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Abstract—Load balancing techniques (e.g. work stealing) are 

important to obtain the best performance for distributed task 

scheduling systems that have multiple schedulers making 

scheduling decisions. In work stealing, tasks are randomly 

migrated from heavy-loaded schedulers to idle ones. However, 

for data-intensive applications where tasks are dependent and 

task execution involves processing a large amount of data, 

migrating tasks blindly yields poor data-locality and incurs 

significant data-transferring overhead. This work improves work 

stealing by using both dedicated and shared queues. Tasks are 

organized in queues based on task data size and location. We 

implement our technique in MATRIX, a distributed task 

scheduler for many-task computing. We leverage distributed 

key-value store to organize and scale the task metadata, task 

dependency, and data-locality. We evaluate the improved work 

stealing technique with both applications and micro-benchmarks 

structured as direct acyclic graphs. Results show that the 

proposed data-aware work stealing technique performs well. 

Keywords—data-intensive computing; data-aware scheduling; 

work stealing; key-value stores; many-task computing 

I. INTRODUCTION 

There is a growing set of large-scale scientific applications 
which are loosely-coupled in nature containing many small 
jobs/tasks (e.g. per-core) with shorter durations (e.g. sub-
second), along with large volumes of data – these applications 
include those from data analytics, bioinformatics, data mining, 
astronomy, astrophysics, and MPI ensembles [1]. As systems 
are growing exponentially in parallelism approaching billion 
way concurrency at exascale [2], we argue that future 
programming models will likely employ over-decomposition 
generating even many more fined-grained tasks than available 
parallelism. While over-decomposition has been shown to 
improve utilization at extreme scales as well to make fault 
tolerance more efficient [3][4], it poses significant challenges 
on task scheduling system to make extremely fast scheduling 
decisions (e.g. millions/sec), in order to achieve the highest 
throughput and utilization. This requirement is far beyond the 
capability of today’s centralized scheduling systems, such as 
SLURM [5], Condor [6], SGE [7], Cobalt [8], and Falkon [9]. 

The Many-task computing (MTC) [10] paradigm aims to 
define and address the challenges of scheduling fine grained 
data-intensive workloads [11]. MTC applications are usually 
structured as direct acyclic graphs (DAG) of small discrete 
tasks, with data dependencies forming the graph edges. The 
tasks are per-core and do not require strict coordination of 
processes at job launch as the traditional HPC workloads.  

We propose the task scheduling system for MTC will need 
to be fully-distributed to achieve extremely high throughput 
and utilization. In this design, each compute node runs one 
scheduler and one or more executors/workers. All the 
schedulers are fully-connected, and receive workloads to 
schedule tasks to local executors. Therefore, ideally, the 
throughput would gain near-optimal linear speedup as the 
system scales. We abandon the centralized architecture due to 
the limited processing capacity and the single-point-of-failure 
issue. We bypass the hierarchical architecture as it is difficult 
to maintain a tree under failures, and a task may experience 
longer latency because it needs to go through multiple hops as 
opposed to only one in a fully-distributed architecture. 

Load balancing [12] is challenging for fully-distributed 
architectures as a scheduler only has knowledge of its own 
state, and therefore must be done with limited partial state. 
Load balancing refers to distributing workloads as evenly as 
possible across all the schedulers/workers, and it is important 
given that a single heavily-loaded scheduler would lower the 
system utilization significantly. This work adopts the work 
stealing technique [13] at the node/scheduler (instead of 
core/thread) level. In work stealing, the idle schedulers 
communicate with neighbors to balance their loads. Our 
previous work [14] has explored the parameter space (e.g. 
number of tasks to steal, number of static/dynamic neighbors, 
poll interval) extensively through a simulator, SimMatrix 
[15][16], up to millions of nodes and billions of cores. 

However, as more applications are becoming data-intensive 
and experiencing data explosion [17] such that tasks are 
dependent and task execution involves processing large amount 
of data, data-aware scheduling and load balancing are two 
indispensable yet orthogonal needs. Migrating tasks randomly 
through work stealing would compromise the data-locality and 
incur significant data-transferring overhead. On the other hand, 
struggling to map each task to the location where the data 
resides is infeasible due to the complexity of the computation 
(this mapping is a NP-complete problem [18]). Furthermore, 
this mapping may cause poor load balancing due to the 
potential unbalanced data distribution. Therefore, in this work, 
we investigate scheduling methods that satisfy both needs and 
still achieves good performance.  

In this paper, we propose a data-aware work stealing 
technique that is able to achieve good load balancing, and yet 
still tries to best exploit data-locality. Basically, each scheduler 
would maintain both dedicated and shared task ready queues 
(implemented as descending priority queues based on the data 
size a task requires). Tasks in the dedicated queue are only 
scheduled and executed locally unless special policy is applied, 



 

 

while tasks in the shared queue could be migrated among 
schedulers for balancing loads through work stealing. A ready 
task will be put in either queue based on the size and location 
of the data demanded by the task. In addition, a scheduler may 
push a task to others if the majority of data demanded by the 
task is remote. This is much better than most work stealing 
work that employs only one locality-oblivious task ready queue 
(either implemented as normal queue, or double-ended deque 
[20]). We apply a distributed key-value store (DKVS), ZHT 
[21][52], as a meta-data service that stores important data-
locality information for all the tasks. Our data-aware work 
stealing technique works in both homogeneous and 
heterogeneous distributed systems [53]. We implement our 
technique in MATRIX [22], a task execution fabric for MTC. 

This paper has the following main contributions: 

 Propose a data-aware work stealing technique that 
combines load balancing with data-aware scheduling. 

 Apply a distributed key-value store as a meta-data 
service to store important data dependency and locality 
information. 

 Evaluate the proposed technique up to hundreds of 
nodes showing good performance using different 
applications under different scheduling policies. 

The rest of this paper is organized as follows. Section II 
introduces the MATRIX task execution fabric. Section III 
presents our proposed technique and the implementation 
details, which is followed by an extensive evaluation in Section 
IV. We list the related work in Section V. Finally, Section VI  
draws the conclusions and envisions our future work.     

II. MATRIX: LIGHT WEIGHT TASK EXECUTION FABRIC 

By using simulation in previous work [23], we have 
concluded that for extreme-scale systems, a distributed 
architecture is required. With this conclusion and the 
justification we have made about fully-distributed architecture, 
we built a light-weight task execution fabric, MATRIX, from 
scratch. We have evaluated MATRIX using micro-benchmarks 
on an IBM Blue Gene/P supercomputer up to 4K-core scale. 
MATRIX maintains throughput as high as 13K tasks/sec, and 
85%+ efficiency with fine-grained sub-second tasks (64ms), 
and shows efficiency speedup of 4X compared to Falkon [9] 
with task granularity of 1-second and 9X compared to Sparrow 
[35] with NOOP sleep tasks (sleep 0). We implement the 
proposed technique in MATRIX in this work.  

The basic architecture of MATRIX is shown in Figure 1. 
MATRIX is comprised of three components: client, scheduler 
and executor. Each compute node runs a scheduler, an executor 
and a ZHT server. All the schedulers are fully-connected. The 
client is a benchmarking tool that issues requests to generate a 
set of tasks, submits the tasks to any scheduler, and monitors 
the task execution progress. Each scheduler schedules tasks to 
local executor. Whenever a scheduler has no more ready tasks, 
it communicates with other schedulers to pull ready tasks 
through load balancing techniques (e.g. work stealing). Each 
executor forks several (usually equals to number of physical 
cores of a machine) threads to execute ready tasks concurrently.  

ZHT is used to monitor the execution progress by 
MATRIX client, and to keep the system state meta-data by 
MATRIX scheduler in a distributed, scalable, and fault tolerant 
way. ZHT is a zero-hop persistent DKVS where each ZHT 

client has a global view of all the servers. For each operation of 
ZHT server (insert, lookup, remove, append, compare and 
swap), there is a corresponding client API. The client calls the 
API, which sends a request to the exact server that is 
responsible for the request by hashing the key. Upon receiving 
a request, the ZHT server converts it to the corresponding 
operation type and executes the operation. ZHT serves as a 
data management building block for extreme scale system 
services, and has been tested up to 8K nodes (32K cores) on a 
IBM Blue Gene /P supercomputer [21].  

Figure 1: MATRIX architecture overview 

Both MATRIX client and schedulers are initialized as ZHT 
clients. Each MATRIX scheduler records local state 
information (e.g. number of complete tasks, number of idle 
executing threads) to ZHT periodically, and the client keeps 
polling this information until all tasks are completed. 

III. DATA-AWARE WORK STEALING 

This section covers our proposed data-aware work stealing 
technique. First, we describe the adaptive work stealing 
technique to achieve load balancing. Then we present how we 
combined a data-aware scheduling strategy with work stealing.  

A. Adapative Work Stealing 

Work stealing has been proven as an efficient load 
balancing technique at thread/core level in multi-core shared 
memory machine [12]. It is a pull-based method in which the 
idle processors try to steal tasks from the overloaded ones that 
are randomly selected. This work adopts work stealing at the 
node level in distributed environment, and modifies it to be 
adaptive according to the system states at runtime. 

Work stealing is proceeded by the idle schedulers stealing 
workloads from neighbors. As in fully-distributed architecture, 
every scheduler has a global membership list, therefore, the 
selection of candidate neighbors (victims) from which an idle 
scheduler (thief) would steal tasks could be static or 
dynamic/random. In static mechanism, the neighbors are pre-
determined and will not change; this has limitation that every 
scheduler is confined to communicate with part of other 
schedulers. In dynamic case, whenever a scheduler is idle, it 
randomly chooses some candidate neighbors. The traditional 
work stealing randomly selects one neighbor to steal tasks [25] 
yielding poor performance at extreme scales, because the 
chance that one neighbor would have queued ready task is low 
at large scales. In the end, we choose to have a multiple-
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random neighbor selection strategy that randomly selects 
several neighbors instead of only one. 

After an idle scheduler selects candidate neighbors, it goes 
through each neighbor in sequential to ask for “load 
information” (number of ready tasks), and tries to steal tasks 
from the most heavily-overloaded one. When a scheduler fails 
to steal tasks from the selected neighbors, because either all 
selected neighbors have no more tasks, or the reported extra 
ready tasks have been executed when the stealing happens, the 
scheduler waits for a period of time and then does work 
stealing again. We call this wait time the polling interval. 

If the polling interval is fixed, there would be difficulties to 
set the value with right granularity. If the polling interval is set 
to be too small, at the final stage when there are not many tasks 
left, many schedulers would poll neighbors to do work stealing, 
which would ultimately fail and lead to more work stealing 
communications. If the polling interval was set large enough to 
limit the number of work stealing events, work stealing would 
not respond quickly to change conditions, and lead to poor load 
balancing. Therefore, we implement an adaptive polling 
interval strategy, in which, the polling interval of a scheduler is 
changed dynamically similar to the exponential back-off 
approach in the TCP networking protocol [26]. The default 
polling interval is set to be a small value (e.g. 1 ms). Once a 
scheduler successfully steals tasks, the polling interval of that 
scheduler is set back to the initial small value. If a scheduler 
fails to steal tasks, it waits the time of polling interval and 
doubles the polling interval and tries to do work stealing again. 
In addition, we set an upper bound for the polling interval. 
Whenever the polling interval hits the upper bound, a scheduler 
would not do work stealing anymore. This would reduce the 
amount of failing work stealing at the final stage. 

The parameters of work stealing are the number of dynamic 
neighbors, the number of tasks to steal, and the polling interval. 
Our previous simulation work [14][24] studied the parameter 
space extensively and found the optimal configurations: the 

number of tasks to steal is half; the number of dynamic 
neighbors is square root of the number of all schedulers; 
and an exponential back-off polling interval. These optimal 
parameters have been used in MATRIX for scalable work 
stealing to achieve distributed load balancing.  

One thing to notice is that the optimal parameters are 
unnecessary to hold always for all the workloads. In fact, it is 
unlikely to get an optimal parameter space for all the 
workloads. Our work stealing technique has the ability to 
change these parameters dynamically at runtime in a 
decentralized way. Each scheduler observes the system state at 
runtime according to whether the current work stealing 
succeeds or not. If a scheduler steals tasks successfully, then it 
keeps the optimal parameter configuration; otherwise, if a 
scheduler experiences several failures in a row, it can change 
the suggested parameters. For example, a scheduler may 
increase the number of dynamic neighbors by 1 or 2 to reach 
further so that it has higher chance to steal tasks.  

B. Data-Aware Scheduling 

The work stealing technique does not employ any data 
locality information. This is harmful when executing data-
intensive workloads in which tasks are dependent and tasks 
take a large volume of data as input and generate output with 

more data. This subsection presents the proposed ideals to 
combine work stealing with data-aware scheduling.  

1) DKVS Used as a Meta-Data Service 
As our previous work [23] has claimed that DKVS could be 

used as a building block for distributed system services, we 
apply ZHT to store all the important information, such as data 
dependency conditions, and data locality information of tasks 
transparently. The “key” is task id, and the “value” is the 
important meta-data of the task that is defined as the following 
data structure in Figure 2. Upon task submission, the client 
takes an application workload (represented as a DAG), sends 
the task meta-data (specifically “num_wait_parent” and 
“children”) to ZHT, and submits the tasks to MATRIX for 
scheduling. The meta-data is later updated as tasks make 
progress through the various states. 

 
Figure 2: Data structure of task metadata 

2) Distributed Queues in Matrix 
Each scheduler would maintain four local task queues: task 

waiting queue (WaitQ), dedicated local task ready queue 
(LReadyQ), shared work stealing task ready queue (SReadyQ), 
and task complete queue (CompleteQ). These queues hold 
tasks in different states that are stored as meta-data in ZHT. A 
task is moved from one queue to another when state changes. 
With these queues, the scheduler can support scheduling tasks 
with data dependencies specified by certain DAGs. 

a) WaitQ 

Initially, the scheduler would put all the incoming tasks 
from the client to the WaitQ. A thread keeps checking every 
task in the WaitQ to see whether the dependency conditions for 
that task are satisfied by querying the meta-data from ZHT. 
The task meta-data has been inserted into ZHT by MATRIX 
client before submitting tasks to schedulers. Specifically, only 
if the value of the field of “num_wait_parent” in the meta-data 
is equal to 0 would the task be ready to run. 

b) LReadyQ and SReadyQ 

When a task is ready to run, the scheduler makes decision 
to put it in either the LReadyQ or the SReadyQ, according to 
the size and location of the data required by the task. The 
LReadyQ stores the ready tasks that usually require large 
volume of data and the majority of the required data is located 
at the current node; these tasks could only be scheduled and 
executed locally unless special policy (explained later) is used. 
The SReadyQ stores the tasks that could be migrated to any 
scheduler for load balancing’s purpose; these tasks either don’t 
need any input data or the demanded data volume is so small 
that the transferring overhead is negligible. The “load 
information” queried by work stealing is the length of the 
SReadyQ (number of tasks in the SReadyQ). The pseudo-code 
for decision making is given in Algorithm 1. 

typedef    TaskMetaData 

{ 
int    num_wait_parent;    // number of waiting parents 

vector<string> parent_list;    // schedulers that run each parent task  

vector<string> data_object;    // data object name produced by each parent 

vector<long> data_size;    // data object size (byte) produced by each parent     

long all_data_size;    // all data object size (byte) produced by all parents 

vector<string> children;    // children of this tasks 

} TMD; 

 



 

 

The threshold (t) defines the upper bound of the data 
transferring rate that is achieved when transmitting the data for 
the task. The value equals to a small percentage (e.g. 10%) 
multiplying the theoretical network bandwidth (e.g. 10Gbps) of 
the system. The percentage also means the ratio between the 
data-transferring overhead and the estimated task execution 
length (est_task_length). The smaller the percentage is, the 
more likely the tasks could be migrated. As we don’t know 
ahead how long a task runs, we predict the est_task_length as 
the average length of the previous tasks that have been finished. 

ALGORITHM 1. Decision Making to Put a Task in the Right Ready Queue  

Input: a ready task (task), TMD (tm), a threshold (t), current scheduler id (id), 

LReadyQ, SReadyQ, estimated length of the task in second (est_task_length)  
Output: void.  

1    if (tm.all_data_size / est_task_length <= t) then 

2            SReadyQ.push(task); 
3    else  

4            long max_data_size = tm.data_size.at(0); 

5            int max_data_scheduler_idx = 0; 

6            for each i in 1 to tm.data_size.size() - 1; do 

7                    if tm.data_size.at(i) > max_data_size; then 

8                            max_data_size = tm.data_size.at(i); 
9                            max_data_scheduler_idx = i; 

10                  end 

11          end 
12          if (max_data_size / est_task_length <= t); then 

13                  SReadyQ.push(task); 

14          else if tm.parent_list.at(max_data_scheduler_idx) == id; then 
15                  LReadyQ.push(task); 

16          else 

17                  send task to: tm.parent_list.at(max_data_scheduler_idx) 
18          end 

19   end         

20   return;  

Lines 1-2 decide to put the task in SReadyQ as the data 
movement overhead is small. Otherwise, lines 4-11 find the 
maximum data object size (max_data_size), and the scheduler 
(indexed at max_data_scheduler_idx) that ran the parent task 
generating this maximum data object. As a task could have 
multiple parents, it is the best if it runs on the scheduler that 
has the largest portion of the required data. Lines 12-13 decide 
to put the task in SReadyQ because the max_data_size is small. 
Otherwise, lines 14-15 put the task in LReadyQ as the current 
scheduler is indexed at max_data_scheduler_idx. Otherwise, 
lines 16-18 push the task to the corresponding scheduler. When 
a scheduler receives a pushing task, it puts the task in LReadyQ.  

An executor has several executing threads that keep pulling 
ready tasks to execute. Each thread would first pop tasks from 
LReadyQ, and then pop tasks from SReadyQ if the LReadyQ is 
empty. Both LReadyQ and SReadyQ are implemented as 
descending priority queue based on the required data size. The 
larger the required data size is, the higher priority the task 
would be, as a task that requires larger data size usually runs 
longer. When executing a task, the executing thread first 
queries the meta-data for the size and location of the required 
data produced by each parent, and then gets the data either 
from local or remote nodes. After collecting all the data, the 
task will be executed. The number of executing threads is 
configurable; in practice it is usually configured to be the 
number of physical cores (a similar strategy was used in 
Falkon [9] on the Blue Gene/P supercomputer). As long as 
both queues are empty, the scheduler would start doing work 
stealing, and the stolen tasks would be put in the SReadyQ.  

c) CompleteQ 

When a task is done, it is moved to the CompleteQ. There 
is another thread responsible for updating the meta-data for all 
the children of each completed task. It first queries the meta-
data of the completed task to find out the children, and then 
updates each child’s meta-data as follows: decreasing the 
“num_wait_parent” by 1; adding current scheduler id to the 
“parent_list”; adding the produced data object name to the 
“data_object”; adding the size of the produced object to the 
“data_size”; increasing the “all_data_size”. As long as the 
“num_wait_parent” equals to 0, the task would be ready to run. 

3) Different Scheduling Policies 
We define four different scheduling policies for our data-

aware scheduling technique, namely maximized load balancing 
(MLB), maximized data-locality (MDL), rigid load balancing 
and data-locality segregation (RLDS), and flexible load 
balancing and data-locality segregation (FLDS).   

a) MLB 

MLB considers only the load balancing, and all the ready 
tasks are put in the SreadyQ to be allowed for migration. We 
achieve the MLB policy by tuning the threshold (t) in 
Algorithm 1 to be the maximum possible value (i.e. 
LONG_MAX). This is the baseline work stealing strategy 
without taking into consideration the data locality. 

b) MDL 

MDL only considers data-locality, and all the ready tasks 
that require input data would be put in LReadyQ, no matter 
how big the data is. This policy is achieved by tuning the 
threshold (t) in Algorithm 1 to be 0. 

c) RLDS 

RLDS sets the threshold (t) in Algorithm 1 to be somewhere 
between 0 and the maximum possible value.  Once a task is put 
in the LReadyQ of a scheduler, it is confined to be executed 
locally (this is also true for the MDL policy). 

d) FLDS 

The RLDS policy could have load balancing issues under 
situations where a task produces large volumes of data and has 
many children. For example, for a workload DAG shaped as a 
fat tree, all the tasks would be eventually executed on one 
scheduler that runs the root task. To avoid the hotspot problem, 
we relax the RLDS to a more flexible policy (FLDS) in which 
tasks could be moved from LReadyQ to SReadyQ under certain 
circumstance. We set another time threshold (tt) and use a 
monitoring thread in each scheduler to check the LReadyQ 
periodically. If the thread detects that the estimated running 
time (est_run_time) of all tasks in the LReadyQ is above tt, it 
would move some tasks from the bottom of LReadyQ to 
SReadyQ to guarantee that the est_run_time of the rest tasks is 
below tt. The est_run_time is calculated as the LReadyQ length 
divided by the overall throughput of the scheduler so far. For 
example, assuming 1000-tasks are finished so far and takes 
10sec, the LReadyQ contains 5000-tasks, and tt=30sec. We 
calculate the number of moving tasks: The throughput 
=1000/10=100tasks/sec. The est_run_time=5000/100=50sec, 
20sec longer than tt. 20sec takes 20/50=40% ratio, therefore, 
40%*5000=2000-taks will be moved. As these assumed values 
are changing with time, the moving task count is changing. 

 



 

 

4) Write Locality and Read Locality 
Our data-aware scheduling technique ensures the best write 

locality, and at the meanwhile, optimizes the read locality. To 
ensure the best write locality, every task writes the produced 
data locally. We considered using a distributed key/value store 
(ZHT) as both a data and a meta-data service, however it 
would have been extremely difficult to optimize the data-
locality as distributed key/value stores rely on consistent 
hashing to determine the ultimate location of data stored. We 
also considered leveraging distributed file system (e.g. HDFS 
[27]) underneath to manage the data. We argue that the 
scheduling and load balancing strategies are not affected by the 
actual method of data storage. We envision allowing data to be 
stored in a distributed file system as future work.  

Read locality is optimized by pushing a task to the location 
where has the majority of the required data. For large data 
volumes, tasks are migrated to where the data resides. For 
small data volumes, tasks are run wherever there are available 
compute resources to maximize utilization. 

C. List of Short Terms 

To summarize and make it clear about the important short 
terms we use in this paper, we list and explain them in Table 1 
as follows. These short terms are used in the overall paper. We 
explain other terms at where they appear.   

Table 1: List of important short terms 
Term Description 

DKVS distributed key-value stores 

WaitQ task waiting queue 

LReadyQ dedicated local task ready queue 

SReadyQ shared work stealing task ready queue 

CompleteQ Task complete queue 

t a threshold to define the upper bound of the data 
transferring rate achieved when transmitting the data 

MLB maximized load balancing policy 

MDL maximized data-locality policy 

RLDS rigid load balancing and data-locality segregation policy 

FLDS flexible load balancing and data-locality segregation policy 

tt a time threshold to determine the number of tasks being 
moved from LReadyQ to SReadyQ for the FLDS policy  

DAWS Data aware work stealing 

D. Implementation Details 

We re-implemented MATRIX to separate it totally from the 
ZHT codebase in C++. The new version (version 2) of 
MATRIX simply uses ZHT as a black box through client APIs, 
ensuring easier maintainability and extensibility. Although the 
basic architecture did not change, many features were added, 
such as task dependencies and data-aware scheduling. The 
codebase of the MATRIX version 2 is made open source on 
Github: https://github.com/kwangiit/matrix_v2. It has about 3K 
lines of code implementing the MATRIX client, MATRIX 
scheduler, MATRIX executor, a network communication layer 
and the proposed data-aware work stealing technique, with 8K 
lines of ZHT codebase plus 1K lines of auto-generated code 
from Google Protocol Buffer [29]. The version 2 has 
dependencies on ZHT [21] and Google Protocol Buffer.  

IV. EVALUATION 

In this section, we present the performance evaluation 
results of the data-aware work stealing technique. We first 
introduce the experiment environment and the evaluation 

metrics. Then, we conduct experiments using workloads 
structured as DAGs coming from two scientific applications, 
namely image stacking from astronomy [30][56] and all-pairs 
from biometrics [31][32]. We compare our results with those 
achieved through data-diffusion technique in Falkon [9][11] 
which employed a centralized data-aware scheduler [30][32]. 
Next, we compare different scheduling polices using the all-
pairs workload. Then, we run benchmarking DAGs. 

A. Experiment Environment 

We conduct all the experiments on the Kodiak cluster from 
the Parallel Reconfigurable Observational Environment 
(PROBE) [19] of Los Alamos National Laboratory. Kodiak has 
1028 nodes, each node has two AMD Opteron (tm) processers 
252 (2.6GHZ), and has 8GB memory. The network supports 
both Ethernet and InfiniBand. Our experiments use 10Gbits 
Ethernet (default configuration of Kodiak). We run 
experiments with up to 100 nodes (200 cores), similar to the 
data-diffusion Falkon work [30][32] we compared to. 

B. Evaluation Metrics 

We define important metrics as follows: 
Average Time Per Task Per CPU defines the average 

time to execute one task from one CPU’s perspective for all the 
tasks. Ideally, each CPU would process tasks sequentially 
without holding to wait tasks. therefore, the ideal average time 
should be equal to the average task length of all the tasks. In 
reality, the average time should be larger than the ideal case, 
and the closer they are, the better. The throughput is the 
reciprocal of the average time multiplying the number of CPUs. 
For example, assuming it takes 10sec to run 2000-tasks on 100-
cores, this means 2 task-per-sec-per-cpu (2000/10/100). The 
“Average Time Per Task Per CPU” is 1/2=0.5sec. This metric 
is from the Falkon Data-Diffusion paper [30] for fair 
comparison. We don’t use throughput, because given a 
workload, a throughput number cannot tell how good it is 
directly, the average time is more self-explanatory. 

Efficiency refers to the proportion of time that the system 
is executing tasks. The system spends the other time doing 
network communications, such as moving data, moving tasks, 
doing work stealing. Efficiency also reflects the overall system 
utilization, the higher the better. It is calculated as the ideal 
time (production of the average task length and the average 
task per CPU) to finish a workload dividing the actual time. 

Utilization is an instant metric that measures the ratio of 
busy CPUs out of all CPUs. Utilization is usually useful when 
doing visualization for the system state. 

C. Scientific Application Evaluation 

We evaluate the data-aware work stealing technique using 
two scientific applications: image stacking in astronomy [30] 
and all-pairs in biometrics [32]. These two applications 
represent different data-intensive patterns. 

1) Image Stacking in Astronomy 
This application conducts the “stacking” of image cutouts 

from different parts of the sky. The procedure involves re-
projecting each image to a common set of pixel planes, then 
co-adding many images to obtain a detectable signal that can 
measure their average brightness/shape. The workload DAG is 
represented as in Figure 3. The dotted lines represent 
independent tasks (t0 to tn) fetching ROI objects in a set of 



 

 

image files (f0 to fm) that are randomly distributed, and then 
generate an output individually. The last task (tend) waits until 
collecting all the outputs, and then obtains a detectable signal. 

f0 f1 f2 f3 fm

t0 t1 t2 t3 t4 tn

tend

 

Figure 3: Image Stacking Workload DAG 

Followed the workload characterization in [30], in our 
experiments, each task would require a file that has 2MB of 
data, and generates 10KB data of output. The ratio of the 
number of tasks to the number of files refers to locality 
number. Locality 1 means the number of tasks equals to the 
number of files, and each task requires an unique file. Locality 
n means that the number of tasks is n-times of the number of 
files, and each file is required by exactly n tasks. The higher 
the locality is, the less number of files and tasks there would be. 
The number of tasks and the number of  files for each locality 
are given in [30]. We evaluate different locality values, i.e. 1, 
1.38, 2, 3, 4, 5, 10, 20, 30. Each task would run for an average 
of 158 ms (as reported in [30]) .We run experiments up to 100 
nodes (200 cores) for all locality values. The files are 
uniformly distributed to each node, and the tasks are randomly 
distributed. We use the MDL policy to move every task to 
where the required data resides, as 2MB of data is relatively 
large. We compare with data diffusion technique in Figure 4 at 
scale of 128 cores (the largest scale that data-diffusion ran).  

 

Figure 4: Comparison between DAWS and Data-Diffusion 

In Figure 4, GZ indicates that the image data is in 
compressed format while FIT indicates that the image data is 
uncompressed. Data Diffusion (GZ) and Data Diffusion (FIT) 
mean using data diffusion technique on compressed and 
uncompressed data respectively. Likely, GPFS (GZ) and GPFS 
(FIT) mean using GPFS file system on compressed and 
uncompressed data respectively. DAWS represents our result, 
and stands for data-aware work stealing. Specifically, our 
experiments have the same workload configuration as Data 

Diffusion (GZ) compressed format (each file is 2MB) [30].  
Figure 4 shows that at 128-core scale, the time per task of our 
DAWS technique keeps almost constant as locality increases, 
and it is very close to the ideal task running time (158ms). Data 
Diffusion (GZ) experienced very large average time when 
locality is small, and decreases to be close to the ideal time 
when locality is 30. The reason that DAWS could keep 
constant and perfectly close to the ideal is that all the data is 
uniformly distributed over all compute nodes. The only 
overhead is caused by the schedulers making decisions to 
transfer tasks in the right spots. While in Data Diffusion (GZ), 
as data is initially kept in a slower shared file system, the data 
would be copied to local disks when needed. When locality is 
small, the chances that the same piece of data will be reused is 
low therefore involving more amount of data access from the 
shared file system. This explains why Data Diffusion (GZ) has 
a large average time when locality is small. It is also 
noteworthy to point out that GPFS (GZ) and GPFS (FIT) 
remain largely constant regardless of locality, which is due to 
data being accessed from the shared file system remotely upon 
every data access; performance increases slightly with higher 
locality, likely due to OS-level caching.   

 
Figure 5: Efficiency of DAWS with Localities at scales 

The time per task of DAWS experienced a slight increase 
from Locality 1 (167ms) to 30 (176ms). We explain the reason 
in Figure 5, which shows the efficiencies of different localities 
in terms of scale. From Figure 5, we see that the efficiency 
decreases slightly with respect to both scale and locality (but 
still keeps above 75% efficiency for task length of 158ms).  
The reason is that the number of files per compute node is 
decreasing as the scale and locality increase. Therefore, more 
tasks on a compute node could not be run locally and need to 
be moved to the right nodes causing significant network traffic 
and load imbalance. At the extreme case where the locality is 
infinitely large, there would be only one file on one compute 
node, eventually all the tasks need to be run on that node.   

2) All-Pairs in Biometrics 
All-Pairs [31] is a common benchmark for data-intensive 

applications that describes the behavior of a new function on 
sets A and sets B. For example, in Biometrics, it is very 
important to find out the covariance of two sequences of gene 
codes. In this workload, all the tasks are independent, and each 
task execute for 1 second to compare two 12MB files with one 
from each set.  



 

 

Figure 6 shows the an example of the workload DAG, in 
which four independent tasks operate on two sets of two files, 
and each task requires one file from each set.  

f0,0 f0,1 f1,1

t0 t1 t2 t3

f1,0

 

Figure 6: All-Pair Workload DAG 

We run strong-scaling experiments up to 100 nodes with a 
500*500 workload size. Therefore, there would be 250K tasks 
in total. All the 1000 files from two sets are uniformly 
distributed to each compute node, and all the tasks are 
randomly distributed. As a task needs two pieces of data files 
that may locate at different nodes at the worst case, one piece 
of data may need to be transmitted. To make the workload 
more data-intensive, we reduced the task running time by 10X, 
resulting in 100-ms running time with 24MB of data 
requirement. This is the same workload referenced in [32]. We 
use the FLSD policy, and at the end (80% of the workload is 
done) of the experiments, we set the time threshold tt to be 20 
seconds initially, which is then decreased by half when moving 
ready tasks from LReadyQ to SReadyQ.  

 

Figure 7: Comparison between Data Diffusion and DAWS 

We compare DAWS with Data-Diffusion [32] in Figure 7. 
The “active storage” terms comes from [31] and means that all 
the data is stored locally in memory. The “parallel file system” 
means that the data is kept in the parallel file system through 
interfaces. We see that for 100-ms tasks at the scale of 200 
cores, our DAWS technique improved Data Diffusion by 14.21% 
(85.9% vs 75%), and it is quite close to the best case using 
active storage (85.9% vs 91%). Data diffusion applies a 
centralized index-server for data-aware scheduling, while our 
DAWS technique utilizes DKVS that is much more scalable. 
For example, the centralized data diffusion showed good 
results for the all-pairs workload at 1K-cores, but it had to 
increase work granularity to 1 second long due to the inability 

of the data-aware scheduler to keep up with the increasing in 
scheduling throughput needed to maintain good efficiency. 
Based on prior results on work stealing in MATRIX [22], we 
anticipate the data-aware work stealing scheduler to support 
fine grained tasks of 10ms to 100ms with good efficiencies at 
1000-node scale. It is also noteworthy to point out that without 
harnessing data-locality (Best Case parallel file system), the 
efficiency of this workload would be less than 20%, and it 
would only get worse with larger scales.  

D. Comparisons Among Different Policies 

We compare different scheduling polices using the all-pairs 
workloads. As all the tasks require the same amount of data 
(24MB), the RLDS is equivalent to the MDL policy. We 
compare the three scheduling polices, MLB, MDL, and FLDS. 
In the end, we will give a detailed guide on how to choose the 
best fit policy for different data-intensive applications.  

Figure 8 shows the comparison results with different 
policies using the all-pairs workload. As we expected, MLB 
performs the worst because it just considers load balancing, 
and the required data is so large that it takes significant amount 
of time to transfer data. MDL policy performs moderately, and 
because all the required data has the same size 
(2*12MB=24MB), MDL policy is equivalent to RLDS when 
setting the threshold t to be small enough. From the load 
balancing’s perspective, MDL did quite well except for the 
ending period. As it does not allow work stealing, load would 
be imbalanced at the final stage when there aren’t many tasks 
leading to a long-tail problem. FLDS policy performs the best, 
as it has a monitoring thread that keeps polling the LReadyQ to 
move tasks to SReadyQ for load balancing. This is helpful at 
the final stage when some nodes are idle while others are busy.  

 

Figure 8: Comparison of different scheduling policies 

Based on the above analysis, for applications that require 
large amount of data (e.g. several Megabytes) for each task, 
FLDS should always be the first choice. Unless the tasks 
require extremely large volume of data that would easily 
saturate the network bandwidth, the MDL policy should not be 
considered. MLB policy should only be used when tasks 
require small data pieces. RLDS policy should be preferable 
when the data pieces required by tasks have a very wide 
distribution in terms of size (from a few bytes to several 
Megabytes). In addition, our scheduler is able to adjust from 
one policy to another at runtime.    



 

 

E. Different Benchmark DAGs 

As we have shown that our proposed data-aware work 
stealing technique can perform well for data-intensive 
applications structured as simple DAGs, this section aims to 
evaluate more complex synthetic DAGs. We explore four 
different DAGs, namely Bag of Task (BOT), Fan-In, Fan-Out 
and Pipeline, which are represented in Figure 9.  

BOT workload is used as a baseline, it includes 
independent tasks; Fan-In and Fan-Out DAGs are similar 
except that they are reverse. The performance of these 
workloads depends on the in-degree, out-degree and the 
dependent data sizes. Pipeline DAG is a collection of “pipes” 
where each task within a pipe is dependent on the previous task. 

 

Figure 9: Various Workload DAGs representation 

MATRIX client is able to generate a specific DAG given 
the input parameters that describe the DAG, such as DAG type 
(BOT, Fan-In, Fan-Out, Pipeline), DAG degree (fan-in degree, 
fan-out degree, and pipeline size). We run these synthetic 
DAGs in MATRIX up to 200 cores using FLDS policy. For all 
the DAGs, each core executes 1000 tasks on average, and each 
task runs an average time of 50ms (0 to 100ms) and generates 
an average data size of 5MB (0 to 10MB). We set the 
maximum data transfer rate threshold (t) to be 0.5*10Gbps = 
5Gbps, a ratio of 0.5 between the data-transferring time and the 
estimated task length. We set the initial local ready queue 
execution time upper bound (tt) for FLDS policy to be 10 sec, 
and reduces it by half when moving ready tasks from LReadyQ 
to SReadyQ, and doubles it when work stealing fails. We set 
the fan-in degree, fan-out degree and pipeline size to be the 
same value of 10. We set the work stealing upper bound to be 
50 sec, and the polling interval is changed adaptively as 
described in section III.A. In order to cooperate with the FLDS 
policy, after the polling interval of work stealing arrives the 
upper bound (no work stealing anymore), we set the polling 
interval back to the initial small value only if the threshold tt 
becomes too small to allow work stealing again. 

Figure 10 shows the throughput results of all the DAGs up 
to 200 cores and 200K tasks. We see that for BOT workloads, 
we can achieve nearly-perfect performance, the throughput 
numbers imply a 90%+ efficiency for BOT workloads at all 
scales. This is because tasks are all run locally without 
requiring any piece of data. For the other three DAGs, our 
technique shows great scalability, as the throughput doubles 
when the scale and workload double. The throughput numbers 
are good, considering the data size and DAG complexities. Out 

of the three DAGs, Pipeline workloads show the highest 
throughput, as each task has at most one child and one parent. 
The data dependency condition is easy to be satisfied. For Fan-
Out DAG, our experiments experienced a relatively long ramp-
up period, as at the beginning, the number of ready tasks is 
small. Initially, only the root task is ready to run. As time 
increases, there would be more and more tasks that are ready, 
and we had better utilization. For Fan-In DAG, it is quite the 
opposite. At the beginning, tasks were running very fast. But it 
would get slower and slower, leading to a very long tail. This is 
not caused by load imbalance. In the end, it gets more and 
more difficult for a task to be ready given the Fan-In DAG 
shape and properties. This very long-tail has worse effect than 
that is caused by the slow ramp-up period for the Fan-Out 
DAG. 

Above all, MATRIX shows great scalability running 
different complex benchmark DAGs. It is noteworthy that 
MATRIX is able to run any arbitrary workflow DAG, not just 
the few examples given in this paper.  

 

Figure 10: MATRIX with Benchmark DAGs 

V. RELATED WORK 

There has been a lot of research projects that are related to 
our work about load balancing and data-aware scheduling. This 
analyzes the similarities and differences comparing to our work. 

Falkon [9] is a centralized task scheduler that supports 
naive hierarchical scheduling for MTC applications. Though 
Falkon scaled much better than others, it has problems to scale 
to even a petascale system, and the hierarchical implementation 
suffered from poor load balancing under unpredictable task 
execution times. Falkon also implemented a data diffusion 
approach [30] to schedule data-intensive workloads. Data 
diffusion acquires compute and storage resources dynamically, 
replicates data in response to demand, and schedules 
computations close to data. However, Falkon used a 
centralized index server to store the metadata, as opposed to 
our distributed key-value store, which leads to poor scalability. 

Charm++ [33] is a machine independent parallel 
programming system, in which, load balancing can be 
performed in either a centralized (static), hierarchical or fully 
distributed (dynamic) fashion. The static approach has poor 
scalability (i.e. up to 3K cores [33]). The dynamic approach 
used the neighboring averaging schemes, which however limits 
the load balancing within a local space, and could yield poor 
load balance at extreme scales. 



 

 

Sparrow [35] is similar to our work in that it implemented 
distributed load balancing for weighted fair shares, and 
supported the constraint that each task needs to be co-resident 
with input data, for fin-grained sub-second tasks. However, in 
Sparrow, each scheduler is aware of all the compute daemons, 
this design can cause a lot of resource contentions when the 
number of tasks are large. What’s more, Sparrow implements 
pushing mechanism with early binding of tasks to workers. 
Each scheduler probes multiple compute nodes and assigns 
tasks to the least overloaded one. This mechanism suffers long-
tail problem under heterogeneous workloads [34] due to early 
binding of tasks to worker resources. We have compared 
Sparrow and the basic MATRIX without data-aware 
scheduling technique using heterogeneous workloads in [39], 
and MATRIX outperforms Sparrow by 9X. Furthermore, there 
is an implementation barrier with Sparrow as it is developed in 
Java, which has little support in high-end computing systems.  

Mesos [36] is platform for sharing resource between 
multiple diverse cluster computing frameworks to schedule 
tasks. Mesos allows frameworks to achieve data-locality by 
taking turns reading data stored on each machine. Mesos uses 
delay scheduling policy, and frameworks wait for a limited 
time to acquire nodes storing their data. However, this 
approach causes significant waiting time before a task could be 
scheduled, especially when the required data is large.  

Quincy [37] is a flexible framework for scheduling 
concurrent distributed jobs with fine-grain resource sharing. 
Quincy tries to find optimal solutions of scheduling jobs under 
data-locality and load balancing constraints by mapping the 
problem to a graph data structure. Even though the motivation 
of Quincy is similar to our work, it takes significant amount of 
time to find the optimal solution of the graph that combines 
both load balancing and data-aware scheduling. 

Dryad [38] is a general-purpose distributed execution 
engine for coarse-grained data-parallel applications. Dryad is 
similar with our work in that it supports running of applications 
structured as workflow DAGs. However, like the Hadoop 
scheduler [28], Dryad does centralized scheduling with a 
centralized metadata management that greedily maps tasks to 
the where the data resides, which is neither fair nor scalable.  

CloudKon [39] has similar architecture as MATRIX, 
except that CloudKon focuses on the Cloud environment, and 
relies on the Cloud services, SQS [40] to do distributed load 
balancing, and DynamoDB [41] as the DKVS to keep task 
metadata. Relying on the Cloud services could facilitate the 
easier development, at the cost of potential loss of performance 
and control. Furthermore, CloudKon doesn’t support data-
aware scheduling at the current stage.  

SLAW [42] is a scalable locality-aware adaptive work 
stealing scheduler that supports both work-first and help-first 
policies [43] adaptively at runtime on a per-task basis. Though 
SLAW aimed to address issues (e.g. locality-obliviousness, 
fixed task scheduling policy) that limit the scalability of work 
stealing, it focuses on the core/thread level. The technique 
would unlikely to hold for large-scale distributed systems. 

Another work [44] that did data-aware work stealing is 
similar to us in that it uses both dedicated and share queues. 
However, it relies on the X10 global address space 
programming model [45] to statically expose the data-locality 
information and distinguish between location-sensitive an 

location-flexible tasks at beginning. Once the data-locality 
information of a task is defined, it remains unchanged. This is 
not adaptive to various data-intensive workloads.     

VI. CONCLUSION AND FUTURE WORK 

Applications for extreme-scales are becoming more data-
intensive and fine-grained in both task size and duration. Task 
schedulers for data-intensive applications at extreme-scales 
need to be scalable to deliver the highest system utilization, 
which poses urgent demands for both load balancing and data-
aware scheduling. This work combined distributed load 
balancing with data-aware scheduling through a data-aware 
work stealing technique. We implement the technique in a 
distributed task execution fabric, MATRIX, and apply a DKVS, 
as a transparent meta-data service. We evaluated our technique 
under four different scheduling policies with different 
workloads, and compared our technique with the data diffusion 
approach. Results showed that our technique is scalable to 
achieve both good load balancing and high location-hit rate.  

We have planned much work in the future, we will 
continue to scale MATRIX to the full scale of IBM BG/Q 
machine at ANL that  has 768K cores, with 3M hardware 
threads. We will try to deploy MATRIX on accelerators and 
GPUs [53]. In order to make MATRIX versatile for extreme-
scale ensemble computing [46], we will add HPC support [47] 
to MATRIX, so that MATRIX will be able to run HPC 
ensemble of workloads. We plan to integrate MATRIX with 
our SLURM++ project [46], which is a distributed job launch 
prototype developed from SLURM and ZHT, to explore 
different resource stealing techniques [48].  

Another direction is to integrate scientific workflow 
engines, such as Swift [49][55], with MATRIX to enable 
running large-scale scientific applications. Swift will serve as 
the high-level parallel programming language between the 
applications and MATRIX. Instead of having Swift manage the 
DAG, the DAG would be managed in a distributed way by 
MATRIX. Furthermore, we will be working on extending the 
centralized Hadoop scheduler [28] to be distributed through 
MATRIX. We will extend MATRIX to support the scheduling 
of the MapReduce styled data-intensive workloads [50][54]. 
We will utilize distributed file systems, such as FusionFS [51] 
and HDFS [27], to help MATRIX manage data in a distributed, 
scalable, and reliable way. 
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