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Abstract—One of the bottlenecks of distributed file systems
deals with mechanical hard drives (HDD). Although solid-state
drives (SSD) have been around since the 1990’s, HDDs are still
dominant due to large capacity and relatively low cost. Hybrid
hard drives with a small built-in SSD cache does not meet the
need of a large variety of workloads. This paper proposes a
middleware that manages the underlying heterogeneous storage
devices in order to allow distributed file systems to leverage the
SSD performance while leveraging the capacity of HDD. We
design and implement a user-level filesystem, HyCache, that can
offer SSD-like performance at a cost similar to a HDD. We show
how HyCache can be used to improve performance in distributed
file systems, such as the Hadoop HDFS. Experiments show that
HyCache achieves up to 7X higher throughput and 76X higher
IOPS than Linux Ext4 file system, and can accelerate HDFS by
28% at 32-node scales (compared to vanilla HDFS).

Index Terms—distributed file systems, user level file systems,
hybrid file systems, heterogeneous storage, SSD

I. INTRODUCTION

One of the bottlenecks of distributed file systems (DFS),
e.g. Google File System [1] and Hadoop Distributed File
System [2], is mechanical hard disk drives (HDD): their slow
increase in bandwidth, slow decrease in latency, and exponen-
tial increase in capacity, have made modern storage devices
quite unbalanced. Making things worse, the low bandwidth and
high latency of HDD hinders the exploration of data locality,
which is critical to distributed computing applications [3].
Even though non-volatile memory e.g. Solid State Drive
(SSD), has been introduced for over a decade, HDDs are still
dominant storage media in most systems because of their large
capacities and low costs. Some high-end HDDs have up to
200 MB/s peak bandwidth, which is significantly smaller than
main memory (RAM) bandwidths that range in the GB/s to
tens of GB/s. Making matters worse is that the trends of HDD
bandwidth and latency improvements are much smaller than
the comparable speedup of other electronic counterparts [4]
e.g. CPU still follows Moore’s Law [5].

SSD could bridge the gap nicely between RAM and HDD
for a distributed file system, except that replacing all HDDs
with SSDs of the same capacity would be prohibitively ex-
pensive. In Table I we show the per-GB cost of the high-
end SSD OCZ RevoDrive is 41X higher than HDD (Hitachi
Deskstar). The industry also introduced hybrid hard drives
(HHD) where an embedded SSD accelerates the mechanical
hard drive. For example, Seagate has just released a product

Momentus XT [6] which encapsulates both a 4GB SSD and
a 500GB HDD into a single physical device. The advantage
for such a HHD is that it is a drop-in replacement to HDD,
however its small fixed SSD cache (< 1% capacity) limits its
ability to accelerate large numbers of workloads. Furthermore,
the small SSD cache typically has inexpensive and relatively
slow controllers in order to keep the costs low. Compounding
the limitations, often time these HHD only use the SSD cache
to accelerate read operations, missing a significant opportunity
to accelerate write operations as well. These drawbacks limit
the applicability to fully leverage low cost HHD architectures
for their potential higher performance.

Fig. 1. The storage hierarchy with a middleware between distributed file
systems and local file systems.

We propose a middleware called HyCache to manage het-
erogeneous storage devices for distributed file systems. Hy-
Cache provides standard POSIX interfaces through FUSE [7]
and works completely in the user space. We show that in the
context of file systems, the overhead of user-level APIs (i.e.
libfuse) is negligible with multithread support on SSD, and
with appropriate tuning can even outperform the kernel-level
implementation (e.g. Seagate Momentus XT). The user-space
feature of HyCache allows non-privileged users to specify the
SSD cache size, an invaluable feature in making HyCache
more versatile and flexible to support a much wider array
of workloads. Furthermore, distributed or parallel file systems
can leverage HyCache without any modifications through its
POSIX interface. This is critical in many cases where the end
users are not allowed to modify the kernel of HPC systems.
Figure 1 shows the conceptual view of the storage hierarchy
with HyCache. Instead of being mounted directly on the native
file systems (e.g. Linux Ext4), distributed file systems are



TABLE I
KEY SPECIFICATIONS OF SOME HARD DRIVES ON THE MARKET

Hard Drive Unit Price (per GB) Capacity (GB) Read (MB/s) Write (MB/s) IOPS
OCZ RevoDrive 3 X2 $2.81 960 1,500 1,300 230,000

OCZ Octane $1.76 512 480 330 26,000
Seagate Momentus XT $0.16 504 131 101 238

Hitachi Deskstar $0.068 4,096 144 142 360

Fig. 2. Three major components in HyCache architecture: Request Handler, File Dispatcher and Data Manipulator.

deployed on top of HyCache on all data nodes.
The contribution of this work is threefold as follows:
1) Designed and implemented HyCache, a versatile user-

level POSIX-compliant file system with configurable
caches that delivers high throughput, low latency, strong
consistency, single namespace, and multithreaded sup-
port.

2) Developed a middleware layer between distributed file
systems and large-capacity HDD with HyCache - deliv-
ered 28% improvement in HDFS performance.

3) Extensive performance evaluation showing that user-
level file systems can be competitive with kernel-level
file systems.

The structure of this paper is as follows. Section II describes
the architecture of HyCache. Section III details the imple-
mentation of HyCache. The experimental results of HyCache
performance are presented in Section IV. Section V reviews
some previous work on hybrid storage systems. Section VI
concludes the paper and discusses our future work.

II. DESIGN

In this section we will present HyCache architecture and
discuss some pros and cons in our design. Figure 2 shows a
bird’s view of HyCache as a middleware between distributed
file systems and local storages. At the highest level there are
three logical components: request handler, file dispatcher and
data manipulator. Request handler interacts with distributed
file systems and passes the requests to the file dispatcher. File
dispatcher takes file requests from request handler and decides
where and how to fetch the data based on some replacement
algorithm. Data manipulator manipulates data between two
access points of fast- and regular-speed devices, respectively.

A. Request Handler

The request handler is the first component of the whole
system that interacts with distributed file systems. HyCache
virtual mount point can be any directory in a UNIX-like
system as long as end users have sufficient permissions on
that directory. This mount point is monitored by the FUSE
kernel module, so any POSIX file operations on this mount
point is passed to the FUSE kernel module. Then the FUSE
kernel module will import the FUSE library and try to transfer
the request to FUSE API in the file dispatcher.

B. File Dispatcher

File dispatcher is the core component of HyCache, as it redi-
rects user-provided POSIX requests into customized handlers
of file manipulations. FUSE only provides POSIX interfaces
and file dispatcher is exactly the place where these interfaces
are implemented, e.g. some of the most important file op-
erations like open(), read() and write(), etc. File dispatcher
manages the file locations and determines with which hard
drive a particular file should be dealing. Some replacement
policies, i.e. cache algorithms, need to be provided to guide
the File Dispatcher.

Cache algorithms are optimizing instructions that a com-
puter program can follow to manage a cache of information
stored on the computer. When the cache is full, the algorithm
must choose which items to discard to make room for the new
ones. In case of HyCache, cache algorithm determines which
file(s) in SSD are swapped to HDD when the SSD space is
intensive. Different cache algorithms have been extensively
studied in the past decades. There is no one single algorithm
that suppresses others in all scenarios. We have implemented
LRU (Least Recently Used) and LFU (Least Frequently Used)



[8] in HyCache and the users are free to plug in their own
algorithms for swapping files.

C. Data Manipulator

Data manipulator manipulates data between two logical
access points: one for fast speed access, i.e. SSDs and the
other is for regular access e.g. HDDs. An access point is not
necessarily a mount point of a device in the local operating
system, but a logical view of any combination of these mount
points. In the simplest case, Access point A could be the SSD
mount point whereas access Point B is set to the HDD mount
point. Access point A is always the preferred point for any
data request as long as it has enough space based on some
user defined criteria. Data need to be swapped back and forth
between A and B once the space usage in A exceeds some
threshold. For simplicity we only show Access point A and
B in the figure, however there is nothing architecturally that
prohibits us from leveraging more than two levels of access
points.

III. IMPLEMENTATION

A. User Interface

The HyCache mount point itself is not only a single local
directory but a virtual entry point of two mount points for
SSD partition and HDD partition, respectively. Figure 3 shows
how to mount HyCache in a UNIX-like system. Assuming
HyCache would be mounted on a local directory called hy-
cache mount, and another local directory (e.g. hycache root)
has been created and has at least two subdirectories: the
mount point of the SSD partition and the mount point of the
HDD partition, users can simply execute ./hycache <root>
<mount> where hycache is the executable for HyCache, root
is the physical directory and mount is the virtual directory.

Fig. 3. How to mount HyCache in a UNIX-like machine.

B. Strong Consistency

We keep only one single copy of any file at any time
to achieve strong consistency. For manipulating files across
multiple storage devices we use symbolic links to track file
locations. Another possibility is to adopt hash tables. In this
initial release we preferred symbolic links to hash tables for

two reasons. First, symbolic link itself is persistent, which
means that we do not need to worry about the cost of swap-
ping data between memory and hard disk. Second, symbolic
link is natively supported by UNIX-like systems and FUSE
framework.

HyCache is implemented for manipulating data at the file
level rather than the block level because it is the job of the
upper-level distributed file system to chop the big files (e.g.
> 1TB). For example in Hadoop Distributed File System, an
arbitrarily large file will typically be chunked up in 64MB
chunks on each data node. Thus HyCache only needs to deal
with these relatively small data blocks of 64MB that can be
perfectly fit in a mainstream SSD device.

C. Single Namespace

Figure 4 shows a typical scenario of file mappings when
the space of SSD cache is intensive so some file(s) needs to
be swapped into the HDD. End users only see virtual files in
HyCache mount point (i.e. hycache mount) and every single
file in the virtual directory is mapped to the underlying SSD
physical directory. SSD only has a limited space so when the
usage is beyond some threshold then HyCache will move some
file(s) from SSD to HDD and only keep symbolic link(s) to
the swapped files. The replacement policy, e.g. LRU or LFU,
determines when and how to do the swapping.

Fig. 4. File movement in HyCache. When free space of SSD cache is below
some threshold, based on some caching algorithm file2 is evicted out of the
SSD. The SSD cache still keeps a symbolic link of file2 which has been
moved to the HDD drive.

We illustrate how a file is opened as an example. Algorithm
1 describes how HyCache updates SSD cache when end users
open files. The first thing is to check if the requested file is
physically in HDD in Line 1. If so the system needs to reserve



enough space in SSD for the requested file. This is done in
a loop from Line 2 to Line 5 where the stale files are moved
from SSD to HDD and the cache queue is updated. Then the
symbolic link of the requested file is removed and the physical
one is moved from HDD to SSD in Line 6 and Line 7. We
also need to update the cache queue in Line 8 and Line 10 for
two scenarios, respectively. Finally the file is opened in Line
12.

Algorithm 1 Open a file in HyCache
Require: F is the file requested by the end user; Q is the

cache queue used for the replacement policy; SSD is the
mount point of SSD drive; HDD is the mount point of
HDD drive

Ensure: F is appropriately opened
1: if F is a symbolic link in SSD then
2: while SSD space is intensive and Q is not empty do
3: move some file(s) from SSD to HDD
4: remove these files from the Q
5: end while
6: remove symbolic link of F in SSD
7: move F from HDD to SSD
8: insert F to Q
9: else

10: adjust the position of F in Q
11: end if
12: open F in SSD

Another important file operation in HyCache that is worth
mentioning is file removal. We explain how HyCache removes
a file in Algorithm 2. Line 4 and Line 5 are standard instruc-
tions used in file removal: update the cache queue and remove
the file. Lines 1-3 check if the file to be removed is actually
stored in HDD. If so, this regular file needs to be removed as
well.

Algorithm 2 Remove a file in HyCache
Require: F is the file requested by the end user for removal;

Q is the cache queue used for the replacement policy; SSD
is the mount point of SSD drive; HDD is the mount point
of HDD drive

Ensure: F is appropriately removed
1: if F is a symbolic link in SSD then
2: remove F from HDD
3: end if
4: remove F from Q
5: remove F from SSD

Other POSIX implementations share the similar idea to
Algorithm 1 and Algorithm 2: manipulate files in SSD and
HDD back and forth to make users feel they are working on
a single file system, e.g. rename(), which is to rename a file
in Algorithm 3. If the file to be renamed is a symbolic in
SSD, the corresponding file in HDD needs to be renamed as
shown in Line 2. Then the symbolic link in SSD is outdated

and needs to be updated in Lines 3-4. On the other hand if the
file to be renamed is only stored in SSD then the renaming
occurs only in SSD and the cache queue, as shown in Lines
6-7. In either case the position of the newly accessed file F’
in the cache queue needs to be updated in Line 9.

Algorithm 3 Rename a file in HyCache
Require: F is the file requested by the end user to rename;

F’ is the new file name; Q is the queue used for the
replacement policy; SSD is the mount point of SSD drive;
HDD is the mount point of HDD drive

Ensure: F is renamed to F’
1: if F is a symbolic link in SSD then
2: rename F to F’ in HDD
3: remove F in SSD
4: create the symbolic link F’ in SSD
5: else
6: rename F to F’ in SSD
7: rename F to F’ in Q
8: end if
9: update F’ position in Q

D. Caching Algorithms

HyCache provides two built-in cache algorithms: LRU and
LFU. End users are free to plug in other cache algorithms
depending on their data patterns and/or application character-
istics. As shown in Algorithms 1, all the implementations are
independent of specific cache algorithms. LRU is one of the
most widely used cache algorithms in computer systems. It is
also the default cache algorithm used in HyCache. LFU is an
alternative to facilitate the SSD cache if the access frequency is
of more interests. In case all files are only accessed once (or for
equal times), LFU is essentially the same as LRU, i.e. the file
that is least recently used would be swapped to HDD if SSD
space becomes intensive. We implement LRU and LFU with
the standard C library <search.h> instead of importing any
third-party libraries for queue-handling utilities. This header
supports doubly-linked list with only two operation: insque()
for insertion and remque() for removal. We implement all other
utilities from scratch e.g. check the queue length, search for
a particular element in the queue, etc. Each element of LRU
and LFU queues stores some metadata of a particular file like
filename, access time, number of access (only useful for LFU
though), etc.

Figure 5 illustrates how LRU is implemented for HyCache.
A new file is always created on SSD. This is possible because
HyCache ensures the SSD partition has enough space for next
file operation after current file operation. For example after
editing a file, the system checks if the usage of SSD has hit
the threshold of being considered as “SSD space is intensive”.
Users can define this value by their own, for example 90% of
the entire SSD. When the new file has been created on SSD it
is also inserted in to the tail of LRU queue. On the other hand,
if the SSD space is intensive we need to keep swapping the
heads of LRU queue into HDD until the SSD usage is below



the threshold. Both cases are pretty standard queue operations
as shown in the top part of Figure 5. If a file already in the
LRU queue gets accessed then we need to update its position
in the LRU queue to reflect the new time stamp of this file.
In particular, as shown in the bottom part of Figure 5, the
newly accessed file needs to be removed from the queue and
re-inserted into the tail.

Fig. 5. LRU queue in HyCache.

LFU is implemented in a similar way as LRU with a little
more work. In LFU, the position of a file in the queue is de-
termined by two criteria: frequency and timestamp. LFU first
checks the access frequency of the file. The more frequently
this file has been touched, the closer it will be positioned to the
queue tail. If there are multiple files with the same frequency,
for this particular set of files LRU will be applied, i.e. based
on timestamp.

E. Multithread Support

HyCache fully supports multithreading to leverage the
many-core architecture in most high performance computers.
Users have the option to disable this feature to run applications
in the single-thread mode. Even though there are cases where
multithreading does not help and only introduces overheads
by switching contexts, by default multithreading is enabled
in HyCache because in most cases this would improve the
overall performance by keeping the CPU busy. We will see
in the evaluation section how the aggregate throughput is
significantly elevated with the help of concurrency.

IV. EVALUATION

Single-node experiments are carried out on a system com-
prised of an AMD Phenom II X6 1100T Processor (6 cores
at 3.3 GHz) and 16 GB RAM. The spinning disk is Seagate
Barracuda 1 TB. The SSD is OCZ RevoDrive2 100 GB. The
HHD is Seagate Momentus XT 500 GB (with 4 GB built-in
SSD cache). The operating system is 64-bit Fedora 16 with
Linux kernel version 3.3.1. The native file system is Ext4
with default configurations (i.e. mkfs.ext4 /dev/device). For
the experiments on Hadoop the testbed is a 32-node cluster,
each of which has two Quad-Core AMD Opteron 2.3GHz
processors with 8GB memory. The SSD and HDD are the
same as in the single node workstation.

We have tested the functionality and performance of Hy-
Cache in four experiments. The first two are benchmarks
with synthetic data to test the raw bandwidth of HyCache.
In particular, these benchmarks can be further categorized into
micro-benchmarks and macro-benchmarks. Micro-benchmarks
are used to measure the performance of some particular file

operations and their raw bandwidths. Macro-benchmarks, on
the other hand, are focused on application-level performance
of a set of mixed operations simulated on a production server.
For both types of benchmarks we pick two of most popular
ones to demonstrate HyCache performance: IOzone [9] and
PostMark [10]. The third and fourth experiments are to test the
functionality of HyCache with a real application. We achieve
this by deploying MySQL and HDFS on top of HyCache, and
execute TPC-H queries [11] on MySQL and the built-in ‘sort’
application of Hadoop, respectively.

In the remainder of this paper we will use terms throughput
and bandwidth interchangeably, which basically means the rate
of data transferring. Unless otherwise specified all bandwidths
are with respect to sequential read and write operations. All
the results are averages of at least 3 stable (i.e. within 5%
difference) numbers.

A. FUSE overhead

To understand the overhead introduced by FUSE in
HyCache, we compare the I/O performance between raw
RAMDISK (i.e. tmpfs [12]) and a simple FUSE file system
mounted on RAMDISK. By experimenting on RAMDISK
we completely eliminate all factors affecting performance
particularly from the spinning disk, disk controllers, etc. Since
all the I/O tests are essentially done on the memory, any
noticeable performance differences between the two setups are
solely from FUSE itself.

We mount FUSE on /dev/shm, which is a built-in
RAMDISK in UNIX-like systems. The read and write band-
width on both raw RAMDISK and FUSE-based virtual file
system are reported in Figure 6. Moreover, the performance
of concurrent FUSE processes are also plotted which shows
that FUSE has a good performance scalability with respect to
the number of concurrent jobs. In the case of single-process
I/O, there is a significant performance gap between Ext4 and
FUSE on RAMDISK. The read and write bandwidth of Ext4
on RAMDISK are in the order of gigabytes, whereas when
mounting FUSE we could only get a bandwidth in the range of
500 MB/s. These results suggest that FUSE could not compete
with the kernel-level file systems in raw bandwidth, primarily
due to the overheads incurred by having the file system
in user-space, the extra memory copies, and the additional
context switching. However, we will see in the following
subsections that even with FUSE overhead on SSD, HyCache
still outperforms traditional spinning disks significantly, and
that concurrency can be used to scale up FUSE performance
close to the theoretical hardware performance (see Figure 9
and Figure 10).

B. Micro-benchmark

IOzone is a general file system benchmark utility. It creates
a temporary file with arbitrary size provided by the end user
and then conducts a bunch of file operations like re-write, read,
re-read, etc. In this paper we use IOzone to test the read and
write bandwidths as well as IOPS (input/output per second)
on the different file systems.



(a) Read Bandwidth

(b) Write Bandwidth

Fig. 6. Bandwidth of raw RAMDISK and a FUSE file system mounted
on RAMDISK. Px means x number of concurrent processes, e.g. FUSE
RAMDISK P2 stands for 2 concurrent FUSE processes on RAMDISK.

We show the throughput with a variety of block sizes
ranging from 4 KB to 16 MB. For each block size we show
five bandwidths from the left to the right: 1) the theoretical
bandwidth upper bound (obtained from RAMDISK), 2) Hy-
Cache, 3) a simple FUSE file system accessing a HDD, 4)
HDD Ext4 and 5) HHD Ext4.

Figure 7(a) shows HyCache read speed is about doubled
comparing to the native Ext4 file system for most block sizes.
In particular when block size is 16 MB the peak read speed for
HyCache is over 300 MB/s. It is 2.2X speedup with respect
to the underlying Ext4 for HDD as shown in Figure 8(a).
As for the overhead of FUSE framework compared to the
native Ext4 file system on spinning disks we see FUSE only
adds little overhead to read files at all block sizes as shown
in Figure 8(a): for most block sizes FUSE achieves nearly
100% performance of the native Ext4. Similar results are also
reported in a review of FUSE performance in [13]. This fact
indicates that even when the SSD cache is intensive and some
files need to be swapped between SSD and HDD, HyCache
can still outperform Ext4 since the slower media of HyCache
(HDD FUSE in Figure 7), are comparable to Ext4. We will
present the application-level experimental results in the macro-
benchmark subsection where we discuss the performance
when files are frequently swapped between SSD and HDD.
We can also see that the commercial HHD product performs

at about the same level of the HDD, likely primarily due to a
small and inexpensive SSD.

(a) Read Bandwidth

(b) Write Bandwidth

Fig. 7. IOzone bandwidth of 5 file systems.

We see a similar result of file writes in Figure 7(b) as file
reads. Again HyCache is about twice as fast when compared
to Ext4 on spinning disks for most block sizes. The peak write
bandwidth which is almost 250 MB/s is also obtained when
block size is 16 MB, and it achieves 2.18x speedup for this
block size compared to Ext4 as shown in Figure 8(b). Also in
this figure, just like the case of file reads we see little overhead
of FUSE framework for the write operation on HDD except
for 4KB block.

Figure 8 shows that for small block size (i.e. 4 KB)
HyCache only achieves about 50% throughput of the native
file system. This is due to the extra context switches of FUSE
between user level and kernel level, in which the context
switches of FUSE dominate the performance. Fortunately in
most cases this small block size (i.e. 4 KB) is more generally
used for randomly read/write of small pieces of data (i.e.
IOPS) rather than high-throughput applications. Table II shows
HyCache has a far higher IOPS than other Ext4. In particular,
HyCache has about 76X IOPS as traditional HDD. The SSD
portion of the HHD device (i.e. Seagate Momentus XT) is a
read-only cache, which means the SSD cache does not take
effect in this experiment because IOPS only involves random
writes. This is why the IOPS of the HHD lands in the same
level of HDD rather than SSD.



(a) Read Speedup

(b) Write Speedup

Fig. 8. HyCache and FUSE speedup over HDD Ext4.

TABLE II
IOPS OF DIFFERENT FILE SYSTEMS

HyCache HDD Ext4 HHD Ext4
14,878 195 61

HyCache also takes advantages of the multicore’s con-
current tasking which results in a much higher aggregate
throughput. The point is that HyCache avoids reading/writing
directly on the HDD so it handles multiple I/O requests
concurrently. In contrast, traditional HDD only has a limited
number of heads for read and write operations. Figure 9 shows
that HyCache has almost linear scalability with the number
of processes before hitting the physical limit (i.e. 306 MB/s
for 4 KB block and 578 MB/s for 64 KB block) whereas
the traditional Ext4 has degraded performance when handling
concurrent I/O requests. The largest gap is when there are 12
concurrent processes for 64KB block (578 MB/s for HyCache
and 86 MB/s for HDD): HyCache has 7X higher throughput
than Ext4 on HDD.

The upper bound of aggregate throughput is limited by the
SSD device rather than HyCache. This can be demonstrated in
Figure 10 which shows how HyCache performs in RAMDISK.
The performance of raw RAMDISK were also plotted. We
can see that the bandwidth of 64KB block can be achieved
at about 4 GB/s by concurrent processes. This indicates that

(a) 4KB Block

(b) 64KB Block

Fig. 9. Aggregate bandwidth of concurrent processes.

FUSE itself is not a bottle neck in the last experiment: it will
not limit the I/O speed unless the device is slow. This implies
that HyCache can be applied to any faster storage devices
in future as long as the workloads have enough concurrency
to allow FUSE to harness multiple computing cores. Another
observation is that HyCache can consume as much as 35%
of raw memory bandwidth as shown in Figure 10 for 64KB
block and 24 processes: 3.78 GB/s for HyCache and 10.80
GB/s for RAMDISK.

Fig. 10. Aggregate bandwidth of the FUSE implementation on RAMDISK.



C. Macro-benchmark

PostMark is one of the most popular benchmarks to simulate
different workloads in file systems. It was originally developed
to measure the performance of ephemeral small-file regime
used by Internet software like Emails, netnews and web-
based commerce, etc. A single PostMark instance carries out a
number of file operations like read, write, append and delete,
etc. In this paper we use PostMark to simulate a synthetic
application that performs different number of file I/Os on
HyCache with two cache algorithms LRU and LFU, and
compare their performances to Ext4.

We show PostMark results of four file systems: HyCache
with LRU, HyCache with LFU, Ext4 on HDD and Ext4 on
HHD. And for each of them we carried out four different
workloads: 2 GB, 4 GB, 6 GB and 8 GB. To make a
fair comparison between HyCache and the HHD device (i.e.
Momentous XT: 4 GB SSD and 500 GB HDD), we set the
SSD cache of HyCache to 4 GB. Figure 11 shows the speedup
of HyCache with LRU and LFU compared to Ext4 on HDD
and HHD. The difference between LRU and LFU is almost
negligible (< 2%). The ratio starts to go down at 6 GB because
HyCache only has 4 GB allocated SSD. Another reason is that
PostMark only creates temporary files randomly without any
repeated pattern. In other words it is a data stream making the
SSD cache thrashes (this could be considered to be the worst
case scenario).

(a) HyCache vs. HDD (b) HyCache vs. HHD

Fig. 11. PostMark: speedup of HyCache over Ext4 with 4 GB SSD cache.

A big advantage of HyCache is that users can freely allocate
the size of the SSD cache. In the last experiment HyCache did
not work well as HHD mainly because the data is too large to
fit in the 4 GB cache. Here we show how increasing the cache
size impacts the performance. Figure 12 shows that if a larger
SSD cache (i.e. 1GB - 8GB) is offered then the performance is
indeed better than others with as much as a 18% performance
improvement: LRU HyCache with 8GB SSD cache vs. HHD.

D. Application

We have run two real world applications on HyCache:
MySQL and the Hadoop.

We install MySQL 5.5.21 with database engine MySIAM,
and deploy TPC-H 2.14.3 databases. TPC-H is an industry
standard benchmark for databases. By default it provides a

(a) HyCache vs. HDD (b) HyCache vs. HHD

Fig. 12. PostMark: speedup of HyCache with varying sizes of cache.

variety size of databases (e.g. scale 1 for 1 GB, scale 10 for
10 GB, scale 100 for 100GB) each of which has eight tables.
Further, TPC-H provides 22 complicated queries (i.e. Query
#1 to Query #22) that are comparable to business applications
in the real world. Figure 13 shows Query #1 which will be
used in our experiments.

Fig. 13. TPC-H: Query #1.

To test file writes in HyCache, we loaded table lineitem at
scale 1 (which is about 600 MB) and scale 100 (which is
about 6 GB) in these three file systems: LRU HyCache, HDD
Ext4 and HHD Ext4. As for file reads we ran Query #1 at
scale 1 and scale 100. HyCache has an overall of 9% and 4%
improvement over Ext4 on HDD and HHD, respectively. The
result details of these experiments are reported in Figure 14.

Fig. 14. TPC-H: speedup of HyCache over Ext4 on MySQL.

For HDFS we measure the bandwidth by concurrently
copying a 1GB file per node from HDFS to the RAMDISK



(i.e. /dev/shm). The results are reported in Table III, showing
that HyCache helps improve HDFS performance by 28% at
32-node scales.

We also run the built-in ‘sort’ example as a real Hadoop
application. The ‘sort’ application is to use map-reduce [14]
to sort a 10GB file. We kept all the default settings in the
Hadoop package except for the temporary directory which is
specified as the HyCache mount point or a local Ext4 directory.
The results are reported in Table III.

TABLE III
HDFS PERFORMANCE

w/o HyCache w/ HyCache Improvement
bandwidth 114 MB/sec 146 MB/sec 28%

sort 2087 sec 1729 sec 16%

V. RELATED WORK

To the best of our knowledge, HyCache is the first user-level
POSIX-compliant hybrid caching for distributed file systems.
Some of our previous work [15–17] proposed data caching to
accelerate applications by modifying the applications and/or
their workflow, rather than the at the filesystem level. Other
existing work requires modifying OS kernel, or lacks of a
systematic caching mechanism for manipulating files across
multiple storage devices, or does not support the POSIX
interface. Any of the these concerns would limit the system’s
applicability to end users. We will give a brief review of
previous studies on hybrid storage systems.

Some recent work reported the performance comparison
between SSD and HDD in more perspectives ([18, 19]). Hystor
[20] aims to optimize of the hybrid storage of SSDs and
HDDs. However it requires to modify the kernel which might
cause some issues. A more general multi-tiering scheme was
proposed in [21] which helps decide the needed numbers of
SSD/HDDs and manage the data shift between SSDs and
HDDs by adding a ‘pseudo device driver’, again, in the kernel.
iTransformer [22] considers the SSD as a traditional transient
cache in which case data needs to be written to the spinning
hard disk at some point once the data is modified in the SSD.
iBridge [23] leverages SSD to serve request fragments and
bridge the performance gap between serving fragments and
serving large sub-requests. HPDA [24] offers a mechanism
to plug SSDs into RAID in order to improve the reliability
of the disk array. SSD was also proposed to be integrated
to the RAM level which makes SSD as the primary holder
of virtual memory [25]. NVMalloc [26] provides a library to
explicitly allow users to allocate virtual memory on SSD. Also
for extending virtual memory with Storage Class Memory
(SCM), SCMFS [27] concentrates more on the management of
a single SCM device. FAST [28] proposed a caching system
to pre-fetch data in order to quicken the application launch.
[29] considers SSD as a read-only buffer and migrate those
random-writes to HDD.

VI. CONCLUSION AND FUTURE WORK

In this paper we addressed the long-existing issue with the
bottleneck of local spinning hard drives in distributed file
systems and proposed a cost-effective solution to alleviate this
bottleneck, aimed at delivering comparable performance of an
all SSD solution at a fraction of the cost. We proposed to add
a middleware layer between the distributed file system and the
underlying local file systems. We designed and implemented a
user-level POSIX-compliant file system, HyCache, with high
throughput, low latency, strong consistency, single namespace
and multithread support. Non-privileged users can specify the
cache size for different workloads without modifying the ap-
plications or the kernel. Our extensive performance evaluation
showed that HyCache can be competitive with kernel-level
file systems, and significantly improves the performance of
the upper-level distributed file systems.

HyCache will be integrated into FusionFS [30] which is
a high-performance distributed file system aimed at exascale
computing, currently being developed by the authors of this
work. The FusionFS file system also uses FUSE to provide a
POSIX interface. We expect FusionFS to achieve an even more
significant improvement in performance with HyCache than
HDFS obtained, due to the fact that the FUSE overheads are al-
ready accounted for in FusionFS. FusionFS has already scaled
to 1K nodes, and we aim to scale up FusionFS+HyCache
to 10K nodes. We will also apply HyCache to Many-Task
Computing (MTC) [31–34], which has specific emphasis on
data-intensive computing [35] and cloud computing [36].
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