

Optimizing Load Balancing and Data-Locality with

Data-aware Scheduling
Ke Wang

*
, Xiaobing Zhou

§
, Tonglin Li

*
, Dongfang Zhao

*
, Michael Lang

†
, Ioan Raicu

*‡

*
Illinois Institute of Technology,

§
Hortonworks Inc.,

†
Los Alamos National Laboratory,

‡
Argonne National Laboratory

kwang22@hawk.iit.edu, xzhou@hortonworks.com, {tli13, dzhao8}@hawk.iit.edu, mlang@lanl.gov, iraicu@cs.iit.edu

Abstract—Load balancing techniques (e.g. work stealing) are

important to obtain the best performance for distributed task

scheduling systems that have multiple schedulers making

scheduling decisions. In work stealing, tasks are randomly

migrated from heavy-loaded schedulers to idle ones. However,

for data-intensive applications where tasks are dependent and

task execution involves processing a large amount of data,

migrating tasks blindly yields poor data-locality and incurs

significant data-transferring overhead. This work improves work

stealing by using both dedicated and shared queues. Tasks are

organized in queues based on task data size and location. We

implement our technique in MATRIX, a distributed task

scheduler for many-task computing. We leverage distributed

key-value store to organize and scale the task metadata, task

dependency, and data-locality. We evaluate the improved work

stealing technique with both applications and micro-benchmarks

structured as direct acyclic graphs. Results show that the

proposed data-aware work stealing technique performs well.

Keywords—data-intensive computing; data-aware scheduling;

work stealing; key-value stores; many-task computing

I. INTRODUCTION

There is a growing set of large-scale scientific applications
which are loosely-coupled in nature containing many small
jobs/tasks (e.g. per-core) with shorter durations (e.g. sub-
second), along with large volumes of data – these applications
include those from data analytics, bioinformatics, data mining,
astronomy, astrophysics, and MPI ensembles [1]. As systems
are growing exponentially in parallelism approaching billion
way concurrency at exascale [2], we argue that future
programming models will likely employ over-decomposition
generating even many more fined-grained tasks than available
parallelism. While over-decomposition has been shown to
improve utilization at extreme scales as well to make fault
tolerance more efficient [3][4], it poses significant challenges
on task scheduling system to make extremely fast scheduling
decisions (e.g. millions/sec), in order to achieve the highest
throughput and utilization. This requirement is far beyond the
capability of today’s centralized scheduling systems, such as
SLURM [5], Condor [6], SGE [7], Cobalt [8], and Falkon [9].

The Many-task computing (MTC) [10] paradigm aims to
define and address the challenges of scheduling fine grained
data-intensive workloads [11]. MTC applications are usually
structured as direct acyclic graphs (DAG) of small discrete
tasks, with data dependencies forming the graph edges. The
tasks are per-core and do not require strict coordination of
processes at job launch as the traditional HPC workloads.

We propose the task scheduling system for MTC will need
to be fully-distributed to achieve extremely high throughput
and utilization. In this design, each compute node runs one
scheduler and one or more executors/workers. All the
schedulers are fully-connected, and receive workloads to
schedule tasks to local executors. Therefore, ideally, the
throughput would gain near-optimal linear speedup as the
system scales. We abandon the centralized architecture due to
the limited processing capacity and the single-point-of-failure
issue. We bypass the hierarchical architecture as it is difficult
to maintain a tree under failures, and a task may experience
longer latency because it needs to go through multiple hops as
opposed to only one in a fully-distributed architecture.

Load balancing [12] is challenging for fully-distributed
architectures as a scheduler only has knowledge of its own
state, and therefore must be done with limited partial state.
Load balancing refers to distributing workloads as evenly as
possible across all the schedulers/workers, and it is important
given that a single heavily-loaded scheduler would lower the
system utilization significantly. This work adopts the work
stealing technique [13] at the node/scheduler (instead of
core/thread) level. In work stealing, the idle schedulers
communicate with neighbors to balance their loads. Our
previous work [14] has explored the parameter space (e.g.
number of tasks to steal, number of static/dynamic neighbors,
poll interval) extensively through a simulator, SimMatrix
[15][16], up to millions of nodes and billions of cores.

However, as more applications are becoming data-intensive
and experiencing data explosion [17] such that tasks are
dependent and task execution involves processing large amount
of data, data-aware scheduling and load balancing are two
indispensable yet orthogonal needs. Migrating tasks randomly
through work stealing would compromise the data-locality and
incur significant data-transferring overhead. On the other hand,
struggling to map each task to the location where the data
resides is infeasible due to the complexity of the computation
(this mapping is a NP-complete problem [18]). Furthermore,
this mapping may cause poor load balancing due to the
potential unbalanced data distribution. Therefore, in this work,
we investigate scheduling methods that satisfy both needs and
still achieves good performance.

In this paper, we propose a data-aware work stealing
technique that is able to achieve good load balancing, and yet
still tries to best exploit data-locality. Basically, each scheduler
would maintain both dedicated and shared task ready queues
(implemented as descending priority queues based on the data
size a task requires). Tasks in the dedicated queue are only
scheduled and executed locally unless special policy is applied,

while tasks in the shared queue could be migrated among
schedulers for balancing loads through work stealing. A ready
task will be put in either queue based on the size and location
of the data demanded by the task. In addition, a scheduler may
push a task to others if the majority of data demanded by the
task is remote. This is much better than most work stealing
work that employs only one locality-oblivious task ready queue
(either implemented as normal queue, or double-ended deque
[20]). We apply a distributed key-value store (DKVS), ZHT
[21][52], as a meta-data service that stores important data-
locality information for all the tasks. Our data-aware work
stealing technique works in both homogeneous and
heterogeneous distributed systems [53]. We implement our
technique in MATRIX [22], a task execution fabric for MTC.

This paper has the following main contributions:

 Propose a data-aware work stealing technique that
combines load balancing with data-aware scheduling.

 Apply a distributed key-value store as a meta-data
service to store important data dependency and locality
information.

 Evaluate the proposed technique up to hundreds of
nodes showing good performance using different
applications under different scheduling policies.

The rest of this paper is organized as follows. Section II
introduces the MATRIX task execution fabric. Section III
presents our proposed technique and the implementation
details, which is followed by an extensive evaluation in Section
IV. We list the related work in Section V. Finally, Section VI
draws the conclusions and envisions our future work.

II. MATRIX: LIGHT WEIGHT TASK EXECUTION FABRIC

By using simulation in previous work [23], we have
concluded that for extreme-scale systems, a distributed
architecture is required. With this conclusion and the
justification we have made about fully-distributed architecture,
we built a light-weight task execution fabric, MATRIX, from
scratch. We have evaluated MATRIX using micro-benchmarks
on an IBM Blue Gene/P supercomputer up to 4K-core scale.
MATRIX maintains throughput as high as 13K tasks/sec, and
85%+ efficiency with fine-grained sub-second tasks (64ms),
and shows efficiency speedup of 4X compared to Falkon [9]
with task granularity of 1-second and 9X compared to Sparrow
[35] with NOOP sleep tasks (sleep 0). We implement the
proposed technique in MATRIX in this work.

The basic architecture of MATRIX is shown in Figure 1.
MATRIX is comprised of three components: client, scheduler
and executor. Each compute node runs a scheduler, an executor
and a ZHT server. All the schedulers are fully-connected. The
client is a benchmarking tool that issues requests to generate a
set of tasks, submits the tasks to any scheduler, and monitors
the task execution progress. Each scheduler schedules tasks to
local executor. Whenever a scheduler has no more ready tasks,
it communicates with other schedulers to pull ready tasks
through load balancing techniques (e.g. work stealing). Each
executor forks several (usually equals to number of physical
cores of a machine) threads to execute ready tasks concurrently.

ZHT is used to monitor the execution progress by
MATRIX client, and to keep the system state meta-data by
MATRIX scheduler in a distributed, scalable, and fault tolerant
way. ZHT is a zero-hop persistent DKVS where each ZHT

client has a global view of all the servers. For each operation of
ZHT server (insert, lookup, remove, append, compare and
swap), there is a corresponding client API. The client calls the
API, which sends a request to the exact server that is
responsible for the request by hashing the key. Upon receiving
a request, the ZHT server converts it to the corresponding
operation type and executes the operation. ZHT serves as a
data management building block for extreme scale system
services, and has been tested up to 8K nodes (32K cores) on a
IBM Blue Gene /P supercomputer [21].

Figure 1: MATRIX architecture overview

Both MATRIX client and schedulers are initialized as ZHT
clients. Each MATRIX scheduler records local state
information (e.g. number of complete tasks, number of idle
executing threads) to ZHT periodically, and the client keeps
polling this information until all tasks are completed.

III. DATA-AWARE WORK STEALING

This section covers our proposed data-aware work stealing
technique. First, we describe the adaptive work stealing
technique to achieve load balancing. Then we present how we
combined a data-aware scheduling strategy with work stealing.

A. Adapative Work Stealing

Work stealing has been proven as an efficient load
balancing technique at thread/core level in multi-core shared
memory machine [12]. It is a pull-based method in which the
idle processors try to steal tasks from the overloaded ones that
are randomly selected. This work adopts work stealing at the
node level in distributed environment, and modifies it to be
adaptive according to the system states at runtime.

Work stealing is proceeded by the idle schedulers stealing
workloads from neighbors. As in fully-distributed architecture,
every scheduler has a global membership list, therefore, the
selection of candidate neighbors (victims) from which an idle
scheduler (thief) would steal tasks could be static or
dynamic/random. In static mechanism, the neighbors are pre-
determined and will not change; this has limitation that every
scheduler is confined to communicate with part of other
schedulers. In dynamic case, whenever a scheduler is idle, it
randomly chooses some candidate neighbors. The traditional
work stealing randomly selects one neighbor to steal tasks [25]
yielding poor performance at extreme scales, because the
chance that one neighbor would have queued ready task is low
at large scales. In the end, we choose to have a multiple-

ZHT server

SchedulerExecutor

ZHT server

Scheduler Executorwork stealing

Client

Compute Node Compute Node

……

Fully-Connected

client interaction

random neighbor selection strategy that randomly selects
several neighbors instead of only one.

After an idle scheduler selects candidate neighbors, it goes
through each neighbor in sequential to ask for “load
information” (number of ready tasks), and tries to steal tasks
from the most heavily-overloaded one. When a scheduler fails
to steal tasks from the selected neighbors, because either all
selected neighbors have no more tasks, or the reported extra
ready tasks have been executed when the stealing happens, the
scheduler waits for a period of time and then does work
stealing again. We call this wait time the polling interval.

If the polling interval is fixed, there would be difficulties to
set the value with right granularity. If the polling interval is set
to be too small, at the final stage when there are not many tasks
left, many schedulers would poll neighbors to do work stealing,
which would ultimately fail and lead to more work stealing
communications. If the polling interval was set large enough to
limit the number of work stealing events, work stealing would
not respond quickly to change conditions, and lead to poor load
balancing. Therefore, we implement an adaptive polling
interval strategy, in which, the polling interval of a scheduler is
changed dynamically similar to the exponential back-off
approach in the TCP networking protocol [26]. The default
polling interval is set to be a small value (e.g. 1 ms). Once a
scheduler successfully steals tasks, the polling interval of that
scheduler is set back to the initial small value. If a scheduler
fails to steal tasks, it waits the time of polling interval and
doubles the polling interval and tries to do work stealing again.
In addition, we set an upper bound for the polling interval.
Whenever the polling interval hits the upper bound, a scheduler
would not do work stealing anymore. This would reduce the
amount of failing work stealing at the final stage.

The parameters of work stealing are the number of dynamic
neighbors, the number of tasks to steal, and the polling interval.
Our previous simulation work [14][24] studied the parameter
space extensively and found the optimal configurations: the

number of tasks to steal is half; the number of dynamic
neighbors is square root of the number of all schedulers;
and an exponential back-off polling interval. These optimal
parameters have been used in MATRIX for scalable work
stealing to achieve distributed load balancing.

One thing to notice is that the optimal parameters are
unnecessary to hold always for all the workloads. In fact, it is
unlikely to get an optimal parameter space for all the
workloads. Our work stealing technique has the ability to
change these parameters dynamically at runtime in a
decentralized way. Each scheduler observes the system state at
runtime according to whether the current work stealing
succeeds or not. If a scheduler steals tasks successfully, then it
keeps the optimal parameter configuration; otherwise, if a
scheduler experiences several failures in a row, it can change
the suggested parameters. For example, a scheduler may
increase the number of dynamic neighbors by 1 or 2 to reach
further so that it has higher chance to steal tasks.

B. Data-Aware Scheduling

The work stealing technique does not employ any data
locality information. This is harmful when executing data-
intensive workloads in which tasks are dependent and tasks
take a large volume of data as input and generate output with

more data. This subsection presents the proposed ideals to
combine work stealing with data-aware scheduling.

1) DKVS Used as a Meta-Data Service
As our previous work [23] has claimed that DKVS could be

used as a building block for distributed system services, we
apply ZHT to store all the important information, such as data
dependency conditions, and data locality information of tasks
transparently. The “key” is task id, and the “value” is the
important meta-data of the task that is defined as the following
data structure in Figure 2. Upon task submission, the client
takes an application workload (represented as a DAG), sends
the task meta-data (specifically “num_wait_parent” and
“children”) to ZHT, and submits the tasks to MATRIX for
scheduling. The meta-data is later updated as tasks make
progress through the various states.

Figure 2: Data structure of task metadata

2) Distributed Queues in Matrix
Each scheduler would maintain four local task queues: task

waiting queue (WaitQ), dedicated local task ready queue
(LReadyQ), shared work stealing task ready queue (SReadyQ),
and task complete queue (CompleteQ). These queues hold
tasks in different states that are stored as meta-data in ZHT. A
task is moved from one queue to another when state changes.
With these queues, the scheduler can support scheduling tasks
with data dependencies specified by certain DAGs.

a) WaitQ

Initially, the scheduler would put all the incoming tasks
from the client to the WaitQ. A thread keeps checking every
task in the WaitQ to see whether the dependency conditions for
that task are satisfied by querying the meta-data from ZHT.
The task meta-data has been inserted into ZHT by MATRIX
client before submitting tasks to schedulers. Specifically, only
if the value of the field of “num_wait_parent” in the meta-data
is equal to 0 would the task be ready to run.

b) LReadyQ and SReadyQ

When a task is ready to run, the scheduler makes decision
to put it in either the LReadyQ or the SReadyQ, according to
the size and location of the data required by the task. The
LReadyQ stores the ready tasks that usually require large
volume of data and the majority of the required data is located
at the current node; these tasks could only be scheduled and
executed locally unless special policy (explained later) is used.
The SReadyQ stores the tasks that could be migrated to any
scheduler for load balancing’s purpose; these tasks either don’t
need any input data or the demanded data volume is so small
that the transferring overhead is negligible. The “load
information” queried by work stealing is the length of the
SReadyQ (number of tasks in the SReadyQ). The pseudo-code
for decision making is given in Algorithm 1.

typedef TaskMetaData

{
int num_wait_parent; // number of waiting parents

vector<string> parent_list; // schedulers that run each parent task

vector<string> data_object; // data object name produced by each parent

vector<long> data_size; // data object size (byte) produced by each parent

long all_data_size; // all data object size (byte) produced by all parents

vector<string> children; // children of this tasks

} TMD;

The threshold (t) defines the upper bound of the data
transferring rate that is achieved when transmitting the data for
the task. The value equals to a small percentage (e.g. 10%)
multiplying the theoretical network bandwidth (e.g. 10Gbps) of
the system. The percentage also means the ratio between the
data-transferring overhead and the estimated task execution
length (est_task_length). The smaller the percentage is, the
more likely the tasks could be migrated. As we don’t know
ahead how long a task runs, we predict the est_task_length as
the average length of the previous tasks that have been finished.

ALGORITHM 1. Decision Making to Put a Task in the Right Ready Queue

Input: a ready task (task), TMD (tm), a threshold (t), current scheduler id (id),

LReadyQ, SReadyQ, estimated length of the task in second (est_task_length)
Output: void.

1 if (tm.all_data_size / est_task_length <= t) then

2 SReadyQ.push(task);
3 else

4 long max_data_size = tm.data_size.at(0);

5 int max_data_scheduler_idx = 0;

6 for each i in 1 to tm.data_size.size() - 1; do

7 if tm.data_size.at(i) > max_data_size; then

8 max_data_size = tm.data_size.at(i);
9 max_data_scheduler_idx = i;

10 end

11 end
12 if (max_data_size / est_task_length <= t); then

13 SReadyQ.push(task);

14 else if tm.parent_list.at(max_data_scheduler_idx) == id; then
15 LReadyQ.push(task);

16 else

17 send task to: tm.parent_list.at(max_data_scheduler_idx)
18 end

19 end

20 return;

Lines 1-2 decide to put the task in SReadyQ as the data
movement overhead is small. Otherwise, lines 4-11 find the
maximum data object size (max_data_size), and the scheduler
(indexed at max_data_scheduler_idx) that ran the parent task
generating this maximum data object. As a task could have
multiple parents, it is the best if it runs on the scheduler that
has the largest portion of the required data. Lines 12-13 decide
to put the task in SReadyQ because the max_data_size is small.
Otherwise, lines 14-15 put the task in LReadyQ as the current
scheduler is indexed at max_data_scheduler_idx. Otherwise,
lines 16-18 push the task to the corresponding scheduler. When
a scheduler receives a pushing task, it puts the task in LReadyQ.

An executor has several executing threads that keep pulling
ready tasks to execute. Each thread would first pop tasks from
LReadyQ, and then pop tasks from SReadyQ if the LReadyQ is
empty. Both LReadyQ and SReadyQ are implemented as
descending priority queue based on the required data size. The
larger the required data size is, the higher priority the task
would be, as a task that requires larger data size usually runs
longer. When executing a task, the executing thread first
queries the meta-data for the size and location of the required
data produced by each parent, and then gets the data either
from local or remote nodes. After collecting all the data, the
task will be executed. The number of executing threads is
configurable; in practice it is usually configured to be the
number of physical cores (a similar strategy was used in
Falkon [9] on the Blue Gene/P supercomputer). As long as
both queues are empty, the scheduler would start doing work
stealing, and the stolen tasks would be put in the SReadyQ.

c) CompleteQ

When a task is done, it is moved to the CompleteQ. There
is another thread responsible for updating the meta-data for all
the children of each completed task. It first queries the meta-
data of the completed task to find out the children, and then
updates each child’s meta-data as follows: decreasing the
“num_wait_parent” by 1; adding current scheduler id to the
“parent_list”; adding the produced data object name to the
“data_object”; adding the size of the produced object to the
“data_size”; increasing the “all_data_size”. As long as the
“num_wait_parent” equals to 0, the task would be ready to run.

3) Different Scheduling Policies
We define four different scheduling policies for our data-

aware scheduling technique, namely maximized load balancing
(MLB), maximized data-locality (MDL), rigid load balancing
and data-locality segregation (RLDS), and flexible load
balancing and data-locality segregation (FLDS).

a) MLB

MLB considers only the load balancing, and all the ready
tasks are put in the SreadyQ to be allowed for migration. We
achieve the MLB policy by tuning the threshold (t) in
Algorithm 1 to be the maximum possible value (i.e.
LONG_MAX). This is the baseline work stealing strategy
without taking into consideration the data locality.

b) MDL

MDL only considers data-locality, and all the ready tasks
that require input data would be put in LReadyQ, no matter
how big the data is. This policy is achieved by tuning the
threshold (t) in Algorithm 1 to be 0.

c) RLDS

RLDS sets the threshold (t) in Algorithm 1 to be somewhere
between 0 and the maximum possible value. Once a task is put
in the LReadyQ of a scheduler, it is confined to be executed
locally (this is also true for the MDL policy).

d) FLDS

The RLDS policy could have load balancing issues under
situations where a task produces large volumes of data and has
many children. For example, for a workload DAG shaped as a
fat tree, all the tasks would be eventually executed on one
scheduler that runs the root task. To avoid the hotspot problem,
we relax the RLDS to a more flexible policy (FLDS) in which
tasks could be moved from LReadyQ to SReadyQ under certain
circumstance. We set another time threshold (tt) and use a
monitoring thread in each scheduler to check the LReadyQ
periodically. If the thread detects that the estimated running
time (est_run_time) of all tasks in the LReadyQ is above tt, it
would move some tasks from the bottom of LReadyQ to
SReadyQ to guarantee that the est_run_time of the rest tasks is
below tt. The est_run_time is calculated as the LReadyQ length
divided by the overall throughput of the scheduler so far. For
example, assuming 1000-tasks are finished so far and takes
10sec, the LReadyQ contains 5000-tasks, and tt=30sec. We
calculate the number of moving tasks: The throughput
=1000/10=100tasks/sec. The est_run_time=5000/100=50sec,
20sec longer than tt. 20sec takes 20/50=40% ratio, therefore,
40%*5000=2000-taks will be moved. As these assumed values
are changing with time, the moving task count is changing.

4) Write Locality and Read Locality
Our data-aware scheduling technique ensures the best write

locality, and at the meanwhile, optimizes the read locality. To
ensure the best write locality, every task writes the produced
data locally. We considered using a distributed key/value store
(ZHT) as both a data and a meta-data service, however it
would have been extremely difficult to optimize the data-
locality as distributed key/value stores rely on consistent
hashing to determine the ultimate location of data stored. We
also considered leveraging distributed file system (e.g. HDFS
[27]) underneath to manage the data. We argue that the
scheduling and load balancing strategies are not affected by the
actual method of data storage. We envision allowing data to be
stored in a distributed file system as future work.

Read locality is optimized by pushing a task to the location
where has the majority of the required data. For large data
volumes, tasks are migrated to where the data resides. For
small data volumes, tasks are run wherever there are available
compute resources to maximize utilization.

C. List of Short Terms

To summarize and make it clear about the important short
terms we use in this paper, we list and explain them in Table 1
as follows. These short terms are used in the overall paper. We
explain other terms at where they appear.

Table 1: List of important short terms
Term Description

DKVS distributed key-value stores

WaitQ task waiting queue

LReadyQ dedicated local task ready queue

SReadyQ shared work stealing task ready queue

CompleteQ Task complete queue

t a threshold to define the upper bound of the data
transferring rate achieved when transmitting the data

MLB maximized load balancing policy

MDL maximized data-locality policy

RLDS rigid load balancing and data-locality segregation policy

FLDS flexible load balancing and data-locality segregation policy

tt a time threshold to determine the number of tasks being
moved from LReadyQ to SReadyQ for the FLDS policy

DAWS Data aware work stealing

D. Implementation Details

We re-implemented MATRIX to separate it totally from the
ZHT codebase in C++. The new version (version 2) of
MATRIX simply uses ZHT as a black box through client APIs,
ensuring easier maintainability and extensibility. Although the
basic architecture did not change, many features were added,
such as task dependencies and data-aware scheduling. The
codebase of the MATRIX version 2 is made open source on
Github: https://github.com/kwangiit/matrix_v2. It has about 3K
lines of code implementing the MATRIX client, MATRIX
scheduler, MATRIX executor, a network communication layer
and the proposed data-aware work stealing technique, with 8K
lines of ZHT codebase plus 1K lines of auto-generated code
from Google Protocol Buffer [29]. The version 2 has
dependencies on ZHT [21] and Google Protocol Buffer.

IV. EVALUATION

In this section, we present the performance evaluation
results of the data-aware work stealing technique. We first
introduce the experiment environment and the evaluation

metrics. Then, we conduct experiments using workloads
structured as DAGs coming from two scientific applications,
namely image stacking from astronomy [30][56] and all-pairs
from biometrics [31][32]. We compare our results with those
achieved through data-diffusion technique in Falkon [9][11]
which employed a centralized data-aware scheduler [30][32].
Next, we compare different scheduling polices using the all-
pairs workload. Then, we run benchmarking DAGs.

A. Experiment Environment

We conduct all the experiments on the Kodiak cluster from
the Parallel Reconfigurable Observational Environment
(PROBE) [19] of Los Alamos National Laboratory. Kodiak has
1028 nodes, each node has two AMD Opteron (tm) processers
252 (2.6GHZ), and has 8GB memory. The network supports
both Ethernet and InfiniBand. Our experiments use 10Gbits
Ethernet (default configuration of Kodiak). We run
experiments with up to 100 nodes (200 cores), similar to the
data-diffusion Falkon work [30][32] we compared to.

B. Evaluation Metrics

We define important metrics as follows:
Average Time Per Task Per CPU defines the average

time to execute one task from one CPU’s perspective for all the
tasks. Ideally, each CPU would process tasks sequentially
without holding to wait tasks. therefore, the ideal average time
should be equal to the average task length of all the tasks. In
reality, the average time should be larger than the ideal case,
and the closer they are, the better. The throughput is the
reciprocal of the average time multiplying the number of CPUs.
For example, assuming it takes 10sec to run 2000-tasks on 100-
cores, this means 2 task-per-sec-per-cpu (2000/10/100). The
“Average Time Per Task Per CPU” is 1/2=0.5sec. This metric
is from the Falkon Data-Diffusion paper [30] for fair
comparison. We don’t use throughput, because given a
workload, a throughput number cannot tell how good it is
directly, the average time is more self-explanatory.

Efficiency refers to the proportion of time that the system
is executing tasks. The system spends the other time doing
network communications, such as moving data, moving tasks,
doing work stealing. Efficiency also reflects the overall system
utilization, the higher the better. It is calculated as the ideal
time (production of the average task length and the average
task per CPU) to finish a workload dividing the actual time.

Utilization is an instant metric that measures the ratio of
busy CPUs out of all CPUs. Utilization is usually useful when
doing visualization for the system state.

C. Scientific Application Evaluation

We evaluate the data-aware work stealing technique using
two scientific applications: image stacking in astronomy [30]
and all-pairs in biometrics [32]. These two applications
represent different data-intensive patterns.

1) Image Stacking in Astronomy
This application conducts the “stacking” of image cutouts

from different parts of the sky. The procedure involves re-
projecting each image to a common set of pixel planes, then
co-adding many images to obtain a detectable signal that can
measure their average brightness/shape. The workload DAG is
represented as in Figure 3. The dotted lines represent
independent tasks (t0 to tn) fetching ROI objects in a set of

image files (f0 to fm) that are randomly distributed, and then
generate an output individually. The last task (tend) waits until
collecting all the outputs, and then obtains a detectable signal.

f0 f1 f2 f3 fm

t0 t1 t2 t3 t4 tn

tend

Figure 3: Image Stacking Workload DAG

Followed the workload characterization in [30], in our
experiments, each task would require a file that has 2MB of
data, and generates 10KB data of output. The ratio of the
number of tasks to the number of files refers to locality
number. Locality 1 means the number of tasks equals to the
number of files, and each task requires an unique file. Locality
n means that the number of tasks is n-times of the number of
files, and each file is required by exactly n tasks. The higher
the locality is, the less number of files and tasks there would be.
The number of tasks and the number of files for each locality
are given in [30]. We evaluate different locality values, i.e. 1,
1.38, 2, 3, 4, 5, 10, 20, 30. Each task would run for an average
of 158 ms (as reported in [30]) .We run experiments up to 100
nodes (200 cores) for all locality values. The files are
uniformly distributed to each node, and the tasks are randomly
distributed. We use the MDL policy to move every task to
where the required data resides, as 2MB of data is relatively
large. We compare with data diffusion technique in Figure 4 at
scale of 128 cores (the largest scale that data-diffusion ran).

Figure 4: Comparison between DAWS and Data-Diffusion

In Figure 4, GZ indicates that the image data is in
compressed format while FIT indicates that the image data is
uncompressed. Data Diffusion (GZ) and Data Diffusion (FIT)
mean using data diffusion technique on compressed and
uncompressed data respectively. Likely, GPFS (GZ) and GPFS
(FIT) mean using GPFS file system on compressed and
uncompressed data respectively. DAWS represents our result,
and stands for data-aware work stealing. Specifically, our
experiments have the same workload configuration as Data

Diffusion (GZ) compressed format (each file is 2MB) [30].
Figure 4 shows that at 128-core scale, the time per task of our
DAWS technique keeps almost constant as locality increases,
and it is very close to the ideal task running time (158ms). Data
Diffusion (GZ) experienced very large average time when
locality is small, and decreases to be close to the ideal time
when locality is 30. The reason that DAWS could keep
constant and perfectly close to the ideal is that all the data is
uniformly distributed over all compute nodes. The only
overhead is caused by the schedulers making decisions to
transfer tasks in the right spots. While in Data Diffusion (GZ),
as data is initially kept in a slower shared file system, the data
would be copied to local disks when needed. When locality is
small, the chances that the same piece of data will be reused is
low therefore involving more amount of data access from the
shared file system. This explains why Data Diffusion (GZ) has
a large average time when locality is small. It is also
noteworthy to point out that GPFS (GZ) and GPFS (FIT)
remain largely constant regardless of locality, which is due to
data being accessed from the shared file system remotely upon
every data access; performance increases slightly with higher
locality, likely due to OS-level caching.

Figure 5: Efficiency of DAWS with Localities at scales

The time per task of DAWS experienced a slight increase
from Locality 1 (167ms) to 30 (176ms). We explain the reason
in Figure 5, which shows the efficiencies of different localities
in terms of scale. From Figure 5, we see that the efficiency
decreases slightly with respect to both scale and locality (but
still keeps above 75% efficiency for task length of 158ms).
The reason is that the number of files per compute node is
decreasing as the scale and locality increase. Therefore, more
tasks on a compute node could not be run locally and need to
be moved to the right nodes causing significant network traffic
and load imbalance. At the extreme case where the locality is
infinitely large, there would be only one file on one compute
node, eventually all the tasks need to be run on that node.

2) All-Pairs in Biometrics
All-Pairs [31] is a common benchmark for data-intensive

applications that describes the behavior of a new function on
sets A and sets B. For example, in Biometrics, it is very
important to find out the covariance of two sequences of gene
codes. In this workload, all the tasks are independent, and each
task execute for 1 second to compare two 12MB files with one
from each set.

Figure 6 shows the an example of the workload DAG, in
which four independent tasks operate on two sets of two files,
and each task requires one file from each set.

f0,0 f0,1 f1,1

t0 t1 t2 t3

f1,0

Figure 6: All-Pair Workload DAG

We run strong-scaling experiments up to 100 nodes with a
500*500 workload size. Therefore, there would be 250K tasks
in total. All the 1000 files from two sets are uniformly
distributed to each compute node, and all the tasks are
randomly distributed. As a task needs two pieces of data files
that may locate at different nodes at the worst case, one piece
of data may need to be transmitted. To make the workload
more data-intensive, we reduced the task running time by 10X,
resulting in 100-ms running time with 24MB of data
requirement. This is the same workload referenced in [32]. We
use the FLSD policy, and at the end (80% of the workload is
done) of the experiments, we set the time threshold tt to be 20
seconds initially, which is then decreased by half when moving
ready tasks from LReadyQ to SReadyQ.

Figure 7: Comparison between Data Diffusion and DAWS

We compare DAWS with Data-Diffusion [32] in Figure 7.
The “active storage” terms comes from [31] and means that all
the data is stored locally in memory. The “parallel file system”
means that the data is kept in the parallel file system through
interfaces. We see that for 100-ms tasks at the scale of 200
cores, our DAWS technique improved Data Diffusion by 14.21%
(85.9% vs 75%), and it is quite close to the best case using
active storage (85.9% vs 91%). Data diffusion applies a
centralized index-server for data-aware scheduling, while our
DAWS technique utilizes DKVS that is much more scalable.
For example, the centralized data diffusion showed good
results for the all-pairs workload at 1K-cores, but it had to
increase work granularity to 1 second long due to the inability

of the data-aware scheduler to keep up with the increasing in
scheduling throughput needed to maintain good efficiency.
Based on prior results on work stealing in MATRIX [22], we
anticipate the data-aware work stealing scheduler to support
fine grained tasks of 10ms to 100ms with good efficiencies at
1000-node scale. It is also noteworthy to point out that without
harnessing data-locality (Best Case parallel file system), the
efficiency of this workload would be less than 20%, and it
would only get worse with larger scales.

D. Comparisons Among Different Policies

We compare different scheduling polices using the all-pairs
workloads. As all the tasks require the same amount of data
(24MB), the RLDS is equivalent to the MDL policy. We
compare the three scheduling polices, MLB, MDL, and FLDS.
In the end, we will give a detailed guide on how to choose the
best fit policy for different data-intensive applications.

Figure 8 shows the comparison results with different
policies using the all-pairs workload. As we expected, MLB
performs the worst because it just considers load balancing,
and the required data is so large that it takes significant amount
of time to transfer data. MDL policy performs moderately, and
because all the required data has the same size
(2*12MB=24MB), MDL policy is equivalent to RLDS when
setting the threshold t to be small enough. From the load
balancing’s perspective, MDL did quite well except for the
ending period. As it does not allow work stealing, load would
be imbalanced at the final stage when there aren’t many tasks
leading to a long-tail problem. FLDS policy performs the best,
as it has a monitoring thread that keeps polling the LReadyQ to
move tasks to SReadyQ for load balancing. This is helpful at
the final stage when some nodes are idle while others are busy.

Figure 8: Comparison of different scheduling policies

Based on the above analysis, for applications that require
large amount of data (e.g. several Megabytes) for each task,
FLDS should always be the first choice. Unless the tasks
require extremely large volume of data that would easily
saturate the network bandwidth, the MDL policy should not be
considered. MLB policy should only be used when tasks
require small data pieces. RLDS policy should be preferable
when the data pieces required by tasks have a very wide
distribution in terms of size (from a few bytes to several
Megabytes). In addition, our scheduler is able to adjust from
one policy to another at runtime.

E. Different Benchmark DAGs

As we have shown that our proposed data-aware work
stealing technique can perform well for data-intensive
applications structured as simple DAGs, this section aims to
evaluate more complex synthetic DAGs. We explore four
different DAGs, namely Bag of Task (BOT), Fan-In, Fan-Out
and Pipeline, which are represented in Figure 9.

BOT workload is used as a baseline, it includes
independent tasks; Fan-In and Fan-Out DAGs are similar
except that they are reverse. The performance of these
workloads depends on the in-degree, out-degree and the
dependent data sizes. Pipeline DAG is a collection of “pipes”
where each task within a pipe is dependent on the previous task.

Figure 9: Various Workload DAGs representation

MATRIX client is able to generate a specific DAG given
the input parameters that describe the DAG, such as DAG type
(BOT, Fan-In, Fan-Out, Pipeline), DAG degree (fan-in degree,
fan-out degree, and pipeline size). We run these synthetic
DAGs in MATRIX up to 200 cores using FLDS policy. For all
the DAGs, each core executes 1000 tasks on average, and each
task runs an average time of 50ms (0 to 100ms) and generates
an average data size of 5MB (0 to 10MB). We set the
maximum data transfer rate threshold (t) to be 0.5*10Gbps =
5Gbps, a ratio of 0.5 between the data-transferring time and the
estimated task length. We set the initial local ready queue
execution time upper bound (tt) for FLDS policy to be 10 sec,
and reduces it by half when moving ready tasks from LReadyQ
to SReadyQ, and doubles it when work stealing fails. We set
the fan-in degree, fan-out degree and pipeline size to be the
same value of 10. We set the work stealing upper bound to be
50 sec, and the polling interval is changed adaptively as
described in section III.A. In order to cooperate with the FLDS
policy, after the polling interval of work stealing arrives the
upper bound (no work stealing anymore), we set the polling
interval back to the initial small value only if the threshold tt
becomes too small to allow work stealing again.

Figure 10 shows the throughput results of all the DAGs up
to 200 cores and 200K tasks. We see that for BOT workloads,
we can achieve nearly-perfect performance, the throughput
numbers imply a 90%+ efficiency for BOT workloads at all
scales. This is because tasks are all run locally without
requiring any piece of data. For the other three DAGs, our
technique shows great scalability, as the throughput doubles
when the scale and workload double. The throughput numbers
are good, considering the data size and DAG complexities. Out

of the three DAGs, Pipeline workloads show the highest
throughput, as each task has at most one child and one parent.
The data dependency condition is easy to be satisfied. For Fan-
Out DAG, our experiments experienced a relatively long ramp-
up period, as at the beginning, the number of ready tasks is
small. Initially, only the root task is ready to run. As time
increases, there would be more and more tasks that are ready,
and we had better utilization. For Fan-In DAG, it is quite the
opposite. At the beginning, tasks were running very fast. But it
would get slower and slower, leading to a very long tail. This is
not caused by load imbalance. In the end, it gets more and
more difficult for a task to be ready given the Fan-In DAG
shape and properties. This very long-tail has worse effect than
that is caused by the slow ramp-up period for the Fan-Out
DAG.

Above all, MATRIX shows great scalability running
different complex benchmark DAGs. It is noteworthy that
MATRIX is able to run any arbitrary workflow DAG, not just
the few examples given in this paper.

Figure 10: MATRIX with Benchmark DAGs

V. RELATED WORK

There has been a lot of research projects that are related to
our work about load balancing and data-aware scheduling. This
analyzes the similarities and differences comparing to our work.

Falkon [9] is a centralized task scheduler that supports
naive hierarchical scheduling for MTC applications. Though
Falkon scaled much better than others, it has problems to scale
to even a petascale system, and the hierarchical implementation
suffered from poor load balancing under unpredictable task
execution times. Falkon also implemented a data diffusion
approach [30] to schedule data-intensive workloads. Data
diffusion acquires compute and storage resources dynamically,
replicates data in response to demand, and schedules
computations close to data. However, Falkon used a
centralized index server to store the metadata, as opposed to
our distributed key-value store, which leads to poor scalability.

Charm++ [33] is a machine independent parallel
programming system, in which, load balancing can be
performed in either a centralized (static), hierarchical or fully
distributed (dynamic) fashion. The static approach has poor
scalability (i.e. up to 3K cores [33]). The dynamic approach
used the neighboring averaging schemes, which however limits
the load balancing within a local space, and could yield poor
load balance at extreme scales.

Sparrow [35] is similar to our work in that it implemented
distributed load balancing for weighted fair shares, and
supported the constraint that each task needs to be co-resident
with input data, for fin-grained sub-second tasks. However, in
Sparrow, each scheduler is aware of all the compute daemons,
this design can cause a lot of resource contentions when the
number of tasks are large. What’s more, Sparrow implements
pushing mechanism with early binding of tasks to workers.
Each scheduler probes multiple compute nodes and assigns
tasks to the least overloaded one. This mechanism suffers long-
tail problem under heterogeneous workloads [34] due to early
binding of tasks to worker resources. We have compared
Sparrow and the basic MATRIX without data-aware
scheduling technique using heterogeneous workloads in [39],
and MATRIX outperforms Sparrow by 9X. Furthermore, there
is an implementation barrier with Sparrow as it is developed in
Java, which has little support in high-end computing systems.

Mesos [36] is platform for sharing resource between
multiple diverse cluster computing frameworks to schedule
tasks. Mesos allows frameworks to achieve data-locality by
taking turns reading data stored on each machine. Mesos uses
delay scheduling policy, and frameworks wait for a limited
time to acquire nodes storing their data. However, this
approach causes significant waiting time before a task could be
scheduled, especially when the required data is large.

Quincy [37] is a flexible framework for scheduling
concurrent distributed jobs with fine-grain resource sharing.
Quincy tries to find optimal solutions of scheduling jobs under
data-locality and load balancing constraints by mapping the
problem to a graph data structure. Even though the motivation
of Quincy is similar to our work, it takes significant amount of
time to find the optimal solution of the graph that combines
both load balancing and data-aware scheduling.

Dryad [38] is a general-purpose distributed execution
engine for coarse-grained data-parallel applications. Dryad is
similar with our work in that it supports running of applications
structured as workflow DAGs. However, like the Hadoop
scheduler [28], Dryad does centralized scheduling with a
centralized metadata management that greedily maps tasks to
the where the data resides, which is neither fair nor scalable.

CloudKon [39] has similar architecture as MATRIX,
except that CloudKon focuses on the Cloud environment, and
relies on the Cloud services, SQS [40] to do distributed load
balancing, and DynamoDB [41] as the DKVS to keep task
metadata. Relying on the Cloud services could facilitate the
easier development, at the cost of potential loss of performance
and control. Furthermore, CloudKon doesn’t support data-
aware scheduling at the current stage.

SLAW [42] is a scalable locality-aware adaptive work
stealing scheduler that supports both work-first and help-first
policies [43] adaptively at runtime on a per-task basis. Though
SLAW aimed to address issues (e.g. locality-obliviousness,
fixed task scheduling policy) that limit the scalability of work
stealing, it focuses on the core/thread level. The technique
would unlikely to hold for large-scale distributed systems.

Another work [44] that did data-aware work stealing is
similar to us in that it uses both dedicated and share queues.
However, it relies on the X10 global address space
programming model [45] to statically expose the data-locality
information and distinguish between location-sensitive an

location-flexible tasks at beginning. Once the data-locality
information of a task is defined, it remains unchanged. This is
not adaptive to various data-intensive workloads.

VI. CONCLUSION AND FUTURE WORK

Applications for extreme-scales are becoming more data-
intensive and fine-grained in both task size and duration. Task
schedulers for data-intensive applications at extreme-scales
need to be scalable to deliver the highest system utilization,
which poses urgent demands for both load balancing and data-
aware scheduling. This work combined distributed load
balancing with data-aware scheduling through a data-aware
work stealing technique. We implement the technique in a
distributed task execution fabric, MATRIX, and apply a DKVS,
as a transparent meta-data service. We evaluated our technique
under four different scheduling policies with different
workloads, and compared our technique with the data diffusion
approach. Results showed that our technique is scalable to
achieve both good load balancing and high location-hit rate.

We have planned much work in the future, we will
continue to scale MATRIX to the full scale of IBM BG/Q
machine at ANL that has 768K cores, with 3M hardware
threads. We will try to deploy MATRIX on accelerators and
GPUs [53]. In order to make MATRIX versatile for extreme-
scale ensemble computing [46], we will add HPC support [47]
to MATRIX, so that MATRIX will be able to run HPC
ensemble of workloads. We plan to integrate MATRIX with
our SLURM++ project [46], which is a distributed job launch
prototype developed from SLURM and ZHT, to explore
different resource stealing techniques [48].

Another direction is to integrate scientific workflow
engines, such as Swift [49][55], with MATRIX to enable
running large-scale scientific applications. Swift will serve as
the high-level parallel programming language between the
applications and MATRIX. Instead of having Swift manage the
DAG, the DAG would be managed in a distributed way by
MATRIX. Furthermore, we will be working on extending the
centralized Hadoop scheduler [28] to be distributed through
MATRIX. We will extend MATRIX to support the scheduling
of the MapReduce styled data-intensive workloads [50][54].
We will utilize distributed file systems, such as FusionFS [51]
and HDFS [27], to help MATRIX manage data in a distributed,
scalable, and reliable way.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of
Energy contract DE-FC02-06ER25750, and in part by the
National Science Foundation (NSF) under awards CNS-
1042537 and CNS-1042543 (PRObE, http://www.nmc-
probe.org/). This work was also in collaboration with the
FusionFS project supported by the NSF grant NSF-1054974.

REFERENCES

[1] I. Raicu, I. Foster, Y. Zhao. “Many-Task Computing for Grids and
Supercomputers”, Invited Paper, IEEE MTAGS 2008.

[2] V. Sarkar, S. Amarasinghe, et al. “ExaScale Software Study: Software
Challenges in Extreme Scale Systems”, ExaScale Computing Study,
DARPA IPTO, 2009.

[3] X. Besseron and T. Gautier. “Impact of Over-Decomposition on
Coordinated Checkpoint/Rollback Protocol”, Euro-Par 2011: Parallel
Processing Workshops, Lecture Notes in Computer Science Volume
7156, 2012, pp 322-332.

[4] D. Zhao, D. Zhang, K. Wang, I. Raicu. “Exploring reliability of exascale
systems through simulations.” ACM HPC 2013.

[5] M. A. Jette, A. B. Yoo, M. Grondona. “SLURM: Simple Linux utility
for resource management.” Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP) 2003.

[6] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in
Practice: The Condor Experience” Concurrency and Computation:
Practice and Experience 17 (2-4), pp. 323-356, 2005.

[7] W. Gentzsch, et. al. “Sun Grid Engine: Towards Creating a Compute
Power Grid,” 1st International Symposium on Cluster Computing and
the Grid, 2001.

[8] Cobalt: http://trac.mcs.anl.gov/projects/cobalt, 2014.
[9] I. Raicu, Y. Zhao et al. “Falkon: A Fast and Light-weight tasK

executiON Framework,” IEEE/ACM SC 2007.
[10] I. Raicu. “Many-Task Computing: Bridging the Gap between High

Throughput Computing and High Performance Computing”, ISBN: 978-
3-639-15614-0, VDM Verlag Dr. Muller Publisher, 2009.

[11] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B.
Clifford. “Toward Loosely Coupled Programming on Petascale
Systems”, IEEE/ACM Supercomputing 2008.

[12] M. H. Willebeek-LeMair, A. P. Reeves. “Strategies for dynamic load
balancing on highly parallel computers,” In IEEE Transactions on
Parallel and Distributed Systems, volume 4, September 1993.

[13] R. D. Blumofe and C. E. Leiserson. “Scheduling multithreaded
computations by work stealing”, Symposium on Foundations of
Computer Science 1994.

[14] K. Wang, A. Rajendran, K. Brandstatter, Z. Zhang, I. Raicu. “Paving the
Road to Exascale with Many-Task Computing”, Doctoral Showcase,
IEEE/ACM Supercomputing/SC 2012.

[15] K. Wang, K. Brandstatter, I. Raicu. “SimMatrix: Simulator for MAny-
Task computing execution fabRIc at eXascales,” ACM HPC 2013.

[16] K. Wang, J. Munuera, I. Raicu, H. Jin. “Centralized and Distributed Job
Scheduling System Simulation at Exascale.” Tech Report, IIT, 2011.

[17] A. S. Szalay et al. “GrayWulf: Scalable Clustered Architecture for Data-
Intensive Computing”, Proceedings of the 42nd Hawaii International
Conference on System Sciences, Hawaii, 5 to 8 January 2009, paper no.
720; available as Microsoft Tech Report MSR-TR-2008-187 at
http://research.microsoft.com/apps/pubs/default.aspx?id=79429.

[18] J. D. Ullman. “NP-complete scheduling problems”, Journal of Computer
and System Sciences, Volume 10 Issue 3, June, 1975, Pages 384-393.

[19] Gibson, G., Grider, G., Jacobson, A. and Lloyd, W. “PRObE: A
thousand-node experimental cluster for computer systems research.”
Usenix ;login: 38, 3 (2013).

[20] D. Chase, Y. Lev. “Dynamic circular work-stealing deque”, Proceedings
of the seventeenth annual ACM symposium on Parallelism in algorithms
and architectures (SPAA’05), 2005, pp 21 – 28.

[21] T. Li, X. Zhou, et al. “ZHT: A Light-weight Reliable Persistent
Dynamic Scalable Zero-hop Distributed Hash Table”, IPDPS, 2013.

[22] K. Wang, A. Rajendran, I. Raicu. “MATRIX: MAny-Task computing
execution fabRIc at eXascale,” tech report, IIT, 2013.

[23] K. Wang, A. Kulkarni, M. Lang, D. Arnold, I. Raicu. “Using Simulation
to Explore Distributed Key-Value Stores for Extreme-Scale Systems
Services,” IEEE/ACM Supercomputing/SC 2013.

[24] K. Wang, A. Kulkami, M. Lang, I. Raicu. “Exploring Design Tradeoffs
for Exascale System Services through Simulation.” Tech Report, Los
Alamos National Laboratory, 2013.

[25] J. Dinan, D. B. Larkins. “Scalable work stealing”, IEEE/ACM SC 2009.
[26] V. G. Cerf, R. E. Kahn. “A Protocol for Packet Network

Intercommunication,” IEEE Transactions on Communications 22 (5):
637–648, May 1974.

[27] K. Shvachko, H. Huang, S. Radia, R. Chansler. “The hadoop distributed
file system”, in: 26th IEEE (MSST2010) Symposium on Massive
Storage Systems and Technologies, May, 2010.

[28] A. Bialecki, et al. “Hadoop: A Framework for Running Applications on
Large Clusters Built of Commodity Hardware”,
http://lucene.apache.org/hadoop/, 2005.

[29] Google. “Google Protocol Buffers,” available at
http://code.google.com/apis/protocolbuffers/, 2014.

[30] I. Raicu, Y. Zhao, et al. “Accelerating Large-scale Data Exploration
through Data Diffusion”, International Workshop on Data-Aware
Distributed Computing 2008, co-locate with ACM/IEEE HPDC 2008.

[31] Christopher Moretti, Hoang Bui, Karen Hollingsworth, Brandon Rich,
Patrick Flynn, and Douglas Thain. 2010. All-Pairs: An Abstraction for

Data-Intensive Computing on Campus Grids. IEEE Trans. Parallel
Distrib. Syst. 21, 1 (January 2010), 33-46.

[32] I. Raicu, I. Foster, et al. “The Quest for Scalable Support of Data
Intensive Workloads in Distributed Systems”, ACM HPDC 2009.

[33] G. Zhang, E. Meneses, A. Bhatele, and L. V. Kale. “Hierarchical Load
Balancing for Charm++ Applications on Large Supercomputers”,
Conference on Parallel Processing Workshops, ICPPW10, 2010.

[34] K. Wang, Z. Ma, I. Raicu. “Modeling Many-Task Computing
Workloads on a Petaflop IBM Blue Gene/P Supercomputer.” IEEE 27th
International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW) 2013.

[35] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica. “Sparrow: distributed,
low latency scheduling”, Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP’13, pp. 69-84.

[36] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R.
Katz, S. Shenker, and I. Stoica. “Mesos: A PlatformFor Fine-Grained
Resource Sharing in the Data Center”, NSDI 2011.

[37] M. Isard, V. Prabhakaran, et al. “Quincy: fair scheduling for distributed
computing clusters”, Proceedings of the ACM Symposium on Operating
Systems Principles, SOSP’09, pp. 261-276.

[38] M. Isard, M. Budiu, et al. “Dryad: Distributed data-parallel programs
from sequential building blocks”, In Proc. Eurosys, March 2007.

[39] I. Sadooghi, S. Palur, et al. “Achieving Efficient Distributed Scheduling
with Message Queues in the Cloud for Many-Task Computing and
High-Performance Computing”, CCGRID, 2014.

[40] Amazon Simple Queue Service. Avaible online:
http://aws.amazon.com/documentation/sqs/. 2014.

[41] G. DeCandia, D. Hastorun, M. Jampani, et al. “Dynamo: Amazon’s
highly available key-value store”, ACM SOSP, 2007.

[42] Y. Guo, J. Zhao, V. Cave, V. Sarkar. “SLAW: a scalable locality-aware
adaptive work-stealing scheduler for multi-core systems”, Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2010.

[43] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first
scheduling policies for async-finish task parallelism,” IPDPS, 2009.

[44] J. Paudel, O. Tardieu and J. Amaral. “On the merits of distributed work-
stealing on selective locality-aware tasks”, ICPP, 2013.

[45] P. Charles, C. Grothoff, et al. “X10: An Object-oriented Approach to
Non-uniform Cluster Computing,” ACM Conference on Object-oriented
Programming Systems Languages and Applications(OOPSLA), 2005.

[46] K. Wang, X. Zhou, et al. “Next Generation Job Management Systems
for Extreme-Scale Ensemble Computinig”, ACM HPDC 2014.

[47] K. Ramamurthy, K. Wang, I. Raicu. “Exploring Distributed HPC
Scheduling in MATRIX”. Tech Report, IIT, 2013.

[48] X. Zhou, H. Chen, K. Wang, M. Lang, I. Raicu. “Exploring Distributed
Resource Allocation Techniques in the SLURM Job Management
System.” Tech Report, IIT, 2013.

[49] Y. Zhao, M. Hategan, et al. “Swift: Fast, Reliable, Loosely Coupled
Parallel Computation,” IEEE Workshop on Scientific Workflows 2007.

[50] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”, OSDI'04, CA, December, 2004.

[51] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R.
Ross, and I. Raicu. “FusionFS: Towards Supporting Data-Intensive
Scientific Applications on Extreme-Scale High-Performance Computing
Systems.” IEEE BigData, 2014.

[52] T. Li, R. Verma, X. Duan, H. Jin, and I. Raicu. “Exploring Distributed
Hash Tables in High-End Computing”, ACM Performance Evaluation
Review (PER), 2011.

[53] S. Krieder and I. Raicu. “Towards the Support for Many-Task
Computing on Many-Core Computing Platforms”, Doctoral Showcase,
IEEE/ACM Supercomputing/SC 2012.

[54] H. Jin, X. Yang, X. Sun and I. Raicu. “ADAPT: Availability-aware
MapReduce Data Placement in Non-Dedicated Distributed Computing
Environment”, IEEE International Conference on Distributed
Computing Systems (ICDCS) 2012.

[55] M. Wilde, I. Raicu et al. “Extreme-scale scripting: Opportunities for
large task-parallel applications on petascale computers”, Poster
Presentation, Scientific Discovery through Advanced Computing
Conference (SciDAC09) 2009.

[56] I. Raicu, I. Foster, A. Szalay and G. Turcu. “AstroPortal: A Science
Gateway for Large-scale Astronomy Data Analysis,” TeraGrid
Conference 2006, June 2006.

