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Abstract—State-of-the-art, yet decades-old, architecture of
high-performance computing systems has its compute and storage
resources separated. It thus is limited for modern data-intensive
scientific applications because every I/O needs to be transferred
via the network between the compute and storage resources.
In this paper we propose an architecture that hss a distributed
storage layer local to the compute nodes. This layer is responsible
for most of the I/O operations and saves extreme amounts of data
movement between compute and storage resources. We have de-
signed and implemented a system prototype of this architecture—
which we call the FusionFS distributed file system—to support
metadata-intensive and write-intensive operations, both of which
are critical to the I/O performance of scientific applications.
FusionFS has been deployed and evaluated on up to 16K compute
nodes of an IBM Blue Gene/P supercomputer, showing more
than an order of magnitude performance improvement over other
popular file systems such as GPFS, PVFS, and HDFS.

I. INTRODUCTION

The conventional architecture of high-performance com-
puting (HPC) systems separates the compute and storage
resources into two parts, compute nodes and storage nodes,
which are interconnected by a shared network infrastructure.
This architecture results mainly from the nature of many
legacy large-scale scientific applications that are compute
intensive, where it is often assumed that the storage I/O
capabilities are lightly utilized for the initial data input, some
periodic checkpoints, and the final output. In the era of big
data, however, scientific applications such as astronomy [1] are
becoming more and more data-intensive, requiring a greater
degree of support from the storage subsystem [2]. Our previous
simulation work [3, 4] demonstrated that the current HPC
storage architecture would not scale to the emerging exascale
computing systems (1018 ops/s).

While recent studies [5, 6] have addressed the I/O bottleneck
in the conventional architecture of HPC systems, the work
presented here is orthogonal to those studies in that we propose
a new storage architecture that colocates the storage and
compute resources. The ideas in this paper build on prior
work [7] presented at the 2012 Supercomputing conference
as a poster. In particular, we envision a distributed storage

system on compute nodes enabling applications to manip-
ulate their intermediate results and checkpoints, rather than
transferring data over the network. Colocation of storage and
computation has been widely leveraged in data centers (e.g.,
Hadoop clusters). Nevertheless, such an approach has not
been implemented in HPC systems despite its having attracted
considerable research interest recently; see, for example, the
DEEP-ER [8] project funded by the European Union. We
demonstrate here how to architect and engineer such a system,
and we report how much, quantitatively, it could improve the
I/O performance of real-world scientific applications.

Arguably, colocating compute and storage could raise con-
cerns about jitters on compute nodes, since an application’s
computation and I/O share resources such as CPU and net-
work. We argue that the I/O-related cost can be offloaded
onto dedicated infrastructures that are decoupled from the
application’s acquired resources, as justified in [9]. In fact,
this resource-isolation strategy has been applied in production
systems: the IBM Blue Gene/Q supercomputer (Mira [10]), for
example, assigns one core of the chip (17 cores in total) for the
local operating system and the other 16 cores for applications.

Distributed storage has been extensively studied in data
centers (e.g., the popular distributed file system HDFS [11]);
yet little literature exists on building a distributed storage
system particularly for HPC systems, whose design principles
are much different from data centers. HPC nodes are highly
customized and tightly coupled with a high-throughput and
low-latency network (e.g., InfiniBand), whereas data centers
typically have commodity servers and inexpensive networks
(e.g., Ethernet). Therefore, storage systems designed for data
centers are not optimized for the HPC machines; indeed, as
we will discuss in more detail in Section V, HDFS shows
poor performance on a typical HPC machine. In particular,
we observe that the following challenges are unique to a
distributed file system on HPC compute nodes, related to both
metadata-intensive and write-intensive workloads.

First, the storage system on HPC compute nodes needs to
support intensive metadata operations. Many scientific appli-



cations create a large number of small- to medium-sized files:
for example, Welch and Noer [12] reported that 25%–90% of
all the 600 million files from 65 Panasas [13] installations are
64 KB or smaller. Thus the I/O performance is highly throttled
by the metadata rate, besides the data itself. Data centers,
however, are not optimized for this type of workload. Recall
that HDFS [11] splits a large file into a series of default 64
MB chunks (128 MB recommended in most cases) for parallel
processing. Thus, a small- or medium-sized file can benefit
little from this data parallelism. Moreover, the centralized
metadata server in HDFS is apparently not designed to handle
intensive metadata operations.

Second, file writes should be optimized for a distributed file
system on HPC compute nodes. The fault tolerance of most
of today’s large-scale HPC systems is achieved through some
form of checkpointing. In essence, the system periodically
flushes memory to external persistent storage and occasionally
loads the data back to memory in order to roll back to the most
recent correct checkpoint after a failure. Hence, file writes
typically outnumber file reads in terms of both frequency
and size in HPC systems, and improving the write perfor-
mance will significantly reduce the overall I/O cost. The fault
tolerance of data centers, however, is achieved not through
checkpointing its memory states but through recomputing
affected data chunks that are replicated on multiple nodes.

To overcome these challenges, we have designed and imple-
mented FusionFS to disperse its metadata to all the available
compute nodes, in order to achieve the maximal concurrency
of metadata operations. Every client of FusionFS optimizes
write operations with local writes (whenever possible), an
approach that reduces network traffic and makes the aggregate
I/O throughput highly scalable. We expect FusionFS to coexist
with the remote parallel file system (e.g., GPFS [14]) rather
than to replace the latter, because the compute nodes of current
HPC systems are tightly coupled and are not viable to provide
on-board storage as large as the remote parallel file systems.

FusionFS has been deployed on up to 16K compute nodes
of an IBM Blue Gene/P supercomputer (Intrepid [15]) and
heavily accessed by a variety of benchmarks and applications.
We observed more than an order of magnitude improvement
to the I/O performance when using FusionFS compared with
other popular file systems such as GPFS [14], PVFS [16], and
HDFS [11], surpassing 2.5 TB/s aggregate I/O throughput on
16K nodes. In addition, FusionFS has been serving as the
infrastructure or test bed of a few related projects such as
virtual-chunk-based file compression [17, 18].

In summary, this paper makes the following contributions:

• Proposal of an unprecedented storage architecture for
extreme-scale HPC systems to address the I/O bottleneck
of modern data-intensive scientific applications

• Design and implementation of the FusionFS filesystem to
support metadata- and write-intensive workloads

• Evaluation of FusionFS with benchmarks and applica-
tions at extreme scales, and demonstration of its superi-
ority over state-of-the-art solutions

II. DESIGN OVERVIEW

As shown in Figure 1, FusionFS is a user-level file system
that runs on the compute resource infrastructure and enables
every compute node to actively participate in both the metadata
and data movement. The client (or application) is able to ac-
cess the global namespace of the file system with a distributed
metadata service. Metadata and data are completely decoupled:
the metadata on a particular compute node does not necessarily
describe the data residing on the same compute node. The
decoupling of metadata and data allows different strategies to
be applied to metadata and data management, respectively.

Figure 1. FusionFS deployment in a typical HPC system

FusionFS supports both the POSIX interface and a user
library. The POSIX interface is implemented with the FUSE
framework [19], so that legacy applications can run directly
on FusionFS without modifications. Just like other user-level
file systems (e.g., PVFS [16]), FusionFS can be deployed as
a mount point in a UNIX-like system. The mount point is a
virtual root directory to the clients when using FusionFS.

Users need to specify three arguments when deploying
FusionFS as a POSIX-compliant mount point on a compute
node: the scratch directory in which to store the metadata
and data, the mount point of the remote parallel file system
(e.g., Lustrue [20], GPFS [14], PVFS [16]), and the mount
point of FusionFS in which applications manipulate files. The
remote parallel file system needs to be integral to the global
namespace because it is necessary to accommodate large files
that cannot fit in FusionFS.

FUSE has been criticized for its performance overhead. Na-
tive UNIX-like file systems (e.g., Ext4) have only two context
switches between the user space and the kernel. In contrast, for
a FUSE-based file system, context needs to be switched four
times: two switches between the caller and VFS and another
two between the FUSE user library (libfuse) and the FUSE
kernel module (/dev/fuse). A detailed comparison between
FUSE-enabled and native file systems [21] shows that a Java
implementation of a FUSE-based file system introduces about
60% overhead compared with the native file system. However,
in the context of C/C++ implementation with multithreading



on memory-level storage, which is a typical setup in HPC
systems, the overhead is much lower. In prior work [22],
we reported that FUSE could deliver as high as 578 MB/s
throughput, 85% of the raw bandwidth.

To avoid the performance overhead from FUSE, FusionFS
also provides a user library for applications to directly interact
with their files. These APIs look similar to those of POSIX,
for example ffs_open(), ffs_close(), ffs_read(), and ffs_write().
The downside of this approach is the lack of POSIX support,
indicating that the application might not be portable to other
file systems and often needs some modifications and recom-
pilation.

III. METADATA MANAGEMENT

In this section we discuss the design and implementation of
the distributed metadata management in FusionFS.

A. Namespace

Clients have a coherent view of all the files in FusionFS,
whether the file is stored in the local node or in a remote
node. This global namespace is maintained by a distributed
hash table (DHT [23, 24]), which disperses partial metadata
on each compute node and has served as the infrastructure for
a few other systems such as data provenance [25, 26] and key-
value stores [27]. As shown in Figure 2, in this example Node
1 and Node 2 physically store only two subgraphs (the top
left and top right portion of the figure) of the entire metadata
graph. The client could interact with the DHT to inquire any
file on any node, as shown in the bottom portion of the
figure. Because the global namespace is just a logical view
for clients and does not physically exist in any data structure,
the global namespace need not need be aggregated or flushed
when changes occur to the subgraph on local compute nodes.
The changes to the local metadata storage will be exposed to
the global namespace when the client queries the DHT.

Figure 2. Metadata in the local nodes and the global namespace

B. Data Structures

FusionFS has different data structures for managing regular
files and directories. For a regular file, the field addr stores
the node where this file resides. For a directory, the field
filelist records all the entries under this directory. This filelist
field is particularly useful for providing in-memory speed for
directory read, for example, “ls /mnt/fusionfs.” Nevertheless,
both regular files and directories share some common fields,
such as timestamps and permissions, which are commonly
found in traditional i-nodes.

To make matters more concrete, we show in Figure 3
the distributed hash table according to the example metadata
shown in Figure 2. Here, the DHT is only a logical view of the
aggregation of multiple partial metadata on local nodes (in this
case, Node 1 and Node 2). Five entries (three directories, two
regular files) are stored in the DHT, with their file names as
keys. The value is a list of properties delimited by semicolons.
For example, the first and second portions of the values are
permission flag and file size, respectively. The third portion for
a directory value is a list of its entries delimited by commas,
while for regular files it is just the physical location of the
file, for example, the IP address of the node on which the
file is stored. Upon a client request, this value structure is
serialized by Google Protocol Buffers [28] before sending
over the network to the metadata server, which is just another
compute node. Similarly, when the metadata blob is received
by a node, we deserialize the blob back into the C structure
with Google Protocol Buffers.

Figure 3. Global namespace abstracted by key-value pairs in a DHT

The metadata and data on a local node are completely de-
coupled: a regular file’s location is independent of its metadata
location. This flexibility allows us to apply different strategies
to metadata and data management, respectively. Moreover, the
separation between metadata and data has the potential to plug
in alternative components to metadata or data management,
making the system more modular.

As Figure 2 shows, the index.html metadata is stored on
Node 2, and the cv.pdf metadata is on Node 1. However,
index.html can reside on Node 1, and cv.pdf can reside
on Node 2, as shown in Figure 3. Besides the conventional
metadata information for regular files, the value has a special



flag indicating whether this file is being written. Any client
who requests to write a file needs to set this flag before
opening the file; the client will not reset it until the file
is closed. The atomic compare-swap operation supported by
DHT [23] guarantees the consistency for concurrent writes.

Another challenge facing the metadata implementation is
large-directory performance issues. In particular, when a large
number of clients write many small files on the same directory
concurrently, the value of this directory in the key-value
pair gets incredibly long and responds extremely slowly. The
reason is that a client needs to update the entire old long
string with the new one, even though the majority of the
old string is unchanged. To fix that issue, we implemented
an atomic append operation that asynchronously appends the
incremental change to the value. This approach is similar to
Google File System [29], where files are immutable and can
only be appended. This gives us excellent concurrent metadata
modification in large directories, at the expense of potentially
slower directory metadata read operations.

C. Network Protocols

We encapsulate several network protocols in an abstraction
layer. Users can specify which protocol to be applied in
their deployments. Currently, we support three protocols: TCP,
UDP, and MPI. Since we expect a high network concurrency
on metadata servers, epoll [30] is used instead of multithread-
ing. The side effect of epoll is that the received message
packets are not kept in the same order as on the sender. To
address this, we added a header [message_id, packet_id] to the
message at the sender, and the message is restored by sorting
the packet_id for each message at the recipient. This procedure
is done efficiently by a sorted map with message_id as the key,
mapping to a sorted set of the message’s packets.

D. Persistence

The objective of the proposed distributed metadata ar-
chitecture is to improve performance. Thus, any metadata
manipulation from clients should occur in memory, plus some
network transfer if needed. On the other hand, persistence is
required for metadata in case of any memory errors or system
restarts.

The persistence of metadata is achieved by periodically
flushing the in-memory metadata onto the local persistent
storage. In some sense, the process is similar to the incremental
checkpointing mechanism. This asynchronous flushing helps
sustain the high performance of the in-memory metadata
operations.

E. Consistency

Since each primary metadata copy has replicas, the next
question is how to make them consistent. Traditionally, two
semantics are used to keep replicas consistent: (1) strong
consistency – blocking until replicas are finished with updating
and (2) weak consistency – returning immediately when the
primary copy is updated. The tradeoff between performance

and consistency is tricky, most likely depending on the work-
load characteristics.

As for a system design without any a priori information
on the particular workload, we compromise with both sides:
assuming the replicas are ordered by some criteria (e.g., last
modification time), the first replica shows strong consistency
with the primary copy, and the other replicas are updated
asynchronously. With this approach, the metadata shows strong
consistency (in the average case) while the overhead is kept
relatively low.

IV. FILE MANIPULATION

In this section we discuss the protocols for manipulating
files in FusionFS.

A. Network Transfer

For file transfer, neither UDP nor TCP is ideal for FusionFS
on HPC compute nodes. UDP is a highly efficient protocol
but lacks reliability support. TCP, on the other hand, supports
reliable transfer of packets but adds significant overhead.

We therefore have developed our own data transfer service
Fusion Data Transfer (FDT) on top of UDP-based Data Trans-
fer (UDT) [31]. UDT is a reliable UDP-based application-
level data transport protocol for distributed data-intensive
applications. UDT adds its own reliability and congestion
control on top of UDP that offers a higher speed than does
TCP.

B. File Open

Figure 4 shows the protocol when opening a file in Fu-
sionFS. Because of limited space, we assume here that the
requested file is also on Node-j. Note that it is not necessarily
Node-j that stores both the requested file and its metadata;
as we explained in Section III-B, the metadata and data are
decoupled on compute nodes.

Figure 4. Protocol of file open in FusionFS

In step 1, the application on Node-i issues a POSIX fopen()
call that is caught by the implementation in the FUSE user-
level interface (i.e., libfuse) for file open. Steps 2–5 retrieve the
file location from the metadata service that is implemented by
a distributed hash table [23]. The location information might



be stored in another machine Node-j, so this procedure could
involve a round trip of messages between Node-i and Node-j.
Then Node-i needs to ping Node-j to fetch the file in steps
6–7. Step 8 triggers the system call to open the transferred
file. Step 9 returns the file handle to the application.

C. File Write

Before writing to a file, the process checks whether the
file is being accessed by another process, as discussed in
Section III-B. If so, an error number is returned to the caller.
Otherwise the process can do one of the following: (1) if the
file is originally stored on a remote node, the file is transferred
to the local node in the fopen() procedure, after which the
process writes to the local copy; or (2) if the file to be written
is right on the local node, or it is a new file, then the process
starts writing the file just like a system call.

The aggregate write throughput is optimal because file
writes are associated with local I/O throughput and avoid the
following two types of cost: (1) determining to which node
the data will be written, normally accomplished by pinging
the metadata nodes or some monitoring services, and (2)
transferring the data to a remote node. The downside of this
file write strategy is the poor control on the load balance of
compute node storage. This issue could be addressed by an
asynchronous rebalance procedure running in the background
or by a load-aware task scheduler that steals tasks from the
active nodes to the more idle ones.

When the process finishes writing to a file that is originally
stored in another node, FusionFS does not send the newly
modified file back to its original node. Instead, the metadata of
this file is updated. This approach saves the cost of transferring
the file data over the network.

D. File Read

Unlike file write, it is impossible to arbitrarily control
where the requested data reside for file read. The location
of the requested data is highly dependent on the I/O pattern.
However, we could determine which node the job is exe-
cuted on by the distributed workflow system, for example,
Swift [32, 33]. That is, when a job on node A needs to
read some data on node B, we reschedule the job on node
B. The overhead of rescheduling the job is typically smaller
than transferring the data over the network, especially for data-
intensive applications. In our previous work [34], we detailed
this approach and justified it with theoretical analysis and
experiments on benchmarks and real applications.

Indeed, remote readings are not always avoidable for some
I/O patterns. For example, in merge sort, the data needs to
be joined together, and shifting the job cannot avoid the
aggregation. In such cases, we need to transfer the requested
data from the remote node to the requesting node. The
data movement across compute nodes within FusionFS is
conducted by the FDT service discussed in Section IV-A. FDT
service is deployed on each compute node and keeps listening
to the incoming fetch and send requests.

E. File Close

Figure 5 shows the protocol when closing a file in FusionFS.
In steps 1–3 the application on Node-i closes and flushes the
file to the local disk. If this is a read-only operation before the
file is closed, then libfuse only needs to signal the caller (i.e.,
the application) in step 10. If this file has been modified, then
its metadata needs to be updated in steps 4–7. Moreover, the
replicas of this file also need to be updated in steps 8–9.

Figure 5. Protocol of file close in FusionFS

Again, as in Figure 4, the replica is not necessarily stored
on the same node of its metadata (Node-j). To save space here,
we show just its remote replica on Node-j.

V. EVALUATION

While we indeed compare FusionFS with some open-source
systems such as PVFS [16] (in Figure 7) and HDFS [11] (in
Figure 11), our top mission is to evaluate its performance
improvement over the production file system of today’s fastest
systems. If we look at today’s top 10 supercomputers [35], 4
systems are IBM Blue Gene/Q systems that run GPFS [14]
as the default file system. Therefore, most large-scale experi-
ments reported in this paper were carried out on Intrepid [15],
a 40K-node IBM Blue Gene/P supercomputer whose default
file system is also GPFS. Each Intrepid compute node has quad
core 850 MHz PowerPC 450 processors and runs a lightweight
Linux ZeptoOS [36] with 2 GB memory. A 7.6 PB GPFS [14]
parallel file system is deployed on 128 storage nodes. When
FusionFS is evaluated as a POSIX-compliant file system, each
compute node gets access to a local storage mount point with
174 MB/s throughput on par with today’s high-end hard drives.
It points to the ramdisk and is throttled by a single-threaded
FUSE layer. The network protocols for metadata management
and file manipulation are TCP and FDT, respectively.

All experiments were repeated at least five times until results
became stable (within 5% margin of error). The reported
numbers are the average of all runs. Caching effects are
carefully precluded by reading a file larger than the on-board
memory before the measurement.



A. Metadata Rate

We expect that the metadata performance of FusionFS
should be significantly higher than that of the remote GPFS
on Intrepid because FusionFS manipulates metadata in a
completely distributed manner on compute nodes whereas
GPFS has a limited number of clients on I/O nodes (every 64
compute nodes share one I/O node in GPFS). To quantitatively
study the improvement, we have both FusionFS and GPFS
create 10K empty files from each client on its own directory on
Intrepid. That is, at the 1024-node scale, we create 10M files
over 1,024 directories. We could have let all clients write on
the same directory, but this workload would not take advantage
of the multiple I/O nodes of GPFS. That is, we want to
optimize GPFS’s performance when comparing it with that
of FusionFS.

As shown in Figure 6, at the 1024-node scale, FusionFS
delivers a metadata rate nearly two orders of magnitude higher
than that of GPFS. FusionFS shows excellent scalability, with
no sign of slowdown up to 1,024 nodes. The gap between
GPFS and FusionFS metadata performance would continue to
grow, since eight nodes are enough to saturate the metadata
servers of GPFS.

Figure 6. Metadata performance of FusionFS and GPFS on Intrepid (many
directories)

One might overlook FusionFS’s novel metadata design and
state that GPFS is slower than FusionFS simply because GPFS
has fewer metadata servers (128) and fewer I/O nodes (1:64).
We emphasize, however, that FusionFS was designed for this
very purpose: to maximize the metadata concurrency without
adding new resources to the system.

To really answer the question “What if a parallel file system
has the same number of metadata servers as does FusionFS?”,
we installed PVFS [16] on Intrepid compute nodes with the
1-1-1 mapping between clients, metadata servers, and data
servers, just as it is in FusionFS. We did not deploy GPFS on
compute nodes because it is a proprietary system and PVFS is
open source. The results are shown in Figure 7. Both FusionFS
and PVFS turn on the POSIX interface with FUSE. Each
client creates 10K empty files on the same directory to push
more pressure on both systems’ metadata service. FusionFS
outperforms PVFS even for a single client, thus illustrating that
the metadata optimization for the big directory (i.e., update →
append) on FusionFS is highly effective. Moreover, FusionFS

again shows linear scalability. On the other hand, PVFS is
saturated at 32 nodes, suggesting that more metadata servers
in parallel file systems do not necessarily improve the ability
to handle higher concurrency.

Figure 7. Metadata performance of FusionFS and PVFS on Intrepid (single
directory)

B. I/O Throughput

As with the metadata, we expect a significant improvement
in the I/O throughput from FusionFS. Figure 8 shows the ag-
gregate write throughput of FusionFS and GPFS on up to 1,024
nodes of Intrepid. FusionFS shows almost linear scalability
across all scales. GPFS scales at a 64-node step because every
64 compute nodes share one I/O node. Nevertheless, GPFS is
still orders of magnitude slower than FusionFS at all scales.

Figure 8. Write throughput of FusionFS and GPFS on Intrepid

Figure 9 shows the scalability of FusionFS at extreme
scales. The experiment was carried out on Intrepid on up
to 16K nodes each of which has a FusionFS mount point.
FusionFS throughput shows almost linear scalability: doubling
the number of nodes yields doubled throughput. Specifically,
we observe stable 2.5 TB/s throughput (peak 2.64 TB/s) on
16K nodes.

The main reason that FusionFS data write is faster is that
the compute node writes only to its local storage. This is not
true for data read, however: it is possible that one node needs



Figure 9. FusionFS scalability on Intrepid

to transfer some remote data to its local disk. Thus, we are
interested in two extreme scenarios—all-local read and all-
remote read—that define the lower and upper bounds of read
throughput. We measured FusionFS for both cases on 256
nodes of Intrepid, where each compute node reads a file of
different sizes from 1 MB to 256 MB. For the all-local case
(e.g., where a data-aware scheduler can schedule tasks close
to the data), all the files are read from the local nodes. For
the all-remote case (e.g., where the scheduler is unaware of
the data locality), every file is read from the next node in a
round-robin fashion. This I/O pattern is unlikely in real-world
applications but serves well as a workload for an all-remote
request.

Figure 10 shows that FusionFS all-local read outperforms
GPFS by more than one order of magnitude, as we have seen
for data write. The all-remote read throughput of FusionFS
is also significantly higher than GPFS, even though not as
considerable as the all-local case. The reason all-remote reads
still outperform GPFS is, again, FusionFS’s main concept of
colocating computation and data on the compute nodes: the
bisection bandwidth across the compute nodes (e.g., 3D torus)
is higher than the interconnect between the compute nodes and
the storage nodes (e.g., Ethernet fat-tree).

Figure 10. Read throughput of FusionFS and GPFS on Intrepid

In practice, the read throughput is somewhere between

the two bounds, depending on the access pattern of the
application and whether there is a data-aware scheduler to
optimize the task placement. FusionFS exposes this much-
needed data locality (via the metadata service) in order
for parallel programming systems (e.g., Swift [33]) and job
scheduling systems (e.g., Falkon [37]) to implement the data-
aware scheduling. Note that Falkon has already implemented
a data-aware scheduler for the “data diffusion” storage sys-
tem [37], a precursor to the FusionFS project that lacked
distributed metadata management, hierarchical directory-based
namespace, and POSIX support. One potential improvement
to FusionFS’s read throughput lies in better algorithms for
predicting future I/O patterns; we plan to explore this direction
with incremental algorithms such as [38–40].

One might argue that FusionFS outperforms GPFS mainly
because FusionFS is a distributed file system on compute
nodes and the bandwidth is higher than the network be-
tween the compute nodes and the storage nodes. Again, we
emphasize that FusionFS was designed specifically to take
advantage of the fast interconnects across the compute nodes.
Nevertheless, we note that FusionFS’s unique I/O strategy
also plays a critical role in reaching the high and scalable
throughput, as discussed in Section IV-C. Thus one might more
fairly compare FusionFS with other distributed file systems
in the same hardware, architecture, and configuration. To this
end, we deployed FusionFS and HDFS [11] on the Kodiak [41]
cluster. We chose the Kodiak because Intrepid does not support
Java (required by HDFS).

Kodiak is a 1024-node cluster at Los Alamos National
Laboratory. Each Kodiak node has an AMD Opteron 252 CPU
(2.6 GHz), 4 GB RAM, and two 7200 rpm 1 TB hard drives.
In this experiment, each client of FusionFS and HDFS writes
1 GB data to the file system. Both file systems set replica to
1 in order to achieve the highest possible performance, and
both turn off the FUSE interface.

Figure 11 shows that the aggregate throughput of FusionFS
outperforms HDFS by about an order of magnitude. FusionFS
shows excellent scalability, whereas HDFS starts to taper off at
256 nodes, mainly because of the weak write locality as data
chunks (64 MB) need to be scattered out to multiple remote
nodes.

Figure 11. Throughput of FusionFS and HDFS on Kodiak

Clearly, FusionFS is not intended to compete with HDFS



(a) PlasmaPhysics (b) Turbulence (c) AstroPhysics

Figure 12. Top three write-intensive applications on Intrepid

but to target the scientific applications on HPC machines that
HDFS was not originally designed for or even suitable for.
Thus we had to restrict our design to fit the typical HPC
machine specification: a massive number of homogeneous and
less-powerful cores with limited per-core RAM. And, for a fair
comparison, we had to deploy HDFS on the same hardware,
which may or may not be an ideal or optimized testbed for
HDFS.

C. Applications
We are interested in, quantitatively, how FusionFS helps

reduce the I/O cost for real applications. To this end, we eval-
uated four scientific applications using FusionFS on Intrepid.
The performance was compared mainly with Intrepid’s default
storage, the GPFS [14] parallel file system.

For the first three applications, we replayed the top three
write-intensive applications on Intrepid [15] in December
2011 [5] on FusionFS: PlasmaPhysics, Turbulence, and As-
troPhysics. While the PlasmaPhysics makes significant use of
unique file(s) per node, the other two write to shared files.
FusionFS is a file-level distributed file system, so Plasma-
Physics is a good example to benefit from FusionFS. However,
FusionFS does not provide good N-to-1 write support for
Turbulence and AstroPhysics. To make FusionFS’s results
comparable with those of GPFS for Turbulence and Astro-
Physics, we modified both workloads to write to unique files
as the exclusive chunks of the share file. Because of limited
space, only the first five hours of these applications running
on GPFS are considered here.

Figure 12 shows the real-time I/O throughput of these
workloads at 1,024 nodes. On FusionFS, these workloads are
completed in 2.38, 4.97, and 3.08 hours for PlasmaPhysics,
Turbulence, and AstroPhysics, respectively. Recall that all
these workloads are completed in 5 hours in GPFS.

We note that for both the PlasmaPhysics and AstroPhysics
applications, the peak I/O rates for GPFS top at around 2 GB/s,
whereas for FusionFS they reach over 100 GB/s. This increase
in I/O performance accelerates the applications 2.1X times
(PlasmaPhysics) and 1.6X times (AstroPhysics). The reason
Turbulence does not benefit much from FusionFS is that this
application does not have many consecutive I/O operations
and GPFS is sufficient for such workload patterns: the heavy

interleaving of I/O and computation does not push much I/O
pressure to the storage system.

The fourth application, Basic Local Alignment Search Tool
(BLAST), is a popular bioinformatics application to bench-
mark parallel and distributed systems. BLAST searches one
or more nucleotide or protein sequences against a sequence
database and calculates the similarities. It has been imple-
mented with different parallelized frameworks, for example,
ParallelBLAST [42]. In ParallelBLAST, the entire database
(4 GB) is split into smaller chunks on different nodes. Each
node then formats its chunk into an encoded slice and searches
protein sequence against the slice. All the search results are
merged together into the final matching result.

We compared ParallelBLAST performance on FusionFS
and GPFS with our AME (Any-scale MTC Engine) frame-
work [43]. We carried out a weak-scaling experiment of
ParallelBLAST with 4 GB database on every 64 nodes and
increased the database size proportionally to the number of
nodes. The application has three stages (formatdb, blastp, and
merge), which produce an overall data I/O of 541 GB over
16,192 files for every 64 nodes. In our experiment of 1024-
node scale, the total I/O is about 9 TB applied to over 250,000
files.

Figure 13. BLAST execution time on Intrepid

Figure 13 shows a huge (more than one order of magnitude)
performance gap between FusionFS and GPFS at all scales



except for the trivial 1-node case. FusionFS has up to 32X
speedup (at 512 nodes), and an average of 23X improvement
between 64 nodes and 1,024 nodes. At the 1-node scale, the
GPFS kernel module is more effective in accessing an idle
parallel file system. In FusionFS’s case, the 1-node scale result
involves the user-level FUSE module, which apparently causes
BLAST to run 1.4X slower on FusionFS. However, beyond
the corner case of 1 node, FusionFS significantly outperforms
GPFS. In particular, the 1024-node BLAST requires 1,073
seconds to complete all three stages on FusionFS, whereas
it needs 32,440 seconds to complete the same workload on
GPFS.

VI. RELATED WORK

Researchers have produced many shared and parallel file
systems, such as the Network File System (NFS [44]), General
Purpose File System (GPFS [14]), Parallel Virtual File System
(PVFS [16]), Lustre[20], and Panasas[13]. These systems
assume that storage nodes are significantly fewer than the
compute nodes and that compute resources are agnostic of the
data locality on the underlying storage system, thus resulting
in an unbalanced architecture for data-intensive workloads.

Various distributed file systems have been developed, such
as Google File System (GFS [29]), Hadoop File System
(HDFS [11]), Ceph [45], and Sector [46]. However, many
of these file systems are tightly coupled with execution
frameworks (e.g., MapReduce [47]), with the result that
scientific applications not using these frameworks must be
modified to use these non-POSIX file systems. Moreover,
those that do offer a POSIX interface are not designed for
metadata-intensive operations at extreme scales. The majority
of these systems do not expose the data locality information
for general computational frameworks (e.g., batch schedulers,
workflow systems) to harness the data locality through data-
aware scheduling. In short, these distributed file systems are
not designed specifically for HPC and scientific computing
workloads and the scales anticipated by HPC in the coming
years.

The idea of distributed metadata can be traced back to
xFS [48], even though a central manager is needed in order to
locate a particular file. Recently, FDS [49] was proposed as a
blob store on data centers. It maintains a lightweight metadata
server and offloads the metadata to available nodes in a dis-
tributed manner. In contrast, FusionFS metadata is completely
distributed without any single-point-of-failure involved.

Colocation of compute and storage resources has attracted
considerable research interest. For instance, Salus [50] pro-
poses to colocate the storage to data nodes in data centers.
Other examples include Rhea [51], which prevents removing
the data used by the computation, and Nectar [52], which
automatically manages data and computation in data centers.
While these systems apply a general rule to deal with data
I/O, FusionFS is optimized for write-intensive workloads that
are particularly important for HPC systems.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a distributed storage layer on com-
pute nodes to tackle the HPC I/O bottleneck of scientific
applications. We identify the challenges this unprecedented
architecture brings, and we build a distributed file system
FusionFS to tackle them. In particular, FusionFS is crafted
to support extremely intensive metadata operations and is
optimized for file writes. Extreme-scale evaluation on up to
16K nodes demonstrates FusionFS’s superiority over other
popular storage systems for scientific applications.

We plan to explore the feasibility of integrating memory-
centric middleware (e.g., Tachyon [53]) for cooperative
caching [54]. We also plan to investigate better support for
emerging workloads in HPC applications such as many-task
computing [55].
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