
Architecting Cloud Workflow: Theory and Practice

Yong Zhao, Youfu Li

School of Computer Science and Engineering

Univ. of Electronic and Science Technology of China

Chengdu, China

{yongzh04, youfuli.fly}@gmail.com

Ioan Raicu

Department of Computer Science

Illinois Institute of Technology

Chicago, USA

iraicu@iit.edu

Shiyong Lu

Department of Computer Science

Wayne State University

Detroit, USA

shiyong@wayne.edu

Xuan Zhang

School of Computer Science and Engineering

Univ. of Electronic and Science Technology of China

Chengdu, China

Jossie.bunny@gmail.com

Abstract—The data scale, science analysis and processing

complexity in scientific community are growing exponentially in

the “big data” era. Cloud computing paradigm has been widely

adopted to provide unprecedented scalability and resources on

demand, while scientific workflow management systems

(SWFMSs) have been proven essential to scientific computing

and services computing. Uniting the advantages of both cloud

computing and SWFMSs can bring a valuable solution to the

scientific “big data” problem to researchers. Although a series of

work have concentrated on integrating SWFMSs with Cloud

platforms that provide much experience for future research and

development, a study from an architectural perspective is still

missing. The main contributions of this paper are: 1) based on a

comprehensive survey of the available integration options, we

propose a service framework for integrating SWFMSs with

Cloud computing; 2) we implement the service framework based

on various Cloud platforms to validate the feasibility of the

proposed framework; and 3) we conduct a set of experiments to

demonstrate the capability and use a NASA MODIS image

processing workflow as a showcase of the implementation.

Keywords—Cloud Workflow; Service Framework; Workflow-

as-a-Service; Swift; OpenNebula; Eucalyptus

I. INTRODUCTION

Industrial and Scientific communities are facing a “data
deluge” [7] coming from products, sensors, satellites,
experiments and simulations. Scientists, manufacturers and
developers are attempting multifarious methods to deal with
the ever-increasing computing and storage problems arising in
the “big data” era. As an emerging computing paradigm, Cloud
computing [6] is gaining tremendous momentum in both
academia and industry. Scientific workflow management
systems (SWFMSs) have been proven essential to scientific
computing and services computing as they provide
functionalities such as workflow specification, process
coordination, job scheduling and execution, provenance
tracking, and fault tolerance.

Uniting the advantages of both cloud computing and
SWFMSs can bring a valuable solution to the scientific “big

data” problem to researchers. Cloud offers unprecedented
scalability to workflow systems, and could potentially change
the way we perceive and conduct scientific experiments. The
scale and complexity of the science problems that can be
handled can be greatly increased on the Cloud, and the on-
demand resource allocation on the Cloud will also help
improve resource utilization and user experience.

In many cases, large simulations are organized as scientific
workflows that run on Distributed Computing Infrastructures
(DCIs), and we realize that workflow management systems are
diverse in many aspects, such as workflow models, workflow
languages, workflow engines, and so on. In many cases, one
workflow system engine is dependent on one specific DCI,
porting a workflow management system to run on another DCI
may cost a large quantity of extra effort. So in practice,
researchers may choose to integrate a specific SWFMS into a
particular Cloud, whichever takes the minimum effort to
migrate. We expect that the availability of such a service
framework can provide a solution to breaking the limitations
that a specific SWFMS is bound to a particular Cloud
environment and a guidance for the architectural design of
integrating SWFMSs into Cloud platforms. To address this
issue,

 First, we propose a generic service framework to
integrate SWFMSs with various Cloud based DCIs,
which covers a wide spectrum from workflow
management and migration into Clouds, task
scheduling, Cloud resource management, and virtual
resource provisioning and recycling.

 Second, through the introduction of the reference
service framework, we implement the framework
based on a set of open-source and implemented
systems to validate the feasibility of the proposed
framework.

 Third, we conduct a series of experiments to
demonstrate the capability and use a NASA MODIS
image processing workflow as a showcase of the
implementation.

This paper is supported by the National Science Foundation of
China No. 61034005 and No. 61272528.

II. RELATED WORK

The deployment and management of workflows over the
current existing heterogeneous and not yet interoperable Cloud
providers, however, is still a challenging task for the workflow
developers. The series of works [5] [19] presented a broker-
based framework to support the execution of workflow
applications on a multi-Cloud environment. Bhaskar Prasad
Rimal et al. [4] discussed a framework of scientific workflow
for multi-tenant cloud orchestration environment that deals
with semantic-based workflow as well as policy-based
workflow. To isolate each tenant, they designed three layers of
metadata, including tenant-specific metadata, common
metadata and data, and maintained them in the metadata
repositories which were shared between tenants.

The CODA framework [3] was designed and implemented
to support big data analytics in cloud computing. Important
functions, such as workflow scheduling, data locality, resource
provisioning, and monitoring functions, has been integrated
into the framework. Through the CODA framework, the
workflows can be easily composed and efficiently executed in
Amazon EC2. Sunflower [13] was an adaptive P2P agent-
based framework for configuring, enacting, managing and
adapting autonomic workflows on hybrid Grid-Cloud
infrastructures. To orchestrate Grid and Cloud services,
Sunflower utilized a bio-inspired autonomic choreography
model and integrated the scheduling algorithm with a
provisioning component that can dynamically launch virtual
machines in a Cloud infrastructure to provide on-demand
services in peak-load situations.

In order to address performance and cost issues of big data
processing on clouds, Long Wang et al. [15] presented a novel
design of adaptive workflow management system which
included a data mining based prediction model, workflow
scheduler, and iteration controls to optimize the data
processing via iterative workflow tasks.

A workflow-oriented cloud computing framework, called
WfOC [14], was introduced to support workflow-oriented
application on multiple data centers. This framework included
workflow-oriented cloud computing programming language,
tasks extraction and composition, tasks and data sources
registration, tasks functions mapper/reducer and other
components, and enabled users to especially focus on
workflow definition and workflow tasks logic implementation
without needing to worry about the distribution of data and
target execution systems.

Xiao Liu et al. [16] proposed a generic QoS framework
covering the major stages of a workflow lifecycle, for cloud
workflow systems. The framework consisted of four
components: 1) QoS requirement specification, 2) QoS-aware
service selection, 3) QoS consistency monitoring 4) and QoS
violation handling. They also illustrated a concrete
performance framework as a case study and evaluated the
effectiveness of the performance framework in their cloud
workflow system.

Those works mentioned above were mainly focused on
different aspects of the deployment and management of
integrating workflows into Clouds, including underlying

resource allocation, function implementation, service
evaluation, performance and cost issues, etc., however, a
normalized, service-oriented integration framework is still
missing. As running scientific workflows as a service in the
Cloud platforms involves a variety of systems and techniques,
Researching and designing of a service-oriented framework
can help to standardize the integration procedure and
interaction between essential systems.

III. SERVICE FRAMEWORK

In this section, we first present the available options for
running scientific workflow within Cloud environment based
on different layers of SWFMSs. Then we discuss the service
framework and analyze the details from different aspects,
including layers, subsystems and interfaces.

A. Available Options

The reference architecture for SWFMSs [22] is proposed as
an endeavor to standardize the SWFMS research and
development efforts. As shown in Fig. 1, the reference
architecture consists of 4 logical layers, 7 major functional
subsystems, and 6 interfaces. The first layer is the Operational
Layer, which consists of a wide range of heterogeneous and
distributed data sources, software tools, services, and their
operational environments, including high-end computing
environments. The second layer is called the Task Management
Layer. This layer consists of three subsystems: Data Product
Management, Provenance Management, and Task
Management. The third layer, called the Workflow
Management Layer, consists of Workflow Engine and
Workflow Monitoring. Finally, the fourth layer – the
Presentation Layer, consists of the Workflow Design
subsystem and the Presentation and Visualization subsystem.
The reference architecture would allow the scientific workflow
community to focus on different layers and subsystems of
SWFMSs, and also enable such systems to interact and
interoperate with each other based on the interface definitions.

Fig. 1. A reference architecture for SWFMSs

We argue that the above reference architecture is still valid
for a Cloud-enabled SWFMS. Here, we consider four possible
solutions for deploying the proposed reference architecture in a
Cloud computing environment:

1) Operational-Layer-in-the-Cloud. In this solution, only
the Operational Layer lies in the Cloud with an SWFMS
running out of the Cloud. An SWFMS can now leverage Cloud

applications as another type of task components. In contrast to
other applications, Cloud-based applications can take
advantage of the high scalability provided by the Cloud and the
infinite resource capacity provisioned by large data centers.
This solution also relieves a user the concern of vendor lock-in
due to the relative ease of using alternative Cloud platforms for
running Cloud applications. However, the SWFMS itself
cannot benefit from the scalability offered by the Cloud.

2) Task-Management-Layer-in-the-Cloud. In this solution,
both the Operational Layer and the Task Management Layer
will be deployed in the Cloud. In contrast to traditional
deployment strategies, Data Product Management, Provenance
Management, and Task Management can now leverage the
high scalability provided by the Cloud. In particular, Data
Product Management and Provenance Management can take
advantage of the data models provided by the Cloud, such as
blobs, tables, and queues provided by Microsoft Azure. In the
meanwhile, Task Management, rather than accommodating the
user’s request based on a batch-based scheduling system, all-
ready tasks can now be immediately deployed over some
Cloud computing nodes and get executed instead of waiting in
a job queue for the availability of resources. One limitation of
this solution is that the economic cost associated with the
storage of provenance and data products in the Cloud. Possible
workflow tasks might also be restricted to the types of
applications and environments (VM instances created by
images) that are supported by a particular Cloud infrastructure,
which is yet to be standardized. Moreover, although task
scheduling and management can benefit from the scalability
offered by the Cloud, workflow scheduling and management
are not since the workflow engine runs outside of the Cloud.

3) Workflow-Management-Layer-in-the-Cloud. In this
solution, the Operational Layer, the Task Management Layer,

and the Workflow Management Layer are deployed in the
Cloud with the Presentation Layer deployed at a client
machine. This solution provides a good balance between
system performance and usability: the management of
computation, data, and storage and other resources are all
encapsulated in the Cloud, while the Presentation Layer
remains at the Client machine to support the key architectural
requirement of user interface customizability and user
interaction support [8]. Such a solution is also most suitable for
a scientific workflow application system in which ad hoc
domain-specific requirements are constantly evolving,
demanding constant changes to the Presentation Layer for that
domain. In this solution, both workflow and task management
can benefit from the scalability offered by the Cloud, but the
downside is that they become more dependent on the Cloud
platform over which they run.

4) All-in-the-Cloud. In this solution, a whole SWFMS is
deployed inside the Cloud and accessible via a Web browser. A
distinct feature of this solution is that no software installation is
needed for a scientist to use an SWFMS and an SWFMS can
fully take advantage of all the services provided in a Cloud
infrastructure. Moreover, the Cloud-based SWFMSs can
provide highly scalable scientific workflow and task
management as services, providing one kind of Software-as-a-
Service (SaaS). One concern the user might have is the
economic cost associated with the necessity of using Cloud on
a daily basis, the dependency on the availability and reliability
of the Cloud, as well as the risk associated with vendor lock-in.
One way to address such a concern is to use an on-premise
Cloud or a hybrid Cloud, in which public Clouds are used only
for shifting out peak workloads.

Fig. 2. The Service Framework

As we described, each of the above solutions has its cons
and pros. In practice, a hybrid approach might be desirable, in
which for each layer, one subsystem or a piece of the
subsystem is deployed in the Cloud, while the rest is deployed
outside of the Cloud. For each solution, a refined
microarchitecture for each layer and subsystem is an important
research problem. We envision that in the future, many
solution instances of the proposed reference architecture will
coexist, each optimized for a particular deployment strategy. In

the meanwhile, as each solution instance conforms to the same
deployment-strategy-independent reference architecture,
interoperability is ensured.

B. Service Framework

For easy integration with a Cloud platform, a “Task-
Management-layer-in-the-Cloud” approach can be chosen by
implementing, for instance an “Amazon EC2” provider to
Swift, then tasks in a Swift workflow can be submitted into

EC2 and executed on EC2 VM instances. However, this
approach would leave most of the workflow management and
dynamic resource scaling outside the Cloud. For application
developers, we would like to free them from complicated
Cloud resource configuration and provisioning issues, and
provide them with the convenience and transparency to
scalable Cloud resources, therefore we choose to take the
“Workflow-Management-Layer-in-the-Cloud” approach,
which requires minimal configuration at the client side and
supports easy deployment with virtualization techniques.

We propose a structured service framework that covers all
the major aspects involved in the migration and integration of
SWFMSs into the Cloud, from client-side workflow
specification, service-based workflow submission and
management, task scheduling and execution, to Cloud resource
management and provisioning. As illustrated in Fig. 2b, the
service framework includes 4 layers, 8 components and 6
interfaces. Fig. 2a shows a typical service stack of Cloud
computing: on top of the IaaS layer, the WaaS is designed to
provide workflow as a service for researchers and application
developers. We position the WaaS layer across both the Saas
and PaaS layer, because our proposed service framework can
also be applied to provide workflow platform as a service for
related scientists.

C. Layers

The first layer is the Infrastructure Layer, which consists
of multiple Cloud platforms with the underlying server, storage
and network resources. This layer provides IaaS level support
such as the management of the fundamental physical
equipment, virtual machines and storage systems to upper
layers. The separation of the Infrastructure Layer from other
layers isolates the science-focused and technology-independent
problem solving environment from the underlying fast
advancing high-end computing infrastructure.

The second layer is called the Middleware Layer. This
layer is responsible for resource management and provisioning,
and responding to requests from upper-layer and supporting
various scheduling frameworks. All the operations that need to
access the underlying resources are encapsulated in this layer.
According to the description in the Integration Options section,
this layer is responsible for the requirements requested by the
Task-Management-Layer-in-the-Cloud option. Moreover, the
separation of the Middleware Layer from the Infrastructure
Layer promotes the extensibility of the Infrastructure Layer
with new Cloud platforms and new high-end computing
facilities, and localizes system evolution due to hardware or
software advances to the interface between the Infrastructure
Layer and the Middleware Layer.

The third layer is the Service Layer, which is responsible
for providing scientific workflow management as a service to
the upper clients and realizing the execution and monitoring of
scientific workflows. This layer also provides interfaces to
support various workflow engines. According to the integration
options, the Service Layer fulfills the requirements addressed
in the Workflow-Management-Layer-in-the-Cloud option. The
separation of the Service Layer from the Middleware Layer
concerns two aspects: 1) it isolates the choice of a workflow
model from the choice of a task model, so changes to the

workflow structure do not need to affect the structures of tasks
and 2) it separates workflow scheduling from task execution,
thus provides space for performance and scalability of the
whole management system.

The fourth layer is the Client Layer, which provides the
functionality of workflow design, specification, visualization
and various user interfaces and tools for workflow submission,
resource configuration etc. The Client layer may be out of the
Cloud to circumvent the disadvantages discussed in the All-in-
the-Cloud option. The separation of the Client Layer from
other layers provides the flexibility of customizing the user
interfaces of the system and promotes the reusability of the rest
of system components for different scientific domains.

D. Subsystems

The eight major functional subsystems correspond to the
key functionalities required for workflow management as a
service in the Cloud. Although the reference framework may
allow the introduction of additional subsystems and their
features in each layer, this paper only focuses on the major
subsystems and their essential functionalities.

The Workflow Specification & Submission subsystem is
responsible for producing workflow specifications represented
in a workflow specification language that supports a particular
workflow model, and the submission of workflows to the
Cloud Workflow Management Service subsystem. The
Workflow Specification & Submission subsystem may provide
users with a standalone or Web-based workflow designer,
which may support both graphical- and scripting-based design
interfaces, and a workflow submission component to submit
workflows. The interoperability of workflows should be
addressed in this subsystem by the standardization and
conversion of workflow languages.

The Workflow Presentation & Visualization subsystem is
important especially for data-intensive and visualization-
intensive scientific workflows, in which the presentation of
workflows and visualization of various data products and
provenance metadata in multi-dimensions are key to gaining
insights and knowledge from large amount of data and
metadata.

The Cloud Workflow Management Service subsystem acts
as an intermediary between the workflow client and the
backend Cloud Resource Manager, and is the key service in the
service framework provided to researchers interested in using
Cloud-based scientific workflow. It supports the following
functionalities: workflow language compilation, workflow
scheduling, resource acquisition, and status monitoring. In
addition, the implementation of fault-tolerance mechanism can
also be defined in the service.

The Workflow Engines subsystem supports various
workflow engines and can be specified by end-users from the
Workflow Specification & Submission subsystem. A workflow
engine is the heart of a workflow system and responsible for
creating and executing workflow runs according to a workflow
run model, which defines the state transitions of each scientific
workflow and its constituent task runs. A workflow run
consists of a coordinated execution of tasks, each of which is
called a task run. The interoperability of workflows should be

addressed by the standardization of interfaces, workflow
models, and workflow run models, so that a scientific
workflow or its constituent sub-workflows can be scheduled
and executed in multiple Workflow Engines that are provided
by various vendors.

The Cloud Resource Manager (CRM) subsystem is a
resource management framework that bridges Cloud Workflow
Management Service with various Cloud platforms. It provides
scientific workflows with Cloud resource provisioning as a
service and the workflows can benefit from the scalability
offered by the Cloud. Meanwhile, the dependency on Cloud
platforms can be reduced as implementations for various Cloud
platforms can be provided, ranging from commercial to open
source ones, including Amazon EC2, OpenNebula, Eucalyptus,
CloudStack, etc.

The Scheduling Management Service subsystem is a
framework that bridges Cloud Resource Manager with various
Task Scheduling Frameworks. It provides a set of operations
for the deployment and management of various scheduling
frameworks according to configurations specified by users.

The Task Scheduling Frameworks subsystem consists of
multiple scheduling frameworks, such as Falkon[20], Sparrow,
Gearman, and so on, and the framework can be specified by
end-users through configuration. It is devised to schedule tasks
delivered from the Workflow Engines subsystem.

The Cloud Platforms Subsystem refers to various supported
Cloud platforms in general and the functionalities can be
summarized from the Infrastructure Layer.

E. Interfaces

In the reference framework, six interfaces are explicitly
defined, which show how each subsystem interacts with other
subsystems. The interoperability between the subsystems
should be addressed by standardizing the interfaces provided
by each subsystem.

Interface I1 provides a set of interfaces for the
communication between Workflow Specification &
Submission subsystem and the Cloud Workflow Management
Service, so workflow specifications created by workflow
design tools can be submitted to a workflow execution
environment for compiling, scheduling, and management.
Interface I2 provides a series of interfaces for Cloud Workflow
Management Service to interact with Cloud Resource
Manager: the Cloud Workflow Management Service sends
resource request to allocate specified cluster resources, and the
Cloud Resource Manager replies with the cluster information
for task execution. Interface I3 provides a series of interfaces
for the Cloud Resource Manager to communicate with the
Scheduling Management Service: upon the specified resource
requests from Cloud Workflow Management Service are
received, the Cloud Resource Manager provisions resources
and deploys the user-specified Task Scheduling Framework
into the cluster based on the services provided by the
Scheduling Management Service, then sends cluster
information back to the Cloud Workflow Management Service.
Interface I4 provides a set of interfaces for the Cloud Resource
Manager to interact with underlying Cloud Platforms, mostly
for resource provisioning, monitoring and recycling. Interface

I5 provides a series of interfaces for the Scheduling
Management Service to interact with Task Scheduling
Frameworks subsystem: the supported operations upon
scheduling frameworks are defined here. Interface I6 provides a
set of interfaces to interoperate with deployed Workflow
Engines. Workflow Specifications can be passed through to
default or user-specified workflow engine for execution.

F. Discussion

The motivation of our work is to break through workflows’
dependence on the underlying resource environment, and take
advantage of the scalability and on-demand resource allocation
of the Cloud. We present a layered service framework for the
implementation and application of integrating SWFMSs into
manifold Cloud platforms, which can also be applicable when
deploying a workflow system in Grid environments. The
separation of each layer enables abstractions and different
independent implementations for each layer, and provides the
opportunity for scientists to develop a stable and familiar
problem solving environment where rapid technologies can be
leveraged but the details of which are shielded transparently
from the scientists who need to focus on science itself. The
Interfaces defined in the framework is flexible and
customizable for scientists to expand or modify according to
their own specified requirements and environments.

IV. IMPLEMNTATION AND EXPERIMENT

In this section, we first describe our experience in
integrating the Swift scientific workflow management system
[10] with different Cloud platforms based on the service
framework. Then we show our experiment results of
implementation for both the OpenNebula [1] and Eucalyptus [9]
platforms to demonstrate the practicability and capability of the
service framework.

A. Implementation Architecture & Interfaces

Fig. 3. Integration Architecture

We implement the service framework for both the
OpenNebula and Eucalyptus platforms and we show the
integration architecture in Fig. 3. The implementation supports
workflow specification and submission, on-demand virtual
cluster provisioning, high-throughput task scheduling and
execution, and scalable resource management in the Cloud.
The layers, systems and interfaces displayed in the integration
architecture can be easily mapped into the proposed service
framework.

As the implementation of service framework includes a
variety of systems and techniques, for the purpose of clarity,
we list the subsystems, corresponding to Fig. 2, in Table 1.
And we also point out which subsystems are directly from the
original systems and which are implemented for the
integration.

We also define a series of interfaces to standardize the
complicated interactions between different essential
subsystems. We list the key interfaces in Table 2, and point out
the implementation status and interaction relationships. Further
details about these interfaces are available at our website

1
.

TABLE I. SUBSYSTEMS IMPLEMENTATION DESCRIPTION

Components Description Subsystems

OpenNebula /

Eucalyptus
reuse

Cloud Platforms

(Abbr. CP)

Falkon Scheduling

Framework
minor revision

Task Scheduling Frameworks

(Abbr. TSF)

SMS implemented
Scheduling Management

Service (Abbr. SMS)

CMR implemented
Cloud Resource Manager

(Abbr. CRM)

Swift System minor revision
Workflow Engines

(Abbr. WE)

CWMS implemented
Cloud Workflow Management

Service (Abbr. CWMS)

Client Submission

Tool
implemented

Workflow Specification &

Submission(Abbr. WSS)

a. “reuse”: we directly reuse the available components for integration
b. “minor revision”: we reuse the available components after customization.

c. “implemented”: we implement the components from design to test.

TABLE II. INTERFACES IMPLEMENTATION DESCRIPTION

Interfaces Description Interaction Between

Interface I1 implemented WSS and CWMS

Interface I2 implemented CWMS and CRM

Interface I3 implemented CRM and SMS

Interface I4 implemented CRM and CP

Interface I5 under evaluation SMS and TSF

Interface I6 under evaluation CWMS and WE

a. “implemented”: we define and implement the interfaces.
b. “under evaluation”: represents those interfaces have already been defined but

 still need further adjustment and evaluation for detail implementation.

B. The Swift Workflow Management System

Swift is a system that bridges scientific workflows with
parallel computing. Swift takes a structured approach to
workflow specification, scheduling, and execution. It consists
of a simple scripting language called SwiftScript for concise
specification of complex parallel computations based on
dataset typing and iterations [17], and dynamic dataset
mappings for accessing large-scale datasets represented in
diverse data formats.

The Swift system architecture consists of four major
components: Program Specification, Scheduling, Execution,
and Provisioning, as illustrated in Fig. 4. Computations are

1 http://www.cloud-uestc.cn/projects/serviceframework/index.html.

specified in SwiftScript, which has been shown to be simple
yet powerful. SwiftScript programs are compiled into abstract
computation plans, which are then scheduled for execution by
the workflow engine onto provisioned resources. Resource
provisioning in Swift is very flexible, tasks can be scheduled to
execute on various resource providers, where the provider
interface can be implemented as a local host, a cluster, a multi-
site Grid, or the Amazon EC2 service.

Fig. 4. Swift System Architecture

The four major components of the Swift system can be
easily mapped into the four layers in the SWFMSs reference
architecture: the specification falls into the Presentation Layer,
although SwiftScript focuses more on the parallel scripting
aspect for user interaction than on Graphical representation; the
scheduling components correspond to the Workflow
Management Layer; the execution components maps to the
Task Management layer; and the provisioning layer can be
thought as mostly in the Operational Layer.

C. Experiment Configuration

OpenNebula: We use 6 machines in the experiment, each
configured with Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB
memory, 500GB HDD, and connected with Gigabit Ethernet
LAN. The configuration for each VM is 1 core, 1.5GB
memory, 20GB HDD, and we use KVM as the hypervisor. One
of the machines is used as the frontend which hosts the
workflow service, the CRM, and the monitoring service. The
other 5 machines are used to instantiate VMs, and each
physical machine can host up to 2 VMs.

Eucalyptus: Considering the efficient and convenient
service provided by the FutureGrid

2
, we choose Eucalyptus for

the implementation and deployment. FutureGrid is a project led
by Indiana University and funded by the National Science
Foundation (NSF) to develop a high-performance Grid test bed
that lets scientists collaboratively develop and test innovative
approaches to parallel, Grid, and Cloud computing. The
instance type used in our experiment is m1.small: 1 CPU Unit,
1 CPU Core and 500MB Memory. And the operating system
is Ubuntu Server 12.04.

D. Resource Provisioning

In our implementation, we have realized the dynamic
resource request by interacting with underlying Cloud
platforms. Considering the experiments are conducted in the
laboratory environment, where economic cost can be
temporarily ignored, we pre-instantiate all the required VMs
and put them in the VM pool, which may help the evaluation

2 FutureGrid: https://portal.futuregrid.org/

results be more intuitionistic and comparable. We measure the
performance to establish a baseline for resource provisioning
and Cloud resource management overhead in the science Cloud
environment.

1) The base line measurement
We first measure the base line for server initialization time

and worker registration time. We request a Falkon virtual
cluster with 1 server, and varying number of workers.

Fig. 5. The Base Line Measurement (OpenNebula)

The base line results in Fig. 5 are measured in OpenNebula
environment. We can observe that the server initialization time
is quite stable, around 4.7s every time, and for worker parallel
registration, the time increases slightly with the worker
number.

Fig. 6. The Base Line Measurement (Eucalyptus)

We measure the server initialization time and worker
registration time (illustrated in Fig. 6) in Eucalyptus
environment to compare with those in the OpenNebula setting.
We observe the time to create a Falkon server and start the
service is around 11s, much longer than that in Fig. 5. We
attribute this to the m1.small configuration. The overall time
increases slightly with the worker number as all the worker
registration is executed concurrently, which shows a similar
pattern to that in Fig. 5.

2) The resource recycling measurement
We implement an optimization technique to speed up the

cluster creation. When a Falkon virtual cluster is
decommissioned, we change its status to “standby”, and it can
be re-activated. When the Cloud Resource Manager receives
resource request, it checks if there is a “standby” Falkon
cluster, if so, it will return the information of the Falkon

service, and also checks the number of the Falkon workers
already in the cluster.

We measure the recycling mechanism by submitting
requests with exponentially decreasing worker number. Except
the first request, the server initialization time of the other
requests is zero, and the time taken is to deregister 16
workers8 workers4 workers2 workers1 worker (as
shown in Fig. 7).

Fig. 7. Decreasing Resource Required (Eucalyptus)

E. MODIS Image Processing Workflow

We demonstrate and analyze the integration
implementation in OpenNebula environment using a NASA
MODIS [11] image processing workflow. The NASA MODIS
dataset we use is a set of satellite aerial data blocks, each block
is of size around 5.5MB, with digits indicating the geological
feature of each point in that block, such as water, sand, green
land, urban area, etc.

Fig. 8. MODIS Image Processing Workflow

The workflow (illustrated in Fig. 8) takes a set of such
blocks, gets the size of the urban area in each of the blocks,
analyzes and picks the top 12 of the blocks that have the largest
urban area, converts them into displayable format, and
assembles them into a single PNG file.

In this experiment, we change the number of input data
blocks from 50 blocks to 25 blocks, and measure the total
execution time with varying number of workers in the virtual
cluster. In Fig. 9, we can observe that with the increase of the
number of workers, the execution time decreases accordingly
(i.e. execution efficiency improves), however at 5 workers to
process the workflow, the system reaches efficiency peak.
After that, the execution time goes up with more workers. This
means that the improvement cannot subsidize the management
and registration overhead of the added worker. The time for
server initialization and worker registration remain unchanged
when we change the input size (as have been shown in Fig. 5).

The experiment indicates that while our virtual resource
provisioning overhead is well controlled, we do need to
carefully determine the number of workers used in the virtual
cluster to achieve resource utilization efficiency, which will be
tuned in our future research endeavor.

Fig. 9. Different Input Sizes (OpenNebula)

V. CONCLUSIONS AND FUTURE WORK

We propose a reference service framework for migrating
SWFMSs into Cloud to take advantage of Cloud scalability,
and also to handle the ever increasing data scale and analysis
complexity of scientific applications. We present our
implementation effort in integrating the Swift workflow
management system with the OpenNebula and the Eucalyptus
Cloud platforms according to the service framework, in which
a client-side tool, a Cloud workflow management service, a
Cloud resource manager, and a scheduling management service
are developed. We also demonstrate the functionality and
efficiency of our approach using a real-world scientific
workflow.

The implementation can readily be used for Openstack[2]
as it is getting more popularity in scientific research area and
commercial applications. We are also investigating the
integration of other SWFMSs into these various Clouds and the
auto-scaling mechanism, which can adjust the number of
workers automatically according to workflow workload.

ACKNOWLEGMENT

This paper is supported by the National Science Foundation

of China No. 61034005 and No. 61272528.

REFERENCES

[1] OpenNebula, [Online]. Available: http://www.OpenNebula.org, 2014

[2] Openstack, [Online]. Available: http://www.openstack.org, 2014

[3] Chaisiri S, Bong Z, Lee C, et al. Workflow framework to support data
analytics in cloud computing[C]//Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE,
2012: 610-613.

[4] Rimal B P, El-Refaey M A. A framework of scientific workflow
management systems for multi-tenant cloud orchestration
environment[C]//Enabling technologies: Infrastructures for collaborative
enterprises (wetice), 2010 19th ieee international workshop on. IEEE,
2010: 88-93.

[5] M. Kozlovszky, K. Karóczkai, I. Márton, A. Balasko, A. C. Marosi, and
P. Kacsuk, “Enabling Generic Distributed Computing Infrastructure

Compatibility for Workflow Management Systems”, Computer Science,
vol. 13, no. 3, p. 61, 2012.

[6] I. Foster, Y. Zhao, I. Raicu, S. Lu. “Cloud Computing and Grid
Computing 360-Degree Compared,” IEEE Grid Computing
Environments (GCE08) 2008, co-located with IEEE/ACM
Supercomputing 2008. Austin, TX. pp. 1-10

[7] G. Bell, T. Hey, A. Szalay, Beyond the Data Deluge, Science, Vol. 323,
no. 5919, pp. 1297-1298, 2009.

[8] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, F. Fotouhi, “Service-
Oriented Architecture for VIEW: a Visual Scientific Workflow
Management System,” In Proc. of the IEEE 2008 International
Conference on Services Computing (SCC), pp.335-342, Honolulu,
Hawaii, USA, July 2008.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, D. Zagorodnov. The Eucalyptus Open-Source Cloud-
Computing System, 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID '09, pp. 124-131, 2009.

[10] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewski, I. Raicu, T.
S.-Praun, M. Wilde. “Swift: Fast, Reliable, Loosely Coupled Parallel
Computation,” IEEE Workshop on Scientific Workflows 2007, pp. 199-
206.

[11] NASA MODIS dataset, [Online]. Available: http://modis.gsfc.nasa.gov/,
2012.

[12] Y. Zhao, X. Fei, I. Raicu, S. Lu, Opportunities and Challenges in
Running Scientific Workflows on the Cloud, IEEE International
Conference on Cyber-enabled distributed computing and knowledge
discovery (CyberC), pp. 455-462, 2011.

[13] Papuzzo G, Spezzano G. Autonomic management of workflows on
hybrid grid-cloud infrastructure[C]//Proceedings of the 7th International
Conference on Network and Services Management. International
Federation for Information Processing, 2011: 230-233.

[14] Pang J, Cui L, Zheng Y, et al. A workflow-oriented cloud computing
framework and programming model for data intensive
application[C]//Computer Supported Cooperative Work in Design
(CSCWD), 2011 15th International Conference on. IEEE, 2011: 356-
361.

[15] Wang L, Duan R, Li X, et al. An Iterative Optimization Framework for
Adaptive Workflow Management in Computational Clouds[C]//Trust,
Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference on. IEEE, 2013: 1049-1056.

[16] Liu X, Yang Y, Yuan D, et al. A generic qos framework for cloud
workflow systems[C]//Dependable, Autonomic and Secure Computing
(DASC), 2011 IEEE Ninth International Conference on. IEEE, 2011:
713-720.

[17] Y. Zhao, J. Dobson, I. Foster, L. Moreau, M. Wilde, “A Notation and
System for Expressing and Executing Cleanly Typed Workflows on
Messy Scientific Data,” SIGMOD Record, vol. 34, iss. 3, pp. 37-43,
September 2005.

[18] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, D. H.
Epema, “Performance Analysis of Cloud Computing Services for Many-
Tasks Scientific Computing,” IEEE Transactions on Parallel and
Distributed Systems, pp. 931-945, June, 2011.

[19] Jrad F, Tao J, Streit A. A broker-based framework for multi-cloud
workflows[C]//Proceedings of the 2013 international workshop on
Multi-cloud applications and federated clouds. ACM, 2013: 61-68.

[20] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: a Fast
and Light-weight tasK executiON framework,” IEEE/ACM
SuperComputing 2007, pp. 1-12.

[21] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon et al. Performance
Analysis of High Performance Computing Applications on the Amazon
Web Services Cloud. In CloudCom, IEEE, pp. 159–168, 2010.

[22] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J.
Hua, “A Reference Architecture for Scientific Workflow Management
Systems and the VIEW SOA Solution,” IEEE Transactions on Services
Computing (TSC), 2(1), pp.79-92, 2009.

