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Abstract— Task scheduling and execution over large scale, 

distributed systems plays an important role on achieving good 

performance and high system utilization. Due to the explosion 

of parallelism found in today’s hardware, applications need to 

perform over-decomposition to deliver good performance; this 

over-decomposition is driving job management systems’ 

requirements to support applications with a growing number 

of tasks with finer granularity. Our goal in this work is to 

provide a compact, light-weight, scalable, and distributed task 

execution framework (CloudKon) that builds upon cloud 

computing building blocks (Amazon EC2, SQS, and 

DynamoDB). Most of today’s state-of-the-art job execution 

systems have predominantly Master/Slaves architectures, 

which have inherent limitations, such as scalability issues at 

extreme scales and single point of failures. On the other hand 

distributed job management systems are complex, and employ 

non-trivial load balancing algorithms to maintain good 

utilization. CloudKon is a distributed job management system 

that can support both HPC and MTC workloads with millions 

of tasks/jobs. We compare our work with other state-of-the-art 

job management systems including Sparrow and MATRIX. 

The results show that CloudKon delivers better scalability 

compared to other state-of-the-art systems for some metrics – 

all with a significantly smaller code-base (5%). 

Keywords-CloudKon, Many-Task Computing, distributed 

scheduling, distributed HPC scheduling 

I. INTRODUCTION 

The goal of a job scheduling system is to efficiently 
manage the distributed computing power of workstations, 
servers, and supercomputers in order to maximize job 
throughput and system utilization. With the dramatic 
increase of the scales of today’s distributed systems, it is 
urgent to develop efficient job schedulers. Predictions are 
that by the end of this decade, we will have exascale system 
with millions of nodes and billions of threads of execution 
[1].  

Unfortunately, today’s schedulers have centralized 
Master/Slaves architecture (e.g. Slurm [2], Condor [3][4], 
PBS [5], SGE [6]), where a centralized server is in charge of 
the resource provisioning and job execution. This 
architecture has worked well in grid computing scales and 
coarse granular workloads [7], but it has poor scalability at 
the extreme scales of petascale systems with fine-granular 
workloads [8][9]. The solution to this problem is to move to 
the decentralized architectures that avoid using a single 

component as a manager. Distributed schedulers are 
normally implemented in either hierarchical [10] or fully 
distributed architectures [31] to address the scalability issue. 
Using new architectures can address the potential single 
point of failure and improve the overall performance of the 
system up to a certain level, but issues can arise in 
distributing the tasks and load balancing among the nodes 
[25].  

The idea of using cloud services for high performance 
computing has been around for several years, but it has not 
gained traction primarily due to many issues. Having 
extensive resources, public clouds could be exploited for 
executing tasks in extreme scales in a distributed fashion. 
Our goal in this project is to provide a compact and 
lightweight distributed task execution framework that runs 
on the Amazon Elastic Compute Cloud (EC2) [17], by 
leveraging complex distributed building blocks such as the 
Amazon Simple Queuing Service (SQS) [18] and the 
Amazon distributed NoSQL key/value store (DynamoDB) 
[33]. 

There have been many research works about utilizing 
public cloud environment on scientific computing and High 
Performance Computing (HPC). Most of these works show 
that cloud was not able to perform well running scientific 
applications [11][12][13][14]. Most of the existing research 
works have taken the approach of exploiting the public 
cloud using as a similar resource to traditional clusters and 
super computers. Using shared resources and virtualization 
technology makes public clouds totally different than the 
traditional HPC systems. Instead of running the same 
traditional applications on a different infrastructure, we are 
proposing to use the public cloud service based applications 
that are highly optimized on cloud environment. Using 
public clouds like Amazon as a job execution resource could 
be complex for end-users if it only provided raw 
Infrastructure as a Service (IaaS) [34]. It would be very 
useful if users could only login to their system and submit 
jobs without worrying about the resource management.  

Another benefit of the cloud services is that using those 
services, users can implement relatively complicated 
systems with a very short code base in a short period of 
time. Our goal is to show evidence that using these services 
we are able to provide a system that provides high quality 
service that is on par with the state of the art systems in with 
a significantly smaller code base. In this paper, we design 
and implement a scalable task execution framework on 
Amazon cloud using different AWS cloud services, and 



aimed it at supporting both many-task computing and 
high-performance workloads.  

The most important component of our system is Amazon 
Simple Queuing Service (SQS) which acts as a content 
delivery service for the tasks, allowing clients to 
communicate with workers efficiently, asynchronously, and 
in a scalable manner. Amazon DynamoDB is another cloud 
service that is used to make sure that the tasks are executed 
exactly once (this is needed as Amazon SQS does not 
guarantee exactly-once delivery semantics). We also 
leverage the Amazon Elastic Compute Cloud (EC2) to 
manage virtual resources. With SQS being able to deliver 
extremely large number of messages to large number of 
users simultaneously, the scheduling system can provide 
high throughput even in larger scales. 

Today’s data analytics are moving towards interactive 
shorter jobs with higher throughput and shorter latency 
[35][10]. More applications are moving towards running 
higher number of jobs in order to improve the application 
throughput and performance. A good example for this type 
of applications is Many-Task Computing (MTC) 
[15][16][39][40]. MTC applications often demand a short 
time to solution and may be communication intensive or 
data intensive [41].  

As we mentioned above, running jobs in extreme scales 
is starting to be a challenge for current state of the art job 
management systems that have centralized architecture. On 
the other hand, the distributed job management systems 
have the problem of low utilization because of their poor 
load balancing strategies. We propose CloudKon as a job 
management system that achieves good load balancing 
and high system utilization at large scales. Instead of using 
techniques such as random sampling, CloudKon uses 
distributed queues to deliver the tasks fairly to the workers 
without any need for the system to choose between the 
nodes. The distributed queue serves as a big pool of tasks 
that is highly available. The worker gets to decide when to 
pick up a new task from the pool. This approach brings 
design simplicity and efficiency. Moreover, taking this 
approach, the system components are loosely coupled to 
each other. Therefore the system will be highly scalable, 
robust, and easy to upgrade. Although the motivation of 
this work is to support MTC tasks, it also provides support 
for distributed HPC scheduling. This enables CloudKon to 
be even more flexible running different type of workloads at 
the same time. 

The main contributions of this work are: 
1. Design and implement a simple light-weight task 

execution framework using Amazon Cloud services 
(EC2, SQS, and DynamoDB) that supports both 
MTC and HPC workloads  

2. Deliver good performance with <5% codebase: 
CloudKon is able to perform up to 1.77x better than 
MATRIX and Sparrow with less than 5% codebase.  

3. Performance evaluation up to 1024 instance scale 
comparing against Sparrow and MATRIX: 
CloudKon is able to outperform the other two 
systems after 64 instances scale in terms of 
throughput and efficiency. 

The remaining sections of this paper are as follows. 
Section II discusses about the design and implementation 
details of CloudKon. Section III evaluates the performance 
of the CloudKon in different aspects using different metrics. 
Section IV studies the related work in the area of task 
execution systems. Finally section V discusses about the 
limitations of the current work, and covers the future 
directions of this work. 

II. DESIGN AND IMPLEMENTATION OF CLOUDKON  

The goal of this work is to implement a job 
scheduling/management system that satisfies four major 
objectives:  

 Scale: Offer increasing throughput with larger scales 
through distributed services 

 Load Balance: Offer good load balancing at large 
scale with heterogeneous workloads  

 Light-weight: The system should add minimal 
overhead even at fine granular workloads 

 Loosely Coupled: Critical towards making the 
system fault tolerant and easy to maintain 

In order the achieve scalability, CloudKon uses SQS 
which is distributed and highly scalable. As a building block 
of CloudKon, SQS can upload and download large number 
of messages simultaneously. The independency of the 
workers and clients makes the framework perform well on 
larger scales. In order to provide other functionalities such 
as monitoring or task execution consistency, CloudKon also 
uses cloud services such as DynamoDB that are all fully 
distributed and highly scalable.   

Using SQS as a distributed queue enables us to use 
pulling for load balancing and task distribution. Instead of 
having an administrator component (often times centralized) 
to decide how to distribute the jobs between the worker 
nodes, the worker nodes decide when to pull the jobs and 
run them. This would distributes the decision making role 
from one central node to all of the workers. Moreover, it 
reduces the communication overhead. In the pushing 
approach the decision maker has to communicate with the 
workers periodically to update their status and make 
decisions as well as distributing the jobs to among the 
workers. On pulling approach the only communication 
required is pulling the jobs. Using this approach can deliver 
good load balancing on worker nodes.  

 
Figure 1. CloudKon architecture overview 



Due to using cloud services, the CloudKon processing 
overhead is very low. Many of the program calls in 
CloudKon are the calls to the cloud services. Having totally 
independent workers and clients, CloudKon does not need 
to keep any information of its nodes such as the IP address 
or any other state of its nodes.  

CloudKon components can operate independently with 
the SQS component in the middle to decouple different parts 
of the framework from each other. That makes our design 
compact, robust and easily extendable. 

The scheduler can work in a cross-platform system with 
ability to serve on a heterogeneous environment that has 
systems with various types of nodes with different platforms 
and configurations. Using distributed queues also helps 
reducing the dependency between clients and the workers. 
The clients and workers can modify their pushing/pulling 
rate independently without any change to the system. 

All of the advantages mentioned above rely on a 
distributed queue that could provide good performance in 
any scale. Amazon SQS is a highly scalable cloud service 
that can provide all of the features required to implement a 
scalable job scheduling system. Using this service, we can 
achieve the goal of having a system that perfectly fits in the 
public cloud environment and runs on its resources 
optimally.  

The system makes it easy for the users to run their jobs 
over the cloud resources in a distributed fashion just using a 
client front end without the need to know about the details 
of the underlying resources and need to set up and configure 
a cluster. 

A. Architecture 

This section explains about the system design of 
CloudKon. We have used a component based design on this 
project for two reasons. (1) A component based design fits 
better in the cloud environment. It also helps designing the 
project in a loosely-coupled fashion. (2) It will be easier to 
improve the implementation in the future.  

The following sections explain the system architecture 
for both MTC and HPC workloads. CloudKon has the 
ability to run workloads with a mixture of both task types.  
The first section shows the system architecture in case of 
solely running MTC tasks. The second section describes the 
process in case of running HPC tasks. 

1) MTC task management 
Figure 1 shows the different components of CloudKon 

that are only involved with running MTC tasks. An MTC 
task is defined to be a task that requires computational 
resources that can be satisfied by a single worker (e.g. 
where the worker manages either a core or a node). The 
client node works as a front end to the users to submit their 
tasks. SQS has a limit of 256 KB for the size of the 
messages which is sufficient for CloudKon Task lengths. In 
order to send tasks via SQS we need to use an efficient 
serialization protocol with low processing overhead. We use 
Google Protocol buffer for this reason. The Task saves the 
system log during the process while passing different 
components. Thus we can have a complete understanding of 
the different components using the detailed logs. 

The main components of the CloudKon for running 
MTC jobs are Client, Worker, Global Request Queue and 
the Client Response Queues. The system also has a 
Dynamic Provisioner to handle the resource management. It 
also uses DynamoDB to provide monitoring. There is a 
monitoring thread running on each worker that periodically 
reports utilization of each worker to the DynamoDB key 
value store. 

The Client component is independent of other parts of 
the system. It can start running and submitting tasks without 
the need to register itself into the system. Having the Global 
Queue address is sufficient for a Client component to join 
the system. The Client program is multithreaded. So it can 
submit multiple tasks in parallel. Before sending any tasks, 
the Client creates a response queue for itself. All of the 
submitted tasks carry the address of the Client response 
queue. The Client has also the ability to use task bundling to 
reduce the communication overhead. 

In order to improve the system performance and 
efficiency, we decided to put two modes. If the system is 
running MTC tasks, all of the workers work as normal task 
running workers. But in case of running HPC workloads or 
workloads with the combination of HPC and MTC tasks, 
other than the normal workers the workers could also 
become either worker managers that manage the HPC jobs 
or sub-workers that run the HPC tasks.  

Similar to the Client component, the Worker component 
runs independently in the system. For MTC support, the 
worker functionality is relatively simple and straight 
forward. Having the Global request queue, the Workers can 
join and leave the system any time during the execution. 
The Global Request Queue acts as a big pool of Tasks. 
Clients can submit their Tasks to this queue and Workers 
can pull Tasks from it. Using this approach, the scalability 
of the system is only dependent on the scalability of the 
Global Queue and it will not put extra load on workers on 
larger scales. Worker code is also multithreaded and is able 
to receive multiple tasks in parallel. Each thread can pull up 
to 10 bundled tasks together. Again, this feature is enabled 
to reduce the large communication overhead. After 
receiving a task, the worker thread verifies the task 
duplication and then checks for the task type. In case of 
running MTC tasks, it will run it right away. Then it puts the 
results into the task and using the pre-specified address 
inside the task, it sends back the task to the Client respond 
queue. As soon as response queue receives a task, the 
corresponding client thread pulls the results. The process 
ends when the Client receives all of its task results. 

2) HPC task management  
Figure 2 shows the extra components to run HPC jobs. 

As mentioned above, in case of running combination of 
HPC and MTC jobs, each worker can have different roles. 
In case of receiving a MTC task the worker proceeds with 
doing the task by itself. DynamoDB is used to maintain the 
status of the system so that the workers can decide on the 
viability of executing a HPC task. In essence, in 
DynamoDB, we store the current number of running 
managers and the sub workers that are busy executing HPC 



tasks, which gives other workers insight about how many 
available resources exist. 

If worker receives a HPC job, DynamoDB is checked to 
make sure that there are enough available nodes running in 
the system for the HPC task execution. If this is satisfied, 
the worker (now called as worker manager) puts n messages 
in a second SQS (HPC Task Queue). n is the number of 
workers needed by the worker manager to execute the task. 
If there are no enough available resources, the node is not 
allowed to carry on as worker manager; instead this node 
will check the HPC Task Queue and act as a sub worker. If 
there are messages in the HPC queue, the sub-worker will 
notify the manager using the worker managers IP address. 
The worker manager and sub-worker use RMI for 
communication. Worker Manager holds onto all of its sub-
workers until it has enough to start the execution. After the 
execution, the worker manager sends the result to the 
response queue to be picked up by the client. 

 
Figure 2. CloudKon-HPC architecture overview 

B. Task Execution Consistency Issues 

A major limitation of SQS is that it does not guarantee 
delivering the messages exactly once. It guarantees delivery 
of the message at least once. That means there might be 
duplicate messages delivered to the workers. The existence 
of the duplicate messages comes from the fact that these 
messages are copied to multiple servers in order to provide 
high availability and increase the ability of parallel access. 
We need to provide a technique to prevent running the 
duplicate tasks delivered by SQS. In many types of 
workloads running a task more than once is not acceptable. 
In order to be compatible for these types of applications 
CloudKon needs to guarantee the exactly once execution of 
the tasks.  

In order to be able to verify the duplication we use 
DynamoDB. DynamoDB is a fast and scalable key-value 
store. After receiving a task, the worker thread verifies that 
if this is the first time that the task is going to run. The 
worker thread makes a conditional write to the DynamoDB 
table adding the unique identifier of the task which is a 
combination of the Task ID and the Client ID. The operation 
succeeds if the Identifier has not been written before. 
Otherwise the service throws an exception to the worker and 
the worker drops the duplicate task without running it. This 
operation is an atomic operation. Using this technique we 

have minimized the number of communications between the 
worker and DynamoDB. 

As we mentioned above, exactly once delivery is 
necessary for many type of applications such as scientific 
applications. But there are some applications that have more 
relaxed consistency requirements and can still function 
without this requirement. Our program has ability to disable 
this feature for these applications to reduce the latency and 
increase the total performance. We will study the overhead 
of this feature on the total performance of the system in the 
evaluation section. 

C. Dynamic Provisioning 

One of the main goals in the public cloud environment is 
the cost-effectiveness. The affordable cost of the resources 
is one of the major features of the public cloud to attract 
users. It is very important for a Cloud-enabled system like 
this to keep the costs at the lowest possible rate. In order to 
achieve the cost-effectiveness we have implemented the 
dynamic provisioning [44] system. Dynamic provisioner is 
responsible for assigning and launching new workers to the 
system in order to keep up with the incoming workload. 

The dynamic provisioner component is responsible for 
launching new worker instances in case of resource 
shortage. The application checks the queue length of the 
global request queue periodically and compares the queue 
length with its previous size. If the increase rate is more 
than the allowed threshold, it launches a new Worker. As 
soon as being launched, the Worker automatically joins the 
system. Both checking interval and the size threshold are 
configurable by the user. 

In order to provide a solution for dynamically decreasing 
the system scale to keep the costs low, we have added a 
program to the workers that is able to terminate the instance 
if two conditions hold. That only happens if the worker goes 
to the idle state for a while and also if the instance is getting 
close to its lease renewal. The instances in Amazon EC2 are 
charged on hourly basis and will get renewed every hour of 
the user don’t shut them down. This mechanism helps our 
system scale down automatically without the need to get any 
request from a component. Using these mechanisms, the 
system is able to dynamically scale up and down. 

  
Figure 3. Communication Cost 

D. Communication Costs 

The network latency between the instances in the public 
Cloud is relatively high compared to HPC systems [36][37]. 
In order to achieve reasonable throughput and latency we 



need to minimize the communication overhead between the 
different components of the system. Figure 3 shows the 
number of communications required to finish a complete 
cycle of running a task. There are 5 steps of communication 
to execute a task. CloudKon also provides task bundling 
during the communication steps. Client can send multiple 
tasks together. The maximum message batch size in SQS is 
256 KB or 10 messages.  

E. Security and Reliability 

For the system security of CloudKon, we rely on the 
security of the SQS. SQS provides a highly secure system 
using authentication mechanism. Only authorized users can 
access to the contents of the Queues. In order to keep the 
latency low, we don’t add any encryption to the messages. 
SQS provides reliability by storing the messages 
redundantly on multiple servers and in multiple data centers 
[18].  

F. Implementation Details 

We have implemented all of the CloudKon components 
in Java. Our implementation is multithreaded in both Client 
and Worker component codes. Many of the features in both 
of these systems such as Monitoring, Consistency, number 
of threads and the Task bundling size is configurable as a 
program input argument. 

Taking advantage of AWS service building blocks, our 
system has a short and simple code base. The code base of 
CloudKon is significantly shorter than other common task 
execution systems like Sparrow or MATRIX. CloudKon 
code has about 1000 lines of code (LOC), while Sparrow 
has 24000+ LOC, and MATRIX has 10500++ LOC. This 
can highlight the potential benefits of the public cloud 
services. We were able to create a complex and scalable 
system by re-using scalable building blocks in the cloud. 

III. PERFORMANCE EVALUATION 

We evaluate the performance of the CloudKon and 
compare it with two other distributed job management 
systems, namely Sparrow and MATRIX. First we discuss 
their high level features and major differences. Then we 
compare their performance in terms of throughput and 
efficiency. We also evaluate the latency of CloudKon. 

A. Comparing CloudKon with other Scheduling Systems 

We sufficed to compare our system with Sparrow and 
MATRIX as these two systems represent the best-of-breed 
open source distributed task management systems. 

Sparrow was designed to achieve the goal of managing 
milliseconds jobs on a large scale distributed systesm. It 
uses a decentralized, randomized sampling approach to 
schedule jobs on worker nodes. The system has multiple 
schedulers that each have a list of workers and distributed 
the jobs among the workers deciding based on the worker’s 
job queue length. Sparrow was tested on up to hundred 
nodes on the original paper.  

MATRIX is a fully distributed MTC task execution 
fabric that applies work stealing technique to achieve 
distributed load balancing, and a DKVS, ZHT, to keep task 

metadata. In MATRIX, each computer node runs a 
scheduler, an executor and a ZHT server. The executor 
could be a separate thread in the scheduler. All the 
schedulers are fully-connected with each one knowing all of 
others. The client is a bench marking tool that issues request 
to generate a set of tasks, and submits the tasks to any 
scheduler. The executor keeps executing tasks of a 
scheduler. Whenever a scheduler has no more tasks to be 
executed, it initials the adaptive work stealing algorithm to 
steal tasks from candidate neighbor schedulers. ZHT is a 
DKVS that is used to keep the task meta-data in a 
distributed, scalable, and fault tolerant way.  

One of the main differences between Sparrow and 
CloudKon or MATRIX is that Sparrow distributes the tasks 
by pushing them to the workers, while CloudKon and 
MATRIX use pulling approach. Also, in CloudKon, the 
system sends back the task execution results to the clients. 
But in both Sparrow and MATRIX, the system doesn’t send 
any type of notifications back to the clients. That could 
allow Sparrow and MATRIX to perform faster, since it is 
avoiding one more communication step, but it also makes it 
harder for clients to find out if their tasks were successfully 
executed. 

B. Testbed 

We deploy and run all of the three systems on Amazon 
EC2. We have used m1.medium instances on Amazon EC2. 
We have run all of our experiments on the Amazon 
datacenter (us.east.1). We have scaled the experiments up to 
1024 nodes. In order to make the experiments efficient, 
client and worker nodes both run on each node. All of the 
instances had Linux Operating Systems. Our framework 
should work on any OS that has a JRE 1.7, including 
Windows and Mac OSX. 

C. Throughput 

1) MTC Tasks 
In order to measure the throughput of our system we run 

sleep 0 tasks. We have also compared the throughput of 
CloudKon with Sparrow and MATRIX. There are 2 client 
threads and 4 worker threads running on each instance. Each 
instance submits 16000 tasks. Figure 4 compares the 
throughput of CloudKon with Sparrow and MATRIX on 
different scales. Each instance submits 16000 tasks 
aggregating to 16.38 million tasks on the largest scale.  

The throughput of MATRIX is significantly higher than 
the CloudKon and Sparrow on 1 instances scale. The reason 
is that MATRIX can run many fine-grained tasks locally 
any scheduling or network overhead. But on CloudKon the 
tasks must go through the network even if there is one node 
running on the system. The gap between the throughputs of 
the systems gets smaller as the network overhead adds up to 
the other two systems. MATRIX schedulers synchronize 
with each other using all-to-all synchronization method. 
Having too many open TCP connections by workers and 
schedulers on 256 instances scale leads MATRIX to be 
unstable. The network performance on EC2 cloud is 
significantly lower than that of HPC systems, where 
MATRIX has successfully been run at 1024-node scales. 



 
Figure 4. Throughput of CloudKon, Sparrow and MATRIX (MTC tasks) 

Sparrow is the slowest among the three systems in terms 
of throughput. It shows a stable throughput with almost 
linear speedup up to 64 instances. As the number of 
instances increases more than 64, the list of instances to 
choose from for each scheduler on Sparrow increases. 
Therefore many workers remain idle and the throughput will 
not increase as expected. We were not able to run Sparrow 
on 128 or 256 instances scale as there were too many 
sockets open on schedulers resulting into system crash. 

CloudKon achieves good 500X speedup starting from 
238 tasks per second on 1 instance to 119K tasks per second 
on 1024 instances. Unlike the other two systems, the 
scheduling process on CloudKon is not done by the 
instances. Since the job management is handled by SQS, the 
performance of the system is mainly dependent of this 
service. We predict that the throughput would continue to 
scale until it reaches the SQS performance limits (which we 
were not able to reach up to 1024 instances). Due to the 
budget limitations, we were not able to expand our scale 
beyond 1024 instances, although we plan to apply for 
additional Amazon AWS credits and to push our evaluation 
to 10K instance scales, the largest allowable number of 
instances per user without advanced reservation. 

2) HPC Tasks 
In This section we show the throughput of the CloudKon 

running HPC tasks workloads. Running HPC tasks adds 
more overhead to the system as there will be more steps to 
run the tasks. Instead of running the job right away, the 
worker manager needs to go over a few steps and wait to get 
enough resources to run the job. This would slow down the 
system and lowers the system efficiency. But it doesn’t 
affect the scalability. Using CloudKon can majorly improve 
the run time of HPC workloads by parallelizing the task 
execution that is normally done in a sequential fashion. We 
have chosen jobs with 4, 8 and 16 tasks. There are 4 worker 
threads running on each instance. The number of executed 
tasks on each scale for different workers is equal.  

Figure 5 compares the system throughput in case of 
running HPC jobs with different number of tasks per job. 
The results show that the throughput of running jobs with 
more number of tasks per job is lower. The jobs with more 
tasks need to wait for more sub-workers to start the process. 
That adds more latency and slows down the system. We can 
see that CloudKon is able to achieve a high throughput of 

205 jobs per second which is already much higher than what 
Slurm can achieve. The results also show good scalability as 
we add more instances. 

 
Figure 5. Throughput of CloudKon (HPC tasks) 

D. Latency  

In order to measure latency accurately, the system has to 
record the request and respond timestamps of each task. The 
problem with Sparrow and MATRIX is that on their 
execution process workers don’t send notifications to the 
clients. Therefore it is not possible to measure the latency of 
each task comparing timestamps from different nodes. In 
this section we have measured the latency of CloudKon and 
analyzed the latency of different steps of the process.  

Figure 6 shows the latency of CloudKon for sleep 0 ms 
scaling from 1 to 1024 instances. Each instance is running 1 
client thread and 2 worker threads and sending 16000 tasks 
per instance. 

 
Figure 6. Latency of CloudKon sleep 0 ms tasks 

The latency of the system at 1 node is relatively high 
showing 95 ms overhead added by the system. But this will 
be acceptable on larger scales. The fact that the latency 
doesn’t increase more than 10 ms while increasing the 
number of instances from 1 instance to 1024 instance shows 
that CloudKon is stable. SQS as the task pool is a highly 
scalable service being backed up with multiple servers 
keeping the service very scalable. Thus scaling up the 
system by adding threads and increasing the number of tasks 
doesn’t affect the SQS performance. The client and worker 
nodes always handle the same number of tasks on different 
scales. Therefore scaling up doesn’t affect the instances. 
CloudKon includes multiple components and its 
performance and latency depends on its different 
components. The latency result on figure 6 does not show us 
any details about the system performance. In order to 



analyze the performance of the different components we 
measure the time that each task spends on different 
components of the system by recording the time during the 
execution process.  

Figure 7, Figure 8, and Figure 9 respectively show the 

cumulative distribution of deliver-task stage, deliver-result 

stage, and the execute-task stage of the tasks on CloudKon. 

Each communication stage has three steps: sending, 

Queuing and receiving. The latency of the SQS API calls 

including send-task and receive-task on both are quite high 

compared to the execution time of the tasks on CloudKon. 

The reason for that is the expensive Web Service API call 

cost that uses XML format for communication. The worker 

takes 16ms on more than 50% of the times. This includes 

the DynamoDB that takes 8ms on more than 50% of the 

times. This shows us that hypothetically CloudKon latency 

can improve significantly if we use a low overhead 

distributed message queue that could guarantee the exactly 

once delivery of the tasks. We will cover this more in the 

future work section. 

 
Figure 7. Cumulative Distribution of the latency on the task execution step 

 

 
Figure 8. Cumulative Distribution of the latency on the task submit step 

Another notable point is the difference between the 

deliver-task and deliver-result time in both Queuing and 

receiving back, even though they have the same API calls. 

The time that the tasks spend on the response-queue is 

longer than the time it spends on request-queue. The reason 

is there are two worker threads and only one client thread on 

each instance. Therefore the frequency of pulling tasks is 

higher when the tasks are pulled by the worker threads. 

 
Figure 9. Cumulative Distribution of the latency on the result delivery step 

E. Efficiency of CloudKon 

It is very important for the system to manage the 
systems efficiently. Achieving high efficiency on distributed 
job scheduling systems is not trivial. It is hard to fairly 
distribute the workload on all of the workers and keep all of 
the nodes busy during the execution on larger scales.   

In order to show the system efficiency we have designed 
two sets of experiments. We test the system efficiency in 
case of homogeneous and heterogeneous tasks. The 
homogeneous tasks have a certain task duration length. 
Therefore it is easier to distribute them since the scheduler 
assumes it takes the same time to run them. This could give 
us a good feedback about the efficiency of the system in 
case of running different task types with different 
granularity. We can also assess the ability of the system to 
run the very shot length tasks. A problem with the first 
experiment is that not all of the tasks take the same amount 
of time to run. This can hugely affect the system efficiency 
if the scheduler is not taking the tasks length into the 
consideration. Having a random workload can show how a 
scheduler will work in case of running real applications.   

1) Homogeneous Workloads 
In this section we compare the efficiency of CloudKon 

with Sparrow and MATRIX on sub second tasks. Figure 10 
shows the efficiency of 1, 16 and 128ms tasks on the 
systems. The efficiency of CloudKon is on 1ms tasks is 
lower than then other two systems. As we mentioned before, 
the latency of CloudKon is large for very short tasks 
because of the significant network latency overhead added 
on the execution cycle. Matrix has a better efficiency on 
smaller scales but as the trend shows, the efficiency drops 
tremendously until the system crashes because of too many 
TCP connections on scales of 128 instances or more. On 
sleep 16ms tasks, the efficiency of CloudKon is around 40% 
which is low (compared to the other systems). The 
efficiency of MATRIX starts with more than 93% on one 
instance but again it drops to a lower efficiency than the 
CloudKon on larger number of instances. We can notice that 
the efficiency of CloudKon is very stable compared to the 
other two systems on different scales. That shows that 
CloudKon achieves a better scalability. On sleep 128ms 
tasks, the efficiency of CloudKon is as high as 88%. Again, 
the results show that the efficiency of MATRIX drops on 
larger scales. 

Sparrow shows very good and stable efficiency running 
homogenous tasks up to 64 instances. The efficiency drops 



after this scale for shorter tasks. Having too many workers 
for task distribution, the scheduler cannot have a perfect 
load balance and some workers remain idle. Therefore the 
system will be under-utilized and the efficiency drops. The 
system crashes on scales of 128 scales or larger because of 
maintaining too many sockets in schedulers. 

 
Figure 10. Efficiency of CloudKon, Sparrow and MATRIX running 
homogenous workloads of different task lengths (1, 16, 128ms tasks)  

2) Heterogeneous Workloads 
In order to measure efficiency, we investigated the 

largest available trace of real MTC workloads [38], and 
filtered out the logs to isolate only the sub-second tasks, 
which netted about 2.07M tasks with the runtime range of 1 
milliseconds to 1 seconds. The tasks were submitted in a 
random fashion. The average task lengths of different 
instances are different from each other.  

Each instance runs 2K tasks on average. The efficiency 
comparison on Figure 9 shows similar trends for CloudKon 
and MATRIX. On both systems the worker pulls a task only 
when it has available resources to run the task. Therefore the 
fact that the execution duration of the tasks is different does 
not affect the efficiency of the system. On the other hand on 
Sparrow, the scheduler distributes the tasks by pushing them 
to the workers that have less number of tasks to be executed 
in their queue. The fact that the tasks have different run time 
is going to affect the system efficiency. Some of the workers 
may have multiple long tasks and many other workers may 
have short tasks to run. Thus there will be a big imbalance 
among the workers with some of the being loaded with big 
tasks and the rest being under-utilized and the system run 
time will be bound to the run time of the workers with 
longer jobs to run. 

 
Figure 11. Efficiency of the systems running heterogeneous workloads. 

Being under-utilized, the efficiency of Sparrow has the 
largest drop from 1 instance to 64 instances. The system was 
not functional on 128 instances or more. Similarly, the 
efficiency of MATRIX started with a high efficiency, but 
started to drop significantly because of too many open 
sockets on TCP connections. The efficiency of CloudKon is 
not as high as the other two systems, but it is more stable as 
it only drops 6% from 1 to 64 instances compared to 
MATRIX that drops 19% and Sparrow that drops 23%. 
Again, CloudKon was the only functional system on 256 
instances with 77% efficiency.  
F. The overhead of consistency  

In this section we evaluate effect of tasks execution 

consistency on CloudKon. Figure 10 shows the system run-

time for sleep 16ms with the duplication controller enabled 

and disabled. The overhead for other sleep tasks were 

similar to this experiment. So we have only included one of 

the experiments in this paper.   

 
Figure 12. The overhead of task execution consistency on CloudKon 

The consistency overhead increases with the scale. The 

inconsistency on different scales is the result of the variable 

number of duplicate messages on each run. That results in 

more random system performance on different experiments. 

In general the overhead on scale of less than 10 is less than 

15%. This overhead is mostly for the successful write 

operations on DynamoDB. The probability of getting 

duplicate tasks increases on larger scales. Therefore there 

will be more exceptions. That leads to a higher overhead. 

The overhead on larger scales goes up to 35%. However, the 

overhead rate is stable and does not pass this rate. Using a 

distributed message queue that guarantees exactly-once 

delivery can improve the performance significantly.   

IV. RELATED WORK  

The job schedulers could be centralized, where a single 
dispatcher manages the job submission, and execution state 
updates; or hierarchical, where several dispatchers are 
organized in a tree-based topology; or distributed, where 
each computing node maintains its own job execution 
framework.  

Condor [3] was implemented to harness the unused CPU 
cycles on workstations for long-running batch jobs. Slurm 
[2] is a resource manager designed for Linux clusters of all 
sizes. It allocates exclusive and/or non-exclusive access to 
resources to users for some duration of time so they can 
perform work, and provides a framework for starting, 



executing, and monitoring work on a set of allocated nodes. 
Portable Batch System (PBS) [5] was originally developed 
to address the needs of HPC. It can manage batch and inter-
active jobs, and add the ability to signal, rerun and alter 
jobs. LSF Batch [19] is the load-sharing and batch-queuing 
component of a set of workload management tools.  

All these systems target as the HPC or HTC 
applications, and lack the granularity of scheduling jobs at 
finer levels making them hard to be applied to the MTC 
applications. What’s more, the centralized dispatcher in 
these systems suffers scalability and reliability issues. In 
2007, a light-weight task execution framework, called 
Falkon [9] was developed. Falkon also has a centralized 
architecture, and although it scaled and performed 
magnitude orders better than the state of the art, its 
centralized architecture will not even scale to petascale 
systems [8]. A hierarchical implementation of Falkon was 
shown to scale to a petascale system in [8], the approach 
taken by Falkon suffered from poor load balancing under 
failures or unpredictable task execution times. Although 
distributed load balancing at extreme scales is likely a more 
scalable and resilient solution, there are many challenges 
that must be addressed (e.g. utilization, partitioning). Fully 
distributed strategies have been proposed, including 
neighborhood averaging scheme (ACWN) [20][21][22][23]. 
In [23], several distributed and hierarchical load balancing 
strategies are studied, such as Sender/Receiver Initiated 
Diffusion (SID/RID), Gradient Model and a Hierarchical 
Balancing Method. Other hierarchical strategies are 
explored in [22]. Charm++ [24] supports centralized, 
hierarchical and distributed load balancing. In [24], the 
authors present an automatic dynamic hierarchical load 
balancing method for Charm++, which scales up to 16K-
cores on a Sun Constellation supercomputer for a synthetic 
benchmark. 

Sparrow is another scheduling system that focuses on 
scheduling very short jobs that complete within hundreds of 
milliseconds [25]. It has a decentralized architecture that 
makes it highly scalable. It also claims to have a good load 
balancing strategy with near optimal performance using a 
randomized sampling approach. It has been used as a 
building block of other systems. 

Omega presents a scheduling solution for scalable 
cluster using parallelism, shared-state and lock-free 
optimistic concurrency control [26]. The difference of this 
work with ours is that it optimized for course-grained 
scheduling of dedicated resources. CloudKon uses elastic 
resources. It is optimized for scheduling of both HPC and 
MTC tasks. 

Work stealing is another approach that has been used at 
small scales successfully in parallel languages such as Cilk 
[24], to load balance threads on shared memory parallel 
machines [28][29][30]. However, the scalability of work 
stealing has not been well explored on modern large-scale 
systems. In particular, concerns exist that the randomized 
nature of work stealing can lead to long idle times and poor 
scalability on large-scale clusters [30]. The largest studies to 
date of work stealing have been at thousands of cores scales, 
showing good to excellent efficiency depending on the 

workloads [30]. MATRIX is an execution fabric that 
focuses on running Many Task Computing (MTC) jobs 
[31]. It uses an adaptive work stealing approach that makes 
it highly scalable and dynamic. It also supports the 
execution of complex large-scale workflows. Most of these 
existing light-weight task execution frameworks have been 
developed from scratch, resulting in code-bases of tens of 
thousands of lines of code. This leads to systems which are 
hard and expensive to maintain, and potentially much harder 
to evolve once initial prototypes have been completed. This 
work aims to leverage existing distributed and scalable 
building blocks to deliver an extremely compact distributed 
task execution framework while maintaining the same level 
of performance as the best of breed systems. 

To our knowledge CloudKon is the only job 
management system to support both distributed MTC and 
HPC scheduling. We have been prototyping distributed job 
launch in the Slurm job resource manager under a system 
called Slurm++ [32], but that work is not mature enough yet 
to be included in this study. Moreover, CloudKon is the 
only distributed task scheduler that is designed and 
optimized to run on public cloud environment. Finally, 
CloudKon has an extremely compact code base, at 5% of 
the code base of the other state-of-the-art systems.  

V. CONCLUSION AND FUTURE WORK 

Large scale distributed systems require efficient job 
scheduling system to achieve high throughput and system 
utilization. It is important for the scheduling system to 
provide high throughput and low latency on the larger scales 
and add minimal overhead to the workflow. CloudKon is a 
Cloud enabled distributed task execution framework that 
runs on Amazon AWS cloud. It is a unique system in terms 
of running both HPC and MTC workloads on public cloud 
environment. Using SQS service gives CloudKon the 
benefit of scalability. The evaluation of the CloudKon 
proves that it is highly scalable and achieves a stable 
performance over different scales. We have tested our 
system up to 1024 instances. CloudKon was able to 
outperform other systems like Sparrow and MATRIX on 
scales of 128 instances or more in terms of throughput. 
CloudKon achieves up to 87% efficiency running 
homogeneous and heterogeneous fine granular sub-second 
tasks. Compared to the other systems like Sparrow, it 
provides lower efficiency on smaller scales. But on larger 
scales, it achieves a significantly higher efficiency. 

There are many directions for the future work. One 
direction is to make the system fully independent and test it 
on different public and private clouds. We are going to 
implement a SQS like service with high throughput at the 
larger access scales. With help from other systems such as 
ZHT distributed hash table [32], we will be able implement 
such a service. Another future direction of this work is to 
implement a more tightly coupled version of CloudKon and 
test it on supercomputers and HPC environments while 
running HPC jobs in a distributed fashion, and to compare it 
directly with Slurm and Slurm++ in the same environment. 
We also plan to explore porting some real programming 
frameworks, such as the Swift parallel programming system 



[40][42][43] or the Hadoop MapReduce framework, which 
could both benefit from a distributed scheduling run-time 
system.  This work could also expand to run on 
heterogeneous environments including different public and 
private clouds. In that case, the system can choose among 
different resources based on the resource cost and 
performance and provide optimized performance with the 
minimum cost. 
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