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ABSTRACT 

The data generated by scientific simulations and 

experimental facilities is beginning to revolutionize the 

infrastructure support needed by these applications. The on-

demand aspect and flexibility of cloud computing 

environments makes it an attractive platform for data-

intensive scientific applications. However, cloud 

computing poses unique challenges for these applications. 

For example, cloud computing environments are 

heterogeneous, dynamic and non-persistent which can 

make reproducibility a challenge. The volume, velocity, 

variety, veracity and value of data combined with the 

characteristics of cloud environment make it important to 

track the state of execution data and application’s entire 

lifetime information to understand and ensure 

reproducibility. This paper proposes and implements a state 

management system (FRIEDA-State) for high-throughput 

and data-intensive scientific applications running in cloud 

environments. Our design addresses the challenges of state 

management in cloud environments and offers various 

configurations. Our implementation is built on top of 

FRIEDA (Flexible Robust Intelligent Elastic Data 

Management), a data management and execution 

framework for cloud environments. Our experiment results 

on two cloud test beds (FutureGrid and Amazon) show that 

the proposed solution has a minimal overhead 

(1.2ms/operation at a scale of 64 virtual machines) and is 

suitable for state management in cloud environments.  

Categories and Subject Descriptors 

D.0 [Software]: General; H.4 [Information Systems 

Applications]: Miscellaneous; H.2 [Database 

Management]: Miscellaneous.  

General Terms 

Management, Measurement, Performance, Design, 

Experimentation 

Keywords 

Data management, state management, provenance, cloud 

computing, scientific computing 

I. INTRODUCTION 

Data analysis is central to next-generation scientific 

discoveries. Cloud is as an emerging platform and 

increasingly attractive to scientists due to its flexibility and 

convenience. But cloud environments are typically 

transient. Virtual machine instances are terminated after 

applications complete execution. Users cannot leave data 

and/or revisit the resource setup to diagnose discrepancies. 

In the cloud environment, users have the responsibility to 

capture everything before the virtual machines are 

shutdown.  

Big data scientific applications need to track every step 

of the scientific process, data access and environment for 

lineage, reconstruction, validity and reproducibility 

purposes. It is important to know the environment in which 

the applications run (e.g., floating point operations could 

give different results on different machines). Users might 

also wish to "rerun" some (e.g., only what failed) or all of 

the tasks.  

Provenance tools have tracked workflow and data 

lineage at various levels (e.g., operating system [21], file 

systems[2], databases[3], cloud storage [4] and workflow 

tools ([5][6][7][8][9][10][11]). Many monitoring tools 

([12][13][14]) have been developed to monitor real-time 

system changes. These systems provide methods to collect, 

aggregate, and query monitoring data. However, this data is 

often insufficient for reproduction since they do not capture 

human knowledge. Furthermore, state management in 

cloud environments needs to tackle additional challenges 

due to its characteristics. First, the transient nature of the 

environments makes it important to capture metadata and 

state at various levels. Second, the performance and 

reliability characteristics of virtual machines is important to 

consider in the design of the collection system. Finally, 

different clock drifting rates on physical machines make it 

hard to have a unified time view for the end-user to rebuild 

meaningful semantics.  

In this paper, we propose FRIEDA-State, a state 

management system for cloud environments. We use the 

term state to represent the metadata from both execution 

framework and applications. FRIEDA-State addresses the 

transient nature, performance concerns and clock drifting 

issue in its design. FRIEDA-State is currently implemented 

atop of FRIEDA [15], a data management and execution 

framework for cloud environments, which supports a high-

throughput and data-intensive scientific applications,. We 

present a key-value based collection system to manage state 

in dynamic transient environments. We design and 

implement a vector clock based event-ordering mechanism 

to address the clock drifting issue,  

 FRIEDA-State collects static and dynamic state data. 

Static state data is the information that doesn’t change 
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when the system is running (e.g., CPU/Memory info, 

environment variables and software stack information). 

Dynamic state data, on the other hand, changes during 

application running, such as the information on details of 

the input file that is processed, the time taken for a machine 

to finish execution or failure of jobs.  

 Specifically, the contributions of our work are: 

 Design and implementation of FRIEDA-State, a state 

management system for scientific applications running 

in cloud environments, with lightweight capturing, 

efficient storage and vector clock-based event ordering  

 Evaluation on multiple platforms (FutureGrid and 

Amazon EC2) at scales of up to 64 VMs; results show 

good efficiency with minimal overhead 

(1.2ms/operation at 64-node scales) 

II. Background 

In this section, we describe the background required to 

understand the design considerations in FRIEDA-State.  

A. Use cases 

Scientific applications need to track their scientific 

process for a number of reasons including a) real-time 

monitoring b) tracking data lineage c) validation of results 

d) reconstruction or repeating some or all of the 

experiments and, e) reproducibility of research results. 

Users might want to track their configuration and 

environment settings and repeat some or all of the 

experiment or validate a certain result (e.g., floating point). 

The state information might also be used for post-execution 

analysis.  For example, the users might like to query job 

statistics and understand why some jobs took longer than 

others. Users might want to rerun the same experiment 

and/or run the same experiment with slightly different 

parameters. 

B. Challenges 

Next, we discuss the challenges on state collection, 

storage, and event synchronization.  

State collection and storage: State information is 

generated on each of VMs and multiple VMs are part of an 

application execution. High capture latency may degrade 

the application performance. Thus, scalable collection of 

data is important in the design of FRIEDA-State. 

Information aggregation and appropriate storage 

mechanisms are also important and different solutions 

might have different trade-offs. Centralized storage system 

(e.g., databases) could result in concurrent read/write 

bottlenecks and be the source of single-point failures. 

Distributed solutions often suffer from high operation 

latency and often require extra dedicated hardware.  

Event Synchronization: Cloud environments are dynamic. 

Virtual machines may not run on the same physical 

machines. This implies that the physical time clocks may 

not run at exactly the same speed because of the slight 

difference between crystal oscillators on different machines 

thus result in drifting [16]. With different drifting rates, at 

the end of a long run, the base-time gap between each 

virtual machine could be big. The drifting issue is serious 

in large-scale distributed systems and is even more serious 

due to transient nature of clouds. Synchronized bootstrap 

time clocks may not be guaranteed in distributed cloud 

environments. It is important that the events/states captured 

on the machines is unified for the end-user to build 

meaningful semantics.  

C. FRIEDA framework 

Our state management system is built on top of 

FRIEDA[15]. FRIEDA is a Flexible Robust Intelligent 

Elastic Data Management framework. FRIEDA manages 

the lifecycle of data that includes storage planning and 

provisioning, data placement and application execution of 

scientific applications in cloud environments. 

FRIEDA enables users to plug-in flexible data 

management strategies for different application patterns by 

separating data control from execution. FRIEDA supports a 

Master-Worker execution model. There are three major 

components in FRIEDA architecture, namely controller, 

master and workers. The controller takes charge of 

environment setup and configurations for data management 

and application execution. The master is responsible for 

managing application execution and data distribution.  The 

workers accept data and computation jobs from the master 

and execute them locally. After all workers finish their 

jobs, the framework will collect output data from all nodes. 

State management system collects information from the 

resource provisioning and execution phases.  

III. System Design and Implementation 

Figure 1 shows the system architecture of the state 

management system (FRIEDA-State). FRIEDA-State has a 

collection component in each of the main FRIEDA actors – 

the controller, master and worker. FRIEDA-State works in 

two phases: capturing and storage. It allows multiple 

storage solutions to be plugged into the framework to meet 

different usage needs. The runtime state capture component 

collects two types of state: static and dynamic. The static 

states are collected mainly from a configuration YAML 

file, which is used in FRIEDA to configure the virtual 

machines (e.g. it defines the roles and the setups of the 

master and workers). The YAML file is populated in the 

state management system from the controller node once the 

experiment starts. The remaining static information (e.g. 

system information) is collected from the worker virtual 

machines directly. Dynamic states are captured from the 

FRIEDA framework through built-in functions. Once 

captured, states are encapsulated in key-value pairs and 

pushed to one of three storage solutions that is selected by 

the user. FRIEDA-State currently supports raw files, 

Cassandra or DynamoDB (on Amazon Web Services). 



 
Figure 1.  FRIEDA-State system architecture. Capturing is the first layer. State collector captures static states from two source, configuration YAML file 

and system information. Dynamic states are captured from FRIEDA-State functions, which are called in FRIEDA framework. Captured states are 

encapsulated into the form of key-value pairs and pushed to one of three storage solutions as selected by the user. 

A. State Description  

Each state in our system has the following fields. The 

state name is used as the key and the rest are used as 

values. Examples are provided in Table 1 and Table 2. 

State name:  This is used to represent the type of event. 

State information: This field captures the state content. 

Role: This field captures the source of the event or the role 

of the host (i.e., master or worker),  

Hostname/IP: This captures the identity of the host where 

the state was collected.  

Logical timestamp: We set a field for logical time for 

ordering the events captured from distributed nodes. The 

logical timestamps is used as a part of vector clock. (More 

details in Section III.F)  

Local timestamp: The local timestamp is also captured 

that indicates the time when the event is captured on a local 

host and be used to order events within a virtual machine. 

B. Static state capture 

Static state represents the data that will not change 

during application execution. In FRIEDA, most of the static 

states are covered in a configuration YAML file. The 

YAML file includes platform name, image ID, instance 

type, authentication information, application details. The 

YAML file allows users to setup environment, software 

installation and the application running details. The YAML 

file is loaded into memory and stored as structured data 

items and then dumped into a data store or state file as a 

record. Other static states, such as hardware info 

(CPUINFO/MEMINFO), software stack information and so 

on are captured when the virtual machines are launched. 

Table 1 shows several examples of the static states captured 

on a FRIEDA controller node. 

Table 1. Example of captured static states. The item “meta” stores serialized configuration the YAML file. The cpuinfo and ENV are collected from the 
virtual machines directly. 

Table 2. Example of captured dynamic states. The item Master logical clock presents the reference vector clock value sent from master node. Note that the 

three states have the same master clock value, because they all happened after a master message sent to the worker and before another one received. 

State name State information Role Hostname/IP 
Local logical 

clock 
Master logical 

clock 
Local timestamp 

connectionMade to_10.35.23.19 worker server-5ef1ae8e 1376459408044136 1376459408108778 2013-10-14 05:50:08.044155 

Processing_start 
__FILE_METADATA__ 

20111110_112213_TI1_AFTER_478.tif 
worker server-5ef1ae8e 1376459408046341 1376459408108778 2013-10-14 05:50:08.046360 

Processing_end 
__FILE_METADATA__ 

20111110_112213_TI1_AFTER_478.tif 
worker server-5ef1ae8e 1376459410394276 1376459408108778 2013-10-14 05:50:10.394558 

State 

name 
State information Role Hostname/IP 

Local 

timestamp 

meta 
{"actions": {"worker_data_directories": {"params": {"user": "root", "data_dirs": ["/data", "/data/output"] 

}, "template": "/N/u/pmantha//FRIEDA//resources/templates/data.pp.tpl"}, "master_data_directories": {" 

…. 
controller server-9c735efe 

2013-10-14 

05:50:06.966210 

cpuinfo 
'processor\t: 0\nvendor_id\t: GenuineIntel\ncpu family\t: 6\nmodel\t\t: 2\nmodel name\t: Intel Core 2 Duo 

P9xxx … 
controller server-9c735efe 

2013-10-14 

05:50:07.002920 

ENV 
OS_INSTANCE_TYPE=m1.small\nMASTER_PRIVATE_IP=10.35.23.19\nINPUT_DATA_DIR=/data/

input\nWORKER_IDS=i-000009a2 i-000009a3\nMAIL=/var/mail/root\nSSH_CLIENT=192.168.11.1 .... 
controller server-9c735efe 

2013-10-14 

05:50:07.028955 



C. Dynamic state capture 

Dynamic state information represents the data that 

changes during the run-time of applications. For example, 

the identification of input files processed by a worker and 

the duration of the execution are captured by FRIEDA-

State. We capture two types of information a) 

communication events and b) application execution details. 

Table 2 shows examples of the dynamic states captured on 

a FRIEDA worker node. 

All communication events, such as connection made 

(and to which machine), data received (and from where), 

etc., are captured. These events not only describe the 

communication itself, but also carry vector clock 

information for later event reordering (section III.F). 

Application execution and data flow details include the 

commands executed on each worker, I/O operations and 

application execution time etc. This can be used to track 

the application execution and to analyze run-time 

problems. 

D. State Storage  

The essence of state management is to capture data in 

distributed environment and store for future queries. For 

designing such a scalable system with low latency, the 

major concern is storage architecture. The state operation 

latency must be very low to prevent degradation of the 

application performance. Scalability is also important since 

the storage system could be a bottleneck when serving 

many clients for writing and/or query. FRIEDA-State 

currently supports three storage options: files, Cassandra 

data store and DynamoDB (on Amazon). This allows users 

and applications to select the right storage while accounting 

for the tradeoffs for their needs.   

Files: This mode uses files for capturing state. Captured 

states are first written to files, which are later aggregated 

from all machines at the end of execution. Files as a storage 

mechanism provides some advantages over key-value 

stores and databases. First, simple memory-file operation is 

significantly faster than single node key-value stores, due 

to the fact that memory-file operation executes sequential 

writes while key-value stores execute writes randomly 

(hash table or B-Tree). Second, file-based mechanisms do 

not require any additional services and hence does not add 

any overheads on the nodes. Third, merging files are 

simple and fast since the files are already naturally ordered 

due to sequential writes on each node. Therefore sorting the 

state files has a linear time complexity. Files are not good 

to query on, but they are easy to manipulate and archive.  

We capture states from all FRIEDA components on 

VMs and store them in an in-memory cache before being 

flushed to disks. The cache size is customizable to address 

the tradeoffs between robustness and performance. If 

application fails, the states can still be found on those VMs 

since they are flushed to disk. For even better durability, it 

can write to a distributed file system or a block store that 

can survive beyond the life of the virtual machine, based on 

the configuration. Finally all states files are copied to a 

target machine for merging. If application fails, states are 

still saved within the FRIEDA-State framework. But if 

VMs or FRIEDA fails during execution, users might lose 

unsaved states.  

Cassandra: We include Cassandra as one of the storage 

solutions [17], as it provides rich features for managing 

semi-structured data. It is easy to plug-in other NoSQL 

databases in FRIEDA-State. Users control the number of 

Cassandra instances according to their performance and 

capacity needs. Cassandra could share the virtual machines 

with the application or run on a separate cluster. Key-value 

stores are known to work well when deployed on dedicated 

machines. Practically, users can use a private cluster to host 

the Cassandra cluster. They can also setup a dedicated 

virtual cluster on cloud to serve the requests. In this case, 

users will need to periodically move state data to a more 

permanent storage. 

DynamoDB: The third storage solution is based on 

DynamoDB, a NoSQL database available on Amazon Web 

Services. With this type of cloud databases services, users 

don’t have to deploy a software stack to run and configure 

those data stores, but have to pay extra money for the 

service. 

E. Storage architectures 

FRIEDA-State supports multiple storage architectures: 

centralized, distributed and local storage. This sub-section 

will describe each of these architectures in detail.    

Centralized Storage Solution: In our current 

implementation, centralized solution is based on a single 

node key-value store or database. When all nodes in the 

system generate states, collecting and storing can result in a 

storage bottleneck. Depending on the application type, the 

rate of state generation can be different. If the data 

generated is minimal and at a low rate, centralized storage 

solution will work perfectly in practice. An important 

advantage of centralized solution is that all events can be 

naturally ordered as they arrive at the storage server and 

assigned a timestamp based on server’s local time. The 

solution naturally provides persistence of the state data 

beyond the lifetime of the virtual machines.  

Distributed storage solution: Similar to centralized 

solution, FRIEDA-State support distributed storage 

solution through NoSQL databases (e.g., Cassandra). High 

write concurrency is a big challenge for all types of storage 

systems. Distributed storage solutions, such as distributed 

databases, key-value stores can serve large amounts of 

write requests and spread them to many nodes to achieve 

scalable performance and load balancing[18][19]. In this 

type of solution, a group of dedicated data storage servers 

will be started prior to application execution. States 

generated on any node in the system will be written 

remotely to the data store. The latency of this operation 

depends on the data store solution and could be up to a few 

milliseconds [18]. To deploy data stores on all the nodes 

that will generate states will not help much on 

performance, because running the data stores consumes 

extra CPU and memory resources, and messages still need 

to be sent between all VMs over the network.  



 
Figure 2. Event reordering example. Three machines have their local clock and maintain a vector clock. Each event will increase the local clock value; each 

received message will update other’s clock value in their local vector. The master’s clock is used to maintain the time order when reordering the events. 

Sorting by master clock M value, all the events are divided into 5 groups. Just sort the groups will order all the event 

Local storage solution: We implemented this solution 

based on traditional files. Local storage eliminates network 

latency (the major part of operation latency).. Considering 

the data collected is likely to be queried after an application 

run, offline storage solutions are reasonable. Writing to 

local disk/memory is extremely fast compared to remote 

access and no extra resources are consumed by data store 

programs on VMs. The hard part of using local storage is 

aggregating data from many VMs and to merge into a form 

that offers a single query interface. File-based solution is 

not perfect though. If users want to query the states during 

the system running, extracting the desired records is 

complicated and slow.  

F. Event reordering 

Distributed event ordering is an important topic in 

large-scale distributed system design. The goal is to keep a 

global logical order of events based on timestamps. In 

FRIEDA-State, we use modified vector clock[20] to 

maintain time order. FRIEDA-State uses 1-to-n 

communication pattern since communication only happens 

between master and workers. We use the master node clock 

as major clock and all workers logically synchronize to it 

using vector clock. By comparing attached master clock 

value in communication messages, we can tell which event 

happened earlier. If the master clock reads are same, then 

these events occurred in the same machine. It is trivial to 

order events within one machine by sorting the local 

timestamps. When using file-based storage solutions,  

events are sequentially written to files and thus are 

naturally ordered. Each state record has two fields for 

vector clock: one for local clock, another for master clock. 

Events on master node have same values for both clocks.  

In the beginning, all logical clocks are set to be 0. 

Once a new state is captured and stored, the corresponding 

clock value is increased. The local clocks increase naturally 

along with the events happening, and the master clock can 

only be updated when a message is received that contains a 

new master clock value. Workers’ states collection can be 

divided into independent event groups by master clock 

value. In each group, events are naturally ordered and do 

not interleave with those in other groups. The possible 

causal relation between different groups, if exist, is 

determined by master clock. Thus, the problem of 

reordering and merging different events is reduced to 

sorting the event groups. Sorting groups is simple and has 

the same time complexity as the merging phase in merge-

sort, namely O(n), where n is number of groups. For 

example, in Figure 2, sorting by master clock M value, all 

the events are divided into five groups. Each group presents 

an atomic sequence in a machine. Since the inner events of 

a group are naturally ordered, the reordering is efficient. 

IV. Evaluation 

In this section, we describe the performance of the 

state management system, with different storage solutions.   

A. Testbeds 

 FutureGrid Sierra [21]: a research purpose public 

cloud, experiments used up to 16 virtual machines.  

 Amazon EC2 cloud [22]: up to 128 c1.medium virtual 

machines, each has 2 virtual CPU, 5 elastic compute 

units and 1.7GB memory. 

 DataSys: an 8-core x64 server at IIT: dual Intel Xeon 

quad-core w/ HT processors, 48 GB RAM.  This 

machine is used for experiment to study the merging 

overhead (Section IV.E)  

B. Scientific Workloads  

We use two applications that are representatives of 

scientific workloads using cloud environments: Image 

Comparison and Event Processing. Image Comparison 

compares an image with other images in the set to find 

similarities. These applications are representative of typical 

data processing scientific workflows.  

C. Experiment Setup  

We use the same workload for three storage solutions, 



respectively based on files, Cassandra and DynamoDB. For 

synthetic benchmarks, on each state client, we send 10K 

requests in a tight loop to simulate an extremely operation-

intensive scenario. Each request consists of 20 bytes key 

and 80 bytes value. Both key and value are randomly 

generated. 

File-based solution: For file-based solution, the key-value 

pairs are saved to a local file on each client. Next, all these 

files are copied to a shared NFS directory, located on a 

dedicated VM where the files are merged. This is a simple 

solution for demonstrating state aggregation. Apparently its 

vulnerability to single point failures and the bottleneck can 

be addressed by well-known techniques such as mirroring 

or parallel file systems. We measure the time of writing to 

files, moving files to NFS server and merging events. We 

amortize the cost of file moving to state storage to get the 

average equivalent latency per state.  

Cassandra-based solution: We use 1 to 8 Cassandra 

servers on dedicated VMs, and send requests from 1 to 128 

state clients on VMs.  

DynamoDB-based solution: DynamoDB is a service 

provided by Amazon. The data servers don’t need to be 

deployed on the VMs. The VMs only need to communicate 

to the remote Amazon data stores and this has a minimal 

performance impact on local VMs. We provision the 

maximum available throughput for DynamoDB, which is 

10K ops/sec. Up to 128 VMs on Amazon EC2 are used as 

state clients to send requests.  

D. Metrics 

The metrics measured and reported are average latency 

and throughput.  

Average Latency: We consider the average latency as per 

request to write a state to data stores, measured in 

microseconds. Note that the latency includes the round trip 

communication and storage access time. Measuring latency 

for Cassandra and DynamoDB is straightforward, but file-

based solution needs more care. We use the formula below 

to calculate the average equivalent latency tave for file-based 

solution, where tw is the average file write latency, Tmoving 

and Tmerging are the total time spent on moving and merging 

respectively, n is the total number of operations. 

tave  = tw + (Tmoving + Tmerging)/n 
Throughput: The number of operations the system can 

handle over some period of time, measured in Operations 

per seconds (Ops per second). 

E. Synthetic benchmark 

Capture overhead: We conduct micro benchmarks on 

scales of up to 128 VMs. Note that the latency of file-based 

state management includes amortized cost for file moving, 

reordering and merging. Cassandra data stores crashed 

frequently and cannot serve requests at a scale of 8 servers 

with 128 clients. Similarly, DynamoDB’s maximal 

throughput is reached at this scale and started to give 

errors, thus we only show results at a scale of 64 clients.  

 
Figure 3. File-based solution has lower average latency. Cassandra 

performance decreases with the scale. DynomoDB latency doesn’t change 

much with scale, but failed 128 clients test. 

Figure 3 shows that file-based state solution has 

significant advantage over other two capture methods. 

When clients number increases, moving files to a single 

server causes contention. But this cost gets amortized 

across all requests. A single node Cassandra is saturated 

with 8 clients. On larger scales, multiple servers show some 

benefits but it is still limited, compared to the file based 

approach. DynamoDB shows very stable performance 

when facing different client request pressure before it is 

saturated, but it’s at least three times slower than Cassandra 

at most scales. 

 
Figure 4. System throughput comparison. File-based solution obtains the 

maximum aggregated performance increases with scale. 

Similar to the latencies, file-based solution delivers 

significantly higher throughput than other two. At 64 

nodes, file-based solution achieves 52K ops/s, which is five 

times faster than a dedicated eight nodes Cassandra cluster 

and 18 times faster than DynamoDB based solution. 

Events reordering and file merging overhead: On an 8-

core Xeon server, we generate up to 512 state files. Each 

state file contains 10000 state records. Using a simple 

single thread merging program, 4 files cost 16ms, and 512 

files cost 8209 ms. This can be further improved with more 

sophisticated merging algorithms in the future.  

  
Figure 5. File merging time becomes longer with number of files. 

File-based state management: We measured the time for 

capturing state and writing to file, moving and merging 

files respectively. We set an in-memory cache to boost the 

disk write performance. As shown in Figure 6 a full-size 

cache setting brings around 10% performance increase.  
Since the state capturing on a local machine doesn’t 

involve any contention, the latency is actually constant, 
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around 500us. Simultaneously moving a large number of 

files can cause contention, either on network or disks. The 

time spent on moving files keeps increasing even when the 

time is amortized. Better methods to aggregate data will be 

needed when running at larger scales. Merging overhead 

increases as well, but still negligible compare to other two 

overheads.  

   
Figure 6. Left: File write operation scales well. Full-size cache brings 

around 10% performance gains. Right: File-based storage write latency is 
constant while merging time slightly increases. The amortized moving 

time increases exponentially.   

F. Scientific applications 

With integrated state management system in FRIEDA, 

we run two scientific applications (Image Comparison and 

Event Processing) to evaluate the overall performance 

impact of state collecting on real applications. Both 

applications are evaluated on FutureGrid [21] system.  

    
Figure 7. Image comparison and event processing performance 

Although in synthetic benchmarks we observed huge 

difference of performance among different storage 

solutions, in application tests, we see no significant 

difference (state-introduced overhead is less than 5%). This 

is mainly because the micro benchmark tests execute 

operations in a tight loop while real applications have 

sparser and random patterns, so the total time spent on state 

management is very low compared to the application 

running time.  

V. Related work 

A. Provenance 

Traditional data provenance represents the change 

history of data objects. Previous works on data provenance 

[23] have addressed different aspects, from operating 

system [21] to file systems[2], from databases [3] to cloud 

storage [4]. In our previous work [24], we have shown that 

distributed key-value stores can boost performance. Karma 

[7] provenance framework gives a set of tools for collecting 

provenance from workflow and process. Milieu [25] 

focuses on provenance collection for scientific experiments 

in HPC systems. 

B. Monitoring  

Monitoring gives users a perspective that combines 

resource utilization, cost efficiency and performance. 

Previous work has focused on runtime model and attempt 

to reach the balance between runtime overhead and 

monitoring capability[13]. Earlier works include Ganglia 

[14], a distributed monitoring system for clusters and grid 

systems. FRIEDA-State is event-driven i.e., it does not 

proactively go to fetch information, and hence is more 

efficient. 

C. Key-value stores 

Key-value stores (or distributed hash tables) are widely 

used as building blocks in many production systems, such 

as Amazon shopping cart with Dynamo[26], Facebook with 

Memcached [30]. Active key-value store projects include 

Cassandra[28], ZHT [18][19], Riak [27] and CouchDB 

[29]. This approach has many advantages, such as 

simplified API, encapsulated communication methods, the 

promise that to inherit desired features from key-value 

stores such as load balance, fault tolerance and scalability. 

D. Unsynchronized Time Clocks and Event Ordering 

In large scale distributed systems, unsynchronized 

clocks and drifting issue are inevitable. Based on different 

time baselines, it’s hard to build meaningful semantics 

from distributed events or logs without synchronization or 

logical clock mechanisms.  

Synchronization to a standard time source (atomic 

clock or GPS clock) is simpler. Typical cases are Precision 

Time Protocol [32] and NTP [33]. In recent projects, 

Google Spanner [31] adopts similar way to offer a 

synchronized clock to global scale databases and offers 

5ms accuracy in global scales. Many works have been done 

for distributed event ordering. Beside Lamport’s timestamp 

[34], Vector Clock [20] is another popular approach in 

today’s systems. 

VI. Conclusion 

Scientific applications are increasingly using cloud 

environments and need a way to track the application’s 

entire lifetime information both for monitoring and 

ensuring reproducibility. We propose and implement a state 

management system (FRIEDA-State) for a broad type of 

scientific applications running in cloud environments. 

FRIEDA-State has an innovative design that allows various 

storage mechanisms to be plugged-in while providing 

different trade-offs in durability, performance and usability.  

In this paper, we discussed our implementations based 

on files, Cassandra and DynamoDB respectively and 

evaluated them on two cloud platforms. The evaluation 

showed that FRIEDA–State has very low overhead even 

when running at a scale of 64 virtual machines. File-based 

storage solution offers significantly better performance than 

key-value stores (e.g. Cassandra) on moderate scales. 

Furthermore, in some conditions, file-based storage is 

better than cloud databases services (e.g. DynamoDB) as 

well, in terms of latency and aggregated throughput. The 

major part of overhead of file-based storage solution is file 

moving, when using a centralized data server. Further 

scalability can be achieved with better merging algorithms 

for file-based systems or deploying larger number of 

NoSQL data nodes. We expect that as we increase scale 
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into 100s and 1000s of VMs, that the centralized data 

server will become a bottleneck, and distributed key-value 

stores would begin to offer better performance. 
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