
Enabling Dynamic Memory Management
Support for MTC on NVIDIA GPUs

Benjamin Grimmer, Scott Krieder, Ioan Raicu
Department of Computer Science
Illinois Institute of Technology

Chicago, IL USA
{bgrimmer,skrieder}@hawk.iit.edu, iraicu@cs.iit.edu

Abstract— Many-Task Computing emphasizes utilizing
many computational tasks over a short period of time.
Tasks can be either dependent or independent and are
arranged as directed acyclical graphs (DAGs) [1]. Until
recently there had been no support for MTC workloads on
accelerators, but the development of GeMTC [4] enables
Many-Task Computing to run efficiently on NVIDIA
GPUs. One major complication with enabling MTC on
NVIDIA GPUs is due to the memory management system.
Due to overheads, the standard had been for applications
to perform all allocations once at the beginning, reducing
the importance of efficient memory management. To
support MTC applications on NVIDIA GPUs, we need
efficient memory management throughout the lifetime of
the application. This paper presents a dynamic memory
management system, which allows for efficient dynamic
memory operations. We compare our results to the default
CUDA approach; preliminary results highlight the ability
to perform memory operations 8x faster than the default
CUDA memory management system.

I. INTRODUCTION
Many-Task Computing workloads have unique memory

allocation needs that CUDA's memory management is not
designed to handle. MTC workloads are composed of many
different tasks, which will often need at least one dynamic
memory allocation each to handle individual parameters and
results. This does not follow the standard CUDA practice of
allocating all memory at the beginning of the program. [2]

The existing CUDA memory management system was not
designed for dynamic memory management. This results in
poor performance on workloads that required a large number of
memory allocations. To evaluate the existing memory
management, we measured the average time taken to allocate
many small amounts of device memory, and to allocate and
deallocate many small amounts of memory. These benchmarks
were run on an AMD 6 Core Workstation with 8 GB RAM and
a GTX 670(1344 cuda cores), and show the default memory
management doesn’t scale when after many un-freed memory
allocations (See Figure 1). Even in the best case, it takes more
than 100µsec to execute a malloc and free through CUDA, and
the cost grows linearly with additional mallocs exceeding

milliseconds with tens of thousands of malloc operations. This
is an unreasonable amount of time when the time to read/write
to device memory from the host is O(10 µsec).

Figure 1 - CUDA memory allocation and deallocation execution
times

II. DYNAMIC MEMORY MANAGEMENT
To improve malloc’s scalability and reduce the cost of

allocating device memory, we have implemented a sub-
allocator designed to efficiently handle many requests for
dynamic allocation. It uses the existing CUDA malloc to
allocate large contiguous pieces of device memory, allocating
more as needed. Then pointers to these free chunks and their
sizes are stored in a circular linked list on the CPU (See Figure
2). This list is ordered by increasing device address to allow for
easy memory coalescing.

Figure 2 – Circular Linked List of free memory on the device

Upon memory allocation requests, the sub-allocator will
find a large enough chuck of free device memory by searching
its list. Then, it will write a header to the device memory
indicating the size of the newly allocated chunk immediately
before it and reduce the size of the original free chunk (See
Figure 3). This operation takes roughly the same time as a
memory copy to device.

Figure 3 – Result of our malloc on free memory list

When device memory is freed, the header is read to identify
the size of the chunk, and it is added to the list of free memory
in its correct location. The chunk will be coalesced with an
existing chunk if they are consecutive in memory. Freeing
device memory takes roughly the same amount of time as a
memory copy from the device.

Both malloc and free on our sub-allocator run in O(n),
where n is the length of our free memory list. The size of the
list is proportional to the amount of memory fragmentation,
because each element is a separate chunk of memory.
However, malloc and free both need to write and read,
respectively, to GPU memory, which is typically more time
consuming than searching the list. Despite this, workloads with
high fragmentation will result in poor scaling of our memory
operations.

Our current use case of supporting many-task computing
workloads does not result in high fragmentation. We are
running many independent tasks that each malloc at launch and
free upon completion. As long as these tasks take
approximately the same length of time, we will have memory
allocated at approximately the same time being released at
approximately the same time. Our free will coalesce each freed
chunk with adjacent free chunks, resulting in decreased
fragmentation.

To evaluate the performance of our sub-allocator, we
measured the average time to allocate many small amounts of
memory and to allocate and deallocate many small amounts of
memory in the same environment as before. These results are
compared with those from CUDA in Figure 4. CUDA's malloc
without free results are omitted from the graph due to their
poor scaling. Our sub-allocator offers an 8x speedup over
CUDA for highly dynamic workloads with large amounts of
allocation and deallocation. Our memory management also
provides constant scaling under conditions where the default
malloc scales linearly, enabling more than 30x speedups after
ten thousand memory allocations, 100x speedup at 30,000
mallocs.

Figure 4 – Sub-Allocator and CUDA malloc comparison

III. RELATED WORK
GCC standard allocator: This is the sub-allocator that is used

by the standard c malloc and free. Its structure is similar to our
sub-allocator’s structure, utilizing a circular linked list of free
memory and writing headers before allocated memory [3].

ScatterAlloc: This is a memory management module that
runs on the GPU to handle many dynamic requests from within
a CUDA kernel. This work was able to achieve speedups of 10-
100x compared to CUDAs default allocation from kernels [5].

IV. CONCLUSIONS & FUTURE WORK
In conclusion we have presented a dynamic memory

management module for enabling efficient support of many
dynamic allocations and de-allocations of memory on NVIDIA
GPUs. Our preliminary results demonstrate our ability to
perform memory operations 8x faster than the default CUDA
memory management system under a typical use case, and
reaching 30x and 100x speedup after 10,000 and 30,000
mallocs, respectively.

We plan to improve the sub-allocator design by replacing
the linked list with a data structure offering O(log n) insertion
and search, rather than the current O(n). This should improve
our worst-case time complexity with slowing down our typical
use case.

REFERENCES
[1] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K.

Iskra, et al., "Toward loosely coupled programming on
petascale systems," presented at the Proceedings of the
2008 ACM/IEEE conference on Supercomputing, Austin,
Texas, 2008.

[2] CW, TB, JV, GZ, "Cuda C Best Practices Guide", version
4.1, January 2012

[3] B. Kernighan , D. Ritchie, "The C Programming
Language", 1988

[4] S. Krieder and I. Raicu, "Towards the Support for Many-
Task Computing on Many-Core Computing Platforms,"
Doctoral Showcase, SC 2012

[5] Markus Steinberger, Michael Kenzel, Bernhard Kainz,
Dieter Schmalstieg "ScatterAlloc: Massively Parallel
Dynamic Memory Allocation for the GPU"

