
Using Simulation to Explore Distributed
Key-Value Stores for Extreme-Scale System Services

Ke Wang
Illinois Institute of Technology

Los Alamos National
Laboratory

kwang22@hawk.iit.edu

Abhishek Kulkarni
Indiana University

adkulkar@cs.indiana.edu

Michael Lang
Los Alamos National

Laboratory
mlang@lanl.gov

Dorian Arnold
University of New Mexico
darnold@cs.unm.edu

Ioan Raicu
Illinois Institute of Technology
Argonne National Laboratory

iraicu@cs.iit.edu

ABSTRACT
Owing to the significant high rate of component failures at extreme
scales, system services will need to be failure-resistant, adaptive and
self-healing. A majority of HPC services are still designed around a
centralized paradigm and hence are susceptible to scaling issues. Peer-
to-peer services have proved themselves at scale for wide-area internet
workloads. Distributed key-value stores (KVS) are widely used as a
building block for these services, but are not prevalent in HPC services.
In this paper, we simulate KVS for various service architectures and
examine the design trade-offs as applied to HPC service workloads to
support extreme-scale systems. The simulator is validated against ex-
isting distributed KVS-based services. Via simulation, we demonstrate
how failure, replication, and consistency models affect performance at
scale. Finally, we emphasize the general use of KVS to HPC services by
feeding real HPC service workloads into the simulator and presenting
a KVS-based distributed job launch prototype.

Keywords
Key-Value Store, System Services, Discrete Event Simulation, Extreme
Scales

1. INTRODUCTION
Due to the expected increases in component count and failure rates

for extreme-scale supercomputers, system software and services will
need to be fault-tolerant, self-healing and adaptive for efficient system
utilization and sustained operation. However, leadership-class systems
have traditionally been managed using manual or semi-automatic ap-
proaches under a single management domain. Additionally, many (if
not most) HPC services are still designed around a centralized server
with at most a single fail-over server and hence suffer from a single
point of failure and scalability problems.

Large-scale systems have worked around some of these issues using
hierarchical partitions of smaller functional units. However, these hi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SC ’13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503239

erarchically partitioned services are often very loosely-coupled and do
not present a coherent system for management or maintenance. From a
management perspective, such systems are more laborious to maintain
and pose serious scalability concerns for systems with hundreds of thou-
sands of nodes. Such concerns suggest a move toward fundamentally
scalable distributed system designs – a move further motivated by the
growing amount of data that servers need to access quickly, reliably and
in a consistent manner.

The broad goal of this work is to design and develop a framework that
allows us to explore systematically the design space for HPC services
and to evaluate the impact of different design choices. The specific goal
of this work is to evaluate the different distributed key-value store
designs for extreme-scale systems, as we now motivate.

1.1 Key-Value Stores and HPC
In this work, we generally target high-performance computing ser-

vices, such as those that support system booting, system monitoring,
hardware or software configuration and management, I/O forwarding
and run-time systems for programming models and communication
libraries [15] [2] [31] [28]. For extreme-scale systems, these services
all need to operate on large volumes of data in a consistent, resilient and
efficient manner at extreme scales. We observe that these services com-
monly and naturally comprise of access patterns amenable to NoSQL
abstractions, a data storage and retrieval paradigm that admits weaker
consistency models than traditional relational databases.

These requirements are consistent with those of large-scale distributed
data centers, for example, Amazon, Facebook LinkedIn and Twitter.
In these commercial enterprises, NoSQL data stores – Distributed
Key-Value Stores (KVS), in particular – have been used successfully
[5] [18] [8]. We assert that by taking the particular needs of HPC into
account, we can use KVS for HPC services to help resolve many of our
consistency, scalability and robustness concerns.

By encapsulating distributed system complexity in the KVS, we can
simplify HPC service designs and implentations. For resource man-
agement, KVS can be used to maintain necessary job and node status
information. For monitoring, KVS can be used to maintain system
activity logs. For I/O forwarding in distributed file systems, KVS can
be used to maintain file metadata, including access authority and mod-
ification sequences. In job start-up, KVS can be used to disseminate
configuration and initialization data amongst composite tool or applica-
tion processes, this is under development for MRNet [28]. Application
developers from Sandia National Laboratory [14] are targeting KVS to
support local check-point restart . Additionally, we have used KVS to
implement several real system, such as a many task computing execu-

mailto:kwang22@hawk.iit.edu
mailto:adkulkar@cs.indiana.edu
mailto:mlang@lanl.gov
mailto:darnold@cs.unm.edu
mailto:iraicu@cs.iit.edu

tion [23] [26] [22] [24] fabric – MATRIX [34] where KVS is used for
task submission, dependency, and progress information; and the fusion
distributed file system, FusionFS [37], where the KVS is used in track-
ing file-system metadata. Another example of a many task computing
system is the Swift parallel programming system [35].

The many different use cases impose a varied set of requirements
on the KVS. In this work, we developed a four-dimensional taxonomy
to classify and specify these requirements; the various points along
these four dimensions represent different KVS design choices. We then
use this taxonomy to develop a simulator for evaluating different KVS
designs. A simulation-based approach allows us to evaluate designs
for extreme-scale platforms, which do not yet exist, and easily execute
future studies of services other than KVS.

The key contributions of this work are:

• a taxonomy for classifying HPC system services;

• a simulation tool to explore KVS design choices for large-scale
system services;

• and an evaluation of KVS design choices for extreme-scale sys-
tems using both synthetic and real workload traces.

The rest of this paper is organized as follows. In Section 2, we present
our service taxonomy that allows us to explore the design space and
categorize various system services for simulation. In Section 3, we
describe the design and implementation of the KVS simulator. We
describe our experimental setup and simulation results in Section 4 and
present related work in Section 5. Finally, we conclude and propose
extensions to this work in Section 6.

2. A TAXONOMY FOR HPC KEY-VALUE
STORES

We developed a taxonomy to help us reason about distributed ser-
vices in several ways: (1) the taxonomy gives us a systematic way to
decompose services into their basic building block components; (2)
the taxonomy allows us to categorize services based on the features
of these building block components, and (3) the taxonomy suggests
the configuration space to consider for evaluating service designs via
simulation or implementation. Our taxonomy has five components. The
first component is the service model, which is a high-level description of
the service’s functionality. Throughout the rest of this paper, we focus
on the KVS service model. We now describe the other four components,
namely data model, network model, recovery model and data consis-
tency model, by combining specific instances of these components we
then can define a service architecture.

(i) Data Model The data model defines how a service distributes
and manages its data. For example, in a centralized data model, a single
central component maintains and manages all data. Alternatively, data
can be distributed amongst multiple servers – partitioned. The data can
have different levels of replication; unique (no replication), mirrored
(full replication) or overlapped (partial replication).

(ii) Network Model The network model dictates the interconnection
topology of a service’s components. Components can form a structured
overlay, such as a ring, tree (of different shapes including binomial,
k-ary and radix trees) or graph. Components can also comprise an
unstructured overlay network. The network model may also differen-
tiate between deterministic and non-deterministic data routing. While
some overlay networks imply a complete membership set (eg. fully-
connected), others may assume a partial membership set (eg. binomial
graphs). These distinctions impact the communication overhead that
can be attributed to each network model.

(iii) Recovery Model The recovery model specifies how a service
deals with component failures. Common recovery techniques include

fail-over and checkpoint-restart and roll-forward protocols. Other tech-
niques like triple modular redundancy and erasure codes also ensure
data integrity. Some of the recovery models are self-contained – recov-
ery via logs from persistent storage and some require communication
with peers to retrieve replicated state.

(iv) Consistency Model The consistency model pertains to how
rapidly data modifications propagate across the components of a system
or, in other words, how coherent and consistent different views of the
same data objects are. Depending on the data model and the corre-
sponding level of replication, a system service might employ differing
levels of consistency. The level of consistency is a trade-off between
the server response time and how tolerant clients are to stale data. It can
also compound the complexity of recovery mechanisms. Servers could
employ weak, strong, or eventual consistency model.

Some specific instantiations of service architectures from the taxon-
omy are depicted shown in Figure 1 and Figure 2. For instance, ctree

is a service architecture with a centralized data model and a tree-based
overlay network, consistency and recovery model are not depicted, but
would need to be identified to define a complete service architecture.
d f chas a distributed data model with a fully-connected overlay network
whereas dchordis a distributed data model and has a Chord overlay net-
work [29] with partial membership, again the consistency and recovery
model are not show graphically.

Table 1 classifies existing KVS systems according to our taxonomy.
These common and most-tested KVS architectures come mostly from
the Internet domain. Services developed for the Internet generally are
designed for high failure rates and loosely-synchronized components
and state over a widely distributed area. In contrast, HPC services
generally target a more tightly-coupled workload model. Our taxonomy
allows us to understand qualitatively how these different usage models
render different system design and to evaluate quantitatively the impact
of these different design choices on a service architecture.

Using the taxonomy we can narrow the parameters and focus on the
major components of KVS services. Simulation can then be used to
narrow the design space for any specific KVS service application before
any implementation has begun. Additionally we can eventually create
modular KVS components to allow easy creation of extreme-scale ser-
vices, but in this work we focus on the simulation of KVS for HPC
services using our taxonomy as a basis.

S

(a) csingle

S

S0

(b) c f ailover

S

S1 S2 S3 S.. SN

(c) ctree

Figure 1: Centralized Service Architectures

3. SIMULATING KEY-VALUE STORES
In this work, we use simulation to study the various points in the

design space of KVS systems. A simulation-based approach gives us
a framework for not only studying KVS but also other HPC services

S1 S2 S3 S.. SN

(a) d f c

S1S2

S..S3

SN

(b) dchord

S1

S3

S2

SN

S..

(c) drandom

Figure 2: Distributed Service Architectures

in the future. This methodology also allows us to make sound design
choices before we develop real prototypes and to evaluate design choices
at scales for which real platforms do not exist yet. In this section, we
describe our simulator’s design and implementation. Our KVS service
taxonomy dictates the major KVS components and, thus, directly in-
forms the configuration space of our simulator. Our current simulator
allows us to explore the previously described KVS network models,
namely csingle, ctree, d f cand dchord, here we assume a centralized data
model for csingleand ctree, and a distributed data model for d f cand dchord.
The simulator is extendable to other network and data models. The
above models can be configured with N-way replication for the recovery
model and either eventual or strong for the consistency model.

3.1 Simulator Overview
Each simulation consists of millions of clients that connect to thou-

sands of shared servers, the number of clients and servers are config-
urable, and how a server is selected by client can be preconfigured or
random, and is easily modified.

The workload for the KVS simulation is a stream of PUTs and GETs.
At simulation start, we model unsynchronized clients by having each
simulated client stall for a random time before submitting its requests.
This step is skipped when modeling synchronized clients. At this point,
each client connects to a server (as described below) and sends syn-
chronous (or blocking) GET or PUT requests as specified by a work-
load file. After a client receives successful responses to all its requests,
the client-server connection is closed.

Servers are modeled by two queues: a communication queue for
sending and receiving messages and a processing queue for handling
incoming requests that can be satisfied locally. Requests not handled
locally are forwarded to another server. The two queues are processed
concurrently, however the requests within one queue are processed se-
quentially. Since clients send requests synchronously, each server’s
average number of queued requests is equal to the number of clients

that server is responsible for.
For our distributed architectures, d f cand dchord, our simulator supports

two mechanisms for server selection. In the first mechanism, client
selection, each client has a membership list of all servers; a client selects
a server by hashing the request key and using the hash as an index
into the server list. Alternatively, a client may choose a random server
to service their requests. In the second mechanism, server selection,
each server has the membership list of part or all of the servers and
clients submit requests to a dedicated server. Client selection has the
benefit of lower latency, but leads to significant overhead in updating
the membership list when servers fail. Server selection, on the other
hand, puts a heavier burden on the servers.

3.2 Cost parameters
The simulation results are dependent on the attribution of the commu-

nication and processing costs due to the sevice architecture, we explain
and justify the cost parameters in this section. Figure 3 shows the sce-
nario of server selection with five enqueued operations, three of which
are resolved locally and forwarded to the local operations queue, and
two are resolved remotely by forwarding to other servers. The compos-
ite overheads include client send, (CS), client receive, (CR), server send
(SS), server receive (SR) and local request processing, (LP). CS is com-
prised of message serialization time, tser, and message transmission time,
tcom, calculated as msgS ize/BW+ lat, where msgS ize is the message
size in bytes, BW is the peak network bandwidth and lat is half of the
round-trip time (RTT). CR is the message deserialization overhead, tdes.
SS includes the time when the server finishes the last queued task in
the communication queue tqc, the overhead of packing a message by the
server tss, and tcom. SR is the summation of tqc, the overhead of unpack-
ing a message by the server tsr. LP includes the time when the server
finish processing the last queued request tqp, and the request processing
time tp. For a locally resolved query, the time to finish it consists of client
send overhead CS, server receive overhead SR, locally processed time
LP, server send to client overhead SS, and client receive overhead CR.
This is applicable to all the architectures. For a remotely resolved request
in d f c, the time to finish it includes client send overhead CS, server re-
ceive overhead SR, server forwarding request overhead SS+SR, locally
processed time LP, server returning processing result overhead SS+SR,
server send to client overhead SS, and client receive overhead CR. For a
remotely resolved request of dchord involving k hops to find the predeces-
sor of the responsible server, the time to finish the request includes client
send overhead CS, server receive overhead SR, overhead of finding the
predecessor 2×k×(S S +S R), server forwarding request overhead to the
responsible server SS+SR, locally process time LP, server returning
processing result overhead SS+SR, server send to client overhead SS,
and client receive overhead CR. The time to resolve a query locally (tLR)
and the time to resolve a remote query (tRR) is given by

tLR=CS+S R+LP+S S+CR

For d f c: tRR= tLR+2×(S S+S R)
For dchord: tRR= tLR+2×k×(S S+S R)

where k is the number of hops to find the predecessor.

Service Description Data Model Network Model Recovery Model Consistency

Voldemort Key-Value Store Distributed Fully-connected N-way Replication Eventual
Cassandra Key-Value Store Distributed Fully-connected N-way Replication Both
D1HT Key-Value Store Distributed Hierarchical N-way Replication Strong
Pastry Key-Value Store Distributed Partially-connected N-way Replication Strong
ZHT Key-Value Store Distributed Fully-connected Replicas Eventual

Table 1: Representative KVS-based services categorized in the taxonomy

All of the architectures under study are derived from this basic design
using communication and processing costs.

Atomic Costs
tdes= deserialization overhead

tser= serialization overhead

tcom = msgSize/BW + lat

tqc= Time to process a request from

the communication queue
tqp= Time to process a request from

the local operations queue
tp= Time to perform a local operation

Composite Operations
Locally Processed (LP) = tqp+ tp
Server Send (SS) = tser+ tqc+ tcom
Server Recv (SR) = tdes+ tqc

Client Recv (CR) = tdes
Client Send (CS) = tser+ tcom

Client
Client

Client

tcom

KVS Server

GET

GET

GET

PUT

PUT

Communication
Queue

READ

READ

WRITE

M
em

or
y

N
et

w
or

k

Local Ops Queue

tp

tdes

tdes+ tser

tqc

tqp

Figure 3: KVS client/server simulator design

3.3 Data and Network Models
Our simulator supports different data and network models: centralized

server (csingle), centralized server with multiple second-tier aggregation
servers in a tree overlay (ctree), distributed servers with fully connected
topology (d f c), distributed servers with chord protocol topology (dchord).

For csingle and ctree, all data is stored in the centralized server. The
only difference is that ctree has a layer of aggregation servers from whom
the client submits requests to. The aggregation size (number of requests
being packed before sending) of each individual aggregation server is
dynamically changing according to the loads. Basically, it is equal to the
number of clients, which have more requests left to be processed, among
all the clients that the aggregation server is responsible for. The upper
bound is the number of clients the aggregation server serves. Currently,
they only do request aggregation. In the future, it is possible to simulate
PUT caches in these servers for read intensive workloads.

For d f c and dchord, the key space along with the associated data is
evenly partitioned among all the servers ensuring a perfect load bal-
ancing. In d f c, data is hashed to the server in an interleaved way (key
modulo the server id), while in dchord, consistent hashing [16] is the
method for distributing data. The servers in d f c have global knowledge
of all servers, while in dchord, each server has only partial knowledge of
the other servers; specifically this is logarithmic of the total number of
servers with base 2 and is kept in a table referred to as the finger table
on each server.

3.4 Recovery Model
The recovery model defines how a node recovers its state and how

it rejoins the system after a failure. This not only involves the way the
recovered server gets back all of its data, but also considers how to
update the replica information of other servers which are affected due to
the recovery. The first replica of a failed server is notified by an external
mechanism (EM) [29], which could be another distributed service, that
knows the status information of all servers when the primary server
recovers. Then it sends all the replicated data (including the data of the
recovering server, and other servers for which the recovering server acts
as a replica host) to the recovered server. The recovery is then finalized
once the server acknowledges it has received all of its state.

3.4.1 Failure/Recovery

Fail/recover events are generated because of servers failing and re-
joining the dynamic overlay network. The servers can fail the system
very frequently in an extreme-scale system, in which the mean-time-to-
failure (MTTF) could be in the order of hours [25]. For simplicity, in
our simulator, we make an assumption that fail/recover events happen
at fixed periods and there is only one server failing or recovering in the
system at a given time. At the very beginning, all servers are up in the
system. When fail/recover event occurs, the simulator randomly picks
one server and flips its status (up to down, down to up). In order to notify
other servers about a node’s failure, we implement both the eager and
lazy methods. In the eager method, we assume an EM sending a failure
message to notify other online servers. This would be done either with a
broadcast message (in d f c) or with chaining in which every node notifies
the left node in their finger tables (for dchord). In the lazy method, servers
are not notified but realize the failure of a node when they try to commu-
nicate with it. When a node recovers, it gets the membership list from the
EM and then does a broadcast (d f c), or it receives its finger table from
the EM and then notify all the servers that should have the joined node
in their finger tables (dchord) [29]. In our simulations, the failure event
without a replication model impies that when a server fails, all the mes-
sages (requests coming from the clients, or forwarding messages from
other servers) would fail. In addition, the clients wouldn’t try the failed
requests again, even if the failed server recovers. The purpose of this
is to isolate the effect of failures so that it can be measured separately.

3.4.2 Failure/Recovery with Server Replication
We implement a replication model in the simulator for the purpose

of handling failures. In csingle and ctree, one or more failovers are added,
while in d f c and dchord, each server replicates its data in the consecutive
servers. Failure events complicate server replication clients would try
again several times for failed requests before they turn to the next replica
in case the failed server recovers at a later time. In all cases, we assume
that clients know or can trivially find the replicas of servers to whom
they send requests. When the primary server fails, the first replica sends
the failed server’s data to one more other server to ensure that there are
enough replicas. In addition, all the servers that replicate data on the
failed server would also send their data to one more server.

3.5 Consistency Model
Our simulator implements two consistency models: strong consis-

tency and eventual consistency [32].

3.5.1 Strong Consistency
In strong consistency, every replica observes every update in the same

order. Updates are made with atomicity guarantee so that no two repli-
cas may store different values for the same key at any given time. In the
case of strong consistency, a client sends requests to a dedicated server
(primary replica). The Get requests are processed and returned back
to client immediately while the Put requests are first processed locally
and then sent to the replicas. The primary replica waits for an acknowl-
edgement from each other replica before it responds back to the client.
When a node recovers from failure, before the node gets all its data (see
section 3.4), the node caches all the requests that directed to it. In addi-
tion, the first replica (notified by the EM) of the newly recovered server
migrates all pending Put requests, which should have been served by
the recovered server, to the recovered server. This ensures that only the
primary replica processes Put requests at anytime in the system while
there may be more than one replica processing Get requests.

3.5.2 Eventual Consistency
In eventual consistency, given a sufficiently long period of time over

which no changes are sent, all updates can be expected to propagate
eventually through the system and all the replicas will be consistent.

Although different replicas may be storing different versions of the same
key at a given time, all replicas will eventually receive every update
and will eventually agree on all values. In our simulator, after find-
ing the correct server (one-hop hashing for d f cor logN hops routing
for dchord), the requests are sent to a randomly choosen replica, which
is called the “coordinator”. This is to model inconsistent updates of
the same “key” in different replicas, and also achieves load balancing
among all the replicas. There are three key parameters that change the
behavior of the consistency mechanism: the number of replicas–N, the
number of replicas that must participate in a successful Get request–R,
and the number of replicas that must participate in a successful Put
request–W. We satisfy R+W>N to guarantee “read our writes” [32].
Similar to Dynamo and Voldemort, our simulator uses version clock
to track different versions of data and detect conflicts. A version clock
is a vector of <serverId,counter> pairs for each key in each server. It
specifies from one server’s point of view, how many updates have been
processed by each server for a specific key. If all update counters in a
vector clock V1 are smaller than or equal to all corresponding update
counters in a vector clock V2, then V1 precedes V2, and can be replaced
by V2. If V1 overlaps with V2, then there is a conflict. For a Get
request, the coordinator first reads the value locally, sends the request to
other replicas, and waits for <value,version clock> responses. When a
replica receives a Get request, it first checks the corresponding version
clock. If the version clock precedes the coordinator’s version clock,
then the replica reponses success; otherwise, responses failure with its
own <value,version clock> pair. The coordinator waits for R−1 suc-
cessful responses. If there are multiple versions of data, the coordinator
returns all the versions to the client who is responsible for reconciliation
(according to an application specific rule such as “largest value wins”)
and writing back the reconciled version. For a Put request, the coor-
dinator generates a new vector clock by incrementing its counter of the
current vector clock by 1, and writes the new version locally. Then the
coordinator sends the request along with the new vector clock to other
replicas and waits for responses. If the new vector clock is preceded
by a replica’s vector clock, the replica accepts the update and responds
success; otherwise, responds failure. If at least W−1 replicas respond
success, the Put request is considered successful.

3.6 Implementation
After evaluating several simulation frameworks such as OMNET++ [30],

OverSim [3], SimPy [17], we chose to develop the simulation using a
peer-to-peer system simulator, PeerSim [21], because of its support for
extreme scalability and dynamicity. Among the two simulation engines
it provides, we use the discrete-event simulation (DES) [33] engine be-
cause it is more scalable and realistic compared to the cycle-based one
for large-scale simulations. Every behavior in the system is converted to
an event and tagged with an occurrence time. All the events are inserted
in the global event queue, which is sorted based on the event occurrence
time. At each iteration, the simulation engine fetches the first event
and executes the corresponding actions resulting in insertion of zero or
more events in the queue. The simulation terminates when the queue
is exhausted or a termination condition is satisfied.

There are several parameters that define the simulator environment
and operation. The simulation is built on top of PeerSim, which is
developed in Java, and has about 10,000 lines of code. The input to the
simulation is a configuration file, which specifies the system architec-
ture, the values of the parameters, etc. The names and descriptions of
the parameters are shown in Table 2. There are no other dependencies.

4. EVALUATION
The goal of the experimental evaluation is to give insight into the

design space of distributed KVS for HPC, and to show the capabilities
of our simulation tool to expose costs inherent in design choices. To

accomplish these goals we use KVS simulation to evaluate the overhead
of different service architectures as we vary the major parameters that
we identified in section 2, taxonomy. We present these experimental
results by incrementally adding complex features such as replication,
server response to failure/recovery, and consistency, so that we can
measure the individual contributions to the overhead due to support for
these distributed service features and their associated protocols. This
overhead is reflected in the communication intensity of the specific
service architectures and the additional communication as a result of
the additional features.

But first we need to setup the experimental environment by describing
the metrics being used to evaluate the simulation, present the workloads
to be applied, and validate our simulation against two real systems:
ZHT [19], a zero-hop distributed KVS and Voldemort [8], an open-
source implementation of Amazon’s Dynamo [5] KVS.

4.1 Experimental Setup

4.1.1 Metrics
The metrics being used to evaluate our simulation include Aggregated

Server Throughput, Per-Client Throughput Speedup, System Efficiency,
and Number of Messages. The specifications and reasons for choosing
them are as follows:

• Per Client Throughput Speedup: This represents the relative
average throughput of each client from the client’s perspective.
Per client throughput is calculated as number of requests finished
divided by the time to finish the requests, it measures how fast
a client’s requests are processed as viewed by the client.

• System Efficiency: This is calculated as measured aggregated
server throughput divided by the ideal aggregated server through-
put. The aggregated server throughput is calculated as number
of total requests / simulation time. The ideal throughput is cal-
culated with zero communication overhead. This metric shows
the system utilization, the proportion of time when the system is
actually processing requests. The higher the efficiency is (close
to 1), the more fully utilized the system would be.

• Number of Messages: This is comprised of number of messages
for processing requests, failure events, replication, and consis-
tency – strong or eventual. Via message counters in the simulator,
we have a numerical view of the overhead of each property.

Name Description

BW Network bandwidth
lat Network congestion latency

msgS ize Message size
idLength Key length (in bits)

tss Server message packing overhead
tsr Server message unpacking overhead
tcs Client message packing overhead
tcr Client message unpacking overhead
tp Time to process a request locally

numReqPerClient Number of request per client
numClientPerS erv Number of clients per server

FailureRate Failure frequency
numReplica Number of replicas

R Number of succesful Get responses
W Number of succesful Put responses

numTry Number of retries before a client
talks to the replica

Table 2: Parameter names and descriptions

4.1.2 Experiment Environment
The software versions used are: Sun 64-bit JDK version 1.6.0_22;

PeerSim jar package version 1.0.5. The simulations were run on a single
node; the largest amount of memory required for any of the simulations
was 25GB and the longest run-time was 40 minutes (millions of clients,
thousands of servers, and tens of millions of requests). Given how light-
weight our simulator is, an extremely large scale range can be explored.

4.1.3 Parameters
The parameters presented in Table 2 are displayed in Table 3 with

their values. The network parameters are chosen to reflect large-scale
systems such as IBM BlueGene/P [1], and the Kodiak cluster from the
Parallel Reconfigurable Observational Environment (PRObE) [11]. The
base request-processing time is taken from samples of processing time
from services such as memcached [9] and ZHT [19].

4.1.4 Workloads
The simulations are performed with up to 1 million clients each sub-

mitting 10 Get or Put requests. We did experiments to verify that
higher numbers (e.g. 100, 1k, 10k) of get/put requests gave nominally
the same results. These values are configurable by changing the param-
eters, numReqPerClient and numClientPerS erv, from table 3. For d f c

and dchord, we increment the number of clients by 1024 and the number
of servers by 1 as we scale.

In exploring the overhead of different distributed system service fea-
tures (Sections 4.2 though 4.6), we use the synthetic workload, in which,
10M tuples of <type,key,value> are generated with a uniform random
distribution (URD) (50% Gets and 50% Puts) and placed in a work-
load file. Each client would then read 10 requests in turn and execute
their workloads.

Realistic workloads are also employed. They are described in more
detail and applied in section 4.7, where we feed the KVS simulator with
these distributed HPC service traces to show the generality of KVS.

4.1.5 Validation
We validate our simulator against two real systems: a zero-hop KVS,

ZHT [19], and an open-source implementation of Amazon Dynamo
KVS, Voldemort [8]. Both systems serve as building block for system
services. ZHT is used to manage metadata of file systems (FusionFS),
monitor task execution information of job scheduling systems (MA-
TRIX), and to store the resource and job information for our distributed
job launch prototype which is under improvement, while Voldemort is
used to store data for the LinkedIn professional network.

In the case of validating against ZHT, the simulator was configured to
match the client selection that was implemented in ZHT. ZHT was run
on the IBM Blue Gene/P machine (BG/P) in Argonne National Labora-
tory with up to 8K nodes and 32K cores. We used the published network
parameters of BG/P in our simulator. We used the same workload as that

Parameter BG/P Kodiak
BW 6.8 Gbps 1.0 Gbps
lat 100 µs 120 µs

msgS ize 10 KB 10 KB
idLength 128 bits 128 bits

tss 50 µs 40 µs
tsr 50 µs 40 µs
tcs 50 µs 40 µs
tcr 50 µs 40 µs
tp 500 µs 1500 µs

numReqPerClient 10 10
numClientPerS erv 1024 1024

numTry 3 3

Table 3: Simulation Parameters

0% 1%
4%

1% 2% 1% 1% 2% 2%
4%

14% 15%
10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16

32

64

12

8
25

6
51

2
10

24

20

48

40

96

81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Pe
rc

en
ta

ge

Scale (No. of Nodes)

normalized efficiency (ZHT)

normalized efficiency (Simulation)

normalized difference

0.00%

6.71%
11.17%

3.39%
0.69%

10.72%

17.35%
23.02% 23.31%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 16 32 64 128 256 512 1024

Pe
rc

en
ta

ge

Scale (No. of Servers)

normalized efficiency (Voldemort)

normalized efficiency (Simulation)

normalized difference

Figure 4: Validation of the simulator: Simulating ZHT and
Voldemort

used to in ZHT: each node has a client and a server, each client submits
10K requests with URD, the length of the key is 128 bits, and the mes-
sage size is 134 bytes. The result in Figure 4 shows that our simulator
matches ZHT with up to the largest scale (8K nodes with 32K cores)
that ZHT was run. The biggest difference was only 15% at large scales.
The ZHT curve depicts decreasing efficiency after 1024 nodes, because
each rack of BG/P has 1024 nodes. Within 1024 nodes (one rack), the
communication overhead is small and relatively constant, leading to
constant efficiency (75%). After 1024 nodes, the communication spans
multiple racks, leading to more overhead and decreasing efficiency.

In the case of Voldemort, we focused on validating the eventual
consistency model of the simulator. The simulator was configured to
match the server selection d f c model, with each server backed by 2
replicas and responsible for 1024 clients, and an associated eventual
consistency protocol with versioning and read-repair. We ran Volde-
mort on the Kodiak cluster from PROBE with up to 800 servers, and
800k clients. Each client submitted 10 random requests. As shown in
Figure 4, our simulation results match the results from the actual run
of Voldemort within 10% up to 256 nodes. At higher scales, due to re-
source over-subscription, an acute degradation in Voldemort’s efficiency
was observed. Resource over-subscription means that we ran way too
many client processes (up to 1k) on one physical node. At the largest
scale (800 servers and 800 nodes), there will be 1k client processes
running on each node, leading to serious resource over-subscription.

Given the good validation results, we believe that the simulator can of-
fer convincible performance results of the various architectural features
we are interested in. This allows us to weigh the service architectures
and the overheads that are induced by the various features.

4.2 Architecture Comparisons of d f c vs dchord

In the section, we compare two of the distributed architectures (d f cand
dchord) with a very basic scenario (no replication, no failures or consis-

tency model). The synthetic workload is used to investigate the tradeoffs
between these service architectures at increasingly large scales.

The performance comparison between d f c and dchord is shown in Fig-
ure 5. Doubling client counts indicates doubling server counts because
each server is responsible for 1K nodes. With d f c, we observe that the
efficiency has a fairly constant value (67%) at extreme scales, mean-
ing that d f c scales perfectly linearly with respect to the scale. On the
other hand, in dchord, as we scale up, the efficiency decreases smoothly
(Figure 5(a)). This is due to the additional routing required by dchord

to satisfy requests: one-hop maximum for d f c and logN hops for dchord.
We show the per client throughput speedup of d f c with respect to dchord

in Figure 5(b). As the system scales up, the speedup is increasing. Up
to 1M clients, the per client throughput of d f c is about 2 times of that
of dchord. This is again due to the extra hops required to find the correct
server responsible for the key in dchord.

The conclusion is that at the base case (no replication, failure, or
consistency model), the partial connectivity of dchord results in higher
latency to satisfy client requests, due to the additional routing. Fully
connected topology results in faster response to client requests (twice as
fast as partial connectivity), because it needs at most one hop routing.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1024
4096

16384
65536

262144
1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

dfc dchord

(a) Server efficiency

1

1.2

1.4

1.6

1.8

2

2.2

1024
4096

16384
65536

262144
1048576

Sp
ee

du
p

(d
fc

/d
ch

or
d)

Scale (No. of Clients)

per client throughput speedup (dfc/dchord)

(b) Per client throughput speedup

Figure 5: d f c and dchord performance comparison

4.3 Replication overhead
This section investigates the replication overhead associated with d f c

and dchord. The data is collected for comparison of 1 to 3 replicas and
the results are shown in Figure 6. It shows that there is always additional
cost for additional replicas due to the added communication and pro-
cessing overhead involved in propagating the Put requests to the extra
replicas. Comparing d f c and dchord, we see that d f chas more overhead
than dchord when adding extra replicas. This is due to the low efficiency
of dchord, since dchord has higher overhead for routing, the additional

fixed overhead for the replicas is relatively small when comparing with
the routing overhead. In d f c the relatively low routing overhead results
in a larger impact on efficiency. In d f c, the first added replica adds over
20% overhead (67% to 46%) and decreases the efficiency by 29.9%
(20% / 67%), the second added replica introduces over 10% overhead
(46% to 35%) and decreases the efficiency by 23.9%, while in dchord,
overheads of the first and second added replicas are 6% (33% to 27%)
and 4% (27% to 23%), and efficiency decreased by 18.2% and 14.8%,
respectively at the largest scale.

30%

40%

50%

60%

70%

80%

90%

1024
4096

16384
65536

262144
1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

dfc 1 replica

dfc 2 replicas

dfc 3 replicas

(a) d f c

20%

30%

40%

50%

60%

70%

80%

90%

1024
4096

16384
65536

262144
1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

dchord 1 replica

dchord 2 replicas

dchord 3 replicas

(b) dchord

Figure 6: Service architecture replication overhead

4.4 Server Failure Effects
We add failure events (servers fail and possibly recover) to the sim-

ulator to emulate the failure rates of extreme-scale class systems. Here
we do not use extra replicas and a request to a “failed” server would be
dropped and the client wouldn’t retry. This is to measure the overhead
of dynamicity of the service architectures. A failure event has to be
forwarded to every other server in the d f c network, whereas in the dchord

network, it is sent to logN nodes resulting (logN)2 messages. Different
failure frequencies (high 60/min, medium 20/min, and low 5/min) are
studied with the results shown in Figure 7, for both d f c and dchord.

As seen in Figure 7, the higher the failure frequency is, the more over-
head introduced (lower efficiency curve for higher failure frequency).
But the dominating factor is the client messages. These client request-
processing messages dwarf the number of communication messages
of the failure events, which is a secondary factor even at the frequency
of 60 events/min. Furthermore, this effect is getting dominating as the
system scales up; the efficiency gaps are getting smaller and smaller
until they disappear at the largest scales. For example: given 1M clients
each sending 10 requests, 1K servers, and 5 failure events, for d f c, we
have at most 10M client forwarding messages and failure events only
require 5×1K messages (small compared to 10M), while for dchord, we

have 1M×log(1K)=10M forwarding message, and 5(log(1K))2=500
failure messages. This illustrates how client-request messages dominate
even with the added messages required to deal with server failures and
recovery. Figure 7 shows that d f c is more efficient than dchord at the
studied failure rates.

In order to validate the correctness of failure events represented in
our simulator, we show the number of communication messages of one
failure event in Figure 8. In this experiment we expect to see d f c increase
linearly while dchord should increase logrithmically, we turn off the client
workload messages and configure the simulator to process merely 10
failure events, and collect the average number of messages. The regres-
sion models in Figure 8 validate the linear and logarithmic relationships
of the number of messages with respect to the number of servers for d f c

and dchord, respectively. The R-Square values of the models are 0.865
and 0.998, which demonstrate that our models are representative.

y = 0.99782203964151x - 1.84980544747081
R² = 0.99998370421912

y = 32.705896576953ln(x) + 56.691111111111
R² = 0.865216460617

1

4

16

64

256

1024

4 8 16 32 64 128 256 512 1024

N
o.

 o
f M

es
sa

ge
s

No. of Servers

dfc dchord

Linear (dfc) Log. (dchord)

Figure 8: Regression of the number of failure event messages with
respect to the system scale

4.5 Server Failures with Replication
This section explores the overhead of failure events when a service

is configured to keep updated replicas for resilience. The clients try to
resend the failed requests to the primary several times (specified by the
numTry parameter, which is set to a default value of 3) before it turns to
the next replica. The reason is the “failed” server might recover at later
time or a server may respond slowly due to high load. The results are
shown in Figure 9 which displays the efficiency comparison between d f c

and d f c configured with failures and supporting replication, and between
dchord and dchord configured with failure events and supporting replica-
tion, respectively. We fixed the parameters at 3 replicas, and a low failure
rate (5 failure events per minute), with a strong consistency model.

As seen in Figure 9, both d f c and dchord have significant efficiency
degradation when both failures and replication were enabled (blue solid
line vs blue dotted line, red solid line vs red dotted line). The perfor-
mance degradation of d f c is more severe than that of dchord, 44% (67%
to 23%) for d f c vs, 17% (32% to 15%) for dchord. The reason for this
is hidden in Table 4.

This table lists the number of messages of each property (process re-
quest, failure, strong consistency of replicas) for both d f c and dchord. We
see that at extreme-scale the request-process message count (dominant
factor) does not increase much when turning on failures and extra repli-
cas for both d f c and dchord. The failure event message count is negligible
and the number of strong consistency messages of replicas increases
significantly about the same rate for both d f c and dchord. However, these
added messages account for about 1/3 (20M/60M) for d f c, and less than
1/8 (20M/170M) for dchord. Due to the high request process message
count in dchord the performance degradation of d f c seems more severe
than that of dchord. The overhead of replication is costly as can be seen
from Figure 9, tuning a service to the appropriate replication will have

a large impact on performance.

10%

20%

30%

40%

50%

60%

70%

80%

4096
16384

65536
262144

1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

dfc 1 replica no failure
dfc 3 replicas 5 failure events/min
dchord 1 replica no failure
dchord 3 replicas 5 failure events/min

Figure 9: The effect of failure events with servers using replication

10%

14%

18%

22%

26%

30%

4096
16384

65536
262144

1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

dfc strong consistency dfc eventual consistency

dchord strong consistency dchord eventual consistency

Figure 10: Strong consistency and eventual consistency

4.6 Strong and Eventual Consistency
We compare the overhead of strong and eventual consistency models

in this section. We enable server failures with 5 failure events per minute
and add 2 extra replicas. For eventual consistency, we configure (N,
R, W) to be (3, 2, 2), which is the typical configuration of Amazon
Dynamo [5]. The efficiency comparison between strong and eventual
consistency for both d f c and dchord is shown in Figure 10. We also
list the number of messages for request processing, failure events, and
consistency models in Table 5.

We see in Figure 10 that eventual consistency has more overhead
than the strong consistency for both d f c and dchord. From strong to
eventual consistency, efficiency reduces by 4.5% for d f c and 3% for
dchord at extreme-scale. In Table 5, we see that the request-process
message count doesn’t vary much for both d f cand dchord. However,
for consistency messages, eventual consistency introduces about twice
(41M/21M) the number of messages than strong consistency. This is
because in eventual consistency each request would be forwarded to all
other N=3 replicas and the server waits for R=2 and W=2 successful
acknowledgments. Whereas, with strong consistency, just the Put re-
quests would be forwarded to all other replicas. Eventual consistency
gives faster response times to clients but there is a cost with respect the
to the communication overhead as shown in Table 5. This need to be
considered when designing services.

4.7 KVS Applicability to HPC Services
In this section, we show that KVS can be used as a general building

block for developing HPC services. First, we evaluate the two architec-
tures through our simulator with different workloads: job launch, mon-
itoring, and I/O forwarding. These three workloads were obtained from

30%

40%

50%

60%

70%

80%

90%

1024
4096

16384
65536

262144
1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

dfc no failure

dfc 60 failure events/min

dfc 20 failure events/min

dfc 5 failure events/min

10%

20%

30%

40%

50%

60%

70%

80%

90%

1024
4096

16384
65536

262144
1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

dchord no failure

dchord 60 failure events/min

dchord 20 failure events/min

dchord 5 failure events/min

Figure 7: d f c and dchord effects of failure events
process message count failure message count strong consistency count

Clients d f c dchord d f c (C&R) dchord (C&R) d f c (C&R) dchord (C&R) d f c (C&R) dchord (C&R)

4096 143.426 184.956 312.426 246.153 0.033 4.549 217.669 87.106
8192 307.282 491.178 404.126 596.151 0.042 0.445 175.384 170.838

16384 634.826 1207.952 726.112 1472.551 0.066 28.615 336.498 377.072
32768 1290.604 2825.860 1386.706 3039.180 0.114 0.712 665.388 661.926
65536 2601.066 6409.968 2698.502 6637.741 0.210 0.590 1322.836 1315.460

131072 5222.814 14256.736 5319.564 14542.027 0.402 0.888 2632.554 2627.996
262144 10465.436 31279.104 10564.664 31702.242 0.786 0.996 5251.380 5247.638
524288 20950.976 67947.732 21050.058 68422.326 1.554 1.127 10492.476 10485.882

1048576 41922.386 146570.7 42020.528 147105.826 3.090 1.274 20985.110 20979.146

Table 4: Number of messages for d f c, dchord with and without failure and replica (C&R) (in thousands)

process message count failure message count consistency message count

sc ec sc ec sc ec

Clients d f c dchord d f c dchord d f c dchord d f c dchord d f c dchord d f c dchord

4096 312.426 246.153 141.468 211.356 0.033 4.549 0.030 0.355 217.669 87.106 167.198 164.472
8192 404.126 596.151 391.926 682.689 0.042 0.445 0.054 0.588 175.384 170.838 340.236 328.208

16384 726.112 1472.551 733.134 1466.287 0.066 28.615 0.086 23.705 336.498 377.072 668.216 655.372
32768 1386.706 3039.180 1356.776 3076.448 0.114 0.712 0.15 0.827 665.388 661.926 1317.964 1312.000
65536 2698.502 6637.741 2675.156 6647.217 0.210 0.590 0.210 0.768 1322.836 1315.460 2628.146 2621.648

131072 5319.564 14542.027 5324.970 14776.662 0.402 0.888 0.534 1.093 2632.554 2627.996 5257.768 5251.656
524288 21050.058 68422.326 21033.874 68689.058 1.554 1.127 2.070 1.398 10492.476 10485.882 20982.712 20972.940

1048576 42020.528 147105.826 42008.038 147975.997 3.090 1.274 4.118 1.573 20985.110 20979.146 41954.552 41951.924

Table 5: No. of messages of strong consistency (sc), and eventual consistency (ec) for both d f c and dchord (in thousands)

real traces of three HPC system services: job launch using SLURM,
monitoring by Linux Syslog, and I/O forwarding using FusionFS [37]
distributed file system. We also implemented a distributed job launch
prototype based on SLURM and the distributed KVS, ZHT.

4.7.1 Simulation with Various Workloads
We run simulations with three workloads obtained from typical HPC

services: job launch, monitoring, and I/O forwarding. The specification
of each workload is listed below:

• Job Launch: The job launch workload is obtained by monitor-
ing the messages between the server and client during a MPI job
launch. Though the service is not implemented in a distributed
fashion the messages to and from the clients should be representa-
tive regardless of server structure and this in turn drives the com-
munication between the distributed servers. Job launch is char-
acterized by control messages from the distributed servers (Get)
and the results from the compute nodes back to the servers (Put).

• Monitoring: The monitoring workload is obtained from a 1600
node cluster’s syslog data. This data was then categorized by
message-type (denoting the key-space) and count (denoting the
probability of each message). This distribution was then used to

generate the workload which is completely Put dominated.

• I/O Forwarding: The I/O forwarding workloads is generated by
running FusionFS distributed file system, which uses ZHT for
metadata management. The client first creates 100 files, and then
operates (reads or writes with 50% probability) each file once.
We collect the log of the ZHT metadata server.

We extend and feed these real workloads to our simulator in order to
investigate the applicability of our KVS simulator for HPC system ser-
vices. The workloads obtained are not big enough for an extreme-scale
system. For job launch and I/O forwarding workloads, we repeat the
workloads several times until reaching 10M requests, and the key of each
request is generated with URD within our 64-bit key space. For the mon-
itoring workload, there are 77 kinds of message types with each one hav-
ing a different probability. We generate 10M Put requests; the key is
generated based on the probability distribution of the message types and
is mapped to our 64-bit key space. We point out that these extensions are
not enough to reflect every detail of these workloads. Nevertheless, they
do reflect some important properties; the job launch and I/O forwarding
workloads reflect the time serialization property and the monitoring
workload reflects the probability distribution of all obtained messages.

Figure 11 shows the efficiency of these workloads with both strong

0%

5%

10%

15%

20%

25%

30%

E
ff

ic
ie

n
c

y

Scale (No. of Clients)

job launch (sc) job launch (ec)
monitoring (sc) monitoring (ec)
I/O forwarding (sc) I/O forwarding (ec)

(a) d f c

0%

5%

10%

15%

20%

25%

30%

4096
16384

65536
262144

1048576

Ef
fic

ie
nc

y

Scale (No. of Clients)

job launch (sc) job launch (ec)
monitoring (sc) monitoring (ec)
I/O forwarding (sc) I/O forwarding (ec)

(b) dchord

Figure 11: d f c and dchord with different workloads

and eventual consistency for d f c and dchord. We see that for job launch
and I/O forwarding workloads, eventual consistency performs worse
than strong consistency. This is because these two workloads have al-
most uniform random distribution for both request type and the key. The
ratio of the number of Get to Put requests is 50.9% to 49.1% for job
launch, and 57.6% to 42.4% for I/O forwarding. For the monitoring
workload, eventual consistency outperforms strong consistency because
all the requests are Put type, which requires all N−1 acknowledgment
messages from the other N−1 replicas in strong consistency whereas
just R−1 or W −1 acknowledgment messages from the other N −1
replicas in eventual consistency. Another fact is that the efficiency of
the monitoring workload is the lowest because the key space is not
uniformly generated, which leads to poor load balancing.

The above results demonstrate that our simulator is capable of sim-
ulating different kinds of system services as long as the workloads of
these services could be transformed to Put or Get requests, which
is true for the HPC services we have investigated.

4.7.2 Distributed Job Launch
In designing the next-generation distributed job management systems

for HPC applications at extreme-scale, we developed a distributed job
launch prototype based on the SLURM resource management system,
combined with the distributed KVS, ZHT. The prototype is comprised
of multiple controllers, each one managing several SLURM daemons in
contrast to SLURM’s centralized slurmctrld. The controllers are fully-
connected, where each controller is aware of all of the other controllers
(d f c). ZHT is used to store the job metadata and is also used to resolve
any contention for the resources (via the atomic compare and swap [13]
operation of ZHT). By using ZHT to hide the complexities (e.g. failure,
replica and consistency models) involved in creating distributed services,
we show that a distributed KVS can be used as a building block for
distributed services and can speed the development and deployment of
these services.

Inspired by the work stealing [4] concept, we developed a novel
resource stealing protocol, each controller uses this protocol for resource
allocation when launching jobs. Each controller stores local free node
list in ZHT and when launching a job it first checks the local free nodes.
If there are enough available nodes locally, then the controller directly
allocates the nodes; otherwise, it will query ZHT for other partitions
from which it can steal resources. As long as there are not enough nodes
to satisfy the allocation, the resource stealing protocol will randomly
select a controller to steal nodes. When the selected controller (victim)
has no available nodes, the stealing controller (stealer) sleeps and retries.
If the stealer experiences several failures in a row because the victims

have no free nodes, it will release all resources it has obtained, and then
retries the resource stealing protocol again. The number of retries and
lenght of sleep after a stealing failure are critical to the performance.
After tuning these parameters, we have chosen to retry 3 times, and
sleep 100ms, for the following experiments.

0.125

0.25

0.5

1

2

4

8

16

32

64

100 200 300 400 500 600 700 800 900

T
h

ro
u

g
h

p
u

t
(j

o
b

s
 /
 s

e
c
)

Scale (No. of nodes)

small-job (Distributed Job Launch)

small-job (SLURM Job Launch)

medium-job (Distrbiuted Job Launch)

medium-job (SLURM Job Launch)

big-job (Distributed Job Launch)

big-job (SLURM Job Launch)

Figure 12: Comparison of SLURM and our distributed job launch
prototype with various workloads

We configured each controller to manage 100 SLURM daemons, and
compared SLURM job launch with our distributed job launch proto-
type under a small-job workload – job size is 1 node, a medium-job
workload – job size is 1 to 50 nodes, and a big-job workload – job size
is 50 to 100 nodes. We consider the simple sleep 0 job, which is a
minimal job, but enough to measure the overhead of the two services.
Figure 12 shows the comparison results with up to 9 controllers and 900
SLURM daemons (SLURM just has one centralized controller) running
on the PRObE testbed system with the same total number of jobs. For
a small-job workload, each controller launches 100 jobs with each job
requiring 1 node; for medium- and big-job workloads, each controller
launches 50 jobs, with each job requiring a random number of nodes
ranging from 1 to 50, and from 50 to 100, respectively.

From Figure 12, we see that: (1) Under a small-job workload, with
standard SLURM, the throughput has a decreasing trend as the number
of nodes increase (53 jobs / sec at 100 nodes, down to 46 jobs / sec at
900 nodes), while for our prototype, the throughput increases linearly
with respect to the scale, and this linear speedup trend is expected
to continue at larger scales. By scales of 900 nodes, our prototype
launches jobs faster than SLURM (50 jobs/sec vs. 46 jobs/sec); (2)
Under a medium-job workload, for standard SLURM, as the number
of nodes scales up, the throughput increases slightly (from 4 jobs / sec

at 100 nodes to 8 jobs/sec at 600 nodes), and then is almost constant or
with a slow decrease, while for our prototype, the throughput increases
approximately linearly with respect to the scale (from 2.8 jobs / sec
at 100 nodes to 20.8 jobs / sec at 900 nodes). After 200 nodes, our
prototype can launch jobs faster than SLURM, and the gap increases
with the scale. At the largest scale, the distributed job launch prototype
can launch jobs about 2.5 times faster than SLURM, and the trend
implies that this speedup would continue at larger scales; (3) With a big-
job workload, SLURM’s throughput increases up to 700 nodes (from
0.75 jobs / sec at 100 nodes to 2.25 jobs / sec at 900 nodes), and then the
throughput is almost constant (actually a little bit decreasing from 700
nodes to 900 nodes). However, like the previous two cases, our prototype
experiences a linear increasing trend for throughput with respect to scale
(from 0.28 jobs / sec at 100 nodes to 2.7 jobs / sec at 900 nodes). After
700 nodes, our prototype can launch jobs faster than SLURM.

The results show that employing a distributed KVS (ZHT), our pro-
totype outperforms SLURM even with the added complexity of a dis-
tributed service and speculate on the potential positive impact such
distributed job launch architecture could have at the extreme scales of
tomorrow. We are now improving ZHT and our prototype, and will
implement more distributed HPC system services, such as distributed
monitoring, distributed queuing sevices, using ZHT in the future.

5. RELATED WORK
Work that is directly related to the simulation of services includes

an investigation of peer to peer networks [7], telephony simulations [6],
simulations of load monitoring [10], and simulation of consistency [27].
However, none of the investigations are focused on HPC, or combine
replication, failures and consistency. In this survey [20], the authors
have investigated 6 distributed hash tables and have categorized them
in an algorithm taxonomy. This work focuses on the overlay networks,
and presents a discussion on the performance. In [12], peer-to-peer file-
sharing services are traced and these are used to build a parameterized
model. Another taxonomy was developed for grid computing work-
flows [36], in which they use the taxonomy to categorize existing grid
workflow managers to find their common features and weaknesses. But
none of these investigations are targeting HPC workloads and services,
and none of them use the taxonomy to drive features in a simulation,
which then can be used in the design of services.

6. CONCLUSIONS AND FUTURE WORK
In this work we justified the usefulness of distributed KVS for HPC.

We developed a service taxonomy and categorized KVS services into
4 components, and then used this taxonomy to drive the development of
a KVS simulator that was parameterized across data, network, recovery,
and consistency models.

The simulator was validated, and experiments were conducted to
quantify and compare the overheads of fail/recover events, replication
and different consistency models for these architectures under synthetic
and realistic HPC workloads. With an extendable simulator as a tool,
we can design system services for large-scale and make feature choices
to reduce the effort of implementation.

The conclusions we draw are as follows: when the client requests
dominate the communication–up to billions at extreme scales–the fully
connected topology (d f c) actually scales very well under moderate fail-
ures (MTTF) with different replication and consistency models, though
it is relatively expensive to do a broadcast to update everyone’s mem-
bership list when a failure happens; while partial-knowledge topology
(dchord) scales moderately with less expensive overhead under failure
events. When the communication is dominated by server messages,
(due to fail/recover, replication or consistency) rather than client request
messages, then dchordwould have an advantage. Different consistency

models (strong and eventual) have different application domains, strong
consistency is more suitable for running read-intensive applications,
while eventual consistency is preferable for applications that require
high availability and fast response times.

Future work includes extending the simulator to cover more of the tax-
onomy, adding network models and recovery models such as log-based
replay. Additionally, we will use the simulator to model other system ser-
vices and validate these at small scale, and then simulate at much larger
scales. This work is guiding the development of a building block library
that can be then used to compose distributed resilient system services
for large-scale systems. We are currently improving the distributed job
launch prototype. Other service building block implementations will be
developed to support csingle, ctree, and dchordwith various properties from
the taxonomy. This would allow other developers to select the best ser-
vice architecture based on the simulations at the desired scale and build
their services from the base implementations of these building blocks.

Acknowledgements
This work was supported by the U.S. Department of Energy under con-
tract DE-FC02-06ER25750, and in part by the National Science Foun-
dation under award CNS-1042543 (PRObE). This work was also in col-
laboration with the FusionFS project supported by the National Science
Foundation grant NSF-1054974. This research also used resources of the
Argonne Leadership Computing Facility at Argonne National Labora-
tory, which is supported by the Office of Science of the U.S. Department
of Energy under contract DEAC02-06CH11357. The publication has
been assigned the LANL identifier LA-UR-12-25175. We thank Tonglin
Li, Dongfang Zhao and Hakan Akkan for their help and suggestions.

7. REFERENCES
[1] Overview of the ibm blue gene/p project. IBM Journal of Research

and Development, 52(1.2):199 –220, jan. 2008. ISSN: 0018-8646.
[2] Nawab Ali, Philip Carns, Kamil Iskra, et al. Scalable I/O For-

warding Framework for High-Performance Computing Systems.
[3] I. Baumgart, B. Heep, and S. Krause.

Oversim: A flexible overlay network simulation framework. In
IEEE Global Internet Symposium, 2007, pages 79 –84, may 2007.

[4] Robert D. Blumofe and Charles E. Leiserson.
Scheduling multithreaded computations by work stealing.
Journal of the ACM (JACM), 46(5):720–748, Sept., 1999.

[5] Giuseppe DeCandia,
Deniz Hastorun, Madan Jampani, et al. Dynamo: Amazon’s
highly available key-value store. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, SOSP
’07, pages 205–220, Stevenson, Washington, USA, 2007. ACM.

[6] Ibrahima Diane, Ibrahima Niang, and Bamba Gueye. A Hierar-
chical DHT for Fault Tolerant Management in P2P-SIP Networks.
In Proceedings of the 2010 IEEE 16th International Conference
on Parallel and Distributed Systems, ICPADS ’10, pages
788–793, Washington, DC, USA, 2010. IEEE Computer Society.

[7] Tien Tuan Anh Dinh, Georgios
Theodoropoulos, and Rob Minson. Evaluating Large Scale
Distributed Simulation of P2P Networks. In Proceedings of the
2008 12th IEEE/ACM International Symposium on Distributed
Simulation and Real-Time Applications, DS-RT ’08, pages
51–58, Washington, DC, USA, 2008. IEEE Computer Society.

[8] A. Feinberg.
Project Voldemort: Reliable Distributed Storage. ICDE, 2011.

[9] Brad Fitzpatrick. Distributed caching with memcached.
Linux J., 2004(124):5–, August 2004. ISSN: 1075-3583.

[10] Bogdan Ghit, Florin Pop, and Valentin Cristea. Epidemic-Style
Global Load Monitoring in Large-Scale Overlay Networks.

In Proceedings of the 2010 International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 3PGCIC ’10, pages
393–398, Washington, DC, USA, 2010. IEEE Computer Society.

[11] Gary Grider.
Parallel Reconfigurable Observational Environment (PRObE),
October 2012. Available from http://www.nmc-probe.org.

[12] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu,
et al. Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, SOSP
’03, pages 314–329, Bolton Landing, NY, USA, 2003. ACM.

[13] Maurice Herlihy.
Wait-free synchronization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(1):124–149, Jan., 1991.

[14] Michael A.
Heroux. Toward Resilient Algorithms and Applications, April
2013. Available from http://www.sandia.gov/~maherou/
docs/HerouxTowardResilientAlgsAndApps.pdf.

[15] Morris A. Jette,
Andy B. Yoo, and Mark Grondona. SLURM: Simple Linux utility
for resource management. In Dror Feitelson, Larry Rudolph,
and Uwe Schwiegelshohn, editors, 9th International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP 2003),
volume 2862 of Lecture Notes in Computer Science, pages 44–60,
Seattle, Washington, USA, June 24, 2003. Springer-Verlag.

[16] David Karger, Eric Lehman, Tom Leighton, et al. Consistent hash-
ing and random trees: distributed caching protocols for relieving
hot spots on the world wide web. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, STOC
’97, pages 654–663, El Paso, Texas, United States, 1997. ACM.

[17] Tony Vignaux Klaus Muller.
Simpy:documentation, May 2010. Available from http:
//simpy.sourceforge.net/SimPyDocs/index.html.

[18] Avinash Lakshman and Prashant Malik.
Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44:35–40, April 2010. ISSN: 0163-5980.

[19] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, et al. ZHT: A
Light-weight Reliable Persistent Dynamic Scalable Zero-hop Dis-
tributed Hash Table. In Proceedings of the 27th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’13),
IPDPS ’13, Boston, MA, USA, 2013. IEEE Computer Society.

[20] Eng Keong Lua,
Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A
survey and comparison of peer-to-peer overlay network schemes.
IEEE Communications Surveys and Tutorials, 7(2):72–93, 2005.

[21] Alberto Montresor and Márk Jelasity. PeerSim: A scalable
P2P simulator. In Proc. of the 9th Int. Conference on Peer-to-Peer
(P2P’09), pages 99–100, Seattle, WA, September 2009.

[22] Ioan Raicu. Many-task computing: Bridging the
gap between high-throughput computing and high-performance
computing. Proquest, Umi Dissertation Publishing, 2009.

[23] Ioan Raicu, Ian Foster, Mike Wilde,
et al. Middleware support for many-task computing. Cluster
Computing, 13(3):291–314, September 2010. ISSN: 1386-7857.

[24] Ioan Raicu, Ian Foster, Yong Zhao, and Alex Szalay.
Towards data intensive many-task computing. In Data Intensive

Distributed Computing: Challenges and Solutions for Large-Scale
Information Management, IGI Global Publishers, 2009.

[25] Ioan Raicu,
Ian T. Foster, and Pete Beckman. Making a case for distributed
file systems at exascale. In Proceedings of the third international
workshop on Large-scale system and application performance,
LSAP ’11, pages 11–18, San Jose, California, USA, 2011. ACM.

[26] Ioan Raicu, Ian T Foster, and
Yong Zhao. Many-task computing for grids and supercomputers.
In Many-Task Computing on Grids and Supercomputers,
2008. MTAGS 2008. Workshop on, pages 1–11. IEEE, 2008.

[27] M. Raihan Rahman,
W. Golab, A. AuYoung, K. Keeton, and J.J. Wylie. Toward
a Principled Framework for Benchmarking Consistency. 2012.

[28] Philip C. Roth, Dorian C. Arnold, and Barton P.
Miller. MRNet: A software-based multicast/reduction network for
scalable tools. In in: Proc. IEEE/ACM Supercomputing ’03, 2003.

[29] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. SIGCOMM Comput.
Commun. Rev., 31(4):149–160, August 2001. ISSN: 0146-4833.

[30] András Varga and Rudolf Hornig. An overview of the omnet++
simulation environment. In Proceedings of the 1st international
conference on Simulation tools and techniques for communications,
networks and systems& workshops, Simutools ’08, pages 60:1–
60:10, Marseille, France, 2008. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering).

[31] Abhinav Vishnu, Amith R. Mamidala,
Hyun-Wook Jin, and Dhabaleswar K. Panda. Performance
Modeling of Subnet Management on Fat Tree InfiniBand
Networks using OpenSM. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 18 - Volume 19, IPDPS ’05, pages
296.2–, Washington, DC, USA, 2005. IEEE Computer Society.

[32] Werner Vogels. Eventually
consistent. Queue, 6(6):14–19, October 2008. ISSN: 1542-7730.

[33] Ke Wang, Kevin Brandstatter, and Ioan Raicu. Simmatrix:
Simulator for many-task computing execution fabric at exascale.
In 21st High Performance Computing Symposia (HPC’13), Part
of the SCS Spring Simulation Multiconference (SpringSim’13) in
cooperation with ACM/SIGSIM, San Diego, CA, USA, Apr., 2013.

[34] Ke Wang, Anupam
Rajendranl, and Ioan Raicu. "matrix: Many-task computing
execution fabric at exascale". 2013. Available from http:
//datasys.cs.iit.edu/projects/MATRIX/index.html.

[35] Michael Wilde, Ioan Raicu, Allan
Espinosa, et al. Extreme-scale scripting: Opportunities for large
task parallel applications on petascale computers. In SCIDAC,
Journal of Physics: Conference Series 180, page 012046, 2009.

[36] Jia Yu and Rajkumar Buyya. A taxonomy
of workflow management systems for grid computing. Journal
of Grid Computing, 3(3-4):171–200, 2005. ISSN: 1570-7873.

[37] Dongfang Zhao and Ioan Raicu. Distributed
file systems for exascale computing. In Doctoral Showcase,
SC’12: Proceedings of the 2012 ACM/IEEE Conference
on Supercomputing, Salt Lake City, UT, November 2012.

http://www.nmc-probe.org
http://www.sandia.gov/~maherou/docs/HerouxTowardResilientAlgsAndApps.pdf
http://www.sandia.gov/~maherou/docs/HerouxTowardResilientAlgsAndApps.pdf
http://simpy.sourceforge.net/SimPyDocs/index.html
http://simpy.sourceforge.net/SimPyDocs/index.html
http://datasys.cs.iit.edu/projects/MATRIX/index.html
http://datasys.cs.iit.edu/projects/MATRIX/index.html

