
Ke Wang

Department of Computer Science

Illinois Institute of Technology

kwang22@hawk.iit.edu

Anupam Rajendran

Department of Computer Science

Illinois Institute of Technology

arajend5@hawk.iit.edu

Kevin Brandstatter

Department of Computer Science

Illinois Institute of Technology

kbrandst@hawk.iit.edu

Ioan Raicu

Department of Computer Science, Illinois Institute of Technology

Mathematics and Computer Science Division, Argonne National Laboratory

iraicu@cs.iit.edu

Zhao Zhang

Department of Computer Science

University of Chicago

zhaozhang@uchicago.edu

 Exascale computers (with millions of nodes and billions of cores) will enable the unraveling of sig-

nificant scientific mysteries around the year 2019. Many-task computing (MTC) is a new viable dis-

tributed paradigm for extreme-scale supercomputing. The MTC paradigm can address three of the four major chal-

lenges of exascale computing, namely Concurrency and Locality; Resiliency; Memory and Storage;

 SimMatrix is a new light-weight and scalable discrete event simulator, which serves as the simulator for MTC exe-

cution fabric at exascales. It supports both the centralized and distributed scheduling. Work stealing is an efficient dis-

tributed load balancing technique. Through SimMatrix, we explore a wide range of parameters important to under-

stand work stealing at up to exascale levels, such as number of tasks to steal, number of neighbors of a node, and

static/dynamic neighbors. SimMatrix is validated against Falkon for FIFO centralized scheduling, and against MATRIX

for work stealing based distributed scheduling, using MTC workloads up to 2K-cores on a BlueGene/P supercomputer.

Simulation results demonstrate that work stealing configured with optimal parameters has the potential to scale to ex-

ascales, while achieving 85%+ efficiency under real MTC workload traces obtained from a 17-month period on a pet-

ascale supercomputer. In addition, SimMatrix is compared with two other existing simulators, SimGrid and GridSim in

terms of scalability and resource (time and memory) consumption. We found that SimMatrix consumes less than 1

bytes, 10 us per task for centralized scheduling, and 20 bytes, 90 us per task for distributed scheduling at scales up to

1 million nodes, 1 billion cores, and 10 billion tasks. Due to its excellent scalability, SimMatrix has been able to run at

scales up to 1 million nodes, 1 billion cores, and 10 billion tasks with modest resources (e.g. 200GB of memory and

256-core hours).

 MATRIX is a distributed many-Task computing execution framework, which utilizes the adaptive work stealing al-

gorithm to achieve distributed load balancing. MATRIX uses ZHT (a distributed zero hop key-value store) for task

metadata management, to submit tasks and monitor the task execution progress. We have a functional prototype im-

plemented in C, and have scaled this prototype on a BG/P supercomputer up to 512-nodes (2K-cores) with good re-

sults.

 Develop a new light-weight and scalable discrete event simulator, SimMatrix, which enables distributed scheduling

for MTC workloads at exascales. SimMatrix has excellent flexibility and extensibility; it can be used to study both

homogenous systems, heterogeneous systems, different programming models (HPC, MTC, or HTC), and different

scheduling strategies (centralized, distributed, hierarchical)

 Propose an adaptive work stealing algorithm, which applies dynamic multiple random neighbor selection, and adap-

tive poll interval techniques.

 Provide evidence that work stealing is a scalable method to achieve distributed load balancing, even at exascales

with millions of nodes and billions of cores.

 Identify optimal parameters affecting the performance of work stealing; at the largest scales, in order to achieve the

best work stealing performance, we find that the number of tasks to steal is half and there must be a squared root

number of dynamic random neighbors (e.g. at 1M nodes, we would need 1K neighbors).

Left is the centralized scheduling with a single dispatcher connecting all nodes;

right the homogeneous distributed topology with each node having the same

number of cores and neighbors

Log
Visual

Steal

Available

cores

H
as

 ta
sk

s

First node needs

m
ore tasks

Global Event Queue

S
o

rte
d

 b
y
 tim

e

Insert Event(time:t)

No waiting tasks

TaskEnd

Has Waiting

Tasks

Failed

N
o

Tas
ks

D
is

p
a
tc

h

ta
s
k
s

TaskRec

TaskDispStart

First node

needs tasks

Client

Compute node
Compute node

Compute node

Index Server

registration (1)

send m
em

bership list (2)

re
q
u
e
st

 m
e
m

b
e
rs

h
ip

 li
st

 (
3
)

se
nd

 m
em

be
rs

hi
p

lis
t (

2)

submit tasks using ZHT(4)

lookup task status using ZHT(5)

send task status info (6)

request load (7)

request load (7)

se
nd

 lo
ad

 (
8)

send load (8)

request tasks (9)

send tasks (10)

Algorithm 1 Dynamic Multi-Random Neighbor Selection for
Work Stealing

DYN-MUL-SEL(num_neigh, num_nodes)

let selected[num_nodes] be boolean array initialized all
 false except the node itself
let neigh[num_neigh] be array of neighbors
for i = 1 to num_neigh
 index = random () % num_nodes
 while selected[index] do
 index = random() % num_nodes
 end while
 selected[index] = true
 neigh[i] = node[index]
end for
return neigh

Algorithm 2 Adaptive Work Stealing Algorithm

ADA-WORK-STEALING(num_neigh, num_nodes)

 Neigh = DYN-MUL-SEL (num_neigh, num_nodes)
 most_load_node = Neigh[0]
 for i = 1 to num_neigh
 if most_load_node. load < Neigh[i]. load then
 most_load_node = Neigh[i]
 end if
 end for
 if most_load_node.load = 0 then
 sleep (poll_interval)
 poll_interval = poll_interval * 2
 ADA-WORK-STEALING(num_neigh, num_nodes)
 else
 steal tasks from most_load_node
 if num_task_steal = 0 then
 sleep (poll_interval)

 poll_interval = poll_interval * 2
 ADA-WORK-STEALING(num_neigh,
 num_nodes)
 else
 poll_interval = 1
 return
 end if
 end if

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
o

-V
ar

ia
n

ce

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

Efficiency

Co-Variance

1

10

100

1000

10000

100000

1000000

M
e

m
o

ry
 P

e
r

Ta
sk

 (
B

yt
e

)

Scale (No. of Nodes)

SimMatrx(Mem/Task)

SimGrid(Mem/Task)

GridSim(Mem/Task)

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

1.2

T
as

ks
B

il
li

o
n

N
o

. o
f

W
o

rk
er

s
B

il
li

o
n

SimTime (sec)

num_all_workers

num_busy_workers

throughput(task/day)

delivered_tasks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

steal_1 steal_2

steal_log steal_sqrt

steal_half

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

nb_2

nb_log

nb_sqrt

nb_eighth

nb_quar

nb_half

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

nb_1
nb_2
nb_log
nb_sqrt

1

10

100

1000

10000

100000

1000000

Ti
m

e
 P

e
r

Ta
sk

 (u
s)

Scale (No. of Nodes)

SimMatrix(Time/Task)

SimGrid(Time/Task)

GridSim(Time/Task)

Scalability of distributed scheduling with work stealing; at extreme scale, work stealing achieves 87%+ efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 512 1024 2048

E
ff

ic
ie

n
c

y

Scale (No. of Cores)

Falkon Sleep_1 Falkon Sleep_2 Falkon Sleep_4 Falkon Sleep_8
MATRIX Sleep_1 MATRIX Sleep_2 MATRIX Sleep_4 MATRIX Sleep_8

Comparison of MA-

TRIX with Falkon

with different sleep

workloads at the

scales up to 2K

cores. MATRIX im-

plemented work

stealing as the dis-

tributed scheduling

strategy; while Fakon

implemented a hier-

archical scheduling

strategy with different

levels of dispatchers.

All experiments were

run on BG/P ma-

chine

Visualization for 1024

nodes and MTC work-

load for different num-

ber of neighbors; the

upper left has 2 static

neighbors, the upper

right has a squared

root static neighbors;

the lower left has a

quarter static neigh-

bors, the lower right

has a squared root

dynamic neighbors.

 Exascale systems will

bring great opportunities

in unraveling of signifi-

cant scientific mysteries. Also, there are challenges, such as Energy and Power;

Memory and Storage; Concurrency and Locality; Resiliency. Any one of these chal-

lenges, if left unaddressed, could halt progress towards exascale computing. New

programming models are needed to solve some of these challenges, and we be-

lieve that Many-Task Computing (MTC) could offer many advantages over High-

Performance Computing (HPC).

 Work stealing is a scalable technology to achieve distributed load balancing,

even at the extreme scale with millions of nodes and billions of cores. In order to

achieve the best work stealing performance, we find the number of tasks to steal is

half and there must be a squared root number of dynamic neighbors (e.g. at 1M

nodes, we would need 1K neighbors).

 In the future, we will use SimMatrix to explore work stealing for many-core

chips with thousands of cores. Also, we will implement task dependency and work-

flow simulation in SimMatrix. Another direction for future improvements of SimMa-

trix is to allow more complex network topologies for an exascale system, such as

fat tree, 3D/4D/5D torus networks, daisy chained switches, etc. We will also contin-

ue to develop the MATRIX, which will be tested on BG/P/Q systems at full scales,

and be integrated with other projects, such as ZHT, FusionFS, Swift, and

Charm++.

Left is the validation of SimMatrix against Falkon with up to 2K cores for different sleep workloads; right is the valida-

tion of SimMatrix against MATRIX with up to 2K cores for sleep 0 tasks. Falkon and MATRIX were run on BG/P

0.0% 0.0% 0.1% 0.1% 0.2% 0.3% 0.5% 0.7% 1.3% 2.3% 2.2% 2.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Cores)

1 sec (Falkon) 1 sec (Simulation)
2 sec (Falkon) 2 sec (Simulation)
4 sec (Falkon) 4 sec (Simulation)
8 sec (Falkon) 8 sec (Simulation)
16 sec (Falkon) 16 sec (Simulation)

Difference
3.96% 4.71% 3.70% 4.95%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1000

2000

3000

4000

5000

6000

256 512 1024 2048

D
if

fe
re

n
ce

Th
ro

u
gh

p
u

t
(t

as
k/

se
c)

Scale (No. of Cores)

SimMatrix Matrix

Difference

[1] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and Supercomput-

ers,” 1st IEEE Workshop on Many-Task Computing on Grids and Supercomputers

(MTAGS) 2008.

[2] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford, “Toward

Loosely Coupled Programming on Petascale Systems,” IEEE SC 2008.

[3] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde, “Falkon: A Fast and Light-

weight tasK executiON Framework,” IEEE/ACM SC 2007.

[4] I. Raicu, I. Foster, et al, “Middleware Support for Many-Task Computing,” Cluster

Computing, The Journal of Networks, Software Tools and Applications, 2010.

