
Distributed Data Provenance for Large-Scale Data-Intensive Computing

Dongfang Zhao?, Chen Shou?, Tanu Malik†‡, Ioan Raicu?‡
?Department of Computer Science, Illinois Institute of Technology

†Computation Institute, The University of Chicago
‡Math and Computer Science Division, Argonne National Laboratory

Abstract—It has become increasingly important to capture and
understand the origins and derivation of data (its provenance).
A key issue in evaluating the feasibility of data provenance is its
performance, overheads, and scalability. In this paper, we explore
the feasibility of a general metadata storage and management
layer for parallel file systems, in which metadata includes both file
operations and provenance metadata. We experimentally investi-
gate the design optimality—whether provenance metadata should
be loosely-coupled or tightly integrated with a file metadata
storage systems. We consider two systems that have applied sim-
ilar distributed concepts to metadata management, but focusing
singularly on kind of metadata: (i) FusionFS, which implements
a distributed file metadata management based on distributed
hash tables, and (ii) SPADE, which uses a graph database to
store audited provenance data and provides distributed module
for querying provenance. Our results on a 32-node cluster show
that FusionFS+SPADE is a promising prototype with negligible
provenance overhead and has promise to scale to petascale and
beyond. Furthermore, FusionFS with its own storage layer for
provenance capture is able to scale up to 1K nodes on BlueGene/P
supercomputer.

I. INTRODUCTION

Scientific advancement and discovery critically depends
upon being able to extract knowledge from extremely large
data sets, produced either experimentally or computationally.
In experimental fields such as high-energy physics datasets
are expected to grow by six orders of magnitude [1]. In
computational fields such as fusion science data will be
output at 2 gigabytes/second per core or 2 petabytes/second
of checkpoint data every 10 minutes [1]. This amounts to
an unprecedented I/O rate of 3.5 terabytes/second. To extract
knowledge from extremely large datasets in a scalable way,
architectural changes to HPC systems are increasingly being
proposed—changes that either reduce simulation output data
[2, 3] or optimize the current flop to I/O imbalance [4, 5].
Many-Task Computing (MTC) [6, 7] was recently proposed
as a new paradigm to bridge the gap between HPC and high-
throughput computing.

A primary architectural change is a change in the design of
the storage layer, which is currently segregated from compute
resources. Storage is increasingly being placed close to com-
pute nodes in order to help manage large-scale I/O volume and
data movement [4, 8–10], especially for efficient checkpoint-
ing at extreme scale [11]. This change in the storage layer has
a significant resulting advantage—it enables simulation output
data to be stored with the provenance metadata so that analysis
can be easily verified, validated as well as retraced over time

steps even after the simulation has finished.
While this architectural change is being deemed neces-

sary to provide the much needed scalability advantage of
concurrency and throughput, it cannot be achieved without
providing an efficient storage layer for conducting metadata
operations [12]. The centralized metadata repository in parallel
file systems has shown to be inefficient at large scale for
conducting metadata operations, growing for instance from
tens of milliseconds on a single node (four-cores), to tens of
seconds at 16K-core scales [12, 13]. Similarly, auditing and
querying of provenance metadata in a centralized fashion has
shown poor performance over distributed architectures [14].

In this paper, we explore the feasibility of a general meta-
data storage and management layer for parallel file systems,
in which metadata includes both file operations and prove-
nance metadata. In particular we experimentally investigate
the design optimality—whether provenance metadata should
be loosely-coupled or tightly integrated with a file metadata
storage systems. To conduct this experimental evaluation, we
consider two systems that have applied similar distributed
concepts to metadata management, but focusing singularly
on kind of metadata: (i) FusionFS [15], which implements
a distributed file metadata management based on distributed
hash tables, and (ii) SPADE [16], which uses a graph database
to store audited provenance data and provides distributed
module for querying provenance.

Both FusionFS and SPADE are good choices for investigat-
ing the metadata storage design problem since both systems
have similar manifestation of distributed concepts towards
storing their individual metadata: (1) FusionFS provides a
POSIX interface which makes a perfect corresponding for
SPADE user-level file system (FUSE-based) provenance col-
lection; (2) both systems work in a decentralized way thus
actively exploiting the resources at each node.

This paper first introduces the SPADE+FusionFS version
of provenance-aware distributed file system, that aims to offer
excellent scalability while retaining the provenance overhead
negligible in traditional clusters. Some preliminary results
of SPADE+FusionFS have been published in [17]. This
paper then investigates using Zero-hop Distributed Hashtable
(ZHT) [18] as the underlying storage system for provenance.
ZHT is currently used to store file metadata in FusionFS and
provides the following features that makes it a desirable choice
to store provenance: (1) excellent storage load balancing;
(2) light-weighted and fast; (3) excellent scalability; (4) be
able to provide a global view of provenance that aims to978-1-4799-0898-1/13/$31.00 c© 2013 IEEE

provide provenance capture and management in petascale and
exascale. We term the ZHT-backed provenance system as
FusionProv.

Our results on a 32-node cluster show that Fu-
sionFS+SPADE is a promising prototype with negligible
provenance overhead and has promise to scale to petascale
and beyond. FusionFS on its own, has shown to scale to 1K-
nodes [15], and its design has been architected to scale to 1M-
nodes, i.e. exascale. FusionProv has a similar performance
on provenance capture compared with SPADE+FusionFS on
traditional Linux clusters while beating SPADE in query exe-
cuting time. FusionProv is able to scale up to 1K nodes on
BlueGene/P supercomputer. Its light-weight implementation in
C++ and global views account for its high performance.

In summary, this papers has the following contributions:
• Design and implement FusionProv, a distributed

provenance-aware file system,
• Propose a hybrid coarse/fine grained approach to min-

imize the amount of provenance data captured while
maintaining provenance granularity and detail

• Evaluate the performance at up to 1K-node scales (po-
tentially the largest data provenance evaluation to date)

The remainder of this paper is organized as follows. We
review some related work in Section 2. Section 3 describes
the building blocks of the two provenance systems. We present
the design and implementation of FusionFS+SPADE and Fu-
sionProv in Section 4. Section 5 evaluates both systems. We
conclude this paper and discusses the future work in Section
6.

II. RELATED WORK

As distributed systems become more ubiquitous and com-
plex, there is a growing emphasis on the need for track-
ing provenance metadata along with file system metadata.
A good review is presented in [19]. Many Grid systems
like Chimera [20] and the Provenance-Aware Service Ori-
ented Architecture (PASOA) [21] provide provenance tracking
mechanisms for various applications. However these systems
are very domain specific and do not capture provenance at the
file system level. The Distributed Provenance Aware Storage
System (DPASS) tracks the provenance of files in a distributed
file system by intercepting file system operations and sending
this information via a netlink socket to user level daemon that
collects provenance in a database server [22]. The provenance
is however, collected in a centralized fashion, which is a poor
design choice for distributed file systems meant for extreme
scales. Similarly in efficient retrieval of files, provenance is
collected centrally [23].

PASS describes global naming, indexing, and querying in
the context of sensor data [24]. PA-NFS [25] enhances NFS to
record provenance in local area networks but does not consider
distributed naming explicitly. SPADE [16] addresses the issue
by using storage identifiers for provenance vertices that are
unique to a host and requiring distributed provenance queries
to disambiguate vertices by referring to them by the host on

which the vertex was generated as well as the identifier local
to that host.

Several storage systems have been considered for storing
provenance. ExSPAN [26] extends traditional relational mod-
els for storing and querying provenance metadata. SPADE
supports both graph and relational database storage and query-
ing. PASS has explored the use of clouds [24]. Provbase
uses Hbase to store and query scientific workflow provenance
[27]. Further compressing provenance [26], indexing [14]
and optimization techniques [28] have also been considered.
However, none of these systems have been tested for exascale
architectures. To give adequate merit to the previous designs
we have integrated FusionFS with SPADE as well as consid-
ered FusionFS’s internal storage system for storing audited
provenance.

III. BUILDING BLOCKS

A. FusionFS

FusionFS is a new distributed file system designed from
the ground up for high scalability (1K-nodes) while achieving
significantly higher I/O performance (1.02 TB/sec). FusionFS
achieves these levels of scalability and performance through
complete decentralization, and the co-location of storage and
compute resources. It supports POSIX-like interfaces impor-
tant for ease of adoption and backwards compatibility with
legacy applications. It is made reliable through data replica-
tion, and it supports both strong and weak consistency seman-
tics. FusionFS has been deployed on a variety of testbeds,
ranging from a 32-node (256-cores) Linux cluster, to a 96-
VM virtual cluster on the Amazon EC2 cloud, to a 1K-node
(4K-cores) IBM BlueGene/P supercomputer with promising
results, when compared to other leading storage systems such
as GPFS, PVFS, HDFS, and S3.

A high-level structure of FusionFS is illustrated in Figure 1.
Each compute node plays the same role in FusionFS and ev-
erything is completely decentralized. These compute nodes are
normally interconnected by some high performance network
(e.g. 3-D torus InfiniBand in IBM Blue Gene/P). The high
bandwidth of the node-to-node communication is crucial to
the success of FusionFS.

Fig. 1. Architectural overview of FusionFS

Components of each node are briefly explained in the
following:

1) FUSE: FUSE is the Linux kernel module that moni-
tors any I/O requests made to FusionFS. The caught
file request is then transmitted to the libfuse library.
FUSE supports POSIX interfaces, so that FusionFS is
backwards compatible with commonly found parallel file
systems and local file systems (e.g. EXT4).

2) libfuse: libfuse is a user-level library that interprets the
incoming POSIX-compliant file requests into FusionFS
implementation. After that it releases the control to the
FusionFS Core module. Both FUSE and libfuse are parts
of the FUSE framework [29], that has been used in many
research filesystem prototypes.

3) FusionFS Core: This module implements all the FUSE
interfaces to manipulate POSIX file operations. For ex-
ample, when a user opens a file, the open() function will
be triggered and possibly need some auxiliary functions
from FusionFS Utilities.

4) FusionFS Utilities: This module provides miscellaneous
utilities supporting local FusionFS Core module and
local services, as well as communication to remote
compute nodes. For example, metadata management
is implemented in FusionFS Utilities on top of the
metadata service.

5) Metadata Service: It is a service dedicated for meta-
data manipulations. The infrastructure is essentially a
lightweight and efficient distributed hash table (i.e. ZHT)
dispersed over compute nodes. A distributed metadata
service avoids the potential bottleneck or single point
of failure commonly found in metadata management of
traditional parallel or distributed filesystems.

6) Data Transfer Service: It is a service that handles
data transfer. The data management and metadata man-
agement are completely decoupled, allowing different
strategies for each. For example, metadata should be
randomly distributed on many nodes to achieve good
load balance, but data should be located on nodes
in proximity of the application reading or writing the
data, maximizing its locality. This independence makes
FusionFS scalable on both metadata throughput and I/O
throughput.

7) Local Storage: We assume there is a high performance
persistent storage (e.g. SSD) attached to each compute
node. It helps exploit data locality, and is particularly
useful for data-intensive distributed systems [30].

The software stack of FusionFS is shown in Figure 2. Two
services (metadata, data transfer) are on top of the stack,
that are supported by FusionFS Core and FusionFS Utilities
interacting with the kernel FUSE module.

B. ZHT

ZHT [18] (Zero-hop distributed Hash Table) was originally
designed as a general-purpose distributed hash table (i.e. key-
value store) for HPC. Key-value store was shown to be viable
at extreme scales [31]. We extended ZHT in two directions:

Fig. 2. FusionFS software stack

1) it serves as the underlying storage for metadata of Fu-
sionFS [15] filesystem, and 2) it is tuned to be the underlying
infrastructure of the IStore key-value storage [32]. We would
also leverage ZHT to manage the HyCache [33] heterogeneous
storage system. ZHT has scaled up to 32K cores on IBM
Blue Gene/P [34] supercomputer and 96 Amazon EC2 [35]
instances.

As shown in Figure 3, ZHT has a similar ring-shaped look
as the traditional DHT [9]. The node IDs in ZHT can be ran-
domly distributed across the network. The correlation between
different nodes is computed with some logistic information
like IP address, for example. The hash function maps a string
to an ID that can be retrieved by a lookup(k) operation at a
later point.

There are multiple choices of distributed hash table (DHT)
available, e.g. Memcached [36] and Dynamo [37] etc. We
chose ZHT as the underlying distributed hash table because it
has some features that are critical to the success of FusionFS.
As summarized in Table I, ZHT has many advantages, such
as being implemented in C/C++, having the lowest routing
time, and supporting both persistent hashing and dynamic
membership.

TABLE I
COMPARISONS BETWEEN DIFFERENT DHT IMPLEMENTATIONS

ZHT Memcached Dynamo
Impl. Language C/C++ C Java
Routing Time 0 - 2 2 0 - logN

Persistence Yes No Yes
Dynamic Member Yes No Yes

C. FDT

To migrate data across different nodes, we need a data
transfer service that is efficient, reliable and light-weight. User
Datagram Protocol (UDP) is efficient in transferring data,
but is an unreliable protocol. Transmission Control Protocol
(TCP), on the other hand, is reliable but has a relatively lower
efficiency. Ideally, a hybrid UDP/TCP protocol might be best;
essentially a protocol that is both reliable and efficient.

We have developed our own data transfer service called
FDT (Fast Data Transfer) with APIs provided by UDP-
based Data Transfer (UDT) [38], which is a reliable UDP-
based application level data transport protocol for distributed

Fig. 3. ZHT architecture: namespace, hash function and replications

data-intensive applications. UDT adds its own reliability and
congestion control on top of UDP which thus offers potentially
higher speed than TCP under certain conditions.

D. SPADE

SPADE is a software infrastructure for data provenance col-
lection, management, and analysis. Different operating system
level reporters facilitate provenance collection. The underlying
data model is graph-based, consisting of vertices and directed
edges, each of which can be labeled with an arbitrary number
of annotations (in the form of key-value pairs). These annota-
tions can be used to embed the domain-specific semantics of
the provenance. The SPADE system decouples the production,
storage, and utilization of provenance metadata, as illustrated
in Figure 4. At its core is a provenance kernel that mediates
between the producers and consumers of provenance informa-
tion, and handles the persistent storage of records. The kernel
handles buffering, filtering, and multiplexing incoming meta-
data from multiple provenance sources. It can be configured
to commit the elements to multiple databases, and responds to
concurrent queries from local and remote clients.

SPADE	
Kernel	

Query
Interface

Storage
Interface

Reporter
Interface

Consumer
Interface

Filters	 Buffers	 Mul4plex	

Fig. 4. The SPADE architecture

IV. DESIGN AND IMPLEMENTATION

A. SPADE+FusionFS: SPADE Extension with FusionFS

1) Design: The architecture of SPADE+FusionFS inte-
gration is shown in Figure 5. Each node has two services
installed: FusionFS service and SPADE service. One service
type can only communicate to the other type on the local
node. That is, a SPADE service only communicates with its
local FusionFS service, and vice versa. For services of the
same type (e.g. FusionFS ⇔ FusionFS, SPADE ⇔ SPADE),
they are free to talk to others remotely.

Fig. 5. FusionFS+SPADE architecture overview

In order to make the collected provenance compliant to the
Open Provenance Model (OPM), when there is a network
transmission, SPADE creates a “dummy” FusionFS process
vertex to connect two artifacts: a file vertex and a network ver-
tex. We call it a “dummy” process because clients do not need
to be concerned with this process when querying provenance;
it is just a symbol to indicate the network transmission is
triggered by FusionFS in OPM. Figure 6 shows how a network
transmission is represented.

2) Implementation: The key challenge of the proposed
work is how to seamlessly integrate SPADE and FusionFS.
All communication between these two services is implemented
with TCP. Asynchronous communication is not used because
of the short life cycle of some processes. SPADE collects
parts of the process information based on system files under
directory /proc/pid. If a process starts and terminates too
fast for SPADE to catch, there would be provenance loss.
Therefore it is critical to keep synchronous communication
between SPADE and FusionFS, at least while the two systems
are completely decoupled. We hope to address this in future
work with a tighter integration between FusionFS and SPADE.

Most communication between SPADE and FusionFS con-
sists of simple operation bindings. For example, FusionFS
write operation invokes SPADE to collect write provenance for
this operation. However, as a distributed file system, FusionFS
sometimes needs to migrate files between nodes. The original
network provenance collection in SPADE is not optimized for
FusionFS. So we make some customization to the network
provenance collection to fully hide unnecessary provenance
data outside FusionFS.

3) File-Level vs. Block-Level: One common practice in file
manipulations is to split (large) files into blocks to improve the
space efficiency and responsive time. However, for the purpose
of provenance, it is less interesting to keep track of file traces
at the block level: in most cases, a file-level provenance would

Fig. 6. Network Transmission

suffice. We have implemented both the file-level and the block-
level provenance tracings, namely, the fine-grained provenance
and the coarse-grained provenance.

B. FusionProv: Distributed Provenance with ZHT and
FusionFS

1) Design: Figure 7 illustrates how we integrate FusoinFS
and ZHT to support distributed provenance capture at the file
system level. Provenance is firstly generated in the FUSE layer
in FusionFS, and then is cached in the local provenance buffer.
And at a certain point (e.g. when the file is closed), the cached
provenance will be persisted into ZHT. Users can do query on
any node of the system using a ZHT client.

Fig. 7. FusionFS+ZHT architecture overview

2) Implementation: Table II shows what is captured for
the graph vertex in the distributed provenance store. Basically
there are two different vertex types being tracked of: file and
process. In other words, we are interested in which file(s) have
been touched by which process(es). And we maintain a linked
list for the tree topology in ZHT.

We provide a set of APIs to allow users plug their own
implementations for the provenance they are interested in.
Some commonly used APIs are listed in Table III. Note that
for file creation, there is no need to save the provenance in the
local buffers because it only touches the metadata (rather than
the file/process). Therefore this information is directly stored
in the underlying metadata storage (i.e. ZHT).

We implement a light-weight command-line tool that end
users can use to query the provenance, in the following syntax:

query vertex [filename] [file version]
[ancestors -- descendants] [depth]

For example, with a following workflow: a file (origin file)
was created by a touch process on host 12.0.0.1, and later was

copied by multiple processes on multiple nodes (12.0.0.2 to
12.4.0.16). The query on the descendants of the touch process
(vertex) would generate provenance graph showed in Figure 8.

Fig. 8. An example query tree in distributed provenance systems

V. EVALUATION

We have deployed the distributed provenance-aware file
system on 1K-node IBM BlueGene/P supercomputer In-
trepid [34]. We also evaluated both the distributed and SPADE-
extended systems on a 32-node cluster, where each node has
two Quad-Core AMD Opteron 2.3GHz processors with 8GB
memory. All nodes are interconnected by 1Gbps Ethernet.
All experiments are repeated at least 3 times to obtain stable
results (i.e. within 5% difference).

A. SPADE + FusionFS

1) Single-Node Throughput: We first measured the perfor-
mance of provenance collection within FusionFS on a single
node. A client reads/writes a 100MB file from/to FusionFS.
We compare the performance between fine-grained and coarse-
grained provenance collection with different block sizes. The
benchmark we used is IOZone [39], which is carefully tuned
to avoid operating system cache.

Figure 9 and Figure 10 show that a fine-grained provenance
collection introduces a high overhead. Even though a larger
block size could reduce the overhead to some degree, the
number is still significantly high (i.e. around 75%), compared
to coarse-grained provenance (i.e. less than 5%). This is
expected since a bigger I/O block size results in fewer I/O runs,
which further involves less time to collect provenance (SPADE

TABLE II
ATTRIBUTES OF GRAPH VERTEXES IN DISTRIBUTED PROVENANCE CAPTURE

Vertex Type Attributes
File [File path/name] [File version] [File size]

Process [Process host] [Process name] [Process command line]

TABLE III
SOME EXAMPLE APIS AVAILABLE FOR PROVENANCE CAPTURE

FusionFS Operation Provenance API Description
fusion read() prov read() Save the reading process and the file being read into the local buffer
fusion write() prov write() Save the writing process and the file being written into the local buffer
fusion create() prov create() Directly save the file and process info into ZHT
fusion flush() prov push() Summarize the info stored in the local buffer, and save the summary into ZHT

spends on average 2.5 ms for each provenance recording,
which corresponds to a single I/O run in the fine-grained
provenance collection).

Fig. 9. Read Throughput

Fig. 10. Write Throughput

2) Multi-Node Throughput: In the 32-node cluster, multiple
clients read/write distinct files from/to FusionFS. The file size
is set to 100MB and the I/O block size is set to 128KB.

In Figure 11, a coarse-grained provenance collection shows
a much better performance than the fine-grained counterpart
(consistent with the single-node benchmark results). Both

fine-grained and coarse-grained provenance show excellent
scalability with linear increase in performance. This can be
explained by two facts: (1) SPADE only collects provenance
of the local node, and (2) FusionFS scales linearly with respect
to the number of nodes by getting high data locality in the data
access pattern evaluated. We have evaluated FusionFS (without
SPADE) at scales of up to 1K nodes on a IBM BlueGene/P
supercomputer with similar excellent results. We will conduct
larger scale experiments of FusionFS+SPADE in future work.

Fig. 11. Multiple-Node 100MB Write Throughtput

3) Query time: We are interested in the query time of the
provenance of a particular file that has been read by multiple
remote nodes. This write-once-read-many is a very frequent
pattern in the context of a distributed system. The query is
shown in the following format:

query lineage descendants vertex− id 100
null filename:test.file.name

Since SPADE (with version) does not support executing
sub-query in parallel, the total query time increases as it scales
up. However, according to Figure 12, with different scales
from 2 to 32 nodes, the average per-node query time is about
constant, indicating that adding more nodes will not put more
burden to the provenance system. This is expected, since the
underlying FusionFS has an excellent scalability and SPADE
on each node adds negligible overheads locally.

Fig. 12. Query Time Cost

B. Distributed Provenance Capture and Query

1) Provenance capture: We compare the throughput of
the distributed provenance capture to the SPADE+FusionFS
implementation in Figure 13. The ZHT-based throughput is
comparable to both the pure FusionFS and the coarse-grained
SPADE+FusionFS implementations. This result suggests
that, even though there is network overhead involved in
distributed provenance capture, the cost is about negligible.

Fig. 13. Throughput of different implementations of provenance capture

2) Provenance Query: Similarly to throughput, we also
compare the query time of different implementations. Fig-
ure 14 shows that even on one single node, the ZHT-based
implementation is much faster than SPADE (0.35ms vs. 5ms).
At 32-node scale, the gap is even larger result in 100X
difference (108ms vs. 11625ms).

Fig. 14. Query time of different provenance system

3) Scalability: We have scaled the distributed provenance
system up to 1K-node on IBM BlueGene/P. Figure 15 shows
that the provenance overhead is relative small even on 1K
nodes (14%). Similarly, we report the query time and overhead

on the same workload at large scale (i.e. 1K nodes) in
Figure 16, which shows that the overhead at 1K-nodes is about
18%.

Fig. 15. Throughput on BlueGene/P

Fig. 16. Query Time on BlueGene/P

VI. CONCLUSION AND FUTURE WORK

This paper explores the feasibility of a general metadata
storage and management layer for parallel file systems, in
which metadata includes both file operations and provenance
metadata. Two systems are investigated (1) FusionFS, which
implements a distributed file metadata management based on
distributed hash tables, and (2) SPADE, which uses a graph
database to store audited provenance data and provides dis-
tributed module for querying provenance. Our results on a 32-
node cluster show that FusionFS+SPADE is a promising pro-
totype with negligible provenance overhead and has promise
to scale to petascale and beyond. Furthermore, FusionFS with
its own storage layer for provenance capture is able to scale up
to 1K nodes on BlueGene/P supercomputer. As for the future
work, we plan to integrate the Swift parallel programming
system [40] to deploy real scientific applications [41, 42] on
FusionFS+SPADE and FusionProv, as well as continue to scale
FusionFS/FusionProv towards petascale levels.

ACKNOWLEDGEMENT

This work was supported by the National Science Foun-
dation under grant OCI-1054974, and used resources of the
Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of

the U.S. Department of Energy under contract DE-AC02-
06CH11357. The authors are grateful to Xian-He Sun for
providing the access to the Linux cluster.

REFERENCES

[1] P. A. Freeman, et al., “Cyberinfrastructure for science and en-
gineering: Promises and challenges,” Proceedings of the IEEE,
vol. 93, no. 3, pp. 682–691, 2005.

[2] K.-L. Ma, et al., “In-situ processing and visualization for ul-
trascale simulations,” in Journal of Physics: Conference Series,
vol. 78, p. 012043, IOP Publishing, 2007.

[3] K.-L. Ma, “In situ visualization at extreme scale: Challenges
and opportunities,” Computer Graphics and Applications, IEEE,
vol. 29, no. 6, pp. 14–19, 2009.

[4] S. Ghemawat, et al., “The google file system,” in Proceedings
of the nineteenth ACM symposium on Operating systems prin-
ciples, SOSP ’03, 2003.

[5] N. Ali, et al., “Scalable i/o forwarding framework for high-
performance computing systems,” in Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Confer-
ence on, pp. 1–10, IEEE, 2009.

[6] I. Raicu, et al., “Middleware support for many-task computing,”
Cluster Computing, vol. 13, Sept. 2010.

[7] I. Raicu, “Many-task computing: Bridging the gap between
high-throughput computing and high-performance computing,”
Doctoral dissertation, The University of Chicago, 2009.

[8] K. Shvachko, et al., “The hadoop distributed file system,” in
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, 2010.

[9] I. Stoica, et al., “Chord: Scalable Peer-to-peer Lookup Service
for Internet Applications,” in Proceedings of the 2001 confer-
ence on applications, technologies, architectures, and protocols
for computer communications (ACM SIGCOMM), 2001.

[10] I. Raicu, et al., “Making a case for distributed file systems at
exascale,” in Proceedings of the third international workshop
on Large-scale system and application performance, LSAP ’11,
2011.

[11] D. Zhao, et al., “Exploring reliability of exascale systems
through simulations,” in Proceedings of the High Performance
Computing Symposium, HPC ’13, 2013.

[12] I. Raicu, et al., “Toward loosely coupled programming on
petascale systems,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, 2008.

[13] Z. Zhang, et al., “Design and evaluation of a collective i/o model
for loosely- coupled petascale programming,” IEEE MTAGS,
2008.

[14] T. Malik, et al., “Sketching distributed data provenance,” in
Data Provenance and Data Management in eScience, pp. 85–
107, 2013.

[15] D. Zhao et al., “Distributed File Systems for Exascale Comput-
ing,” ACM/IEEE Supercomputing (Doctoral Showcase), 2012.

[16] A. Gehani et al., “SPADE: Support for Provenance Audit-
ing in Distributed Environments,” ACM/USENIX Middleware,
pp. 101–120, 2012.

[17] C. Shou, et al., “Towards a provenance-aware distributed
filesystem,” in 5th Workshop on the Theory and Practice of
Provenance, 2013.

[18] T. Li, et al., “ZHT: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table,” in IEEE International
Parallel & Distributed Processing Symposium, IEEE IPDPS
’13, 2013.

[19] K.-K. Muniswamy-Reddy, “Foundations for provenance-aware
systems,” Doctoral dissertation, Harvard University, 2010.

[20] I. T. Foster, et al., “The virtual data grid: A new model and
architecture for data-intensive collaboration,” in CIDR’03, pp. –
1–1, 2003.

[21] Provenance aware service oriented architecture, “http:
//twiki.pasoa.ecs.soton.ac.uk/bin/view/ pasoa/webhome.”

[22] A. Parker-Wood, et al., “Making sense of file systems through
provenance and rich metadata,” Tech. Rep. UCSC-SSRC-12-01,
University of California, Santa Cruz, Mar. 2012.

[23] K.-K. Muniswamy-Reddy, et al., “Provenance-aware storage
systems,” in Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, ATEC ’06, 2006.

[24] K.-K. Muniswamy-Reddy, et al., “Making a cloud provenance-
aware,” in 1st Workshop on the Theory and Practice of Prove-
nance, 2009.

[25] K.-K. Muniswamy-Reddy, et al., “Layering in provenance sys-
tems,” in Proceedings of the 2009 USENIX Annual Technical
Conference, 2009.

[26] W. Zhou, et al., “Efficient querying and maintenance of net-
work provenance at internet-scale,” in Proceedings of the 2010
international conference on Management of data, pp. 615–626,
ACM, 2010.

[27] J. Abraham, et al., “Distributed storage and querying techniques
for a semantic web of scientific workflow provenance,” in Ser-
vices Computing (SCC), 2010 IEEE International Conference
on, pp. 178–185, IEEE, 2010.

[28] T. Heinis et al., “Efficient lineage tracking for scientific work-
flows,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 1007–1018, ACM,
2008.

[29] FUSE Project, “http://fuse.sourceforge.net.”
[30] I. Raicu, et al., “The quest for scalable support of data-intensive

workloads in distributed systems,” in Proceedings of the 18th
ACM international symposium on High performance distributed
computing, HPDC ’09, 2009.

[31] K. Wang, et al., “Using simulation to explore distributed key-
value stores for exascale systems services,” in Proceedings of
the 2013 ACM/IEEE conference on Supercomputing, SC ’13,
2013.

[32] D. Zhao, et al., “Towards high-performance and cost-effective
distributed storage systems with information dispersal algo-
rithms,” in IEEE International Conference on Cluster Comput-
ing, IEEE CLUSTER ’13, 2013.

[33] D. Zhao et al., “HyCache: a user-level caching middleware
for distributed file systems,” International Workshop on High
Performance Data Intsensive Computing, IEEE IPDPS ’13,
2013.

[34] Intrepid https://www.alcf.anl.gov/resource-guides/intrepid-file-
systems.

[35] Amazon Elastic Compute Cloud (Amazon EC2), “
http://aws.amazon.com/ec2/.”

[36] B. Fitzpatrick, “Distributed caching with memcached,” Linux J.,
vol. 2004, pp. 5–, Aug. 2004.

[37] G. DeCandia, et al., “Dynamo: amazon’s highly available
key-value store,” in Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, SOSP ’07, 2007.

[38] Y. Gu et al., “Supporting configurable congestion control in
data transport services,” in Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, SC ’05, 2005.

[39] D. Capps, “IOzone Filesystem Benchmark,” www.iozone.org,
2008.

[40] Y. Zhao, et al., “Swift: Fast, reliable, loosely coupled parallel
computation,” in IEEE SCW, pp. 199–206, 2007.

[41] M. Wilde, et al., “Extreme-scale scripting: Opportunities for
large task parallel applications on petascale computers,” in
SCIDAC, Journal of Physics: Conference Series 180. DOI,
pp. 10–1088, 2009.

[42] Y. Zhao, et al., “Opportunities and challenges in running sci-
entific workflows on the cloud,” in Proceedings of the 2011
International Conference on Cyber-Enabled Distributed Com-
puting and Knowledge Discovery, CYBERC ’11, 2011.

