
FusionFS Overview 

Access Patterns 

Develop both theoretical and practical aspects of 
building distributed files systems scalable to exascale 
supporting millions of nodes and billions of 
concurrent IO requests 

Goal 
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•  ZHT: distributed metadata management system 
•  HyCache: SSD/HDD caching 
•  IDAStore: GPU-based coding for data redundancy 
•  FFSNET: light-weighted data transfer protocol 
•  PAFS: provenance-aware distributed file system  

Building Blocks 

Current Status 
•  FusionFS prototype with POSIX has been developed 
•  FusionFS has been deployed on: 
o  Linux cluster (512-cores) 
o  IBM Bluegene/P (2048-cores) 

•  Benchmarks tested: 
o  IOZone and IOR 
o  Metadata: Excellent scalability (4ms@1-node à 7ms@512-nodes) 

•  Support asynchronous file writes 
•  Test with real scientific applications 
•  Scale to 32K-cores 
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Case for Distributed File Systems at Exascale, ACM 
Workshop on Large-scale System and Application 
Performance (LSAP), 2011 
 •  Scale to 1 million nodes 

•  Support fault tolerance with replications and erasure coding 
•  Improve FUSE performance and/or develop FusionFS kernel module 

Long-Term Plan (before 2016) 
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Motivation 
Current architecture (i.e. compute nodes are 
remotely connected to storage nodes) would unlikely 
scale well at exascale 

Proposed Architecture 
v  Distribute data into local persistent storage to 

explore data locality for computation 
v  Distribute metadata into local persistent storage to 

remove the bottleneck of centralized metadata 
management 

v  Coexist with remote parallel file systems 

Distributed File Systems for Exascale Computing   

Features	  
Ø  Distributed Metadata 

Management 
Ø  Distributed Data 

Management 
Ø  Data Indexing 
Ø  Relaxed Semantics 
Ø  Data Locality 
Ø  Overlapping I/O with 

Computations 
Ø  POSIX 

q  1-many read (all processes 
read the same file and are not 
modified) 

q many-many read/write (each 
process read/write to a unique 
file) 

q  write-once read-many (files 
are not modified after it is 
written) 

q  append-only (files can only 
be modified by appending at 
the end of files) 

q metadata (metadata is 
created, modified, and/or 
destroyed at a high rate). 

Metadata	  performance	  on	  IBM	  Bluegene/P	  


