
Achieving Efficient Distributed Scheduling with Message Queues in the Cloud
for Many-Task Computing and High-Performance Computing

Iman Sadooghi, Sandeep Palur, Ajay Anthony, Isha Kapur, Karthik Belagodu, Pankaj Purandare, Kiran
Ramamurty, Ke Wang, Ioan Raicu

Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

isadoogh@iit.edu, {psandeep, aanthon2, ikapur, kbelgodu, ppuranda, kramamu1, kwang22}@hawk.iit.edu,
iraicu@cs.iit.edu

Abstract— Task scheduling and execution over large scale,

distributed systems plays an important role on achieving good

performance and high system utilization. Due to the explosion

of parallelism found in today’s hardware, applications need to

perform over-decomposition to deliver good performance; this

over-decomposition is driving job management systems’

requirements to support applications with a growing number

of tasks with finer granularity. Our goal in this work is to

provide a compact, light-weight, scalable, and distributed task

execution framework (CloudKon) that builds upon cloud

computing building blocks (Amazon EC2, SQS, and

DynamoDB). Most of today’s state-of-the-art job execution

systems have predominantly Master/Slaves architectures,

which have inherent limitations, such as scalability issues at

extreme scales and single point of failures. On the other hand

distributed job management systems are complex, and employ

non-trivial load balancing algorithms to maintain good

utilization. CloudKon is a distributed job management system

that can support both HPC and MTC workloads with millions

of tasks/jobs. We compare our work with other state-of-the-art

job management systems including Sparrow and MATRIX.

The results show that CloudKon delivers better scalability

compared to other state-of-the-art systems for some metrics –

all with a significantly smaller code-base (5%).

Keywords-CloudKon, Many-Task Computing, distributed

scheduling, distributed HPC scheduling

I. INTRODUCTION

The goal of a job scheduling system is to efficiently
manage the distributed computing power of workstations,
servers, and supercomputers in order to maximize job
throughput and system utilization. With the dramatic
increase of the scales of today’s distributed systems, it is
urgent to develop efficient job schedulers. Predictions are
that by the end of this decade, we will have exascale system
with millions of nodes and billions of threads of execution
[1].

Unfortunately, today’s schedulers have centralized
Master/Slaves architecture (e.g. Slurm [2], Condor [3][4],
PBS [5], SGE [6]), where a centralized server is in charge of
the resource provisioning and job execution. This
architecture has worked well in grid computing scales and
coarse granular workloads [7], but it has poor scalability at
the extreme scales of petascale systems with fine-granular
workloads [8][9]. The solution to this problem is to move to
the decentralized architectures that avoid using a single

component as a manager. Distributed schedulers are
normally implemented in either hierarchical [10] or fully
distributed architectures [31] to address the scalability issue.
Using new architectures can address the potential single
point of failure and improve the overall performance of the
system up to a certain level, but issues can arise in
distributing the tasks and load balancing among the nodes
[25].

The idea of using cloud services for high performance
computing has been around for several years, but it has not
gained traction primarily due to many issues. Having
extensive resources, public clouds could be exploited for
executing tasks in extreme scales in a distributed fashion.
Our goal in this project is to provide a compact and
lightweight distributed task execution framework that runs
on the Amazon Elastic Compute Cloud (EC2) [17], by
leveraging complex distributed building blocks such as the
Amazon Simple Queuing Service (SQS) [18] and the
Amazon distributed NoSQL key/value store (DynamoDB)
[33].

There have been many research works about utilizing
public cloud environment on scientific computing and High
Performance Computing (HPC). Most of these works show
that cloud was not able to perform well running scientific
applications [11][12][13][14]. Most of the existing research
works have taken the approach of exploiting the public
cloud using as a similar resource to traditional clusters and
super computers. Using shared resources and virtualization
technology makes public clouds totally different than the
traditional HPC systems. Instead of running the same
traditional applications on a different infrastructure, we are
proposing to use the public cloud service based applications
that are highly optimized on cloud environment. Using
public clouds like Amazon as a job execution resource could
be complex for end-users if it only provided raw
Infrastructure as a Service (IaaS) [34]. It would be very
useful if users could only login to their system and submit
jobs without worrying about the resource management.

Another benefit of the cloud services is that using those
services, users can implement relatively complicated
systems with a very short code base in a short period of
time. Our goal is to show evidence that using these services
we are able to provide a system that provides high quality
service that is on par with the state of the art systems in with
a significantly smaller code base. In this paper, we design
and implement a scalable task execution framework on
Amazon cloud using different AWS cloud services, and

aimed it at supporting both many-task computing and
high-performance workloads.

The most important component of our system is Amazon
Simple Queuing Service (SQS) which acts as a content
delivery service for the tasks, allowing clients to
communicate with workers efficiently, asynchronously, and
in a scalable manner. Amazon DynamoDB is another cloud
service that is used to make sure that the tasks are executed
exactly once (this is needed as Amazon SQS does not
guarantee exactly-once delivery semantics). We also
leverage the Amazon Elastic Compute Cloud (EC2) to
manage virtual resources. With SQS being able to deliver
extremely large number of messages to large number of
users simultaneously, the scheduling system can provide
high throughput even in larger scales.

Today’s data analytics are moving towards interactive
shorter jobs with higher throughput and shorter latency
[35][10]. More applications are moving towards running
higher number of jobs in order to improve the application
throughput and performance. A good example for this type
of applications is Many-Task Computing (MTC)
[15][16][39][40]. MTC applications often demand a short
time to solution and may be communication intensive or
data intensive [41].

As we mentioned above, running jobs in extreme scales
is starting to be a challenge for current state of the art job
management systems that have centralized architecture. On
the other hand, the distributed job management systems
have the problem of low utilization because of their poor
load balancing strategies. We propose CloudKon as a job
management system that achieves good load balancing
and high system utilization at large scales. Instead of using
techniques such as random sampling, CloudKon uses
distributed queues to deliver the tasks fairly to the workers
without any need for the system to choose between the
nodes. The distributed queue serves as a big pool of tasks
that is highly available. The worker gets to decide when to
pick up a new task from the pool. This approach brings
design simplicity and efficiency. Moreover, taking this
approach, the system components are loosely coupled to
each other. Therefore the system will be highly scalable,
robust, and easy to upgrade. Although the motivation of
this work is to support MTC tasks, it also provides support
for distributed HPC scheduling. This enables CloudKon to
be even more flexible running different type of workloads at
the same time.

The main contributions of this work are:
1. Design and implement a simple light-weight task

execution framework using Amazon Cloud services
(EC2, SQS, and DynamoDB) that supports both
MTC and HPC workloads

2. Deliver good performance with <5% codebase:
CloudKon is able to perform up to 1.77x better than
MATRIX and Sparrow with less than 5% codebase.

3. Performance evaluation up to 1024 instance scale
comparing against Sparrow and MATRIX:
CloudKon is able to outperform the other two
systems after 64 instances scale in terms of
throughput and efficiency.

The remaining sections of this paper are as follows.
Section II discusses about the design and implementation
details of CloudKon. Section III evaluates the performance
of the CloudKon in different aspects using different metrics.
Section IV studies the related work in the area of task
execution systems. Finally section V discusses about the
limitations of the current work, and covers the future
directions of this work.

II. DESIGN AND IMPLEMENTATION OF CLOUDKON

The goal of this work is to implement a job
scheduling/management system that satisfies four major
objectives:

 Scale: Offer increasing throughput with larger scales
through distributed services

 Load Balance: Offer good load balancing at large
scale with heterogeneous workloads

 Light-weight: The system should add minimal
overhead even at fine granular workloads

 Loosely Coupled: Critical towards making the
system fault tolerant and easy to maintain

In order the achieve scalability, CloudKon uses SQS
which is distributed and highly scalable. As a building block
of CloudKon, SQS can upload and download large number
of messages simultaneously. The independency of the
workers and clients makes the framework perform well on
larger scales. In order to provide other functionalities such
as monitoring or task execution consistency, CloudKon also
uses cloud services such as DynamoDB that are all fully
distributed and highly scalable.

Using SQS as a distributed queue enables us to use
pulling for load balancing and task distribution. Instead of
having an administrator component (often times centralized)
to decide how to distribute the jobs between the worker
nodes, the worker nodes decide when to pull the jobs and
run them. This would distributes the decision making role
from one central node to all of the workers. Moreover, it
reduces the communication overhead. In the pushing
approach the decision maker has to communicate with the
workers periodically to update their status and make
decisions as well as distributing the jobs to among the
workers. On pulling approach the only communication
required is pulling the jobs. Using this approach can deliver
good load balancing on worker nodes.

Figure 1. CloudKon architecture overview

Due to using cloud services, the CloudKon processing
overhead is very low. Many of the program calls in
CloudKon are the calls to the cloud services. Having totally
independent workers and clients, CloudKon does not need
to keep any information of its nodes such as the IP address
or any other state of its nodes.

CloudKon components can operate independently with
the SQS component in the middle to decouple different parts
of the framework from each other. That makes our design
compact, robust and easily extendable.

The scheduler can work in a cross-platform system with
ability to serve on a heterogeneous environment that has
systems with various types of nodes with different platforms
and configurations. Using distributed queues also helps
reducing the dependency between clients and the workers.
The clients and workers can modify their pushing/pulling
rate independently without any change to the system.

All of the advantages mentioned above rely on a
distributed queue that could provide good performance in
any scale. Amazon SQS is a highly scalable cloud service
that can provide all of the features required to implement a
scalable job scheduling system. Using this service, we can
achieve the goal of having a system that perfectly fits in the
public cloud environment and runs on its resources
optimally.

The system makes it easy for the users to run their jobs
over the cloud resources in a distributed fashion just using a
client front end without the need to know about the details
of the underlying resources and need to set up and configure
a cluster.

A. Architecture

This section explains about the system design of
CloudKon. We have used a component based design on this
project for two reasons. (1) A component based design fits
better in the cloud environment. It also helps designing the
project in a loosely-coupled fashion. (2) It will be easier to
improve the implementation in the future.

The following sections explain the system architecture
for both MTC and HPC workloads. CloudKon has the
ability to run workloads with a mixture of both task types.
The first section shows the system architecture in case of
solely running MTC tasks. The second section describes the
process in case of running HPC tasks.

1) MTC task management
Figure 1 shows the different components of CloudKon

that are only involved with running MTC tasks. An MTC
task is defined to be a task that requires computational
resources that can be satisfied by a single worker (e.g.
where the worker manages either a core or a node). The
client node works as a front end to the users to submit their
tasks. SQS has a limit of 256 KB for the size of the
messages which is sufficient for CloudKon Task lengths. In
order to send tasks via SQS we need to use an efficient
serialization protocol with low processing overhead. We use
Google Protocol buffer for this reason. The Task saves the
system log during the process while passing different
components. Thus we can have a complete understanding of
the different components using the detailed logs.

The main components of the CloudKon for running
MTC jobs are Client, Worker, Global Request Queue and
the Client Response Queues. The system also has a
Dynamic Provisioner to handle the resource management. It
also uses DynamoDB to provide monitoring. There is a
monitoring thread running on each worker that periodically
reports utilization of each worker to the DynamoDB key
value store.

The Client component is independent of other parts of
the system. It can start running and submitting tasks without
the need to register itself into the system. Having the Global
Queue address is sufficient for a Client component to join
the system. The Client program is multithreaded. So it can
submit multiple tasks in parallel. Before sending any tasks,
the Client creates a response queue for itself. All of the
submitted tasks carry the address of the Client response
queue. The Client has also the ability to use task bundling to
reduce the communication overhead.

In order to improve the system performance and
efficiency, we decided to put two modes. If the system is
running MTC tasks, all of the workers work as normal task
running workers. But in case of running HPC workloads or
workloads with the combination of HPC and MTC tasks,
other than the normal workers the workers could also
become either worker managers that manage the HPC jobs
or sub-workers that run the HPC tasks.

Similar to the Client component, the Worker component
runs independently in the system. For MTC support, the
worker functionality is relatively simple and straight
forward. Having the Global request queue, the Workers can
join and leave the system any time during the execution.
The Global Request Queue acts as a big pool of Tasks.
Clients can submit their Tasks to this queue and Workers
can pull Tasks from it. Using this approach, the scalability
of the system is only dependent on the scalability of the
Global Queue and it will not put extra load on workers on
larger scales. Worker code is also multithreaded and is able
to receive multiple tasks in parallel. Each thread can pull up
to 10 bundled tasks together. Again, this feature is enabled
to reduce the large communication overhead. After
receiving a task, the worker thread verifies the task
duplication and then checks for the task type. In case of
running MTC tasks, it will run it right away. Then it puts the
results into the task and using the pre-specified address
inside the task, it sends back the task to the Client respond
queue. As soon as response queue receives a task, the
corresponding client thread pulls the results. The process
ends when the Client receives all of its task results.

2) HPC task management
Figure 2 shows the extra components to run HPC jobs.

As mentioned above, in case of running combination of
HPC and MTC jobs, each worker can have different roles.
In case of receiving a MTC task the worker proceeds with
doing the task by itself. DynamoDB is used to maintain the
status of the system so that the workers can decide on the
viability of executing a HPC task. In essence, in
DynamoDB, we store the current number of running
managers and the sub workers that are busy executing HPC

tasks, which gives other workers insight about how many
available resources exist.

If worker receives a HPC job, DynamoDB is checked to
make sure that there are enough available nodes running in
the system for the HPC task execution. If this is satisfied,
the worker (now called as worker manager) puts n messages
in a second SQS (HPC Task Queue). n is the number of
workers needed by the worker manager to execute the task.
If there are no enough available resources, the node is not
allowed to carry on as worker manager; instead this node
will check the HPC Task Queue and act as a sub worker. If
there are messages in the HPC queue, the sub-worker will
notify the manager using the worker managers IP address.
The worker manager and sub-worker use RMI for
communication. Worker Manager holds onto all of its sub-
workers until it has enough to start the execution. After the
execution, the worker manager sends the result to the
response queue to be picked up by the client.

Figure 2. CloudKon-HPC architecture overview

B. Task Execution Consistency Issues

A major limitation of SQS is that it does not guarantee
delivering the messages exactly once. It guarantees delivery
of the message at least once. That means there might be
duplicate messages delivered to the workers. The existence
of the duplicate messages comes from the fact that these
messages are copied to multiple servers in order to provide
high availability and increase the ability of parallel access.
We need to provide a technique to prevent running the
duplicate tasks delivered by SQS. In many types of
workloads running a task more than once is not acceptable.
In order to be compatible for these types of applications
CloudKon needs to guarantee the exactly once execution of
the tasks.

In order to be able to verify the duplication we use
DynamoDB. DynamoDB is a fast and scalable key-value
store. After receiving a task, the worker thread verifies that
if this is the first time that the task is going to run. The
worker thread makes a conditional write to the DynamoDB
table adding the unique identifier of the task which is a
combination of the Task ID and the Client ID. The operation
succeeds if the Identifier has not been written before.
Otherwise the service throws an exception to the worker and
the worker drops the duplicate task without running it. This
operation is an atomic operation. Using this technique we

have minimized the number of communications between the
worker and DynamoDB.

As we mentioned above, exactly once delivery is
necessary for many type of applications such as scientific
applications. But there are some applications that have more
relaxed consistency requirements and can still function
without this requirement. Our program has ability to disable
this feature for these applications to reduce the latency and
increase the total performance. We will study the overhead
of this feature on the total performance of the system in the
evaluation section.

C. Dynamic Provisioning

One of the main goals in the public cloud environment is
the cost-effectiveness. The affordable cost of the resources
is one of the major features of the public cloud to attract
users. It is very important for a Cloud-enabled system like
this to keep the costs at the lowest possible rate. In order to
achieve the cost-effectiveness we have implemented the
dynamic provisioning [44] system. Dynamic provisioner is
responsible for assigning and launching new workers to the
system in order to keep up with the incoming workload.

The dynamic provisioner component is responsible for
launching new worker instances in case of resource
shortage. The application checks the queue length of the
global request queue periodically and compares the queue
length with its previous size. If the increase rate is more
than the allowed threshold, it launches a new Worker. As
soon as being launched, the Worker automatically joins the
system. Both checking interval and the size threshold are
configurable by the user.

In order to provide a solution for dynamically decreasing
the system scale to keep the costs low, we have added a
program to the workers that is able to terminate the instance
if two conditions hold. That only happens if the worker goes
to the idle state for a while and also if the instance is getting
close to its lease renewal. The instances in Amazon EC2 are
charged on hourly basis and will get renewed every hour of
the user don’t shut them down. This mechanism helps our
system scale down automatically without the need to get any
request from a component. Using these mechanisms, the
system is able to dynamically scale up and down.

Figure 3. Communication Cost

D. Communication Costs

The network latency between the instances in the public
Cloud is relatively high compared to HPC systems [36][37].
In order to achieve reasonable throughput and latency we

need to minimize the communication overhead between the
different components of the system. Figure 3 shows the
number of communications required to finish a complete
cycle of running a task. There are 5 steps of communication
to execute a task. CloudKon also provides task bundling
during the communication steps. Client can send multiple
tasks together. The maximum message batch size in SQS is
256 KB or 10 messages.

E. Security and Reliability

For the system security of CloudKon, we rely on the
security of the SQS. SQS provides a highly secure system
using authentication mechanism. Only authorized users can
access to the contents of the Queues. In order to keep the
latency low, we don’t add any encryption to the messages.
SQS provides reliability by storing the messages
redundantly on multiple servers and in multiple data centers
[18].

F. Implementation Details

We have implemented all of the CloudKon components
in Java. Our implementation is multithreaded in both Client
and Worker component codes. Many of the features in both
of these systems such as Monitoring, Consistency, number
of threads and the Task bundling size is configurable as a
program input argument.

Taking advantage of AWS service building blocks, our
system has a short and simple code base. The code base of
CloudKon is significantly shorter than other common task
execution systems like Sparrow or MATRIX. CloudKon
code has about 1000 lines of code (LOC), while Sparrow
has 24000+ LOC, and MATRIX has 10500++ LOC. This
can highlight the potential benefits of the public cloud
services. We were able to create a complex and scalable
system by re-using scalable building blocks in the cloud.

III. PERFORMANCE EVALUATION

We evaluate the performance of the CloudKon and
compare it with two other distributed job management
systems, namely Sparrow and MATRIX. First we discuss
their high level features and major differences. Then we
compare their performance in terms of throughput and
efficiency. We also evaluate the latency of CloudKon.

A. Comparing CloudKon with other Scheduling Systems

We sufficed to compare our system with Sparrow and
MATRIX as these two systems represent the best-of-breed
open source distributed task management systems.

Sparrow was designed to achieve the goal of managing
milliseconds jobs on a large scale distributed systesm. It
uses a decentralized, randomized sampling approach to
schedule jobs on worker nodes. The system has multiple
schedulers that each have a list of workers and distributed
the jobs among the workers deciding based on the worker’s
job queue length. Sparrow was tested on up to hundred
nodes on the original paper.

MATRIX is a fully distributed MTC task execution
fabric that applies work stealing technique to achieve
distributed load balancing, and a DKVS, ZHT, to keep task

metadata. In MATRIX, each computer node runs a
scheduler, an executor and a ZHT server. The executor
could be a separate thread in the scheduler. All the
schedulers are fully-connected with each one knowing all of
others. The client is a bench marking tool that issues request
to generate a set of tasks, and submits the tasks to any
scheduler. The executor keeps executing tasks of a
scheduler. Whenever a scheduler has no more tasks to be
executed, it initials the adaptive work stealing algorithm to
steal tasks from candidate neighbor schedulers. ZHT is a
DKVS that is used to keep the task meta-data in a
distributed, scalable, and fault tolerant way.

One of the main differences between Sparrow and
CloudKon or MATRIX is that Sparrow distributes the tasks
by pushing them to the workers, while CloudKon and
MATRIX use pulling approach. Also, in CloudKon, the
system sends back the task execution results to the clients.
But in both Sparrow and MATRIX, the system doesn’t send
any type of notifications back to the clients. That could
allow Sparrow and MATRIX to perform faster, since it is
avoiding one more communication step, but it also makes it
harder for clients to find out if their tasks were successfully
executed.

B. Testbed

We deploy and run all of the three systems on Amazon
EC2. We have used m1.medium instances on Amazon EC2.
We have run all of our experiments on the Amazon
datacenter (us.east.1). We have scaled the experiments up to
1024 nodes. In order to make the experiments efficient,
client and worker nodes both run on each node. All of the
instances had Linux Operating Systems. Our framework
should work on any OS that has a JRE 1.7, including
Windows and Mac OSX.

C. Throughput

1) MTC Tasks
In order to measure the throughput of our system we run

sleep 0 tasks. We have also compared the throughput of
CloudKon with Sparrow and MATRIX. There are 2 client
threads and 4 worker threads running on each instance. Each
instance submits 16000 tasks. Figure 4 compares the
throughput of CloudKon with Sparrow and MATRIX on
different scales. Each instance submits 16000 tasks
aggregating to 16.38 million tasks on the largest scale.

The throughput of MATRIX is significantly higher than
the CloudKon and Sparrow on 1 instances scale. The reason
is that MATRIX can run many fine-grained tasks locally
any scheduling or network overhead. But on CloudKon the
tasks must go through the network even if there is one node
running on the system. The gap between the throughputs of
the systems gets smaller as the network overhead adds up to
the other two systems. MATRIX schedulers synchronize
with each other using all-to-all synchronization method.
Having too many open TCP connections by workers and
schedulers on 256 instances scale leads MATRIX to be
unstable. The network performance on EC2 cloud is
significantly lower than that of HPC systems, where
MATRIX has successfully been run at 1024-node scales.

Figure 4. Throughput of CloudKon, Sparrow and MATRIX (MTC tasks)

Sparrow is the slowest among the three systems in terms
of throughput. It shows a stable throughput with almost
linear speedup up to 64 instances. As the number of
instances increases more than 64, the list of instances to
choose from for each scheduler on Sparrow increases.
Therefore many workers remain idle and the throughput will
not increase as expected. We were not able to run Sparrow
on 128 or 256 instances scale as there were too many
sockets open on schedulers resulting into system crash.

CloudKon achieves good 500X speedup starting from
238 tasks per second on 1 instance to 119K tasks per second
on 1024 instances. Unlike the other two systems, the
scheduling process on CloudKon is not done by the
instances. Since the job management is handled by SQS, the
performance of the system is mainly dependent of this
service. We predict that the throughput would continue to
scale until it reaches the SQS performance limits (which we
were not able to reach up to 1024 instances). Due to the
budget limitations, we were not able to expand our scale
beyond 1024 instances, although we plan to apply for
additional Amazon AWS credits and to push our evaluation
to 10K instance scales, the largest allowable number of
instances per user without advanced reservation.

2) HPC Tasks
In This section we show the throughput of the CloudKon

running HPC tasks workloads. Running HPC tasks adds
more overhead to the system as there will be more steps to
run the tasks. Instead of running the job right away, the
worker manager needs to go over a few steps and wait to get
enough resources to run the job. This would slow down the
system and lowers the system efficiency. But it doesn’t
affect the scalability. Using CloudKon can majorly improve
the run time of HPC workloads by parallelizing the task
execution that is normally done in a sequential fashion. We
have chosen jobs with 4, 8 and 16 tasks. There are 4 worker
threads running on each instance. The number of executed
tasks on each scale for different workers is equal.

Figure 5 compares the system throughput in case of
running HPC jobs with different number of tasks per job.
The results show that the throughput of running jobs with
more number of tasks per job is lower. The jobs with more
tasks need to wait for more sub-workers to start the process.
That adds more latency and slows down the system. We can
see that CloudKon is able to achieve a high throughput of

205 jobs per second which is already much higher than what
Slurm can achieve. The results also show good scalability as
we add more instances.

Figure 5. Throughput of CloudKon (HPC tasks)

D. Latency

In order to measure latency accurately, the system has to
record the request and respond timestamps of each task. The
problem with Sparrow and MATRIX is that on their
execution process workers don’t send notifications to the
clients. Therefore it is not possible to measure the latency of
each task comparing timestamps from different nodes. In
this section we have measured the latency of CloudKon and
analyzed the latency of different steps of the process.

Figure 6 shows the latency of CloudKon for sleep 0 ms
scaling from 1 to 1024 instances. Each instance is running 1
client thread and 2 worker threads and sending 16000 tasks
per instance.

Figure 6. Latency of CloudKon sleep 0 ms tasks

The latency of the system at 1 node is relatively high
showing 95 ms overhead added by the system. But this will
be acceptable on larger scales. The fact that the latency
doesn’t increase more than 10 ms while increasing the
number of instances from 1 instance to 1024 instance shows
that CloudKon is stable. SQS as the task pool is a highly
scalable service being backed up with multiple servers
keeping the service very scalable. Thus scaling up the
system by adding threads and increasing the number of tasks
doesn’t affect the SQS performance. The client and worker
nodes always handle the same number of tasks on different
scales. Therefore scaling up doesn’t affect the instances.
CloudKon includes multiple components and its
performance and latency depends on its different
components. The latency result on figure 6 does not show us
any details about the system performance. In order to

analyze the performance of the different components we
measure the time that each task spends on different
components of the system by recording the time during the
execution process.

Figure 7, Figure 8, and Figure 9 respectively show the

cumulative distribution of deliver-task stage, deliver-result

stage, and the execute-task stage of the tasks on CloudKon.

Each communication stage has three steps: sending,

Queuing and receiving. The latency of the SQS API calls

including send-task and receive-task on both are quite high

compared to the execution time of the tasks on CloudKon.

The reason for that is the expensive Web Service API call

cost that uses XML format for communication. The worker

takes 16ms on more than 50% of the times. This includes

the DynamoDB that takes 8ms on more than 50% of the

times. This shows us that hypothetically CloudKon latency

can improve significantly if we use a low overhead

distributed message queue that could guarantee the exactly

once delivery of the tasks. We will cover this more in the

future work section.

Figure 7. Cumulative Distribution of the latency on the task execution step

Figure 8. Cumulative Distribution of the latency on the task submit step

Another notable point is the difference between the

deliver-task and deliver-result time in both Queuing and

receiving back, even though they have the same API calls.

The time that the tasks spend on the response-queue is

longer than the time it spends on request-queue. The reason

is there are two worker threads and only one client thread on

each instance. Therefore the frequency of pulling tasks is

higher when the tasks are pulled by the worker threads.

Figure 9. Cumulative Distribution of the latency on the result delivery step

E. Efficiency of CloudKon

It is very important for the system to manage the
systems efficiently. Achieving high efficiency on distributed
job scheduling systems is not trivial. It is hard to fairly
distribute the workload on all of the workers and keep all of
the nodes busy during the execution on larger scales.

In order to show the system efficiency we have designed
two sets of experiments. We test the system efficiency in
case of homogeneous and heterogeneous tasks. The
homogeneous tasks have a certain task duration length.
Therefore it is easier to distribute them since the scheduler
assumes it takes the same time to run them. This could give
us a good feedback about the efficiency of the system in
case of running different task types with different
granularity. We can also assess the ability of the system to
run the very shot length tasks. A problem with the first
experiment is that not all of the tasks take the same amount
of time to run. This can hugely affect the system efficiency
if the scheduler is not taking the tasks length into the
consideration. Having a random workload can show how a
scheduler will work in case of running real applications.

1) Homogeneous Workloads
In this section we compare the efficiency of CloudKon

with Sparrow and MATRIX on sub second tasks. Figure 10
shows the efficiency of 1, 16 and 128ms tasks on the
systems. The efficiency of CloudKon is on 1ms tasks is
lower than then other two systems. As we mentioned before,
the latency of CloudKon is large for very short tasks
because of the significant network latency overhead added
on the execution cycle. Matrix has a better efficiency on
smaller scales but as the trend shows, the efficiency drops
tremendously until the system crashes because of too many
TCP connections on scales of 128 instances or more. On
sleep 16ms tasks, the efficiency of CloudKon is around 40%
which is low (compared to the other systems). The
efficiency of MATRIX starts with more than 93% on one
instance but again it drops to a lower efficiency than the
CloudKon on larger number of instances. We can notice that
the efficiency of CloudKon is very stable compared to the
other two systems on different scales. That shows that
CloudKon achieves a better scalability. On sleep 128ms
tasks, the efficiency of CloudKon is as high as 88%. Again,
the results show that the efficiency of MATRIX drops on
larger scales.

Sparrow shows very good and stable efficiency running
homogenous tasks up to 64 instances. The efficiency drops

after this scale for shorter tasks. Having too many workers
for task distribution, the scheduler cannot have a perfect
load balance and some workers remain idle. Therefore the
system will be under-utilized and the efficiency drops. The
system crashes on scales of 128 scales or larger because of
maintaining too many sockets in schedulers.

Figure 10. Efficiency of CloudKon, Sparrow and MATRIX running
homogenous workloads of different task lengths (1, 16, 128ms tasks)

2) Heterogeneous Workloads
In order to measure efficiency, we investigated the

largest available trace of real MTC workloads [38], and
filtered out the logs to isolate only the sub-second tasks,
which netted about 2.07M tasks with the runtime range of 1
milliseconds to 1 seconds. The tasks were submitted in a
random fashion. The average task lengths of different
instances are different from each other.

Each instance runs 2K tasks on average. The efficiency
comparison on Figure 9 shows similar trends for CloudKon
and MATRIX. On both systems the worker pulls a task only
when it has available resources to run the task. Therefore the
fact that the execution duration of the tasks is different does
not affect the efficiency of the system. On the other hand on
Sparrow, the scheduler distributes the tasks by pushing them
to the workers that have less number of tasks to be executed
in their queue. The fact that the tasks have different run time
is going to affect the system efficiency. Some of the workers
may have multiple long tasks and many other workers may
have short tasks to run. Thus there will be a big imbalance
among the workers with some of the being loaded with big
tasks and the rest being under-utilized and the system run
time will be bound to the run time of the workers with
longer jobs to run.

Figure 11. Efficiency of the systems running heterogeneous workloads.

Being under-utilized, the efficiency of Sparrow has the
largest drop from 1 instance to 64 instances. The system was
not functional on 128 instances or more. Similarly, the
efficiency of MATRIX started with a high efficiency, but
started to drop significantly because of too many open
sockets on TCP connections. The efficiency of CloudKon is
not as high as the other two systems, but it is more stable as
it only drops 6% from 1 to 64 instances compared to
MATRIX that drops 19% and Sparrow that drops 23%.
Again, CloudKon was the only functional system on 256
instances with 77% efficiency.
F. The overhead of consistency

In this section we evaluate effect of tasks execution

consistency on CloudKon. Figure 10 shows the system run-

time for sleep 16ms with the duplication controller enabled

and disabled. The overhead for other sleep tasks were

similar to this experiment. So we have only included one of

the experiments in this paper.

Figure 12. The overhead of task execution consistency on CloudKon

The consistency overhead increases with the scale. The

inconsistency on different scales is the result of the variable

number of duplicate messages on each run. That results in

more random system performance on different experiments.

In general the overhead on scale of less than 10 is less than

15%. This overhead is mostly for the successful write

operations on DynamoDB. The probability of getting

duplicate tasks increases on larger scales. Therefore there

will be more exceptions. That leads to a higher overhead.

The overhead on larger scales goes up to 35%. However, the

overhead rate is stable and does not pass this rate. Using a

distributed message queue that guarantees exactly-once

delivery can improve the performance significantly.

IV. RELATED WORK

The job schedulers could be centralized, where a single
dispatcher manages the job submission, and execution state
updates; or hierarchical, where several dispatchers are
organized in a tree-based topology; or distributed, where
each computing node maintains its own job execution
framework.

Condor [3] was implemented to harness the unused CPU
cycles on workstations for long-running batch jobs. Slurm
[2] is a resource manager designed for Linux clusters of all
sizes. It allocates exclusive and/or non-exclusive access to
resources to users for some duration of time so they can
perform work, and provides a framework for starting,

executing, and monitoring work on a set of allocated nodes.
Portable Batch System (PBS) [5] was originally developed
to address the needs of HPC. It can manage batch and inter-
active jobs, and add the ability to signal, rerun and alter
jobs. LSF Batch [19] is the load-sharing and batch-queuing
component of a set of workload management tools.

All these systems target as the HPC or HTC
applications, and lack the granularity of scheduling jobs at
finer levels making them hard to be applied to the MTC
applications. What’s more, the centralized dispatcher in
these systems suffers scalability and reliability issues. In
2007, a light-weight task execution framework, called
Falkon [9] was developed. Falkon also has a centralized
architecture, and although it scaled and performed
magnitude orders better than the state of the art, its
centralized architecture will not even scale to petascale
systems [8]. A hierarchical implementation of Falkon was
shown to scale to a petascale system in [8], the approach
taken by Falkon suffered from poor load balancing under
failures or unpredictable task execution times. Although
distributed load balancing at extreme scales is likely a more
scalable and resilient solution, there are many challenges
that must be addressed (e.g. utilization, partitioning). Fully
distributed strategies have been proposed, including
neighborhood averaging scheme (ACWN) [20][21][22][23].
In [23], several distributed and hierarchical load balancing
strategies are studied, such as Sender/Receiver Initiated
Diffusion (SID/RID), Gradient Model and a Hierarchical
Balancing Method. Other hierarchical strategies are
explored in [22]. Charm++ [24] supports centralized,
hierarchical and distributed load balancing. In [24], the
authors present an automatic dynamic hierarchical load
balancing method for Charm++, which scales up to 16K-
cores on a Sun Constellation supercomputer for a synthetic
benchmark.

Sparrow is another scheduling system that focuses on
scheduling very short jobs that complete within hundreds of
milliseconds [25]. It has a decentralized architecture that
makes it highly scalable. It also claims to have a good load
balancing strategy with near optimal performance using a
randomized sampling approach. It has been used as a
building block of other systems.

Omega presents a scheduling solution for scalable
cluster using parallelism, shared-state and lock-free
optimistic concurrency control [26]. The difference of this
work with ours is that it optimized for course-grained
scheduling of dedicated resources. CloudKon uses elastic
resources. It is optimized for scheduling of both HPC and
MTC tasks.

Work stealing is another approach that has been used at
small scales successfully in parallel languages such as Cilk
[24], to load balance threads on shared memory parallel
machines [28][29][30]. However, the scalability of work
stealing has not been well explored on modern large-scale
systems. In particular, concerns exist that the randomized
nature of work stealing can lead to long idle times and poor
scalability on large-scale clusters [30]. The largest studies to
date of work stealing have been at thousands of cores scales,
showing good to excellent efficiency depending on the

workloads [30]. MATRIX is an execution fabric that
focuses on running Many Task Computing (MTC) jobs
[31]. It uses an adaptive work stealing approach that makes
it highly scalable and dynamic. It also supports the
execution of complex large-scale workflows. Most of these
existing light-weight task execution frameworks have been
developed from scratch, resulting in code-bases of tens of
thousands of lines of code. This leads to systems which are
hard and expensive to maintain, and potentially much harder
to evolve once initial prototypes have been completed. This
work aims to leverage existing distributed and scalable
building blocks to deliver an extremely compact distributed
task execution framework while maintaining the same level
of performance as the best of breed systems.

To our knowledge CloudKon is the only job
management system to support both distributed MTC and
HPC scheduling. We have been prototyping distributed job
launch in the Slurm job resource manager under a system
called Slurm++ [32], but that work is not mature enough yet
to be included in this study. Moreover, CloudKon is the
only distributed task scheduler that is designed and
optimized to run on public cloud environment. Finally,
CloudKon has an extremely compact code base, at 5% of
the code base of the other state-of-the-art systems.

V. CONCLUSION AND FUTURE WORK

Large scale distributed systems require efficient job
scheduling system to achieve high throughput and system
utilization. It is important for the scheduling system to
provide high throughput and low latency on the larger scales
and add minimal overhead to the workflow. CloudKon is a
Cloud enabled distributed task execution framework that
runs on Amazon AWS cloud. It is a unique system in terms
of running both HPC and MTC workloads on public cloud
environment. Using SQS service gives CloudKon the
benefit of scalability. The evaluation of the CloudKon
proves that it is highly scalable and achieves a stable
performance over different scales. We have tested our
system up to 1024 instances. CloudKon was able to
outperform other systems like Sparrow and MATRIX on
scales of 128 instances or more in terms of throughput.
CloudKon achieves up to 87% efficiency running
homogeneous and heterogeneous fine granular sub-second
tasks. Compared to the other systems like Sparrow, it
provides lower efficiency on smaller scales. But on larger
scales, it achieves a significantly higher efficiency.

There are many directions for the future work. One
direction is to make the system fully independent and test it
on different public and private clouds. We are going to
implement a SQS like service with high throughput at the
larger access scales. With help from other systems such as
ZHT distributed hash table [32], we will be able implement
such a service. Another future direction of this work is to
implement a more tightly coupled version of CloudKon and
test it on supercomputers and HPC environments while
running HPC jobs in a distributed fashion, and to compare it
directly with Slurm and Slurm++ in the same environment.
We also plan to explore porting some real programming
frameworks, such as the Swift parallel programming system

[40][42][43] or the Hadoop MapReduce framework, which
could both benefit from a distributed scheduling run-time
system. This work could also expand to run on
heterogeneous environments including different public and
private clouds. In that case, the system can choose among
different resources based on the resource cost and
performance and provide optimized performance with the
minimum cost.

ACKNOWLEDGEMENTS

This work was made possible in part due to the Amazon
AWS Research Grants.

REFERENCES

[1] P. Kogge, et. al., “Exascale computing study: Technology challenges
in achieving exascale systems,” 2008.

[2] M. A. Jette et. al, “Slurm: Simple linux utility for resource
management”. In Lecture Notes in Computer Sicence: Proceedings of
Job Scheduling Strategies for Prarallel Procesing (JSSPP) 2003
(2002), Springer-Verlag, pp. 44-60.

[3] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in
Practice: The Condor Experience” Concurrency and Computation:
Practice and Experience 17 (2-4), pp. 323-356, 2005.

[4] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke. “Condor-G: A
Computation Management Agent for Multi-Institutional Grids,”
Cluster Computing, 2002.

[5] B. Bode et. al. “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters,” Usenix, 4th Annual Linux Showcase &
Conference, 2000.

[6] W. Gentzsch, et. al. “Sun Grid Engine: Towards Creating a Compute
Power Grid,” 1st International Symposium on Cluster Computing and
the Grid (CCGRID’01), 2001.

[7] C. Dumitrescu, I. Raicu, I. Foster. “Experiences in Running
Workloads over Grid3”, The 4th International Conference on Grid
and Cooperative Computing (GCC 2005), 2005

[8] I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale
Systems,” IEEE/ACM Super Computing Conference (SC’08), 2008.

[9] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON
Framework,” IEEE/ACM SC 2007.

[10] S. Melnik, A. Gubarev, J. J. Long, G. Romer,S. Shivakumar, M.
Tolton, and T. Vassilakis. “Dremel: Interactive Analysis of Web-
Scale Datasets. Proc.” VLDB Endow., 2010

[11] L. Ramakrishnan, et. al. “Evaluating Interconnect and virtualization
performance for high performance computing”, ACM Performance
Evaluation Review, 40(2), 2012.

[12] P. Mehrotra, et. al. “Performance evaluation of Amazon EC2 for
NASA HPC applications”. In Proceedings of the 3rd workshop on
Scientific Cloud Computing (ScienceCloud '12). ACM, NY, USA, pp.
41-50, 2012.

[13] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. “Case study
for running HPC applications in public clouds,” In Proc. of ACM
Symposium on High Performance Distributed Computing, 2010.

[14] G. Wang and T. S. Eugene. “The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center”. In IEEE
INFOCOM, 2010.

[15] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and
Supercomputers,” 1st IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS) 2008.

[16] I. Raicu. "Many-Task Computing: Bridging the Gap between High
Throughput Computing and High Performance Computing",
Computer Science Dept., University of Chicago, Doctorate
Dissertation, March 2009

[17] Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web
Services, [online] 2013, http://aws.amazon.com/ec2/

[18] Amazon SQS, [online] 2013, http://aws.amazon.com/sqs/
[19] LSF: http://platform.com/Products/TheLSFSuite/Batch, 2012.

[20] L. V. Kal´e et. al. “Comparing the performance of two dynamic load
distribution methods,” In Proceedings of the 1988 International
Conference on Parallel Processing, pages 8–11, August 1988.

[21] W. W. Shu and L. V. Kal´e, “A dynamic load balancing strategy for
the Chare Kernel system,” In Proceedings of Supercomputing ’89,
pages 389–398, November 1989.

[22] A. Sinha and L.V. Kal´e, “A load balancing strategy for prioritized
execution of tasks,” In International Parallel Processing Symposium,
pages 230–237, April 1993.

[23] M.H. Willebeek-LeMair, A.P. Reeves, “Strategies for dynamic load
balancing on highly parallel computers,” In IEEE Transactions on
Parallel and Distributed Systems, volume 4, September 1993

[24] G. Zhang, et. al, “Hierarchical Load Balancing for Charm++
Applications on Large Supercomputers,” In Proceedings of the 2010
39th International Conference on Parallel Processing Workshops,
ICPPW 10, pages 436-444, Washington, DC, USA, 2010.

[25] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. “Sparrow:
distributed, low latency scheduling”. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (SOSP
'13). ACM, New York, NY, USA, 69-84.

[26] M. Schwarzkopf, A Konwinski, M. Abd-el-malek, and J. Wilkes,
Omega: Flexible, scalable schedulers for large compute clusters. In
Proc. EuroSys (2013).

[27] Frigo, et. al, “The implementation of the Cilk-5 multithreaded
language,” In Proc. Conf. on Prog. Language Design and
Implementation (PLDI), pages 212–223. ACM SIGPLAN, 1998.

[28] R. D. Blumofe, et. al. “Scheduling multithreaded computations by
work stealing,” In Proc. 35th FOCS, pages 356–368, Nov. 1994.

[29] V. Kumar, et. al. “Scalable load balancing techniques for parallel
computers,” J. Parallel Distrib. Comput., 22(1):60–79, 1994.

[30] J. Dinan et. al. “Scalable work stealing,” In Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis, 2009.

[31] A. Rajendran, Ioan Raicu. "MATRIX: Many-Task Computing
Execution Fabric for Extreme Scales", Department of Computer
Science, Illinois Institute of Technology, MS Thesis, 2013

[32] T. Li, et al., “ZHT: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table,” in IEEE International
Parallel & Distributed Processing Symposium (IPDPS ’13), 2013.

[33] Amazon DynamoDB (beta), Amazon Web Services, [online] 2013,
http://aws.amazon.com/dynamodb

[34] P. Mell and T. Grance. “NIST definition of cloud computing.”
National Institute of Standards and Technology. October 7, 2009.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of
the 2nd USENIX Conference on Hot topics in Cloud Computing,
Boston, MA, June 2010.

[36] P. Mehrotra, et al. 2012. “Performance evaluation of Amazon EC2 for
NASA HPC applications” In (ScienceCloud '12). ACM, New York,
NY, pp. 41-50.

[37] I. Sadooghi, et al. “Understanding the cost of cloud computing”.
Illinois Institute of Technology, Technical report. 2013

[38] I. Raicu, et al. “The Quest for Scalable Support of Data Intensive
Workloads in Distributed Systems,” ACM HPDC 2009

[39] I. Raicu, et al. "Middleware Support for Many-Task Computing",
Cluster Computing, The Journal of Networks, Software Tools and
Applications, 2010

[40] Y. Zhao, et al. "Realizing Fast, Scalable and Reliable Scientific
Computations in Grid Environments", book chapter in Grid
Computing Research Progress, Nova Publisher 2008.

[41] I. Raicu, et al. "Towards Data Intensive Many-Task Computing",
book chapter in "Data Intensive Distributed Computing: Challenges
and Solutions for Large-Scale Information Management", IGI Global
Publishers, 2009

[42] Y. Zhao, et al. "Opportunities and Challenges in Running Scientific
Workflows on the Cloud", IEEE CyberC 2011

[43] M. Wilde, et al. "Extreme-scale scripting: Opportunities for large
task-parallel applications on petascale computers", SciDAC 2009

[44] I. Raicu, et al. "Dynamic Resource Provisioning in Grid
Environments", TeraGrid Conference 2007

http://aws.amazon.com/ec2/

