
Scalable State Management for

Scientific Applications in the Cloud
Tonglin Li1, Ioan Raicu1,2, Lavanya Ramakrishnan3
tli13@hawk.iit.edu, iraicu@cs.iit.edu, lramakrishnan@lbl.gov

1
Computer Science Department,

Illinois Institute of Technology, Chicago, IL, USA

2
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

3
Advanced Computing for Science,

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

ABSTRACT

The data generated by scientific simulations and

experimental facilities is beginning to revolutionize the

infrastructure support needed by these applications. The on-

demand aspect and flexibility of cloud computing

environments makes it an attractive platform for data-

intensive scientific applications. However, cloud

computing poses unique challenges for these applications.

For example, cloud computing environments are

heterogeneous, dynamic and non-persistent which can

make reproducibility a challenge. The volume, velocity,

variety, veracity and value of data combined with the

characteristics of cloud environment make it important to

track the state of execution data and application’s entire

lifetime information to understand and ensure

reproducibility. This paper proposes and implements a state

management system (FRIEDA-State) for high-throughput

and data-intensive scientific applications running in cloud

environments. Our design addresses the challenges of state

management in cloud environments and offers various

configurations. Our implementation is built on top of

FRIEDA (Flexible Robust Intelligent Elastic Data

Management), a data management and execution

framework for cloud environments. Our experiment results

on two cloud test beds (FutureGrid and Amazon) show that

the proposed solution has a minimal overhead

(1.2ms/operation at a scale of 64 virtual machines) and is

suitable for state management in cloud environments.

Categories and Subject Descriptors

D.0 [Software]: General; H.4 [Information Systems

Applications]: Miscellaneous; H.2 [Database

Management]: Miscellaneous.

General Terms

Management, Measurement, Performance, Design,

Experimentation

Keywords

Data management, state management, provenance, cloud

computing, scientific computing

I. INTRODUCTION

Data analysis is central to next-generation scientific

discoveries. Cloud is as an emerging platform and

increasingly attractive to scientists due to its flexibility and

convenience. But cloud environments are typically

transient. Virtual machine instances are terminated after

applications complete execution. Users cannot leave data

and/or revisit the resource setup to diagnose discrepancies.

In the cloud environment, users have the responsibility to

capture everything before the virtual machines are

shutdown.

Big data scientific applications need to track every step

of the scientific process, data access and environment for

lineage, reconstruction, validity and reproducibility

purposes. It is important to know the environment in which

the applications run (e.g., floating point operations could

give different results on different machines). Users might

also wish to "rerun" some (e.g., only what failed) or all of

the tasks.

Provenance tools have tracked workflow and data

lineage at various levels (e.g., operating system [21], file

systems[2], databases[3], cloud storage [4] and workflow

tools ([5][6][7][8][9][10][11]). Many monitoring tools

([12][13][14]) have been developed to monitor real-time

system changes. These systems provide methods to collect,

aggregate, and query monitoring data. However, this data is

often insufficient for reproduction since they do not capture

human knowledge. Furthermore, state management in

cloud environments needs to tackle additional challenges

due to its characteristics. First, the transient nature of the

environments makes it important to capture metadata and

state at various levels. Second, the performance and

reliability characteristics of virtual machines is important to

consider in the design of the collection system. Finally,

different clock drifting rates on physical machines make it

hard to have a unified time view for the end-user to rebuild

meaningful semantics.

In this paper, we propose FRIEDA-State, a state

management system for cloud environments. We use the

term state to represent the metadata from both execution

framework and applications. FRIEDA-State addresses the

transient nature, performance concerns and clock drifting

issue in its design. FRIEDA-State is currently implemented

atop of FRIEDA [15], a data management and execution

framework for cloud environments, which supports a high-

throughput and data-intensive scientific applications,. We

present a key-value based collection system to manage state

in dynamic transient environments. We design and

implement a vector clock based event-ordering mechanism

to address the clock drifting issue,

 FRIEDA-State collects static and dynamic state data.

Static state data is the information that doesn’t change

mailto:tli13@hawk.iit.edu
mailto:iraicu@cs.iit.edu
mailto:lramakrishnan@lbl.gov

when the system is running (e.g., CPU/Memory info,

environment variables and software stack information).

Dynamic state data, on the other hand, changes during

application running, such as the information on details of

the input file that is processed, the time taken for a machine

to finish execution or failure of jobs.

 Specifically, the contributions of our work are:

 Design and implementation of FRIEDA-State, a state

management system for scientific applications running

in cloud environments, with lightweight capturing,

efficient storage and vector clock-based event ordering

 Evaluation on multiple platforms (FutureGrid and

Amazon EC2) at scales of up to 64 VMs; results show

good efficiency with minimal overhead

(1.2ms/operation at 64-node scales)

II. Background

In this section, we describe the background required to

understand the design considerations in FRIEDA-State.

A. Use cases

Scientific applications need to track their scientific

process for a number of reasons including a) real-time

monitoring b) tracking data lineage c) validation of results

d) reconstruction or repeating some or all of the

experiments and, e) reproducibility of research results.

Users might want to track their configuration and

environment settings and repeat some or all of the

experiment or validate a certain result (e.g., floating point).

The state information might also be used for post-execution

analysis. For example, the users might like to query job

statistics and understand why some jobs took longer than

others. Users might want to rerun the same experiment

and/or run the same experiment with slightly different

parameters.

B. Challenges

Next, we discuss the challenges on state collection,

storage, and event synchronization.

State collection and storage: State information is

generated on each of VMs and multiple VMs are part of an

application execution. High capture latency may degrade

the application performance. Thus, scalable collection of

data is important in the design of FRIEDA-State.

Information aggregation and appropriate storage

mechanisms are also important and different solutions

might have different trade-offs. Centralized storage system

(e.g., databases) could result in concurrent read/write

bottlenecks and be the source of single-point failures.

Distributed solutions often suffer from high operation

latency and often require extra dedicated hardware.

Event Synchronization: Cloud environments are dynamic.

Virtual machines may not run on the same physical

machines. This implies that the physical time clocks may

not run at exactly the same speed because of the slight

difference between crystal oscillators on different machines

thus result in drifting [16]. With different drifting rates, at

the end of a long run, the base-time gap between each

virtual machine could be big. The drifting issue is serious

in large-scale distributed systems and is even more serious

due to transient nature of clouds. Synchronized bootstrap

time clocks may not be guaranteed in distributed cloud

environments. It is important that the events/states captured

on the machines is unified for the end-user to build

meaningful semantics.

C. FRIEDA framework

Our state management system is built on top of

FRIEDA[15]. FRIEDA is a Flexible Robust Intelligent

Elastic Data Management framework. FRIEDA manages

the lifecycle of data that includes storage planning and

provisioning, data placement and application execution of

scientific applications in cloud environments.

FRIEDA enables users to plug-in flexible data

management strategies for different application patterns by

separating data control from execution. FRIEDA supports a

Master-Worker execution model. There are three major

components in FRIEDA architecture, namely controller,

master and workers. The controller takes charge of

environment setup and configurations for data management

and application execution. The master is responsible for

managing application execution and data distribution. The

workers accept data and computation jobs from the master

and execute them locally. After all workers finish their

jobs, the framework will collect output data from all nodes.

State management system collects information from the

resource provisioning and execution phases.

III. System Design and Implementation

Figure 1 shows the system architecture of the state

management system (FRIEDA-State). FRIEDA-State has a

collection component in each of the main FRIEDA actors –

the controller, master and worker. FRIEDA-State works in

two phases: capturing and storage. It allows multiple

storage solutions to be plugged into the framework to meet

different usage needs. The runtime state capture component

collects two types of state: static and dynamic. The static

states are collected mainly from a configuration YAML

file, which is used in FRIEDA to configure the virtual

machines (e.g. it defines the roles and the setups of the

master and workers). The YAML file is populated in the

state management system from the controller node once the

experiment starts. The remaining static information (e.g.

system information) is collected from the worker virtual

machines directly. Dynamic states are captured from the

FRIEDA framework through built-in functions. Once

captured, states are encapsulated in key-value pairs and

pushed to one of three storage solutions that is selected by

the user. FRIEDA-State currently supports raw files,

Cassandra or DynamoDB (on Amazon Web Services).

Figure 1. FRIEDA-State system architecture. Capturing is the first layer. State collector captures static states from two source, configuration YAML file

and system information. Dynamic states are captured from FRIEDA-State functions, which are called in FRIEDA framework. Captured states are

encapsulated into the form of key-value pairs and pushed to one of three storage solutions as selected by the user.

A. State Description

Each state in our system has the following fields. The

state name is used as the key and the rest are used as

values. Examples are provided in Table 1 and Table 2.

State name: This is used to represent the type of event.

State information: This field captures the state content.

Role: This field captures the source of the event or the role

of the host (i.e., master or worker),

Hostname/IP: This captures the identity of the host where

the state was collected.

Logical timestamp: We set a field for logical time for

ordering the events captured from distributed nodes. The

logical timestamps is used as a part of vector clock. (More

details in Section III.F)

Local timestamp: The local timestamp is also captured

that indicates the time when the event is captured on a local

host and be used to order events within a virtual machine.

B. Static state capture

Static state represents the data that will not change

during application execution. In FRIEDA, most of the static

states are covered in a configuration YAML file. The

YAML file includes platform name, image ID, instance

type, authentication information, application details. The

YAML file allows users to setup environment, software

installation and the application running details. The YAML

file is loaded into memory and stored as structured data

items and then dumped into a data store or state file as a

record. Other static states, such as hardware info

(CPUINFO/MEMINFO), software stack information and so

on are captured when the virtual machines are launched.

Table 1 shows several examples of the static states captured

on a FRIEDA controller node.

Table 1. Example of captured static states. The item “meta” stores serialized configuration the YAML file. The cpuinfo and ENV are collected from the
virtual machines directly.

Table 2. Example of captured dynamic states. The item Master logical clock presents the reference vector clock value sent from master node. Note that the

three states have the same master clock value, because they all happened after a master message sent to the worker and before another one received.

State name State information Role Hostname/IP
Local logical

clock
Master logical

clock
Local timestamp

connectionMade to_10.35.23.19 worker server-5ef1ae8e 1376459408044136 1376459408108778 2013-10-14 05:50:08.044155

Processing_start
__FILE_METADATA__

20111110_112213_TI1_AFTER_478.tif
worker server-5ef1ae8e 1376459408046341 1376459408108778 2013-10-14 05:50:08.046360

Processing_end
__FILE_METADATA__

20111110_112213_TI1_AFTER_478.tif
worker server-5ef1ae8e 1376459410394276 1376459408108778 2013-10-14 05:50:10.394558

State

name
State information Role Hostname/IP

Local

timestamp

meta
{"actions": {"worker_data_directories": {"params": {"user": "root", "data_dirs": ["/data", "/data/output"]

}, "template": "/N/u/pmantha//FRIEDA//resources/templates/data.pp.tpl"}, "master_data_directories": {"

….
controller server-9c735efe

2013-10-14

05:50:06.966210

cpuinfo
'processor\t: 0\nvendor_id\t: GenuineIntel\ncpu family\t: 6\nmodel\t\t: 2\nmodel name\t: Intel Core 2 Duo

P9xxx …
controller server-9c735efe

2013-10-14

05:50:07.002920

ENV
OS_INSTANCE_TYPE=m1.small\nMASTER_PRIVATE_IP=10.35.23.19\nINPUT_DATA_DIR=/data/

input\nWORKER_IDS=i-000009a2 i-000009a3\nMAIL=/var/mail/root\nSSH_CLIENT=192.168.11.1
controller server-9c735efe

2013-10-14

05:50:07.028955

C. Dynamic state capture

Dynamic state information represents the data that

changes during the run-time of applications. For example,

the identification of input files processed by a worker and

the duration of the execution are captured by FRIEDA-

State. We capture two types of information a)

communication events and b) application execution details.

Table 2 shows examples of the dynamic states captured on

a FRIEDA worker node.

All communication events, such as connection made

(and to which machine), data received (and from where),

etc., are captured. These events not only describe the

communication itself, but also carry vector clock

information for later event reordering (section III.F).

Application execution and data flow details include the

commands executed on each worker, I/O operations and

application execution time etc. This can be used to track

the application execution and to analyze run-time

problems.

D. State Storage

The essence of state management is to capture data in

distributed environment and store for future queries. For

designing such a scalable system with low latency, the

major concern is storage architecture. The state operation

latency must be very low to prevent degradation of the

application performance. Scalability is also important since

the storage system could be a bottleneck when serving

many clients for writing and/or query. FRIEDA-State

currently supports three storage options: files, Cassandra

data store and DynamoDB (on Amazon). This allows users

and applications to select the right storage while accounting

for the tradeoffs for their needs.

Files: This mode uses files for capturing state. Captured

states are first written to files, which are later aggregated

from all machines at the end of execution. Files as a storage

mechanism provides some advantages over key-value

stores and databases. First, simple memory-file operation is

significantly faster than single node key-value stores, due

to the fact that memory-file operation executes sequential

writes while key-value stores execute writes randomly

(hash table or B-Tree). Second, file-based mechanisms do

not require any additional services and hence does not add

any overheads on the nodes. Third, merging files are

simple and fast since the files are already naturally ordered

due to sequential writes on each node. Therefore sorting the

state files has a linear time complexity. Files are not good

to query on, but they are easy to manipulate and archive.

We capture states from all FRIEDA components on

VMs and store them in an in-memory cache before being

flushed to disks. The cache size is customizable to address

the tradeoffs between robustness and performance. If

application fails, the states can still be found on those VMs

since they are flushed to disk. For even better durability, it

can write to a distributed file system or a block store that

can survive beyond the life of the virtual machine, based on

the configuration. Finally all states files are copied to a

target machine for merging. If application fails, states are

still saved within the FRIEDA-State framework. But if

VMs or FRIEDA fails during execution, users might lose

unsaved states.

Cassandra: We include Cassandra as one of the storage

solutions [17], as it provides rich features for managing

semi-structured data. It is easy to plug-in other NoSQL

databases in FRIEDA-State. Users control the number of

Cassandra instances according to their performance and

capacity needs. Cassandra could share the virtual machines

with the application or run on a separate cluster. Key-value

stores are known to work well when deployed on dedicated

machines. Practically, users can use a private cluster to host

the Cassandra cluster. They can also setup a dedicated

virtual cluster on cloud to serve the requests. In this case,

users will need to periodically move state data to a more

permanent storage.

DynamoDB: The third storage solution is based on

DynamoDB, a NoSQL database available on Amazon Web

Services. With this type of cloud databases services, users

don’t have to deploy a software stack to run and configure

those data stores, but have to pay extra money for the

service.

E. Storage architectures

FRIEDA-State supports multiple storage architectures:

centralized, distributed and local storage. This sub-section

will describe each of these architectures in detail.

Centralized Storage Solution: In our current

implementation, centralized solution is based on a single

node key-value store or database. When all nodes in the

system generate states, collecting and storing can result in a

storage bottleneck. Depending on the application type, the

rate of state generation can be different. If the data

generated is minimal and at a low rate, centralized storage

solution will work perfectly in practice. An important

advantage of centralized solution is that all events can be

naturally ordered as they arrive at the storage server and

assigned a timestamp based on server’s local time. The

solution naturally provides persistence of the state data

beyond the lifetime of the virtual machines.

Distributed storage solution: Similar to centralized

solution, FRIEDA-State support distributed storage

solution through NoSQL databases (e.g., Cassandra). High

write concurrency is a big challenge for all types of storage

systems. Distributed storage solutions, such as distributed

databases, key-value stores can serve large amounts of

write requests and spread them to many nodes to achieve

scalable performance and load balancing[18][19]. In this

type of solution, a group of dedicated data storage servers

will be started prior to application execution. States

generated on any node in the system will be written

remotely to the data store. The latency of this operation

depends on the data store solution and could be up to a few

milliseconds [18]. To deploy data stores on all the nodes

that will generate states will not help much on

performance, because running the data stores consumes

extra CPU and memory resources, and messages still need

to be sent between all VMs over the network.

Figure 2. Event reordering example. Three machines have their local clock and maintain a vector clock. Each event will increase the local clock value; each

received message will update other’s clock value in their local vector. The master’s clock is used to maintain the time order when reordering the events.

Sorting by master clock M value, all the events are divided into 5 groups. Just sort the groups will order all the event

Local storage solution: We implemented this solution

based on traditional files. Local storage eliminates network

latency (the major part of operation latency).. Considering

the data collected is likely to be queried after an application

run, offline storage solutions are reasonable. Writing to

local disk/memory is extremely fast compared to remote

access and no extra resources are consumed by data store

programs on VMs. The hard part of using local storage is

aggregating data from many VMs and to merge into a form

that offers a single query interface. File-based solution is

not perfect though. If users want to query the states during

the system running, extracting the desired records is

complicated and slow.

F. Event reordering

Distributed event ordering is an important topic in

large-scale distributed system design. The goal is to keep a

global logical order of events based on timestamps. In

FRIEDA-State, we use modified vector clock[20] to

maintain time order. FRIEDA-State uses 1-to-n

communication pattern since communication only happens

between master and workers. We use the master node clock

as major clock and all workers logically synchronize to it

using vector clock. By comparing attached master clock

value in communication messages, we can tell which event

happened earlier. If the master clock reads are same, then

these events occurred in the same machine. It is trivial to

order events within one machine by sorting the local

timestamps. When using file-based storage solutions,

events are sequentially written to files and thus are

naturally ordered. Each state record has two fields for

vector clock: one for local clock, another for master clock.

Events on master node have same values for both clocks.

In the beginning, all logical clocks are set to be 0.

Once a new state is captured and stored, the corresponding

clock value is increased. The local clocks increase naturally

along with the events happening, and the master clock can

only be updated when a message is received that contains a

new master clock value. Workers’ states collection can be

divided into independent event groups by master clock

value. In each group, events are naturally ordered and do

not interleave with those in other groups. The possible

causal relation between different groups, if exist, is

determined by master clock. Thus, the problem of

reordering and merging different events is reduced to

sorting the event groups. Sorting groups is simple and has

the same time complexity as the merging phase in merge-

sort, namely O(n), where n is number of groups. For

example, in Figure 2, sorting by master clock M value, all

the events are divided into five groups. Each group presents

an atomic sequence in a machine. Since the inner events of

a group are naturally ordered, the reordering is efficient.

IV. Evaluation

In this section, we describe the performance of the

state management system, with different storage solutions.

A. Testbeds

 FutureGrid Sierra [21]: a research purpose public

cloud, experiments used up to 16 virtual machines.

 Amazon EC2 cloud [22]: up to 128 c1.medium virtual

machines, each has 2 virtual CPU, 5 elastic compute

units and 1.7GB memory.

 DataSys: an 8-core x64 server at IIT: dual Intel Xeon

quad-core w/ HT processors, 48 GB RAM. This

machine is used for experiment to study the merging

overhead (Section IV.E)

B. Scientific Workloads

We use two applications that are representatives of

scientific workloads using cloud environments: Image

Comparison and Event Processing. Image Comparison

compares an image with other images in the set to find

similarities. These applications are representative of typical

data processing scientific workflows.

C. Experiment Setup

We use the same workload for three storage solutions,

respectively based on files, Cassandra and DynamoDB. For

synthetic benchmarks, on each state client, we send 10K

requests in a tight loop to simulate an extremely operation-

intensive scenario. Each request consists of 20 bytes key

and 80 bytes value. Both key and value are randomly

generated.

File-based solution: For file-based solution, the key-value

pairs are saved to a local file on each client. Next, all these

files are copied to a shared NFS directory, located on a

dedicated VM where the files are merged. This is a simple

solution for demonstrating state aggregation. Apparently its

vulnerability to single point failures and the bottleneck can

be addressed by well-known techniques such as mirroring

or parallel file systems. We measure the time of writing to

files, moving files to NFS server and merging events. We

amortize the cost of file moving to state storage to get the

average equivalent latency per state.

Cassandra-based solution: We use 1 to 8 Cassandra

servers on dedicated VMs, and send requests from 1 to 128

state clients on VMs.

DynamoDB-based solution: DynamoDB is a service

provided by Amazon. The data servers don’t need to be

deployed on the VMs. The VMs only need to communicate

to the remote Amazon data stores and this has a minimal

performance impact on local VMs. We provision the

maximum available throughput for DynamoDB, which is

10K ops/sec. Up to 128 VMs on Amazon EC2 are used as

state clients to send requests.

D. Metrics

The metrics measured and reported are average latency

and throughput.

Average Latency: We consider the average latency as per

request to write a state to data stores, measured in

microseconds. Note that the latency includes the round trip

communication and storage access time. Measuring latency

for Cassandra and DynamoDB is straightforward, but file-

based solution needs more care. We use the formula below

to calculate the average equivalent latency tave for file-based

solution, where tw is the average file write latency, Tmoving

and Tmerging are the total time spent on moving and merging

respectively, n is the total number of operations.

tave = tw + (Tmoving + Tmerging)/n
Throughput: The number of operations the system can

handle over some period of time, measured in Operations

per seconds (Ops per second).

E. Synthetic benchmark

Capture overhead: We conduct micro benchmarks on

scales of up to 128 VMs. Note that the latency of file-based

state management includes amortized cost for file moving,

reordering and merging. Cassandra data stores crashed

frequently and cannot serve requests at a scale of 8 servers

with 128 clients. Similarly, DynamoDB’s maximal

throughput is reached at this scale and started to give

errors, thus we only show results at a scale of 64 clients.

Figure 3. File-based solution has lower average latency. Cassandra

performance decreases with the scale. DynomoDB latency doesn’t change

much with scale, but failed 128 clients test.

Figure 3 shows that file-based state solution has

significant advantage over other two capture methods.

When clients number increases, moving files to a single

server causes contention. But this cost gets amortized

across all requests. A single node Cassandra is saturated

with 8 clients. On larger scales, multiple servers show some

benefits but it is still limited, compared to the file based

approach. DynamoDB shows very stable performance

when facing different client request pressure before it is

saturated, but it’s at least three times slower than Cassandra

at most scales.

Figure 4. System throughput comparison. File-based solution obtains the

maximum aggregated performance increases with scale.

Similar to the latencies, file-based solution delivers

significantly higher throughput than other two. At 64

nodes, file-based solution achieves 52K ops/s, which is five

times faster than a dedicated eight nodes Cassandra cluster

and 18 times faster than DynamoDB based solution.

Events reordering and file merging overhead: On an 8-

core Xeon server, we generate up to 512 state files. Each

state file contains 10000 state records. Using a simple

single thread merging program, 4 files cost 16ms, and 512

files cost 8209 ms. This can be further improved with more

sophisticated merging algorithms in the future.

Figure 5. File merging time becomes longer with number of files.

File-based state management: We measured the time for

capturing state and writing to file, moving and merging

files respectively. We set an in-memory cache to boost the

disk write performance. As shown in Figure 6 a full-size

cache setting brings around 10% performance increase.
Since the state capturing on a local machine doesn’t

involve any contention, the latency is actually constant,

0

20000

1 2 4 8 16 32 64

La
te

n
cy

 in
 n

s

Client number

File: amortized latency 1 Cassandra server

2 Cassandra servers 4 Cassandra servers

8 Cassandra servers DynamoDB

0

10000

20000

30000

40000

50000

60000

1 2 4 8 16 32 64

A
gg

re
ga

te
d

 t
h

ro
u

gh
p

u
t

in
 o

p
s/

s

Client number

File-based capturing

1 Cassandra server

2 Cassandra servers

4 Cassandra servers

8 Cassandra servers

DynamoDB

1

10

100

1000

10000

4 8 16 32 64 128 256 512

M
er

gi
n

g
ti

m
e

in
 m

s

File number

Merging overhead

around 500us. Simultaneously moving a large number of

files can cause contention, either on network or disks. The

time spent on moving files keeps increasing even when the

time is amortized. Better methods to aggregate data will be

needed when running at larger scales. Merging overhead

increases as well, but still negligible compare to other two

overheads.

Figure 6. Left: File write operation scales well. Full-size cache brings

around 10% performance gains. Right: File-based storage write latency is
constant while merging time slightly increases. The amortized moving

time increases exponentially.

F. Scientific applications

With integrated state management system in FRIEDA,

we run two scientific applications (Image Comparison and

Event Processing) to evaluate the overall performance

impact of state collecting on real applications. Both

applications are evaluated on FutureGrid [21] system.

Figure 7. Image comparison and event processing performance

Although in synthetic benchmarks we observed huge

difference of performance among different storage

solutions, in application tests, we see no significant

difference (state-introduced overhead is less than 5%). This

is mainly because the micro benchmark tests execute

operations in a tight loop while real applications have

sparser and random patterns, so the total time spent on state

management is very low compared to the application

running time.

V. Related work

A. Provenance

Traditional data provenance represents the change

history of data objects. Previous works on data provenance

[23] have addressed different aspects, from operating

system [21] to file systems[2], from databases [3] to cloud

storage [4]. In our previous work [24], we have shown that

distributed key-value stores can boost performance. Karma

[7] provenance framework gives a set of tools for collecting

provenance from workflow and process. Milieu [25]

focuses on provenance collection for scientific experiments

in HPC systems.

B. Monitoring

Monitoring gives users a perspective that combines

resource utilization, cost efficiency and performance.

Previous work has focused on runtime model and attempt

to reach the balance between runtime overhead and

monitoring capability[13]. Earlier works include Ganglia

[14], a distributed monitoring system for clusters and grid

systems. FRIEDA-State is event-driven i.e., it does not

proactively go to fetch information, and hence is more

efficient.

C. Key-value stores

Key-value stores (or distributed hash tables) are widely

used as building blocks in many production systems, such

as Amazon shopping cart with Dynamo[26], Facebook with

Memcached [30]. Active key-value store projects include

Cassandra[28], ZHT [18][19], Riak [27] and CouchDB

[29]. This approach has many advantages, such as

simplified API, encapsulated communication methods, the

promise that to inherit desired features from key-value

stores such as load balance, fault tolerance and scalability.

D. Unsynchronized Time Clocks and Event Ordering

In large scale distributed systems, unsynchronized

clocks and drifting issue are inevitable. Based on different

time baselines, it’s hard to build meaningful semantics

from distributed events or logs without synchronization or

logical clock mechanisms.

Synchronization to a standard time source (atomic

clock or GPS clock) is simpler. Typical cases are Precision

Time Protocol [32] and NTP [33]. In recent projects,

Google Spanner [31] adopts similar way to offer a

synchronized clock to global scale databases and offers

5ms accuracy in global scales. Many works have been done

for distributed event ordering. Beside Lamport’s timestamp

[34], Vector Clock [20] is another popular approach in

today’s systems.

VI. Conclusion

Scientific applications are increasingly using cloud

environments and need a way to track the application’s

entire lifetime information both for monitoring and

ensuring reproducibility. We propose and implement a state

management system (FRIEDA-State) for a broad type of

scientific applications running in cloud environments.

FRIEDA-State has an innovative design that allows various

storage mechanisms to be plugged-in while providing

different trade-offs in durability, performance and usability.

In this paper, we discussed our implementations based

on files, Cassandra and DynamoDB respectively and

evaluated them on two cloud platforms. The evaluation

showed that FRIEDA–State has very low overhead even

when running at a scale of 64 virtual machines. File-based

storage solution offers significantly better performance than

key-value stores (e.g. Cassandra) on moderate scales.

Furthermore, in some conditions, file-based storage is

better than cloud databases services (e.g. DynamoDB) as

well, in terms of latency and aggregated throughput. The

major part of overhead of file-based storage solution is file

moving, when using a centralized data server. Further

scalability can be achieved with better merging algorithms

for file-based systems or deploying larger number of

NoSQL data nodes. We expect that as we increase scale

0

0.05

0.1

0.15

1000 10000 100000 1000000

A
ve

ra
ge

 la
te

n
cy

 in
 m

s

Operation number

Capturing state and store to local files

No cache
Full-size cache

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16 32 64 128

La
te

n
cy

 in
 u

s

Client number

Amortized merging

Amortized moving

File write atency

0

200

400

600

800

1000

1200

2 4 8 16

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Scale

Image comparison

No state

File-based

Cassandra-based

0

1000

2000

3000

4000

2 4 8 16

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Scale

Event processing
No state

File-based

Cassandra-based

into 100s and 1000s of VMs, that the centralized data

server will become a bottleneck, and distributed key-value

stores would begin to offer better performance.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of

Science, of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231. This work used the Future

Grid testbed funded by the National Science Foundation

under Grant No. 0910812. This work used Amazon AWS

resources and research grant. We would like to thank our

colleagues for their generous help, namely Pradeep

Mantha, Eugen Feller and Valerie Hendrix at Lawrence

Berkeley National Laboratory and Dongfang Zhao at

Illinois Institute of Technology.

REFERENCES

[1] Frew, J., M Etzger, D., Slaughter, P. Automatic capture and

reconstruction of computational provenance. Concurrency and
Computation: Practice and Experience 20 (April 2008), 485–496

[2] Muniswamy-Reddy, K.-K., H Olland, D. A., B Raun, U., Seltzer, M.

Provenance-aware storage systems. In Proceedings of the 2006
USENIX Annual Technical Conference

[3] Peter Buneman and Wang-Chiew Tan. 2007. Provenance in
databases. In Proceedings of the SIGMOD '07. ACM, New York,

NY, USA, 1171-1173

[4] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer.
2010. Provenance for the cloud. In Proceedings of FAST'10.

USENIX Association, Berkeley, CA, USA, 15-14.

[5] Yong Zhao, Mihael Hategan, Ben Clifford, Ian Foster, Gregor von
Laszewski, Ioan Raicu, Tiberiu Stef-Praun, Mike Wilde. "Swift:

Fast, Reliable, Loosely Coupled Parallel Computation", IEEE

Workshop on Scientific Workflows 2007
[6] Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, Varun

Ratnakar. Provenance Trails in the Wings/Pegasus Workflow

System. Concurrency and Computation: Practice and Experience,

Special Issue on the First Provenance Challenge, 2007

[7] Yogesh L. Simmhan, Beth Plale, Dennis Gannon, and Suresh Marru.

2006. Performance evaluation of the karma provenance framework
for scientific workflows. In Proceedings of IPAW'06, Luc Moreau

and Ian Foster (Eds.). Springer-Verlag, Berlin, Heidelberg, 222-236

[8] Ioan Raicu, Ian Foster. "Many-Task Computing: Bridging the Gap
between High Throughput Computing and High Performance

Computing", Computer Science Dept., University of Chicago,

Doctorate Dissertation, March 2009
[9] Y. Zhao, I. Raicu, S. Lu, X. Fei. "Opportunities and Challenges in

Running Scientific Workflows on the Cloud", IEEE CyberC 2011

[10] Michael Wilde, Ioan Raicu, Allan Espinosa, Zhao Zhang, Ben
Clifford, Mihael Hategan, Kamil Iskra, Pete Beckman, Ian Foster.

"Extreme-scale scripting: Opportunities for large task-parallel

applications on petascale computers", SciDAC 2009
[11] Ioan Raicu, Ian Foster, Yong Zhao, Alex Szalay, Philip Little,

Christopher M. Moretti, Amitabh Chaudhary, Douglas Thain.

"Towards Data Intensive Many-Task Computing", book chapter in
"Data Intensive Distributed Computing: Challenges and Solutions

for Large-Scale Information Management", IGI Global Publishers,

2009
[12] Jin Shao, Hao Wei, Qianxiang Wang, and Hong Mei. 2010. A

Runtime Model Based Monitoring Approach for Cloud.

In Proceedings of the 2010 IEEE 3rd International Conference on

Cloud Computing (CLOUD '10). IEEE Computer Society,

Washington, DC, USA, 313-320.
[13] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run- time

monitoring of instances and classes of web service com- positions,”

in Web Services, 2006. ICWS ’06. pp. 63 –71
[14] Matthew L Massie, Brent N Chun, David E Culler, The ganglia

distributed monitoring system: design, implementation, and

experience, Parallel Computing, Volume 30, Issue 7, July 2004,
Pages 817-840

[15] Devarshi Ghoshal and Lavanya Ramakrishnan. 2012. FRIEDA:

Flexible Robust Intelligent Elastic Data Management in Cloud
Environments. In Proceedings of SCC '12. IEEE Computer Society,

Washington, DC, USA, 1096-1105

[16] Rafail Ostrovsky and Boaz Patt-Shamir. 1999. Optimal and efficient
clock synchronization under drifting clocks. In PODC '99. ACM,

New York, NY, USA, 3-12

[17] Lavanya Ramakrishnan, Pradeep K. Mantha, Yushu Yao, Richard S.
Canon, "Evaluation of NoSQL and Array Databases for Scientific

Applications". DataCloud Workshop 2013

[18] Tonglin Li, Raman Verma, Xi Duan, Hui Jin, and Ioan Raicu. 2011.
Exploring distributed hash tables in HighEnd

computing. SIGMETRICS Perform. Eval. Rev. 39, 3 (December

2011), 128-130
[19] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke

Wang, Anupam Rajendran, Zhao Zhang, and Ioan Raicu. 2013.

ZHT: A Light-Weight Reliable Persistent Dynamic Scalable Zero-
Hop Distributed Hash Table. In Proceedings of IPDPS '13. IEEE

Computer Society, Washington, DC, USA, 775-787
[20] Mattern, F. (October 1988), "Virtual Time and Global States of

Distributed Systems", in Cosnard, M., Proc. Workshop on Parallel

and Distributed Algorithms: Elsevier, pp. 215–226
[21] FutureGrid https://portal.futuregrid.org/, 2014

[22] Amazon EC2 Cloud http://aws.amazon.com/ec2/, 2014

[23] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. 2005. A
survey of data provenance in e-science. SIGMOD Rec. 34, 3

(September 2005), 31-36. DOI=10.1145/1084805.1084812

[24] Dongfang Zhao, Chen Shou, Tanu Malik and Ioan Raicu. Distributed
data provenance for large-scale data-intensive computing. IEEE

CLUSTER '13

[25] You-Wei Cheah , Canon, R. , Plale, B. ; Ramakrishnan, L. Milieu:
Lightweight and Configurable Big Data Provenance for Science, Big

Data (BigData Congress), 2013
[26] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels.
“Dynamo: Amazon’s Highly Available Key-Value Store.” SIGOPS
Operating Systems Review, 2007

[27] Riak, http://docs.basho.com/riak/latest/, 2013
[28] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a

decentralized structured storage system. SIGOPS Oper. Syst.
Rev. 44, 2 (April 2010), 35-40

[29] CouchDB, http://couchdb.apache.org/, 2014

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski.
2013. Scaling Memcache at Facebook. In nsdi'13, USENIX

Association, Berkeley, CA, USA, 385-398
[31] James C. Corbett, Jeffrey Dean, Michael Epstein, etc. 2012. Spanner:

Google's globally-distributed database. In proceeding of OSDI'12.

USENIX Association, Berkeley, CA, USA, 251-264
[32] Precision Time Protocol, http://www.ieee1588.com/, 2014

[33] David L. Mills (12 December 2010). Computer Network Time

Synchronization: The Network Time Protocol. Taylor & Francis

[34] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM 21, 7 (July 1978), 558-565

http://www.cs.iit.edu/~iraicu/research/publications/2007_SWF07_Swift.pdf
http://www.cs.iit.edu/~iraicu/research/publications/2007_SWF07_Swift.pdf
http://pegasus.isi.edu/publications/CCPE07-Provenance.pdf
http://pegasus.isi.edu/publications/CCPE07-Provenance.pdf
https://portal.futuregrid.org/
http://aws.amazon.com/ec2/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.You-Wei%20Cheah.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Canon,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Plale,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ramakrishnan,%20L..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596172
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596172
http://docs.basho.com/riak/latest/
http://couchdb.apache.org/
http://www.ieee1588.com/

