
Towards a provenance-aware distributed filesystem

Chen Shou∗, Dongfang Zhao∗, Tanu Malik†, Ioan Raicu∗‡

{cshou, dzhao8}@hawk.iit.edu, tanum@ci.uchicago.edu, iraicu@cs.iit.edu
∗Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

†Computation Institute, The University of Chicago, Chicago, IL, USA
‡Math and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

Abstract

It has become increasingly important to capture and un-
derstand the origins and derivation of data (its prove-
nance). A key issue in evaluating the feasibility of data
provenance is its performance, overheads, and scalabil-
ity. This paper presents a provenance-aware distributed
filesystem, that offers excellent scalability while retain-
ing the provenance overhead negligible under certain
conditions. This work integrated two recent research
projects, SPADE (Support for Provenance Auditing in
Distributed Environments) and FusionFS (Fusion dis-
tributed File System) with simple and efficient commu-
nication protocols. The preliminary results on a 32-
node cluster show that FusionFS+SPADE is a promising
prototype with negligible provenance overhead and has
promise to scale to larger scales as FusionFS has been
shown to scale.

1 Introduction

Data provenance is the service describing how data was
derived. The tracing of provenance is helpful in rich and
descriptive metadata to accompany the data in order to
better understand it. Provenance can be collected at dif-
ferent layers from application all the way down to the op-
erating system. For example, the provenance at filesys-
tem level helps analyst mining patterns hidden behind the
data. It can also help in security audits, helping identify
compromised data in security breaches.

Distributed file systems have so far proposed a central
system for provenance collection [1]. This is a perfor-
mance bottleneck, especially for file systems meant for
extreme-scales. Various efforts have been made in dis-
tributing the metadata management of parallel and dis-
tributed file systems. For example, the FusionFS [2] im-
plements a distributed metadata management based on
distributed hash tables [3]. Ceph [4] also implements a
distributed metadata management system.

One obvious solution to solve the bottleneck, is to de-
velop a completely distributed provenance service from
scratch. Yet a more efficient way is to integrate an add-
on module to some existing filesystems with distributed
metadata. SPADE [5] is an open source software infras-
tructure for data provenance collection and management.
It applies graph database to store provenance and pro-
vides distributed query module. SPADE turns out to be a
good choice to be integrated into FusionFS since both
systems have similar manifestation of distributed con-
cepts: (1) FusionFS provides a POSIX interface which
makes a perfect corresponding for SPADE user-level file
system provenance collection; (2) both systems work in
a decentralized way which actively exploit the resource
of each node.

This paper introduces a provenance-aware distributed
file system, that aims to offer excellent scalability while
retaining the provenance overhead negligible. We inte-
grated SPADE and FusionFS, with simple and efficient
communication protocols. The preliminary results on a
32-node cluster show that FusionFS+SPADE is a promis-
ing prototype with negligible provenance overhead and
has promise to scale to petascale and beyond. FusionFS
on its own, has shown to scale to 1K-nodes [2], and its
design has been architected to scale to 1M-nodes, i.e. ex-
ascale. The ultimate goal of this work is to enable the
negligible-overhead provenance in a distributed file sys-
tem that is scalable up to exascale.

The remainder of this paper is organized as follows.
We review some related work in Section 2. In Sec-
tion 3 we describe the design and implementation of
FusionFS+SPADE. Section 4 evaluates its performance,
and Section 5 concludes this paper and discusses the fu-
ture work.

2 Related Work

As distributed systems become more ubiquitous and
complex, there is a growing emphasis on the need for



tracking provenance. A good review is presented in [6].
Many Grid systems like Chimera [7] and the Provenance-
Aware Service Oriented Architecture (PASOA) [8] pro-
vide provenance tracking mechanisms for various appli-
cations. However these systems are very domain spe-
cific and do not capture provenance at the file system
level. The Distributed Provenance Aware Storage Sys-
tem (DPASS) tracks the provenance of files in a dis-
tributed file system by intercepting file system opera-
tions and sending this information via a netlink socket to
user level daemon that collects provenance in a database
server [9]. The provenance is however, collected in a
centralized fashion, which is a poor design choice for
distributed file systems meant for extreme scales. Simi-
larly in efficient retrieval of files, provenance is collected
centrally [1].

We believe that the integration of FusionFS and
SPADE offers an ideal combination for an initial proto-
type. The major drawback we see at this point is the re-
liance on JAVA for SPADE, which makes it a poor choice
for portability to some of the large high-end computing
systems. We hope to address this in future work.

3 Design and Implementation

3.1 Architecture

The high-level architecture of the proposed work is
showed in Figure 1. Each node has two services in-
stalled: FusionFS service and SPADE service. One ser-
vice type can only communicate to the other type on the
local node. That is, a SPADE service only communi-
cates with its local FusionFS service, and vice versa. For
services of the same type (e.g. FusionFS ⇔ FusionFS,
SPADE ⇔ SPADE), they are free to talk to others re-
motely.

Figure 2 shows the logical structure of FusionFS ser-
vice and SPADE service on a single node. FusionFS
provides POSIX interface to the applications. When the
application makes a request to FusionFS, this request is
interpreted and transmitted to SPADE by some protocol
which will be discussed in the next subsection. SPADE
then takes care of the provenance management and per-
sistence to local database.

Communication between SPADE services only occurs
during provenance querying. When executing a query, a
SPADE service would spread the query (based on net-
work provenance stored locally) to all remote SPADE
services that also contain related provenance, and wait
for response. In the end, SPADE would merge all the
responded query results and output to the result file.

Figure 1: FusionFS+SPADE architecture overview

Figure 2: Relationship between FusionFS and SPADE

3.2 Integration of SPADE and FusionFS

The key challenge of the proposed work is how to ef-
ficiently integrate SPADE and FusionFS. All communi-
cation between these two services is implemented with
TCP. Asynchronous communication is not preferred be-
cause of the short life cycle of some processes. SPADE
collects parts of the process information based on system
files under directory /proc/pid. If a process starts and ter-
minates too fast for SPADE to catch, there will be prove-
nance loss. Therefore it is critical to keep synchronous
communication between SPADE and FusionFS, at least
while the two systems are completely decoupled. We
hope to address this in future work with a tighter integra-
tion between FusionFS and SPADE.

Most communication between SPADE and FusionFS
consists of simple operation bindings. For example, Fu-
sionFS write operation invokes SPADE to collect write

2



Figure 3: Network Transmission

provenance for this operation. However, as a distributed
file system, FusionFS sometimes needs to migrate files
between nodes. The original network provenance col-
lection in SPADE is not optimized for FusionFS, thus
it is too expensive. We make some customization to the
network provenance collection in PAFS, to fully hide un-
necessary provenance data outside FusionFS.

In order to make the collected provenance consist with
Open Provenance Model (OPM), when there is a network
transmission, SPADE creates a “dummy” FusionFS pro-
cess vertex to connect two artifacts: a file vertex and a
network vertex. We call it a “dummy” process because
clients do not need to be concerned with this process
when querying provenance; it is just a symbol to indi-
cate the network transmission is triggered by FusionFS
in OPM. Figure 3 shows how a network transmission is
represented.

3.3 File-Level vs. Block-Level
One common practice in file manipulations is to split
(large) files into blocks to improve the space efficiency
and responsive time. However, for the purpose of prove-
nance, it is less interesting to keep track of file traces at
the block level: in most cases, a file-level provenance
would suffice.

This work implements both the file-level and the
block-level provenance tracings, namely, the fine-
grained provenance and the coarse-grained provenance:
(1) fine-grained – the same as SPADE, which collects
provenance on each I/O run; and (2) coarse-grained –
each operation unit (e.g. read, write, etc) invokes one
provenance collection.

4 Evaluation

We carried out three experiments to evaluate this work.
The testbed is a 32-node cluster, where each node has
two Quad-Core AMD Opteron 2.3GHz processors with
8GB memory. All nodes are interconnected by 1Gbps
Ethernet. All experiments are repeated at least 3 times to
obtain stable results (i.e. within 5% difference).

4.1 Single-Node Throughput
We first measured performance of provenance collection
within FusionFS on a single node. A client reads/writes

Figure 4: Read Throughput

Figure 5: Write Throughput

a 100MB file from/to FusionFS. We compare the perfor-
mance between fine-grained and coarse-grained prove-
nance collection with different block sizes. The bench-
mark we used is IOZone [10], which is carefully tuned
to avoid operating system cache.

Figure 4 and Figure 5 show that a fine-grained prove-
nance collection introduces a high overhead. Even
though a larger block size could reduce the overhead to
some degree, the number is still significantly high (i.e.
around 75%), compared to coarse-grained provenance
(i.e. less than 5%). This is expected since a bigger I/O
block size results in fewer I/O runs, which further in-
volves less time to collect provenance (SPADE spends
on average 2.5 ms for each provenance recording, which
corresponds to a single I/O run in fine-grained prove-
nance collection).

We investigated the sensitivity of file size attributed to
the I/O throughput. Figure 6 shows that a fine-grained
provenance collection might have a fair overhead when
the file size is small enough, while a coarse-grained one
keeps a low overhead (less than 5%) no matter what the
file size is.

3



Figure 6: Overhead of 128KB block size

Figure 7: Multiple-Node 100MB Write Throughtput

4.2 Multiple-Node Throughput

In the 32-node cluster, multiple clients read/write distinct
files from/to FusionFS. The file size is set to 100MB and
the I/O block size is set to 128KB.

In Figure 7, a coarse-grained provenance collection
shows a much better performance than the fine-grained
counterpart (consistent with the single-node benchmark
results). Both fine-grained and coarse-grained prove-
nance show excellent scalability with linear increase in
performance. This can be explained by two facts: (1)
SPADE only collects provenance of the local node, and
(2) FusionFS scales linearly with respect to the num-
ber of nodes by getting high data locality in the data
access pattern evaluated. We have evaluated FusionFS
(without SPADE) at scales of up to 1K nodes on a
IBM BlueGene/P supercomputer with similar excellent
results. We will conduct larger scale experiments of Fu-
sionFS+SPADE in future work.

4.3 Queries in Distributed Systems

We are interested in the query time of the provenance
of a particular file that has been read by multiple remote
nodes. This write-once-read-many is a very frequent pat-
tern in the context of a distributed system. The query is

Figure 8: Query Time Cost

shown in the following format:

query lineage descendants vertex− id 100

null filename:test. f ile.name

Since SPADE (with version) does not support execut-
ing sub-query in parallel, the total query time increases as
it scales up. However, according to Figure 8, with differ-
ent scales from 2 to 32 nodes, the average per-node query
time is about constant, indicating that adding more nodes
will not put more burden to the provenance system. This
is expected, since the underlying FusionFS has an excel-
lent scalability and SPADE on each node adds negligible
overheads locally.

5 Conclusion and Future Work

This paper presents a provenance-aware distributed
filesystem with excellent scalability for extreme-scale
computing. We integrate two latest research projects,
SPADE and FusionFS, as two building blocks for the
provenance management and the underlying distributed
filesystem. This work aimed at exploring the feasibil-
ity of providing provenance tracking at the storage layer
at modest scales. Our preliminary results show that, at
least at the coarse-grained level, FusionFS+SPADE is
very promising to deliver data provenance tracking in the
storage layer.

We plan to develop more efficient, reliable, and
portable protocols between SPADE and FusionFS. We
hope to offer a hybrid granularity of provenance, rather
than two extremes i.e. fine-grained and coarse-grained,
to meet different needs in scientific computing in the
near future. We will also work with the Swift parallel
programming system [11] to deploy real scientific appli-
cations on FusionFS+SPADE at much larger scales, at
petascales and beyond with tens of thousands of nodes.

4



Acknowledgement

This work was supported by the National Science Foun-
dation (NSF) under grant OCI-1054974.

References
[1] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun,

and Margo Seltzer. Provenance-aware storage systems. In Pro-
ceedings of the annual conference on USENIX ’06 Annual Tech-
nical Conference, ATEC ’06, pages 4–4, Berkeley, CA, USA,
2006. USENIX Association.

[2] Dongfang Zhao and Ioan Raicu. Distributed File Systems for
Exascale Computing (poster). ACM/IEEE Supercomputing, Salt
Lake City, UT, 2012.

[3] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao,
Ke Wang, Anupam Rajendran, Zhao Zhang, and Ioan Raicu.
ZHT: A Light-weight Reliable Persistent Dynamic Scalable
Zero-hop Distributed Hash Table. IEEE IPDPS, Boston, MA,
2013, to appear.

[4] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E.
Long, and Carlos Maltzahn. Ceph: a scalable, high-performance
distributed file system. In Proceedings of the 7th symposium on
Operating systems design and implementation, OSDI ’06, pages
307–320, Berkeley, CA, USA, 2006. USENIX Association.

[5] Ashish Gehani and Dawood Tariq. SPADE: Support for Prove-
nance Auditing in Distributed Environments. ACM/USENIX
Middleware, pages 101–120, 2012.

[6] Kiran-Kumar Muniswamy-Reddy. Foundations for provenance-
aware systems. Doctoral dissertation, Harvard University, 2010.

[7] Ian T. Foster, Jens-S. Vckler, Michael Wilde, and Yong Zhao. The
virtual data grid: A new model and architecture for data-intensive
collaboration. In CIDR’03, pages –1–1, 2003.

[8] Provenance aware service oriented architecture. http:
//twiki.pasoa.ecs.soton.ac.uk/bin/view/ pasoa/webhome.

[9] Rich Metadata, Aleatha Parker-wood, Rich Metadata, Darrell
D. E. Long, and Aleatha Parker-wood. Proposal for advancement
to candidacyuniversity of california santa cruz making sense of
file systems through provenance, 2012.

[10] D. Capps. IOzone Filesystem Benchmark. www.iozone.org,
2008.

[11] Yong Zhao, Mihael Hategan, Ben Clifford, Ian T. Foster, Gre-
gor von Laszewski, Veronika Nefedova, Ioan Raicu, Tiberiu Stef-
Praun, and Michael Wilde. Swift: Fast, reliable, loosely coupled
parallel computation. In IEEE SCW, pages 199–206, 2007.

5


