
FusionFS Overview

Access Patterns

Develop both theoretical and practical aspects of
building distributed files systems scalable to exascale
supporting millions of nodes and billions of
concurrent IO requests

Goal

Acknowledgement
This work is supported by NSF grant OCI-1054974

•  ZHT: distributed metadata management system
•  HyCache: SSD/HDD caching
•  IDAStore: GPU-based coding for data redundancy
•  FFSNET: light-weighted data transfer protocol
•  PAFS: provenance-aware distributed file system

Building Blocks

Current Status
•  FusionFS prototype with POSIX has been developed
•  FusionFS has been deployed on:
o  Linux cluster (512-cores)
o  IBM Bluegene/P (2048-cores)

•  Benchmarks tested:
o  IOZone and IOR
o  Metadata: Excellent scalability (4ms@1-node à 7ms@512-nodes)

•  Support asynchronous file writes
•  Test with real scientific applications
•  Scale to 32K-cores

Next Release (before 2013) References
[1] FusionFS project website:
http://datasys.cs.iit.edu/projects/FusionFS/index.html
[2] Ioan Raicu, Ian Foster and Pete Beckman. Making a
Case for Distributed File Systems at Exascale, ACM
Workshop on Large-scale System and Application
Performance (LSAP), 2011
 •  Scale to 1 million nodes

•  Support fault tolerance with replications and erasure coding
•  Improve FUSE performance and/or develop FusionFS kernel module

Long-Term Plan (before 2016)

Dongfang Zhao
Department of Computer Science

Illinois Institute of Technology
dongfang.zhao@hawk.iit.edu

Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
iraicu@cs.iit.edu

Motivation
Current architecture (i.e. compute nodes are
remotely connected to storage nodes) would unlikely
scale well at exascale

Proposed Architecture
v  Distribute data into local persistent storage to

explore data locality for computation
v  Distribute metadata into local persistent storage to

remove the bottleneck of centralized metadata
management

v  Coexist with remote parallel file systems

Distributed File Systems for Exascale Computing

Features	
Ø  Distributed Metadata

Management
Ø  Distributed Data

Management
Ø  Data Indexing
Ø  Relaxed Semantics
Ø  Data Locality
Ø  Overlapping I/O with

Computations
Ø  POSIX

q  1-many read (all processes
read the same file and are not
modified)

q many-many read/write (each
process read/write to a unique
file)

q  write-once read-many (files
are not modified after it is
written)

q  append-only (files can only
be modified by appending at
the end of files)

q metadata (metadata is
created, modified, and/or
destroyed at a high rate).

Metadata	 performance	 on	 IBM	 Bluegene/P	

