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Abstract— Many-Task Computing emphasizes utilizing 
many computational tasks over a short period of time. 
Tasks can be either dependent or independent and are 
arranged as directed acyclical graphs (DAGs) [1]. Until 
recently there had been no support for MTC workloads on 
accelerators, but the development of GeMTC [4] enables 
Many-Task Computing to run efficiently on NVIDIA 
GPUs. One major complication with enabling MTC on 
NVIDIA GPUs is due to the memory management system. 
Due to overheads, the standard had been for applications 
to perform all allocations once at the beginning, reducing 
the importance of efficient memory management. To 
support MTC applications on NVIDIA GPUs, we need 
efficient memory management throughout the lifetime of 
the application. This paper presents a dynamic memory 
management system, which allows for efficient dynamic 
memory operations. We compare our results to the default 
CUDA approach; preliminary results highlight the ability 
to perform memory operations 8x faster than the default 
CUDA memory management system. 

I. INTRODUCTION 
Many-Task Computing workloads have unique memory 

allocation needs that CUDA's memory management is not 
designed to handle. MTC workloads are composed of many 
different tasks, which will often need at least one dynamic 
memory allocation each to handle individual parameters and 
results. This does not follow the standard CUDA practice of 
allocating all memory at the beginning of the program. [2] 

The existing CUDA memory management system was not 
designed for dynamic memory management. This results in 
poor performance on workloads that required a large number of 
memory allocations. To evaluate the existing memory 
management, we measured the average time taken to allocate 
many small amounts of device memory, and to allocate and 
deallocate many small amounts of memory. These benchmarks 
were run on an AMD 6 Core Workstation with 8 GB RAM and 
a GTX 670(1344 cuda cores), and show the default memory 
management doesn’t scale when after many un-freed memory 
allocations (See Figure 1). Even in the best case, it takes more 
than 100µsec to execute a malloc and free through CUDA, and 
the cost grows linearly with additional mallocs exceeding 

milliseconds with tens of thousands of malloc operations. This 
is an unreasonable amount of time when the time to read/write 
to device memory from the host is O(10 µsec). 

Figure 1 - CUDA memory allocation and deallocation execution 
times 

II. DYNAMIC MEMORY MANAGEMENT 
To improve malloc’s scalability and reduce the cost of 

allocating device memory, we have implemented a sub-
allocator designed to efficiently handle many requests for 
dynamic allocation. It uses the existing CUDA malloc to 
allocate large contiguous pieces of device memory, allocating 
more as needed. Then pointers to these free chunks and their 
sizes are stored in a circular linked list on the CPU (See Figure 
2). This list is ordered by increasing device address to allow for 
easy memory coalescing. 

 
Figure 2 – Circular Linked List of free memory on the device 



Upon memory allocation requests, the sub-allocator will 
find a large enough chuck of free device memory by searching 
its list. Then, it will write a header to the device memory 
indicating the size of the newly allocated chunk immediately 
before it and reduce the size of the original free chunk (See 
Figure 3). This operation takes roughly the same time as a 
memory copy to device. 

 
Figure 3 – Result of our malloc on free memory list 

When device memory is freed, the header is read to identify 
the size of the chunk, and it is added to the list of free memory 
in its correct location. The chunk will be coalesced with an 
existing chunk if they are consecutive in memory. Freeing 
device memory takes roughly the same amount of time as a 
memory copy from the device. 

Both malloc and free on our sub-allocator run in O(n), 
where n is the length of our free memory list. The size of the 
list is proportional to the amount of memory fragmentation, 
because each element is a separate chunk of memory. 
However, malloc and free both need to write and read, 
respectively, to GPU memory, which is typically more time 
consuming than searching the list. Despite this, workloads with 
high fragmentation will result in poor scaling of our memory 
operations. 

Our current use case of supporting many-task computing 
workloads does not result in high fragmentation. We are 
running many independent tasks that each malloc at launch and 
free upon completion. As long as these tasks take 
approximately the same length of time, we will have memory 
allocated at approximately the same time being released at 
approximately the same time. Our free will coalesce each freed 
chunk with adjacent free chunks, resulting in decreased 
fragmentation. 

To evaluate the performance of our sub-allocator, we 
measured the average time to allocate many small amounts of 
memory and to allocate and deallocate many small amounts of 
memory in the same environment as before. These results are 
compared with those from CUDA in Figure 4. CUDA's malloc 
without free results are omitted from the graph due to their 
poor scaling. Our sub-allocator offers an 8x speedup over 
CUDA for highly dynamic workloads with large amounts of 
allocation and deallocation. Our memory management also 
provides constant scaling under conditions where the default 
malloc scales linearly, enabling more than 30x speedups after 
ten thousand memory allocations, 100x speedup at 30,000 
mallocs. 

Figure 4 – Sub-Allocator and CUDA malloc comparison 

III. RELATED WORK 
GCC standard allocator: This is the sub-allocator that is used 

by the standard c malloc and free. Its structure is similar to our 
sub-allocator’s structure, utilizing a circular linked list of free 
memory and writing headers before allocated memory [3]. 

ScatterAlloc: This is a memory management module that 
runs on the GPU to handle many dynamic requests from within 
a CUDA kernel. This work was able to achieve speedups of 10-
100x compared to CUDAs default allocation from kernels [5]. 

IV. CONCLUSIONS & FUTURE WORK 
In conclusion we have presented a dynamic memory 

management module for enabling efficient support of many 
dynamic allocations and de-allocations of memory on NVIDIA 
GPUs. Our preliminary results demonstrate our ability to 
perform memory operations 8x faster than the default CUDA 
memory management system under a typical use case, and 
reaching 30x and 100x speedup after 10,000 and 30,000 
mallocs, respectively. 

We plan to improve the sub-allocator design by replacing 
the linked list with a data structure offering O(log n) insertion 
and search, rather than the current O(n). This should improve 
our worst-case time complexity with slowing down our typical 
use case. 
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