
Towards the Support for Many-Task Computing on
Many-Core Computing Platforms

Scott J. Krieder∗, Ioan Raicu∗†
∗Department of Computer Science, Illinois Institute of Technology

†MCS Division, Argonne National Laboratory

Abstract—Current software and hardware limitations prevent
ManyTask Computing (MTC) from leveraging hardware acceler-
ators (NVIDIA GPUs, Intel MIC) boasting Many-Core Comput-
ing architectures. Some broad application classes that t the MTC
paradigm are work ows, MapReduce, highthroughput computing,
and a subset of high-performance computing. MTC emphasizes
using many computing resources over short periods of time
to accomplish many computational tasks (i.e. including both
dependent and independent tasks), where the primary metrics are
measured in seconds. MTC has already proved successful in Grid
Computing and Supercomputing on MIMD architectures, but
SIMD architectures of today’s accelerators pose many challenges
in the efficient support of MTC workloads on accelerators. This
work aims to address the programmability gap between MTC
and accelerators, through an innovative middleware that will
enable MIMD workloads to run on a SIMD architecture. This
work will enable a broader class of applications to leverage the
growing number of accelerated high-end computing systems.

Keywords-Many-Task Computing, Swift, GPGPU, CUDA

I. PROBLEM STATEMENT

This work aims to provide an integration between data-flow
driven parallel programming systems (e.g. Many-Task Com-
puting - MTC) and hardware accelerators [1] (e.g. NVIDIA
GPUs, AMD GPUs, and the Intel MIC). MTC aims to bridge
the gap between two computing paradigms, high throughput
computing (HTC) and high-performance computing (HPC).
MTC emphasizes using many computing resources over short
periods of time to accomplish many computational tasks
(i.e. including both dependent and independent tasks), where
the primary metrics are measured in seconds.[2] Swift is a
particular implementation of the MTC paradigm, and is a
parallel programming system that has been successfully used
in many large-scale computing applications. [3] The scientific
community has adopted Swift as a great way to increase
productivity in running complex applications via a dataflow
driven programming model, which intrinsically allows implicit
parallelism to be harnessed based on data access patterns and
dependencies. Swift is a parallel programming system that fits
the MTC model, and has been shown to run well on tens of
thousands of nodes with task graphs in the range of hundreds
of thousands of tasks. This work aims to enable Swift to
efficiently use accelerators (such as NVIDIA GPUs and Intel
MIC) to further accelerate a wide range of applications, on a
growing portion of high-end systems.

II. DESCRIPTION OF NOVEL APPROACH

The most recent version of Swift, namely Swift/T, supports
function calls.[4] By plugging our middleware into the Swift/T
accelerator API(which we are currently pursuing a collab-
oration to develop) we plan to have Swift call C wrapper
functions to CUDA kernels/applications directly. Currently
CUDA developers may only have a maximum of 16 kernels
running concurrently, one kernel per streaming multiprocessor
(SM). The problem is that all kernels have to start and end
at the same time, causing extreme inefficiencies in hetero-
geneous workloads. By working at the warp level we trade
local memory for concurrency and we expect to be able to
run up to 96 concurrent kernels. Our work will develop a
middleware that will allow independent kernels (MIMD style)
to be launched and managed on many-core architectures that
traditionally only support SIMD. [5]

We are also currently evaluating a real biochemistry appli-
cation, namely the Open Protein Simulator (OOPS), which
builds on the Protein Library (PL). OOPS is multipurpose
and allows extensions to perform various simulation tasks
relevant for life scientists, such as protein folding or protein
structure prediction.[6] We have taken parts of this application
and ported to NVIDIA GPUs via the CUDA programming
language, in order to accelerate OOPS computations via Swift.
We already have preliminary results in the costs associated
with managing and launching concurrent kernels on NVIDIA
FERMI GPUs, through the Swift system. We expect our results
to be applicable to many HPC resources where GPUs are now
common. For example the June 2012 Top 500 machines that
are GPU enabled include Tianhe-1A, Jaguar, and Nebulae.
Currently, Swift can only utilize the general processors on
these machines to execute workloads and the GPUs are left
idle. We will also explore many more applications from
different domains, such as medicine, economics, astronomy,
bioinformatics, physics, and many more.

III. CONTRIBUTIONS

We plan to continue to push the performance envelope by
enabling many MTC applications and systems to leverage the
growing number of accelerated high-end computing systems.
We also expect this work to enable other classes of applications
to leverage accelerators, such as MapReduce and ensemble
MPI. We also hope to influence future accelerator architectures
by highlighting the need for hardware support for MIMD
workloads.



REFERENCES

[1] S. J. Krieder and I. Raicu, “An overview of current and future computing
accelerator architectures,” 1st Greater Chicago Area System Research
Workshop Poster Session, 2012.

[2] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, and
B. Clifford, “Toward loosely coupled programming on petascale systems,”
in Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE Press, 2008, p. 22.

[3] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable, loosely
coupled parallel computation,” in Services, 2007 IEEE Congress on.
IEEE, 2007, pp. 199–206.

[4] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster, “Swift/t: Large-scale application composition via distribut-
edmemory data flow processing,” in Proc. CCGrid, vol. 13.

[5] S. J. Krieder, B. Grimmer, and I. Raicu, “Early experiences in running
many-task computing workloads on gpgpus,” XSEDE Poster Session,
2012.

[6] A. N. Adhikari, J. Peng, M. Wilde, J. Xu, K. F. Freed, and T. R. Sosnick,
“Modeling large regions in proteins: Applications to loops, termini, and
folding,” Protein Science, vol. 21, no. 1, pp. 107–121, 2012.


