputers. In 

contrast to Cloud environment, running workflows in these environments are fac-

ing a series of obstacles when dealing with big data problems [45], including data 

scale and computation complexity, resource provisioning, collaboration in hetero-

geneous environments, etc. 

2.1.1 Data Scale and Computation Complexity 

 The execution of scientific workflows often consumes and produces huge 

amounts of distributed data objects. These data objects can be of primitive or 

complex types, files in different sizes and formats, database tables, or data objects 

in other forms. At present, the scientific community is facing a “data deluge” [7] 

coming from experiments, simulations, networks, sensors, and satellites, and the 

data that needs to be processed generally grows faster than computational re-

sources and their speed. The data scale and managemnent in big data era are be-

yond the capability of traditional workflows as they depend on traditional infra-

structure for resource provisioning, scheduling and computing. For example, in 

high energy physics, the Large Hadron Collider [4] at CERN can generate more 

than 100TB of collision data per second; In bioinformatics, GenBank[3], one of 

the largest DNA databases, already hosts over 120 billion bases, the European 

Molecular Biology and Bioinformatics Institute Laboratory (EMBL) hosts 14 PB 

of data, and the numbers are expected to double every 9-12 months.  
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 In addition to data scale, science analysis and processing complexity is also 

growing exponentially. Scientists are now attempting calculations requiring orders 

of magnitude more computing and communication than was possible only a few 

years ago. For instance, in bioinformatics a protein simulation problem [29] in-

volves running many instances of a structure prediction simulation, each with dif-

ferent random initial conditions and performs multiple rounds. Given a couple of 

proteins and parameter options, the simulation can easily scale up to 100,000 

rounds. In cancer drug design, protein docking can involve millions of 3D struc-

tures and have a runtime up to tens of CPU years. To enable the storage and anal-

ysis of such large quantities of data and to achieve rapid turnaround, data and 

computation may need to be distributed over thousands or even tens of thousands 

of computation nodes. 

2.1.2 Resource Provisioning 

 Resource provisioning represents the functionality and mechanism of allocat-

ing computing resource, storage space, network bandwidth, etc., to scientific 

workflows. As cluster/Grid environments are not adept at providing the workflows 

with smoothly dynamic resource allocation, the resource provisioned to a scien-

tific workflow is fixed once the workflow has been deployed to execute, which 

may in return restrict the scale of science problems that can be handled by work-

flows. Moreover, the scale of resource is upbounded by the size of a dedicated re-

source pool with limited resource sharing extension in the form of virtual organi-

zations. Meanwhile, the representation of resources in the context of scientific 

workflows is also bothering the scientists [46], as they must be able to recognize 

the supported types of resources and tools. For instance, the resource in Taverna is 

a web service which usually limit s the use of many scientific resources that are not 

represented as web services. 

 To break through the limitations introduced by traditional resource provision-

ing strategy, some works have been focused on the approaches for automated pro-

visioning, including the Context Broker [22] from the Nimbus project, which sup-

ported the concept of “one-click virtual cluster” that allowed clients to coordinate 

large virtual cluster launches in simple steps. The Wrangler system [23] was a 

similar implementation that allowed users to describe a desired virtual cluster in 

XML format, and send it to a web service, which managed the provisioning of vir-

tual machines and the deployment of software and services. It was also capable of 

interfacing with many different Cloud resource providers. 

2.1.3 Collaboration in Heterogeneous Environments 

 Collaboration refers to the interactions between a workflow management sys-

tem and the execution environment, such as resource access, resource status per-

ception, load balance and so on. As more and more scientific research projects be-

come collaborative in nature and involve multiple geographically distributed 

organizations, which bring a variety of challenges to scientists and application de-

velopers to handle the collaboration in heterogeneous environments.  

 The management of resource, authority authentication, security, etc., can be 

very complicated, as scientific workflow applications are normally executed in 
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cluster/Grid environments, where accessible computing resources and storage 

space are located in various management domains. The execution of traditional 

workflows is also influenced by the heterogeneous performance of computing re-

source due to the varied configuration of physical machines. In addition, in Grid 

environment, the status of physical machines is uncontrollable, switching among 

online (the machine is started up and connected to the Grid), offline (the machine 

is powered off or disconnected), busy (the machine is executing other tasks), etc., 

making it extremely difficult to maintain load balance. 

2.2 Moving Workflow Applications to the Cloud 

 Cloud computing has been widely adopted to solve the ever-increasing com-

puting and storage problems arising in the Internet age. To address the challenges 

of dealing with peta-scale scientific problems in scientific workflow solutions, we 

can move workflow applications into Cloud, using for instance the MapReduce 

computing model to reconstruct the formerly applied workflow specifications. 

MapReduce provides a very simple programming model and powerful runtime 

system for the processing of large datasets. The programming model is based on 

just two key functions: “map” and “reduce,” borrowed from functional languages. 

The runtime system automatically partitions input data and schedules the execu-

tion of programs in a large cluster of commodity machines. Modified applications 

to fully leverage the unprecedented scalability and resources on demand offered 

by the Cloud without introducing extra management overheads.  

 Despite all the advantages of transforming traditional workflow applications 

into Cloud-based applications, there are still many drawbacks and unsolved obsta-

cles: 

 1) Cloud computing cannot benefit from the distinguished features provided 

by SWFMSs, including management of data and task dependencies, job schedul-

ing and execution, provenance tracking, etc.. The challenges for big data pro-

cessing in Cloud remain unsolved and are still bothering developers and research-

ers. 

 2) Utilizing the certain data flow support offered by MapReduce to refactor 

traditional workflow applications requires application logic to be rewritten to fol-

low the map-reduce-merge programming model. Scientists and application devel-

opers need to fully understand the applications and port the applications before 

they can leverage the parallel computing infrastructure. 

 3) Large-scale workflows, especially data-intensive scientific workflows may 

require far more functionality and flexibility than MapReduce can provide, and the 

implicit semantics incurred by a workflow specification goes far more than just 

the “map” and “reduce” operations, for instance, the mapping of computation to 

compute node and data partitions, runtime optimization, retry on error, smart re-

run, etc. 

 4) Once we decide to migrate workflow applications to Cloud computing, we 

need to reconstruct the data being processed to be able to be stored in partitioned 

fashion, such as in GFS, or HDFS, so that the partitions can be operated in paral-
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lel, which may introduce a tremendous amount of work to scientists and applica-

tion developers. 

 5) Revising workflow applications to be capable of executing in Cloud plat-

forms makes new requests to scientists and application developers, as they need to 

grasp new programing model and techniques instead of using already-familiar 

workflow pattern, which may cost large amount of time beyond the research top-

ics. Moreover, the risks associated with vendor lock-in cannot be ignored. 

2.3 Migrating Workflow Management into the Cloud 

 To avoid the disadvantages brought by moving workflow applications directly 

to the Cloud, we may try to integrate workflow management systems with the 

Cloud to provide a Cloud workflow platform as a service for big data processing. 

Once we decide to integrate SWFMS with Cloud computing, we may deploy the 

whole SWFMS inside the Cloud and access the scientific workflow computation 

via a Web browser. A distinct feature of this solution is that no software installa-

tion is needed for a scientist and the SWFMS can fully take advantage of all the 

services provided in a Cloud infrastructure. Moreover, the Cloud-based SWFMS 

can provide highly scalable scientific workflows and task management as services, 

providing one kind of Software-as-a-Service (SaaS). One concern the user might 

have is the economic cost associated with the necessity of using Cloud on a daily 

basis, the dependency on the availability and reliability of the Cloud, as well as the 

risk associated with vendor lock-in. 

 To provide a good balance between system performance and usability, an al-

ternative for researchers is to encapsulate the management of computation, data, 

and storage and other resources into the Cloud, while the workflow specification, 

submission, presentation and visualization remain outside the Cloud to support the 

key architectural requirement of user interface customizability and user interaction 

support. The benefit of adopting the solution to manage and run scientific work-

flows on top of the Cloud can be multifold: 

 1) The scale of scientific problems that can be addressed by scientific work-

flows can be greatly increased compared to cluster/Grid environments, which was 

previously upbounded by the size of a dedicated resource pool with limited re-

source sharing extension in the form of virtual organizations. Cloud platforms can 

offer vast amount of computing resources as well as storage space for such appli-

cations, allowing scientific discoveries to be carried out in a much larger scale. 

 2) Application deployment can be made flexible and convenient. With bare-

metal physical servers, it is not easy to change the application deployment and the 

underlying supporting platform. However with virtualization technology in a 

Cloud platform, different application environments can be either pre-loaded in vir-

tual machine (VM) images, or deployed dynamically onto VM instances. 

 3) The on-demand resource allocation mechanism in the Cloud can improve 

resource utilization and change the experience of end users for improved respon-

siveness. Cloud-based workflow applications can get resources allocated accord-

ing to the number of nodes at each workflow stage, instead of reserving a fixed 
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number of resources upfront. Cloud workflows can scale out and in dynamically, 

resulting in fast turn-around time for end users. 

 4) Cloud computing provides much larger room for the trade-off between per-

formance and cost. The spectrum of resource investment now ranges from dedi-

cated private resources, a hybrid resource pool combining local resource and re-

mote Clouds, and full outsourcing of computing and storage to public Clouds. 

Cloud computing not only provides the potential of solving larger-scale scientific 

problems, but also brings the opportunity to improve the performance/cost ratio. 

 5) Although migrating scientific workflow management to Cloud may intro-

duce extra management overheads, Cloud computing now can leverage the ad-

vantages carried about with SWFMSs (e.g. workflow management, provenance 

tracking, etc.). 

3 Integration of Swift and OpenNebula 

 In this section, we talk about our end-to-end approach in integrating Swift 

with the OpenNebula Cloud platform. Before we go into further details of the in-

tegration, we will first introduce the reference service framework that we propose 

to migrate scientific workflows to various Cloud platforms. 

3.1 The Service Framework 

 We propose a reference service framework that addresses the above men-

tioned challenges and covers all the major aspects involved in the migration and 

integration of SWFMS into the Cloud, from client-side workflow specification, 

service-based workflow submission and management, task scheduling and execu-

tion, to Cloud resource management and provisioning. As illustrated in Fig. 2, the 

service framework includes 4 layers, 7 components and 6 interfaces. Detailed de-

scription of the service framework is made public at our website
1
. 

 The first layer is the Infrastructure Layer, which consists of multiple Cloud 

platforms with the underlying server, storage and network resources. The second 

layer is called the Middleware Layer. This layer consists of three subsystems: 

Cloud Resource Manager, Scheduling Management Service and Task Scheduling 

Frameworks.  The third layer, called the Service Layer, consists of Cloud Work-

flow Management Service and Workflow Engines. Finally, the fourth layer – the 

Client Layer, consists of the Workflow Specification & Submission and the Work-

flow Presentation & Visualization subsystem. The service framework would help 

to break through workflows’ dependence on the underlying resource environment, 

and take advantage of the scalability and on-demand resource allocation of the 

Cloud. 

 We present a layered service framework for the implementation and applica-

tion of integrating SWFMS into manifold Cloud platforms, which can also be ap-

                                                           
1 http://www.cloud-uestc.cn/projects/serviceframework/index.html 
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plicable when deploying a workflow system in Grid environments. The separation 

of each layer enables abstractions and different independent implementations for 

each layer, and provides the opportunity for scientists to develop a stable and fa-

miliar problem solving environment where rapid technologies can be leveraged 

but the details of which are shielded transparently from the scientists who need to 

focus on science itself. The Interfaces defined in the framework is flexible and 

customizable for scientists to expand or modify according to their own specified 

requirements and environments. 

 

 
Fig. 1. The Service Framework 

3.2 Integration Architecture and Implementation 

 Based on the service framework, we devise an end-to-end integration ap-

proach that addresses the aforementioned challenges. We call it end-to-end be-

cause it covers all the major aspects involved in the integration, including a client 

side workflow submission tool, a Cloud workflow management service that ac-

cepts the submissions, a Cloud Resource Manager (CRM) that accepts resource 

requests from the workflow service and dynamically instantiates a Falkon virtual 

cluster, and a cluster monitoring service that monitors the health of the acquired 

Cloud resources.  

 As illustrated in Fig. 3, the integration architecture consists of four layers. At 

the client layer, we provide a client-side development and submission tool for ap-

plication specification and submission. At the service layer, a Cloud workflow 

service based on the Swift workflow management system [32] is presented as a 

gateway to the Cloud platform underneath. At the middleware layer, a few com-
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ponents are integrated seamlessly to bridge the gap between the service layer and 

the underlying infrastructure layer. The components include a Cloud resource 

manager, a virtual cluster provisioner, and a task execution service. The Cloud 

workflow service accepts workflow submissions from the client tool, and makes 

resource requests to the Cloud resource manager, which in turn provisions a virtu-

al cluster on-demand and also deploys the Falkon [27] execution service into the 

cluster. Individual jobs from the workflow service are then passed onto the Falkon 

service for parallel execution within the virtual cluster, and results delivered back 

to the workflow service. At the infrastructure layer, we choose the OpenNebula 

Cloud platform to manage Cloud datacenter resources such as servers, network 

and storage. 

 

Fig. 2 The Integration Architecture 

3.2.1 The Swift Workflow Management System 

 Swift is a system that bridges scientific workflows with parallel computing. It 

is a parallel programming tool for rapid and reliable specification, execution, and 

management of large-scale science and engineering workflows. Swift takes a 

structured approach to workflow specification, scheduling, and execution. It con-

sists of a simple scripting language called SwiftScript for concise specification of 

complex parallel computations based on dataset typing and iterations [31], and 

dynamic dataset mappings for accessing large-scale datasets represented in diverse 

data formats. The runtime system provides an efficient workflow engine for 

scheduling and load balancing, and it can interact with various resource manage-

ment systems such as PBS and Condor for task execution. 

 The Swift system architecture consists of four major components: Program 

Specification, Scheduling, Execution, and Provisioning, as illustrated in Fig. 4. 
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Computations are specified in SwiftScript, which has been shown to be simple yet 

powerful. SwiftScript programs are compiled into abstract computation plans, 

which are then scheduled for execution by the workflow engine onto provisioned 

resources. Resource provisioning in Swift is very flexible, tasks can be scheduled 

to execute on various resource providers, where the provider interface can be im-

plemented as a local host, a cluster, a multi-site Grid, or the Amazon EC2 service. 

 The four major components of the Swift system can be easily mapped into the 

four layers in the reference architecture:  the specification falls into the Presenta-

tion Layer, although SwiftScript focuses more on the parallel scripting aspect for 

user interaction than on Graphical representation; the scheduling components cor-

respond to the Workflow Management Layer; the execution components maps to 

the Task Management layer; and the provisioning layer can be thought as mostly 

in the Operational Layer. 

 

Fig. 3 Swift System Architecture 

3.2.2 The OpenNebula Cloud Platform 

 We integrate Swift with the OpenNebula Cloud platform. We choose 

OpenNebula for our implementation because it has a flexible architecture and is 

easy to customize, and also because it provides a set of tools and service interfaces 

that are handy for the integration. We have also integrated with other Cloud plat-

forms such as Amazon EC2 and Eucalyptus in similar means.  

 OpenNebula is a fully open-source toolkit to build IaaS private, public and 

hybrid Clouds, and a modular system that can implement a variety of Cloud archi-

tectures and can interface with multiple datacenter services. OpenNebula orches-

trates storage, network, virtualization, monitoring, and security technologies to 

deploy multi-tier services [38] [39] as virtual machines on distributed infrastruc-

tures, combining both datacenter resources and remote Cloud resources, according 

to allocation policies. 

 The OpenNebula internal architecture (as shown in Fig. 5) can be divided into 

three layers: Drivers, Core and Tools [40]: 
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1. Tools: This layer contains tools distributed with OpenNebula, such as the 

CLI, the scheduler, the libvirt API implementation or the Cloud RESTful 

interfaces, and also third party tools that can be easily created using the 

XML -RPC interface or the OpenNebula client API. 

2. Core: The core consists of a set of components to control and monitor 

virtual machines, virtual networks, storage and hosts. The management of 

VMs, storage devices and virtual network is implemented in this layer by 

invoking a suitable driver. 

3. Drivers: This layer is responsible for directly interacting with specific 

middleware (e.g. virtualization hypervisor, file transfer mechanisms or 

information services). It is designed to plug-in different virtualization, 

storage and monitoring technologies and Cloud services into the core. 

 

Fig. 4 The OpenNebula Architecture 

3.2.3 Key Components 

 The client submission tool: The client submission tool is a standalone java 

application that provides an IDE for workflow development, and allows users to 

edit, compile, run and submit SwiftScripts. Scientists and application developers 

can write their scripts in this environment and also test run their workflows on lo-

cal host, before they make final submissions to the Swift Cloud service to run in 

the Cloud. For submission, it provides multiple submission options: execute im-

mediately, execute at a fixed time point, or execute recurrently (per day, per week 

etc.). We give a screenshot of the tool in Fig. 6, which shows the current status of 

workflows submitted to the Cloud service. 

 One of the key components of the system is the Swift Cloud workflow man-

agement service that acts as an intermediary between the workflow client and the 

backend Cloud Resource Manager. The service has a Web interface for configura-

tion of the service, the resource manager and application environments. It supports 
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the following functionalities: SwiftScript programming, SwiftScript compilation, 

workflow scheduling, resource acquisition, and status monitoring. In addition, the 

service also implements fault-tolerance mechanism. A screenshot of the service 

that visualizes workflow execution progress is shown in Fig. 7. 

 

 

Fig. 5.  The Client Tool 

 

Fig. 6.  The Cloud Workflow Management Service 

 The Cloud Resource Manager (CRM) accepts resource requests from the 

Cloud workflow management service, and is in charge of interfacing with 

OpenNebula and provisioning Falkon virtual clusters dynamically to the workflow 

service. The process is illustrated in Fig. 8. In addition, it also monitors the virtual 

clusters. The process to start a Falkon virtual cluster is as follows: 
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1) CRM provides a service interface to the workflow service, the latter makes a 

resource request to CRM. 

2) CRM initializes and maintains a pool of virtual machines, the number of vir-

tual machines in the pool can be set via a config file, Ganglia is started on 

each virtual machine to monitor CPU, memory and IO. 

3) Upon a resource request from the workflow service: 

a) CRM fetches a VM from the VM pool and starts the Falkon service in 

that VM. 

b) CRM fetches another VM and starts the Falkon worker in that VM, and 

also makes that worker register to the Falkon service. 

c) CRM repeats step b) until all the Falkon workers are started and regis-

tered. 

d) If the VMs in the pool are not enough, then CRM will make resource re-

quest to the underlying OpenNebula platform to create more VM instanc-

es. 

4) CRM returns the end point reference of the Falkon server to the workflow 

service, and the workflow service can now dispatch tasks to the Falkon execu-

tion service. 

5) CRM starts the Cluster Monitoring Service to monitor the health of the 

Falkon virtual cluster. The monitoring service checks heartbeat from all the 

VMs in the virtual cluster, and will restart a VM if it goes down. If the restart 

fails, then for a Falkon service VM, it will get a new VM and start Falkon 

service on it, and have all the workers register to the new service. For a 

Falkon worker VM, it will replace the worker, and also delete the failed VM. 

6) Note that we also implement an optimization technique to speed up the 

Falkon virtual cluster creation. When a Falkon virtual cluster is decommis-

sioned, we change its status to “standby”, and it can be re-activated. 

7) When CRM receives resource request from the workflow service, it checks if 

there is a “standby” Falkon cluster, if so, it will return the information of the 

Falkon service directly to the workflow service, and also checks the number 

of the Falkon workers already in the cluster. 

a) If the number is more than requested, then the surplus workers are dereg-

istered and put into the VM pool. 

b) If the number is less than required, then VMs will be pulled from the VM 

pool to create more workers. 

 

 As for the management of VM images, VM instances, and VM network, 

CRM interacts with and relies on the underlying OpenNebula Cloud platform. Our 

resource provisioning approach takes into consideration not only the dynamic cre-

ation and deployment of a virtual cluster with a ready-to-use execution service, 

but also efficient instantiation and re-use of the virtual cluster, as well as the moni-

toring and recovery of the virtual cluster. We demonstrate the capability and effi-

ciency of our integration using a small scale experiment setup. 
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Fig. 7.  The Cloud Resource Manager 

4 Performance Evaluation 

 In this section, we demonstrate and analyze our integration approach using a 

NASA MODIS image processing workflow. The NASA MODIS dataset [30] we 

use is a set of satellite aerial data blocks, each block is of size around 5.5MB, with 

digits indicating the geological feature of each point in that block, such as water, 

sand, green land, urban area, etc. 

4.1 The MODIS Image Processing Workflow 

 The workflow (illustrated in Fig. 9) takes a set of such blocks, gets the size of 

the urban area in each of the blocks, analyzes and picks the top 12 of the blocks 

that have the largest urban area, converts them into displayable format, and as-

sembles them into a single PNG file. 

 

Fig. 8.  MODIS Image Processing Workflow 
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4.2 Experiment Configuration  

 We use a small cluster setting for the experiments, which includes 6 ma-

chines, each configured with Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB 

memory, 500GB HDD, and connected with Gigabit Ethernet LAN. The operating 

system is Ubuntu 10.04.1, with OpenNebula 2.2 installed. The configuration for 

each VM is 1 core, 1.5GB memory, 20GB HDD, and we use KVM as the hypervi-

sor. One of the machines is used as the frontend which hosts the workflow service, 

the CRM, and the monitoring service. The other 5 machines are used to instantiate 

VMs, and each physical machine can host up to 2 VMs, so at most 10 VMs can be 

instantiated in the environment. The configuration of the experiment is illustrated 

in Fig. 10. Although the cluster size is not significant, we believe it demonstrates 

the essence of our cluster recycling mechanism. 

 

Fig. 9.  Experiment Configuration 

4.3 Experiment Results  

 In our experiment, we control the workload by changing the number of input 

data blocks, the resource required, and the submission type (serial submission or 

parallel submission). So there are three dependent variables. We design the exper-

iment by making two of the dependent variables constant, and changing the other. 

We run three types of experiments: 

1. The serial submission experiment 

2. The parallel submission experiment 

3. The different number of data blocks experiment 
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 In all the experiments, VMs are pre-instantiated and put in the VM pool. The 

time to instantiate a VM is around 42 seconds and this doesn’t change much for all 

the VMs created. 

4.3.1 The serial submission experiment 

 In the serial submission experiment, we first measure the base line for server 

creation time, worker creation time and worker registration time. We create a 

Falkon virtual cluster with 1 server, and varying number of workers, and we don’t 

reuse the virtual cluster. 

 In Fig. 11, we can observe that the server creation time is quite stable, around 

4.7s every time. Worker creation time is also stable, around 0.6s each, and for 

worker registration, the first one takes about 10s, and for the rest, about 1s each. 

 For the rest of the serial submission, we submit a workflow after the previous 

one has finished to test virtual cluster recycling, where the input data blocks re-

main fixed.   

 In Fig. 12, the resources required are one Falkon server with 5 workers, one 

server with 3 workers and one server with 1 worker. We can see that for the sec-

ond and third submissions, the worker creation and server creation time are zero, 

only the surplus workers need to de-register themselves. 

 

Fig. 10.  The Base Line for Cluster Creation 

 In Fig. 13, the resources required are in the reverse order of those in Fig. 12. 

Each time two extra Falkon workers need to be created and registered, and the 

time taken are roughly the same. These experiments show that the Falkon virtual 

cluster can be re-used after it is being created, and worker resources can be dy-

namically removed or added. 
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Fig. 11.  Serial Submission, Decreasing Resource Required 

 

Fig. 12.  Serial Submission, Increasing Resource Required 

 In Fig. 14, we first request a virtual cluster with 1 server and 9 workers, we 

then make 5 parallel requests for virtual clusters with 1 server and 1 worker. We 

can observe that one of these requests is satisfied using the existing virtual cluster, 

where the other 4 are created on-demand. In this case, it takes some time to de-

register all the 8 surplus workers, which makes the total time comparable to on-

demand creation of the cluster. 
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Fig. 13.  Serial Submission, Mixed Resource Required 

4.3.2 The parallel submission experiment 

 In the parallel submission experiment, we submit multiple workflows at the 

same time in order to measure the maximum parallelism (the number of concur-

rent workflows that can be hosted in the Cloud platform) in the environment. 

 First, we submit resource requests with 1 server and 2 workers, and the max-

imum parallelism is up to three. In Table 1, we show the results for the experi-

ment, in which we make resource requests for 1 virtual cluster, 2 virtual clusters, 3 

virtual clusters and 4 virtual clusters.  
  

TABLE 1  Parallel Submission, 1 Server and 2 Workers 

# of Clusters Server Creation Worker Creation Worker Registration 

1 4624ms 1584ms 11305ms 

2 
4696ms 2367ms 11227ms 

445ms 0 0 

3 

4454ms 1457ms 11329ms 

488ms 0 0 

548ms 0 0 

4 

521ms 0 0 

585ms 0 0 

686ms 0 0 

submission failed 

 

 For the request of 2 virtual clusters, it can re-use the one released by the early 

request, and the time to initialize the cluster is significantly less than fresh creation 

(445ms vs. 4696ms). It has to create the second cluster on-demand. For the 4-

virtual-cluster request, since all the VM resources are used up by the first 3 clus-
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ters, the 4
th
 cluster creation would fail as expected. When we change resource re-

quests to 1 server and 4 workers, the maximum parallelism is two, and the request 

to create a third virtual cluster also fails. Since our VM pool has a maximum of 

ten virtual machines, it's easy to explain why this has happened. This experiment 

shows that our integrated system can maximize the cluster resources assigned to 

workflows to achieve efficient utilization of resources. 

 

4.3.3 Different number of data blocks experiment 

 In this experiment, we change the number of input data blocks from 50 blocks 

to 25 blocks, and measure the total execution time with varying number of work-

ers in the virtual cluster. 

 In Fig. 15, we can observe that with the increase of the number of workers, 

the execution time decreases accordingly (i.e. execution efficiency improves), 

however at 5 workers to process the workflow, the system reaches efficiency peak. 

After that, the execution time goes up with more workers. This means that the im-

provement can’t subsidize the management and registration overhead of the added 

worker. The time for server and worker creation, and worker registration remain 

unchanged when we change the input size (as have been shown in Fig. 11). The 

experiment indicates that while our virtual resource provisioning overhead is well 

controlled, we do need to carefully determine the number of workers used in the 

virtual cluster to achieve resource utilization efficiency. 

 

Fig. 14.  Different Input Sizes 

5 Related Work 

 Systems such as Taverna [11], Kepler [9], Vistrails [10], Pegasus [8], Swift 

[32], and VIEW [26] have seen wide adoption in various disciplines such as Phys-

ics, Astronomy, Bioinformatics, Neuroscience, Earth Science, and Social Science. 
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In Table 2, we list some use cases that focused on applying SWFMSs to execute 

data-intensive applications. 

TABLE 2  Use Cases of SWFMSs 

SWFMSs Application Fields Use Cases 

Swift Climate Science Climate Data Analysis[13] 

Taverna Bioinformatics 
Single Nucleotide Polymorphisms 

Analysis[14] 

Vistrails Earth Science NASA Earth Exchange [15] 

Kepler Physics Hyperspectral image processing [37] 

VIEW Medical Science Neurological disorder diagnosis[48] 

 There are some early explorers that try to evaluate the feasibility, perfor-

mance, and adaptation of running data intensive and HPC applications on Clouds 

or hybrid Grid/Cloud environments. Palankar et al. [17] evaluated the feasibility, 

cost, availability and performance of using Amazon’s S3 service to provide stor-

age support to data intensive applications, and also identified a set of additional 

functionalities that storage services targeting data-intensive science applications 

should support. Oliveira et al. [35] evaluated the performance of X-Ray Crystal-

lography workflow using SciCumulus middleware with Amazon EC2. Wang et al. 

[36] presented their early definition and experience of scientific Cloud computing 

in the Cumulus project by merging existing Grid infrastructures with new Cloud 

technologies. These studies provide good source of information about Cloud plat-

form support for science applications. Other studies investigated the execution of 

real science applications on commercial Clouds [19] [20], mostly being HPC ap-

plications, and compared the performance and cost against Grid environments. 

While such applications indeed can be ported to a Cloud environment, Cloud exe-

cution doesn’t show significant benefit due to the applications’ tightly coupled na-

ture. 

There have been a couple of researcher that have been investigating techniques 

for deploying data-intensive workflows in the cloud using unique architectures 

that are difficult to deploy on traditional platforms, such as grids [55–57]. Mean-

while, some other researches focused on developing new algorithms for work-

flows to take advantage of the unique pricing model and elasticity of infrastructure 

clouds [49-53], and investigating new cloud workflow-scheduling algorithms that 

optimize for cost, performance, and other quality-of-service metrics [58 –60]. 

 Gideon Juve et al. have studied the cost and performance of workflows in the 

cloud via simulation [24], using an experimental Nimbus cloud [25], individual 

Elastic Compute Cloud (EC2) nodes [28], and a variety of different intermediate 

storage systems on EC2 [43]. Christian Vecchiola et al. have done similar investi-

gations on EC2 and Grid5000 [54]. These studies primarily analyzed the perfor-

mance and cost of workflows in the cloud, rather than the practical experience of 

deploying workflows in the cloud. To address the shortages, Gideon Juve et al 

[41] also related the practical experience of trying to run a nontrivial scientific 

workflow application on three different infrastructures and compare the benefits 

and challenges of each platform. 
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 M. Kozlovszky et al. [42] introduced a convenient way for sharing, integrat-

ing and executing different workflows in heterogeneous infrastructure environ-

ments. The paper explained in detail how to enable generic DCI compatibility for 

grid workflow management systems (such as ASKALON, MOTEUR, gUSE/WS-

PGRADE, etc.) on job level and indirectly on workflow level. The generic DCI 

Bridge service enables the execution of jobs onto existing major DCI platforms 

(such as Service Grids, Desktop Grids, Web services, or even Cloud based DCIs). 

The CODA framework [16] was designed and implemented to support big data 

analytics in Cloud computing. Important functions, such as workflow scheduling, 

data locality, resource provisioning, and monitoring functions, had been integrated 

into the framework. Through the CODA framework, the workflows could be easi-

ly composed and efficiently executed in Amazon EC2. In order to address perfor-

mance and cost issues of big data processing on Clouds, Long Wang et al. [5] pre-

sented a novel design of adaptive workflow management system which included a 

data mining based prediction model, workflow scheduler, and iteration controls to 

optimize the data processing via iterative workflow tasks. 

 Those works mentioned above are important as they provide valuable experi-

ence on migrating traditional scientific workflows to various Cloud platforms. 

However, a normalized, end-to-end integration approach is still missing. We pre-

sent an end-to-end approach that addresses the integration of Swift, an SWFMS 

that has broad application in Grids and supercomputers, with the OpenNebula 

Cloud platform. The integration covers all the major aspects involved in workflow 

management in the Cloud, including a client side workflow submission tool, a 

Cloud workflow management service, a Cloud Resource Manager (CRM), and a 

cluster monitoring service. 

6 Conclusion and Future Work 

 As more and more scientific applications are migrating into Cloud, it is im-

perative to also migrate SWFMSs into Cloud to take advantage of Cloud scalabil-

ity, and also to handle the ever increasing data scale and analysis complexity of 

such applications. Cloud offers unprecedented scalability to workflow systems, 

and could potentially change the way we perceive and conduct scientific experi-

ments. The scale and complexity of the science problems that can be handled can 

be greatly increased on the Cloud, and the on-demand nature of resource alloca-

tion on the Cloud will also help improve resource utilization and user experience.  

 We first introduce our service framework for integrating SWFMSs into Cloud 

computing platforms. Then we present our early effort in integrating the Swift 

workflow management system with the OpenNebula Cloud platform, in which a 

Cloud workflow management service, a Cloud resource manager, and a cluster 

monitoring service are developed. We also demonstrate the functionality and effi-

ciency of our approach using a set of experiments and a real-world scientific 

workflow.  
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 For future work, we are working on a common interface that will facilitate the 

integration of Swift with other Cloud platforms such as Amazon EC2 and Open-

stack. We will also investigate commonality in migrating other SWFMSs into 

Cloud, i.e. ways to offer SWFMSs as a service and to enable them to interact with 

the underlying Cloud resources. We will also leverage distributed storage for VM 

images for more efficient access, and conduct large scale experiments to look at 

ways to improve VM instantiation, virtual cluster creation and workflow execu-

tion. We are also exploring redesigning workflow systems from the ground up us-

ing Cloud Computing building blocks, such as EC2 [68], SQS [66], DynamoDB 

[67], S3 [65], and CloudWatch [68], in order to deliver a light-weight, fast, and 

distributed workflow system that should scale along with the largest cloud infra-

structures [44].    
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