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Abstract—Data compression could ameliorate the I/O pressure
of scientific applications on high-performance computing systems.
Unfortunately, the conventional wisdom of naively applying data
compression to the file or block brings the dilemma between
efficient random accesses and high compression ratios. File-
level compression can barely support efficient random accesses
to the compressed data: any retrieval request need trigger
the decompression from the beginning of the compressed file.
Block-level compression provides flexible random accesses to the
compressed data, but introduces extra overhead when applying
the compressor to each every block that results in a degraded
overall compression ratio. This paper introduces a concept called
virtual chunks aiming to support efficient random accesses to
the compressed scientific data without sacrificing its compression
ratio. In essence, virtual chunks are logical blocks identified by
appended references without breaking the physical continuity of
the file content. These additional references allow the decompres-
sion to start from an arbitrary position (efficient random access),
and retain the file’s physical entirety to achieve high compression
ratio on par with file-level compression. One potential concern
of virtual chunks lies on its space overhead (from the additional
references) that degrades the compression ratio, but our analytic
study and experimental results demonstrate that such overhead
is negligible. We have implemented virtual chunks in two forms:
a middleware to the GPFS parallel file system, and a module in
the FusionFS distributed file system. Large-scale evaluations on
up to 1,024 cores showed that virtual chunks could help improve
the I/O throughput by 2X speedup.

I. INTRODUCTION

As today’s scientific applications are becoming data-
intensive (e.g. astronomy [1]), one effective approach to relieve
the I/O bottleneck of the underlying storage system is data
compression. As a case in point, it is optional to apply lossless
compressors (e.g. LZO [2], bzip2 [3]) to the input or output
files in the Hadoop file system (HDFS) [4], or even lossy
compressors [5, 6] at the high-level I/O middleware such as
HDF5 [7] and NetCDF [8]. By investing some computational
time on compression, we hope to significantly reduce the file
size and consequently the I/O time to offset the computational
cost.

State-of-the-art compression mechanisms of parallel and
distributed file systems, however, simply apply the compressor
to the data either at the file-level or block-level1, and leave the
important factors (e.g. computational overhead, compression
ratio, I/O pattern) to the underlying compression algorithms.

1The “chunk”, e.g. in HDFS, is really a file from the work node’s
perspective. So “chunk-level” is not listed here.

In particular, we observe the following limitations of applying
the file-level and block-level compression, respectively:

1) The file-level compression is criticized by the sig-
nificant overhead for random accesses: the decom-
pression needs to start from the very beginning of
the compressed file anyway even though the client
might be only requesting some bytes at an arbitrary
position of the file. As a case in point, one of the most
commonly used operations in climate research is to
retrieve the latest temperature of a particular location.
The compressed data set is typically in terms of
hundreds of gigabytes; nevertheless scientists would
need to decompress the entire compressed file to only
access the last temperature reading. This wastes both
the scientist’s valuable time and scarce computing
resources.

2) The deficiency of block-level compression stems
from its additional compression overhead larger than
the file-level counterpart, resulting in a degenerated
compression ratio. To see this, think about a simple
scenario that a 64MB file to be compressed with 4:1
ratio and 4KB overhead (e.g. header, metadata, etc.).
So the resultant compressed file (i.e. file-level com-
pression) is about 16MB + 4KB = 16.004MB. If the
file is split into 64KB-blocks each of which is applied
with the same compressor, the compressed file would
be 16MB + 4KB × 1K = 20MB. Therefore we would
roughly spend (20MB - 16.004MB) / 16.004MB ≈
25% more space in block-level compression than the
file-level one.

This paper introduces virtual chunks (VC) that aim to
better employ existing compression algorithms in parallel and
distributed file systems, and eventually to improve the I/O
performance of random data accesses in scientific applications
and high-performance computing (HPC) systems. The idea of
virtual chunks was first presented in the poster session of
the Supercomputing 2014 conference [9]. Virtual chunks do
not break the original file into physical chunks or blocks, but
append a small number of references to the end of file. Each of
these references points to a specific block that is considered as
a boundary of the virtual chunk. Because the physical entirety
(or, continuity of blocks) of the original file is retained, the
compression overhead and compression ratio keep comparable
to those of file-level compression. With these additional refer-
ences, a random file access need not decompress the entire file
from the beginning, but could arbitrarily jump onto a reference



close to the requested data and start the decompression from
there. Therefore virtual chunks help to achieve the best of both
file- and block-level compressions: high compression ratio and
efficient random access.

Virtual chunks might raise concerns about the cost of the
additional references: they need more storage space and take
more I/O time. We argue, and will justify in Section II-C and
Section III-A, that it would not be an issue if the number
of additional reference is wisely chosen. It would definitely
not be a good choice to store a reference for each and every
original data entry: the resultant “compressed file” would
become larger than its original size, making data compression
meaningless. Few references do not make sense either since the
whole point of virtual chunks is to provide a finer granularity
for random accesses. For example, a single reference makes
the compression essentially applied to the entire file. Therefore,
the number of additional references must be balanced between
compression ratio and compression granularity (i.e. size of
virtual chunks, or number of references). We will present
theoretical analyses (Section II-C) and experimental results
(Section III-A) to justify that the space overhead from the
additional reference is negligible in terms of end-to-end I/O
performance.

To summarize, this paper makes the following contribu-
tions:

• Propose the virtual chunk mechanism to flexibly apply
the conventional compression algorithm to parallel
and distributed file systems to improve random data
accesses while retaining high compression ratios

• Formalize the procedures to manipulate virtual
chunks, and provide theoretical analysis on how to set
up the parameters to achieve the optimal performance

• Design and implement virtual chunks in a production
parallel file system GPFS [10] and a distributed file
system FusionFS [11, 12]

• Evaluate virtual chunks with real scientific data sets
(e.g. GCRM [13], SDSS [14]) at large scale, on up to
1024 cores in a leadership supercomputer Intrepid [15]

The remainder of this paper mainly focuses on the pre-
sentation and evaluation of employing virtual chunks in com-
pressible file systems. In Section II, we analyze how to
wisely choose the number of references to append, discuss
where to store these references, and formalize the procedures
to leverage virtual chunks in sequential and random data
accesses. Section III describes two forms of implementation
of virtual chunks: a middleware on a parallel file system
(GPFS [10]) and a built-in module in a distributed file system
(FusionFS [11, 12]). Large-scale experiments at up to 1,024-
cores show that virtual chunks improve I/O performance by
up to 2X on real scientific applications, such as climate data
GCRM [13] and astronomy data SDSS [14]. In Section IV, we
discuss the limitations and open questions of virtual chunks.
Section V reviews previous work on storage systems, I/O
performance, and data compression. We finally conclude this
paper in Section VI.

II. VIRTUAL CHUNK

To make matters more concrete, we illustrate how virtual
chunks work with an XOR-based delta compression [16] that
is applied to parallel scientific applications. The idea of XOR-
based delta compression is straightforward: calculating the
XOR difference between every pair of adjacent data entries
in the input file, so that only the very first data entry needs
to be stored together with the XOR differences. This XOR
compression proves to be highly effective for scientific data
like climate temperatures, because the large volume of numer-
ical values change marginally in the neighboring spatial and
temporal area. Therefore, storing the large number of small
XOR differences instead of the original data entries could
significantly shrink the size of the compressed file.

Fig. 1. Compression and decompression with two virtual chunks

Figure 1 shows an original file of eight data entries, and two
references to Data 0 and Data 4, respectively. That is, we have
two virtual chunks of Data 0 – 3 and Data 4 – 7, respectively. In
the compressed file, we store seven deltas and two references.
When users need to read Data 7, we first copy the nearest
upper reference (Ref 1 in this case) to the beginning of the
restored file, then incrementally XOR the restored data and the
deltas, until we reach the end position of the requested data.
In this example, we roughly save half of the I/O time during
the random file read by avoiding reading and decompressing
the first half of the file.

For clear presentation of the following algorithms to be
discussed, we assume the original file data can be repre-
sented as a list D = 〈d1, d2, . . . , dn〉. Since there are n
data entries, we have n − 1 encoded data, denoted by the
list X = 〈x1, x2, . . . , xn−1〉 where xi = di XOR di+1 for
1 ≤ i ≤ n − 1. We assume there are k references (i.e.
original data entries) that the k virtual chunks start with. The
k references are represented by a list D′ = 〈dc1 , dc2 , . . . , dck〉,
where for any 1 ≤ i ≤ k − 1 we have ci ≤ ci+1. Notice that
we need c1 = 1, because it is the basis from where the XOR
could be applied to the original data D. We define L = n

k , the
length of a virtual chunk if the references are equidistant. The
number in the square bracket [ ] after a list variable indicates
the index of the scalar element. For example D′[i] denotes
the ith reference in the reference list D′. This should not be



confused with dci , which represents the cthi element in the
original data list D. The sublist starting at s and ending at t
of a list D is represented as Ds,t.

A. Storing References

We have considered two strategies on where to store
the references: (1) put all references together (either in the
beginning or in the end); (2) keep the reference in-place to
indicate the boundary, i.e. spread out the references in the
compressed file. Current design takes the first strategy that
stores the references together at the end of the compressed
file, as explained in the following.

The in-place references offer two limited benefits. Firstly,
it saves space of (k − 1) encoded data entries (recall that
k is the total number of references). For example, Delta 4
would not be needed in Figure 1. Secondly, it avoids the
computation on locating the lowest upper reference at the end
of the compressed file. For the first benefit, the space saving is
insignificant because encoded data are typically much smaller
than the original ones, not to mention this gain is factored by a
relatively small number of reference (k− 1) comparing to the
total number of data entries (n). The second benefit on saving
the computation time is also limited because the CPU time on
locating the reference is marginal compared to compressing
the data entries.

The drawback of the in-place method is, even though not
so obvious, critical: it introduces significant overhead when
decompressing a large portion of data spanning over multiple
logical chunks. To see this, let us imagine in Figure 1 that Ref
0 is above Delta 1 and Ref 1 is in the place of Delta 4. If the
user requests the entire file, then the file system needs to read
two raw data entries: Ref 0 (i.e. Data 0) and Ref 1 (i.e. Data
4). Note that Data 0 and Data 4 are original data entries, and
are typically much larger than the deltas. Thus, reading these
in-place references would take significantly more time than
reading the deltas, especially when the requested data include
a large number of virtual chunks. This issue does not exist in
our current design where all references are stored together at
the end of file: the user only needs to retrieve one reference
(i.e. Ref 0 in this case).

B. Compression with Virtual Chunks

We use encode() (or decode()) applicable to two
neighboring data entries to represent some compression (or
decompression) algorithms to the file data. Certainly, it is not
always true that the compression algorithm deals with two
neighboring data entries; we only take this assumption for
clear representation, and it would not affect the validity of
the algorithms or the analysis that follows. We will discuss the
applicability of virtual chunks in more details in Section IV-A.

The procedure to compress a file with multiple references
is described in Algorithm 1. The first phase of the virtual-
chunk compression is to encode the original data entries of
the original file, as shown in Lines 1 – 3. The second phase
appends k references to the end of the compressed file, as
shown in Lines 4 – 6.

The time complexity of Algorithm 1 is O(n). Lines 1 – 3
obviously take O(n) to compress the file. Lines 4 – 6 are also

Algorithm 1 VC Compress
Input: The original data D = 〈d1, · · · , dn〉
Output: The encoded data X , and the reference list D′

1: for (int i = 1; i < n; i++) do
2: X[i] ← encode(di, di+1)
3: end for
4: for (int j = 1; j < k; j++) do
5: D′[j]← D[1 + (j − 1) ∗ L]
6: end for

bounded by O(n) since there cannot be more than n references
in the procedure.

C. Optimal Number of References

This section answers this question: how many references
should we append to the compressed file, in order to maximize
end-to-end I/O performance?

In general, more references consume more storage space,
implying longer time to write the compressed data to storage.
As an extreme example, making a reference to each data
entry of the original file is not a good idea: the resulted
compressed file is actually larger than the original file. On the
other hand, however, more references yield a better chance of
a closer lowest upper reference from the requested data, which
in turn speeds up the decompression for random accesses.
Thus, we want to find the number of references that has a
good balance between compression and decompression, and
ultimately achieves the minimal overall time.

Despite many possible access patterns and scenarios, in this
paper we are particularly interested in finding the number of
references that results in the minimal I/O time in the worst
case: for data write, the entire file is compressed and written
to the disk; for data read, the last data entry is requested.
That is, the decompression starts from the beginning of the file
and processes until the last data entry. The following analysis
is focused on this scenario, and assumes the references are
equidistant.

TABLE I. VIRTUAL CHUNK PARAMETERS

Variable Description
Br Read Bandwidth
Bw Write Bandwidth
Wi Weight of Input
Wo Weight of Output
S Original File Size
R Compression Ratio
D Computational Time of Decompression

A few more parameters for the analysis are listed in Table I.
We denote the read and the write bandwidth for the underlying
file system by Br and Bw, respectively. Different weights
are assigned to input Wi and output Wo to reflect the access
patterns. For example if a file is written once and then read
for 10 times in an application, then it makes sense to assign
more weights to the file read (Wi) than the file write (Wo).
S indicates the size of the original file to be compressed. R
is the compression ratio, so the compressed file size is S

R .
D denotes the computational time spent on decompressing the



requested data, which should be distinguished from the overall
decompression time (D plus the I/O time).

The overhead introduced by additional references during
compression is as follows. The baseline is when the file
is applied with the conventional compression with a single
reference. When comparing both cases, we need to apply
the same compression algorithm to be applied on the same
set of data. Therefore, the computational time should be
unchanged regardless of the number of references appended to
the compressed file. So the overall time difference really comes
from the I/O time of writing different number of references.

Let Tc indicate the time difference between multiple refer-
ences and a single reference, we have

Tc =
(k − 1) · S ·Wo

n ·Bw

Similarly, to calculate the potential gain during decompres-
sion with multiple references, Td indicating the time difference
in decompression between multiple references and a single
reference, is calculated as follows:

Td =
(k − 1) · S ·Wi

k ·R ·Br
+

(k − 1) ·D ·Wi

k

The first term of the above equation represents the time
difference on the I/O part, and the second term represents the
computational part.

To minimize the overall end-to-end I/O time, we want to
maximize the following function (i.e. gain minus cost):

F (k) = Td − Tc

Note that the I/O time is from the client’s (or, user’s) perspec-
tive. Technically, it includes both the computational and I/O
time of the (de)compression. By taking the derivative on k
(suppose k̂ is continuous) and solving the following equation

d

dk̂
(F (k̂)) =

S ·Wi

R ·Br · k̂2
+

D ·Wi

k̂2
− S ·Wo

Bw · n
= 0,

we have

k̂ =

√
n · Bw

Br
· Wi

Wo
· ( 1

R
+

D ·Br

S
)

To make sure k̂ reaches the global maximum, we can take
the second-order derivative on k̂:

d2

dk̂2
(F (k̂)) = − S ·Wi

R ·Br · k̂3
− D ·Wi

k̂3
< 0

since all parameters are positive real numbers. Because the
second-order derivative is always negative, we are guaranteed
that the local optimal k̂ is really a global maximum.

Since k is an integer, the optimal k is given as:

argmax
k

F (k) =

{
bk̂c if F (bk̂c) > F (dk̂e)
dk̂e otherwise

Therefore the optimal number of references kopt is:

kopt =

{
bk̂c if F (bk̂c) > F (dk̂e)
dk̂e otherwise

(1)

where

k̂ =

√
n · Bw

Br
· Wi

Wo
· ( 1

R
+

D ·Br

S
) (2)

and

F (x) =
(x− 1) · S ·Wi

x ·R ·Br
+
(x− 1) ·D ·Wi

x
− (x− 1) · S ·Wo

n ·Bw

Note that the last term D·Br

S in Eq. 2 really says the ratio
of D over S

Br
. That is, the ratio of the computational time over

the I/O time. If we assume the computational portion during
decompression is significantly smaller than the I/O time (i.e.
D·Br

S ≈ 0), the compression ratio is not extremely high (i.e.
1
R ≈ 1), the read and write throughput are comparable (i.e.
Bw

Br
≈ 1), and the input and output weight are comparable

(i.e. Wi

Wo
≈ 1), then a simplified version of Eq. 2 can be stated

as:
k̂ =
√
n (3)

suggesting that the optimal number of references be roughly
the squared root of the total number of data entries.

D. Random Read

This section presents the decompression procedure when
a request of random read comes in. Before that, we describe
a subroutine that is useful for the decompression procedure
and more procedures to be discussed in later sections. The
subroutine is presented in Algorithm 2, called DecompList.
It is not surprising for this algorithm to have inputs such as
encoded data X , and the starting and ending positions (s and t)
of the requested range, while the latest reference no later than
s (i.e. ds′ ) might be less intuitive. In fact, ds′ is not supposed
to be specified from a direct input, but calculated in an ad-hoc
manner for different scenarios. We will see this in the complete
procedure for random read later in this section.

Algorithm 2 DecompList
Input: The start position s, the end position t, the latest

reference no later than s as ds′ , the encoded data list
X = 〈x1, x2, . . . , xn−1〉

Output: The original data between s and t as Ds,t

1: prev ← ds′
2: for i = s′ to t do
3: if i ≥ s then
4: Ds,t[i− s]← prev
5: end if
6: prev ← encode(prev, xi)
7: end for

In Algorithm 2, Line 1 stores the reference in a temporary
variable as a base value. Then Lines 2 – 7 decompress the
data by increasingly applying the decode function between the
previous original value and the current encoded value. If the
decompressed value lands in the requested range, it is also
stored in the return list.

Now we are ready to describe the random read procedure
to read an arbitrary data entry from the compressed file. Recall
that in static virtual chunks, all reference are equidistant.
Therefore, given the start position s we could calculate its



closest and latest reference index s′ = LastRef(s) where :

LastRef(x)←
{

x
L + 1 if 0 6= x MOD L
x
L otherwise (4)

So we only need to plug Eq. 4 to Algorithm 2. Also note
that we only use Algorithm 2 to retrieve a single data point,
therefore we can set t = s in the procedure.

The time complexity of random read is O(L), since it
needs to decompress as much as a virtual chunk to retrieve
the requested data entry. If a batch of read requests comes in,
a preprocessing step (e.g. sorting the positions to be read) can
be applied so that decompressing a virtual chunk would serve
multiple requests.

It should be clear that the above discussion assumes the
references are equidistant, i.e. static virtual chunks. And that
is why we could easily calculate s′ by Eq. 4.

E. Random Write

The procedure of random write (i.e. modify a random data
entry) is more complicated than the case of random read. In
fact, the first step of random write is to locate the affected
virtual chunk, which shares a similar procedure of random
read. Then the original value of the to-be-modified data entry
is restored from the starting reference of the virtual chunk. In
general, two encoded values need to be updated: the requested
data entry and the one after it. There are two trivial cases when
the updated data entry is the first or the last. If the requested
data entry is the first one of the file, we only need to update
the first reference and the encoded data after it. This is because
the first data entry always serves as the first reference as well.
If the requested data entry is the last one of the file, then we
just load the last reference and decode the virtual chunk till
the end of file. In the following discussion, we consider the
general case excluding the above two scenarios. Note that, if
the requested data entry happens to be a reference, it needs to
be updated as well with the new value.

Algorithm 3 VC Write
Input: The index of the data entry to be modified q, the new

value v, encoded data X = 〈x1, x2, · · · , xn−1〉, and the
reference list D′ = 〈d1, d2, · · · , dk〉

Output: Modified X
1: s′ ← LastRef(q)
2: 〈dq−1, dq, dq+1〉 ← DecompList(q − 1, q + 1, ds′ , X)
3: xq−1 ← encode(dq−1, v)
4: xq ← encode(v, dq+1)
5: if 0 = (q − 1) MOD L then
6: D′[ qL + 1]← v
7: end if

The procedure of updating an arbitrary data point is de-
scribed in Algorithm 3. The latest reference no later than the
updated position q is calculated in Line 1, per Eq. 4. Then Line
2 reuses Algorithm 2 to restore three original data entries in the
original file. They include the data entry to be modified, and
the two adjacent ones to it. Line 3 and Line 4 re-compress this
range with the new value v. Lines 5 – 7 check if the modified
value happens to be one of the references. If so, the reference
is updated as well.

The time complexity is O(L), since all lines take constant
time, except that Line 2 takes O(L). If there are multiple
update requests to the file, i.e. batch of requests, we can sort
the requests so that one single pass of restoring a virtual chunk
could potentially update multiple data entries being requested.

III. EVALUATION

We have implemented a user-level compression middleware
for GPFS [10] with the FUSE framework [17]. The compres-
sion logic is implemented in the vc write() interface, which
is the handler for catching the write system calls. vc write()
compresses the raw data, caches it in the memory if possible,
and writes the compressed data into GPFS. The decompression
logic is implemented in the vc read() interface, similarly.
When a read request comes in, this function loads the com-
pressed data (either from the cache or the disk) into memory,
applies the decompression algorithm to the compressed data,
and passes the result to the end users.

The virtual chunk middleware is deployed on each compute
node as a mount point that refers to the remote GPFS file
system. This architecture enables a high possibility of reusing
the decompressed data, since the decompressed data are cached
in the local node. In fact, prior work [18, 19] shows that
caching plays a significant impact to the overall performance
of distributed and parallel file systems. Because the original
compressed file is split into many logical chunks each of which
can be decompressed independently, it allows a more flexible
memory caching mechanism and parallel processing of these
logical chunks. We have implemented a LRU replacement
policy for caching the intermediate data.

We have also integrated virtual chunks into the Fu-
sionFS [11, 12] distributed file system. The FusionFS is pro-
posed to ultimately address the I/O bottleneck of conventional
high-performance computing systems, as the state-of-the-art
storage architecture would unlikely scale to the next generation
extreme-scale systems [20]. The key feature of FusionFS is to
fully exploit the available resources and avoid any centralized
component. That is, each participating node plays three roles
at the same time: client, metadata server, and data server.
Each node is able to pull the global view of all the available
files by the single namespace implemented with a distributed
hash table [21, 22], even though the metadata is physically
distributed on all the nodes. Each node stores parts of the
entire metadata and data at its local storage. Although both
metadata and data are fully distributed on all nodes, the
local metadata and data on the same node are completely
decoupled: the local data may or may not be described by
the local metadata. By decoupling metadata and data, we are
able to apply flexible strategies on metadata management and
data I/Os. Prior work [23, 24] also shows that a distributed
hash table offers a flexible yet efficient means for tracking
applications’ provenance.

On each compute node, a virtual chunk component is
deployed on top of the data I/O implementation in FusionFS.
FusionFS itself has employed FUSE to support POSIX, so
there is no need for VC to implement FUSE interfaces again.
Instead, VC is implemented in the fusionfs write() and the
fusionfs read() interfaces. Although the compression is imple-
mented in the fusionfs write() interface, the compressed file is



not persisted into the hard disk until the file is closed. This
approach can aggregate the small blocks into larger ones, and
reduce the number of I/Os to improve the end-to-end time.
In some scenarios, users are more concerned for the high
availability rather than the compressing time. In that case, a
fsync() could be called to the (partially) compressed data to
ensure these data are available at the persistent storage in a
timely manner, so that other processes or nodes could start
processing them.

The remainder of this section answers the following ques-
tions:

1) How does the number of VC affect the compression
ratio and sequential I/O time (Section III-A)?

2) How does VC, as a middleware, improve the
GPFS [10] I/O throughput (Section III-B)?

3) How does VC, as a built-in component, help to
improve the I/O throughput of FusionFS [11, 12]
(Section III-C)?

All experiments were repeated at least five times, or until
results became stable (i.e. within 5% margin of error); the
reported numbers are the average of all runs.

A. Compression Ratio

We show how virtual chunks affect the compression ratio
on the Global Cloud Resolving Model (GCRM) data [13].
GCRM consists of single-precision float data of temperatures
to analyze cloud’s influence on the atmosphere and the global
climate. In our experiment there are totally n = 3.2 million
data entries to be compressed with the aforementioned XOR
compressor. Each data entry comprises a row of 80 single-
precision floats. Note that based on our previous analysis in
Section II-C, the optimal number of references should be set
roughly to

√
n ≈ 1, 789 (Eq. 3, Section II-C). Thus we tested

up to 2,000 references, a bit more than the theoretical optimum.

TABLE II. OVERHEAD OF ADDITIONAL REFERENCES

Number of
References

Compression
Ratio

Wall Time
(second)

1 1.4929 415.40
400 1.4926 415.47
800 1.4923 415.54
1200 1.4921 415.62
1600 1.4918 415.69
2000 1.4915 415.76

From 1 to 2,000 references, the compression ratio change
is reported in Table II, together with the overall wall time of
the compression. As expected, the compression ratio decreases
when more references are appended. However, the degradation
of compression ratio is almost negligible: within 0.002 between
1 reference and 2000 references. These small changes to the
compression ratios then imply negligible differences of the
wall time also: within sub-seconds out of minutes. Thus, this
experiment demonstrates that adding a reasonable number of
additional references, guided by the analysis in Section II-C,
only introduces negligible overhead to the compression pro-
cess.

The reason of the negligible overhead is in fact due to
Eq. 2, or Eq. 3 as a simplified version discussed in Section II-C.

The total number of data entries is about quadratic to the op-
timal number of references, making the cost of processing the
additional references only marginal to the overall compression
procedure, particularly when the data size is large.

B. GPFS Middleware

We deployed the virtual chunk middleware on 1,024 cores
(256 physical nodes) pointing to a 128-nodes GPFS [10] file
system on Intrepid [15], an IBM BlueGene/P supercomputer
at Argonne National Laboratory. Each Intrepid compute node
has a quad-core PowerPC 450 processor (850MHz) and 2GB
of RAM. The dataset is 244.25GB of the GCRM [13] climate
data.

Since virtual chunk is implemented with FUSE [17] that
adds extra context switches when making I/O system calls,
we need to know how much overhead is induced by FUSE.
To measure the impact of this overhead, the GCRM dataset is
written to the original GPFS and the GPFS+FUSE file system
(without virtual chunks), respectively. The difference is within
2.2%, which could be best explained by the fact that in parallel
file systems the bottleneck is on the networking rather than
the latency and bandwidth of the local disks. Since the FUSE
overhead on GPFS is smaller than 5%, we will not distinguish
both setups (original GPFS and FUSE+GPFS) in the following
discussion.

We tested the virtual chunk middleware on GPFS with
two routine workloads: (1) the archival (i.e. write with com-
pression) of all the available data; and (2) the retrieval (i.e.
read with decompression) of the latest temperature, regarded
as the worst-case scenario discussed in Section II-C. The I/O
time, as well as the speedup over the baseline of single-
reference compression, is reported in Figure 2(a). We observe
that multiple references (400 – 2000) significantly reduce the
original I/O time from 501s to 383s, and reach the peak
performance at 800-references with 31% (1.3X) improvement.

An interesting observation from Figure 2(a) is that, the
performance sensitivity to the number of references near
the optimal kopt is relatively low. The optimal number of
references seems to be 800 (the shortest time: 383.35 seconds),
but the difference across 400 - 2000 references is marginal,
only within sub-seconds. This phenomenon is because that
beyond a few hundreds of references, the GCRM data set
has reached a fine enough granularity of virtual chunks that
could be efficiently decompressed. To justify this, we re-run
the experiment with finer granularity from 1 to 200 references
as reported in Figure 2(b). As expected, the improvement over
1 – 200 references is more significant than between 400 and
2000. This experiment also indicates that, we could achieve
a near-optimal (within 1%) performance (30.0% speedup at
k = 50 vs 30.70% at k = 800) with only 50

800 = 6.25% cost of
additional references. It thus implies that even fewer references
than

√
n could become significantly beneficial to the overall

I/O performance.

To study the effect of virtual-chunk compression to real
applications, we ran the MMAT application [16] that calculates
the minimal, maximal, and average temperatures on the GCRM
dataset. The breakdown of different portions is shown in
Figure 3. Indeed, MMAT is a data-intensive application, as this
is the application type where data compression is useful. So



(a) Coarse Granularity 1 – 2000

(b) Fine Granularity 1 – 200

Fig. 2. I/O time with virtual chunks in GPFS

we can see that in vanilla GPFS 97% (176.13 out of 180.97
seconds) of the total runtime is on I/O. After applying the
compression layer (k = 800), the I/O portion is significantly
reduced from 176.13 to 118.02 seconds. Certainly this I/O
improvement is not free, as there is 23.59 seconds overhead
for the VC computation. The point is, this I/O time saving (i.e.
176.13 - 118.02 = 58.11 seconds) outweighs the VC overhead
(23.59 seconds), resulting in 1.24X speedup on the overall
execution time.

Fig. 3. Execution time of the MMAT application

C. FusionFS Integration

We have deployed FusionFS integrated with virtual chunks
to a 64-nodes Linux cluster at Illinois Institute of Technology.

Each node has two Quad-Core AMD Opteron 2.3GHz proces-
sors with 8GB RAM and 1TB Seagate Barracuda hard drive.
All nodes are interconnected with a 1Gbps Ethernet. Besides
the GCRM [13] data, we also evaluated another popular data
set Sloan Digital Sky Survey (SDSS [14]) that comprises a
collection of astronomical data such as positions and brightness
of hundreds of millions of celestial objects.

Fig. 4. FusionFS throughput on GCRM and SDSS datasets

We illustrate how virtual chunks help FusionFS to improve
the I/O throughput on both data sets in Figure 4. We do not
vary k but set it to

√
n when virtual chunk is enabled. Results

show that both read and write throughput are significantly
improved. Note that, the I/O throughput of SDSS is higher than
GCRM, because the compression ratio of SDSS is 2.29, which
is higher than GCRM’s compression ratio 1.49. In particular,
we observe up to 2X speedup when VC is enabled (SDSS
write: 8206 vs. 4101).

IV. DISCUSSION AND LIMITATION

A. Applicability

It should be clear that the proposed virtual chunk mecha-
nism to be used in compressible storage systems is applicable
only if the underlying compression format is splittable. A
compressed file is splittable if it can be split into subsets and
then be processed (e.g. decompressed) in parallel. Obviously,
one key advantage of virtual chunks is to manipulate data in the
arbitrary and logical subsets of the original file, which depends
on this splittable feature. Without a splittable compression
algorithm, the virtual chunk is not able to decompress itself.
The XOR-based delta compression used through this paper is
clearly a splittable format. Popular compressors, such bzip2 [3]
and LZO [2], are also splittable. Some non-splittable examples
include Gzip [25] and Snappy [26].

It should also be noted that virtual chunks are not designed
for general-purpose compression, but for highly compressible
scientific data. This is why this study did not evaluate a virtual
chunk version of general compressors (e.g. bzip2, LZO), since
they are not designed for numerical data used in scientific
applications.

B. Dynamic Virtual Chunks

If the access pattern does not follow the uniform dis-
tribution, and this information is exposed to users, then it
makes sense to specify more references (i.e. finer granularity of
virtual chunks) for the subset that is more frequently accessed.
This is because more references make random accesses more
efficiently with a shorter distance (and less computation) from
the closest reference, in general. The assumption of equidistant
reference, thus, would not hold any more in this case.



One intuitive solution to adjust the virtual chunk granularity
is to ask users to specify where and how to update the
reference. It implies that the users are expected to have a good
understanding of their applications, such as I/O patterns. This
is a reasonable assumption in some cases, for example if the
application developers are the main users. Therefore, we expect
that the users would specify the distribution of the reference
density in a configuration file, or more likely a rule such as a
decay function [27].

Nevertheless we believe it would be more desirable to have
an autonomic mechanism to adjust the virtual chunks for those
domain users without the technical expertise such as chemists,
astronomers, and so on. This remains an open question to the
community and a direction of our future work.

C. Data Insertion and Data Removal

We are not aware of much need for data insertion and
data removal within a file in the context of HPC or scientific
applications. By insertion, we mean a new data entry needs to
be inserted into an arbitrary position of an existing compressed
file. Similarly, by removal we mean an existing value at an
arbitrary position needs to be removed. Nevertheless, it would
make this work more complete if we supported efficient data
insertion and data removal when enabling virtual chunks in
storage compression.

A straightforward means to support this operation might
treat a data removal as a special case of data writes with the
new value as null. But then it would bring new challenges
such as dealing with the “holes” within the file. We do not
think either is a trivial problem, and would like to have more
discussions with HPC researchers and domain scientists before
investing in such features.

V. RELATED WORK

While the storage system could be better deigned to handle
more data, an orthogonal approach is to address the I/O
bottleneck by squeezing the data with compression techniques.
One example where data compression gets particularly pop-
ular is checkpointing, an extremely expensive I/O operation
in HPC systems. In [28], it showed that data compression
had the potential to significantly reduce the checkpointing
file sizes. If multiple applications run concurrently, a data-
aware compression scheme [29] was proposed to improve
the overall checkpointing efficiency. Recent study [30] shows
that combining failure detection and proactive checkpointing
could improve 30% efficiency compared to classical periodical
checkpointing. Thus data compression has the potential to be
combined with failure detection and proactive checkpointing
to further improve the system efficiency. As another example,
data compression was also used in reducing the MPI trace
size, as shown in [31]. A small MPI trace enables an efficient
replay and analysis of the communication patterns in large-
scale machines.

It should be noted that a compression method does not
necessarily need to restore the absolutely original data. In
general, compression algorithms could be categorized into
to two groups: lossy algorithms and lossless algorithms. A
lossy algorithm might lose some (normally a small) percentage
of accuracy, while a lossless one has to ensure the 100%

accuracy. In scientific computing, studies [5, 6] show that
lossy compression could be acceptable, or even quite effective,
under certain circumstances. In fact, lossy compression is also
popular in other fields, e.g. the most widely compatible lossy
audio and video format MPEG-1 [32]. This paper presents
virtual chunks mostly by going through a delta-compression
example based on XOR, which is a lossless compression.
It does not imply that virtual chunks cannot be used in a
lossy compression. Virtual chunk is not a specific compression
algorithm, but a system mechanism that is applicable to any
splittable compression, not matter if it is lossy or lossless.

Some frameworks are proposed as middleware to allow
applications call high-level I/O libraries for data compression
and decompression, e.g. [16, 33, 34]. None of these techniques
take consideration of the overhead involved in decompression
by assuming the chunk allocated to each node would be
requested as an entirety. In contrast, virtual chunks provide a
mechanism to apply flexible compression and decompression.

There is previous work to study the file system support for
data compression. Integrating compression to log-structured
file systems was proposed decades ago [35], which suggested
a hardware compression chip to accelerate the compressing
and decompressing. Later, XDFS [36] described the systematic
design and implementation for supporting data compression
in file systems with BerkeleyDB [37]. MRAMFS [38] was a
prototype file system to support data compression to leverage
the limited space of non-volatile RAM. In contrast, virtual
trunks represent a general technique applicable to existing
algorithms and systems.

Data deduplication is a general inter-chunk compression
technique that only stores a single copy of the duplicate chunks
(or blocks). For example, LBFS [39] was a networked file
system that exploited the similarities between files (or versions
of files) so that chunks of files could be retrieved in the client’s
cache rather than transferring from the server. CZIP [40] was a
compression scheme on content-based naming, that eliminated
redundant chunks and compressed the remaining (i.e. unique)
chunks by applying existing compression algorithms. Recently,
the metadata for the deduplication (i.e. file recipe) was also
slated for compression to further save the storage space [41].
While deduplication focuses on inter-chunk compressing, vir-
tual chunk focuses on the I/O improvement within the chunk.

Index has been introduced to data compression to improve
the compressing and query speed e.g. [42, 43]. The advantage
of indexing is highly dependent on the chunk size: large chunks
are preferred to achieve high compression ratios in order to
amortize the indexing overhead. However large chunks would
cause potential decompression overhead as explained earlier in
this paper. Virtual chunk overcomes the large-chunk issue by
logically splitting the large chunks with fine-grained partitions
while still keeping the physical coherence.

Data compression attracts a lot of research interests in
scientific applications. For instance, AstroPortal [44] shows
that working with compressed data for astronomy applications
can be beneficial in certain cases. Workflow systems, such
as [45, 46], are a good fit for the compressible storage
incorporated with virtual chunks.



VI. CONCLUSION AND FUTURE WORK

Conventional file- and block-level storage compression
have shown their limits for scientific applications: file-level
compression provides little support for random access, and
block-level compression significantly degenerates the overall
compression ratio due to the per-block compression overhead.
This paper introduces virtual chunks to support efficient ran-
dom accesses to compressed scientific data while retaining the
high compression ratio. Virtual chunks keep files’ physical
entirety, because they are referenced by pointers beyond the file
end. The physical entirety helps to achieve a high compression
ratio by avoiding the per-block compression overhead. The
additional references take insignificant storage space and add
negligible end-to-end I/O overhead. Virtual chunks enable
efficient random accesses to arbitrary positions of the com-
pressed data without decompressing the whole file. Procedures
for manipulating virtual chunks are formulated, along with
the analysis of optimal parameter setup. Evaluation demon-
strates that virtual chunks improve scientific applications’ I/O
throughput by up to 2X speedup at large scale.

Our future work primarily lies in devising an automatic
mechanism to update virtual chunks. Machine learning tech-
niques could possibly be leveraged, for example by analyzing
sufficient training data to predict its future access patterns.
The learning process in each iteration does not need to start
from scratch; it may take the previous result as a feed and
incrementally makes the adjustment—some of our previous
work [47–49] on incremental algorithms could possibly be
leveraged. We also plan to explore the feasibility to leverage
GPUs to speedup the virtual chunk processing to achieve
higher storage and I/O performance, as prior work [50] shows
that GPUs have the potential to fundamentally change the
conventional wisdom of distributed and parallel file systems.
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