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Abstract— Cloud computing is gaining tremendous momentum 

in both academia and industry. The application of Cloud 

computing, however, has mostly focused on Web applications 

and business applications; while the recognition of using Cloud 

computing to support large-scale workflows, especially data-

intensive scientific workflows on the Cloud is still largely 

overlooked. We coin the term “Cloud Workflow”, to refer to 

the specification, execution, provenance tracking of large-scale 

scientific workflows, as well as the management of data and 

computing resources to enable the execution of scientific 

workflows on the Cloud. In this paper, we analyze why there 

has been such a gap between the two technologies, and what it 

means to bring Cloud and workflow together; we then present 

the key challenges in running Cloud workflow, and discuss the 

research opportunities in realizing workflows on the Cloud. 

Cloud computing; Scientific Workflow; Cloud workflow; 

Data Intensive Computing 

I.  INTRODUCTION 

Governments, research institutes, and industry leaders are 
rushing to adopt Cloud Computing to solve their ever-
increasing computing and storage problems arising in the 
Internet age. There has been a burgeoning of Cloud 
platforms and applications in both academia and industry. 
Only in a few years after Amazon released its Elastic 
Computing Cloud (EC2) and Simple Storage Service (S3) to 
the public, Google released App Engine, IBM unveiled 
“Blue Cloud” [1]; and Microsoft also rolled out the Azure 
Services Platform [2]. There are also quite a few open source 
Cloud computing platforms such as Hadoop, Eucalyptus 
[19], and Nimbus [13].  

We define Cloud computing as a large-scale distributed 
computing paradigm that is driven by economies of scale, in 
which a pool of abstracted, virtualized, dynamically-scalable, 
managed computing power, storage, platforms, and services 
are delivered on demand to external customers over the 
Internet [4]. 

There are a couple of major benefits and advantages that 
are driving the widespread adoption of the Cloud computing 
paradigm: 

1) Development based on an abstract computing model: 
most Cloud computing platforms hide the complexity of the 
Cloud by providing an abstract computing model; 2) 
Scalability on demand: once an application is deployed onto 
the Cloud, the application can be automatically made 
scalable by provisioning the resources in the Cloud on 
demand, and the Cloud takes care of scaling out and in, and 
load balancing; 3) Better resource utilization: Cloud 
platforms can coordinate resource utilization according to 
resource demand of the applications hosted in the Cloud; and 
4) Cost saving: Cloud users are charged based on their 
resource usage in the Cloud, they only pay for what they use, 
and if their applications get optimized, that will be reflected 
into a lowered cost immediately.    

Such Cloud platforms, however, have mostly been 
applied to Web applications and business applications, there 
is a missing link that is to manage and run workflow 
applications, especially data-intensive scientific workflows 
on the Cloud. The current state of workflow organization on 
the Cloud has been either 1) static predefined pipelines based 
on batch style scripts or graphs based on the MapReduce [9] 
programming model; 2) ad hoc mash-up’s that are connected 
together with, again, scripts that parse the output of one web 
application and feed into another.  

Although several scientific workflow management 
systems (SWFMSs) have been successfully applied over a 
number of execution environments (local hosts, 
clusters/grids, and supercomputers), Cloud computing 
provides a paradigm-shifting utility-oriented computing 
model in terms of the unprecedented size of datacenter-level 
resource pool and the on-demand resource provisioning 
mechanism, enabling scientific workflow solutions capable 
of  addressing peta-scale scientific problems. 

We coin the term “Cloud Workflow”, to refer to the 
specification, execution, and provenance tracking of 
scientific workflows, as well as the management of data and 
computing resources to enable the running of scientific 
workflows on the Cloud. In the rest of this paper, we discuss 
what it means to bring Cloud and workflow together; present 
the key challenges in supporting Cloud workflows, and 



identify key research opportunities in realizing workflows on 
the Cloud. 

II. OPPORTUNITIES 

We have seen the success of the Internet and Web largely 
due to the incentive of being connected and the TCP/IP 
protocol that makes such connectivity possible. While the 
incentive of providing computing as a utility has long been 
envisioned, the underlying technology that makes it possible 
has finally come [5]. The illusion of infinite computing 
resources that is provided by Cloud Computing on demand 
to end users is fascinating to a wide range of science and 
engineering applications, particularly to data and/or 
compute-intensive scientific workflow applications.  

First, the scale of scientific problems that can be 
addressed by scientific workflows is now greatly increased, 
which was previously upbounded by the size of a dedicated 
resource pool with limited resource sharing extension in the 
form of virtual organizations.  

The scale of scientific problems is reflected not only on 
the data sizes that scientific applications need to handle, but 
also on the complexities of the applications themselves. For 
data sizes, the scientific community is facing a “data deluge” 
coming from experiments, simulations, sensors, and 
satellites. For example, the archival data from the National 
Virtual Observatory for sky- and ground-based observatory 
is estimated to cover 40,000 square degrees of the sky and to 
be a few petabytes. The rate of growth of DNA databases 
such as GenBank [4] has been following an exponential 
trend, with a doubling time estimated to be 9-12 months. 
Data volumes are also increasing dramatically in physics, 
earth science, medicine, and many other disciplines. As for 
application complexity, a protein simulation problem [27] 
involves running many instances of a structure prediction 
simulation, each with different random initial conditions. 
The simulation uses an “iterative fixing” algorithm that 
performs multiple rounds, each involving many parallel 
Monte Carlo simulated annealing models of molecular 
moves with energy minimization. Given a couple of proteins 
and parameter options, the simulation can easily scale up to 
100,000 rounds. Similar analyses in other disciplines also 
need to explore a large parameter space, and expect a fast 
turn-around time. Cloud platforms can offer vast amount of 
storage space as well as computing resources for such 
applications, allowing scientific discoveries to be carried out 
in an unprecedented scale.   

Second, the on-demand resource allocation mechanism in 
Cloud has a number of advantages over the traditional 
cluster/Grid environments for scientific workflows:  

a) It will improve resource utilization. Workflows 
usually have multiple stages, where the number of resources 
required for the stages may vary a lot (for instance, scatter 
and gather is a common pattern observed in scientific 
workflows where nodes tend to expand at the scatter stage, 
and then merge at the gather stage). Cloud-based workflow 
applications can get resources allocated accordingly with the 
number of nodes at each stage, instead of reserving a fixed 
number of resources.  

b) It can change the experience of end users for 
improved responsiveness. Cloud workflows can scale out 
and in dynamically, resulting a fast turn-around time for end 
users. 

c) It could also enable a new generation of scientific 
workflows - collaborative scientific workflows [18], in 
which user interaction and collaboration patterns are first-
class entities for scientific workflow management. User 
interaction and collaboration intensive scientific workflows 
have been difficult to implement in a Grid environment as it 
is more suitable for batch-based scientific workflows. 

Third, Cloud computing provides a much larger room for 
the trade-off between performance and cost. The spectrum of 
resource investment now ranges from dedicated private 
resources, a hybrid resource pool combining local resource 
and remote clouds, and a full outsourcing of computing and 
storage to public Clouds. Cloud Computing not only 
provides the potential of solving larger-scale scientific 
problems, but also brings the opportunity to improve the 
performance/cost ratio. Although the optimization of this 
ratio and a flexible (semi-)automatic trade-off mechanism 
still remain as challenging problems; see a recent case study 
in this direction [15]. 

III. CHALLENGES 

Despite the advantages and opportunities we can seek in 
Cloud computing for scientific workflows, there are many 
major obstacles to the adaptation and running of scientific 
workflows on the Cloud, we identify a few of them below: 

Architectural challenges: in our scientific workflow 
system reference architecture, we define an SWFMS to have 
four layers – operational layer, task management layer, 
workflow management layer, and presentation layer. To 
engineer an SWFMS into Clouds, it may not be as simple as 
to replace the operational layer with a Cloud infrastructure 
and that is the end of the integration story. We may need to 
take a bottom-up approach and evaluate the requirements, 
looking at integration problems at the other three layers as 
well, to address compatibility and impedance problems that 
may be introduced by different Cloud providers and 
implementations. 

Integration challenges: many of the immediate challenges 
of running scientific workflows on the Cloud are to integrate 
scientific workflow systems with Cloud infrastructure and 
resources. In most cases, we will need to change the way an 
SWFMS acquires resources, dispatches tasks, monitors the 
progress of those tasks, tracks provenance information, and 
how it deals with errors and exceptions in the Cloud. 

Computing challenges: for scientific workflows to 
leverage large scale computing resources in the Cloud, there 
are challenges such as resource requirements and 
provisioning, virtualization, fault tolerance, and smart-
reruns. 

Data management challenges: running workflows in the 
Cloud has to deal with data moving in and out of the Cloud, 
large scale data storage within the Cloud, and the exploration 
of data locality, data and computation co-location issues for 
efficiency purpose, and the tracking of data provenance in 
order to understand and reuse workflows. 



 Language challenges: so far in the Cloud, MapReduce 
has been the “only” widely adopted computing model, and 
there are a number of variations of languages based on this 
model for task specification in the Cloud. Examples are 
Sawzall [20], DryadLINQ [29], etc. However, a workflow 
specification requires far more functionality and flexibility 
than MapReduce can provide, and the implicit semantics 
incurred by a workflow specification goes far more than just 
the “map” and “reduce” operations, for instance, the 
mapping of computation to compute node and data 
partitions, runtime optimization, retry on error, smart re-run,  
etc. The specification and the corresponding implementation 
of the specification would carry about all the computing, data 
management challenges associated with interpreting and 
executing the specification. 

Last but not the least, is service management challenges, 
as Clouds are mostly built on top of service oriented 
architecture, and SWFMSs are also shifting from 
conventional applications to service invocations. We need to 
deal with service discovery, large input and output handling, 
data services, and all the other challenges that we are facing 
in migrating applications into a service world. 

A. Architectural challenge 

Based on a comprehensive study of the workflow 
literature from an architectural perspective and our own 
experience from the development of the VIEW system 
[10][16][17] and Swift [31], we identify the following seven 
key architectural requirements for an SWFMS: (R1) User 
interface customizability and user interaction support; (R2) 
Reproducibility support; (R3) Heterogeneous and distributed 
services and software tools integration; (R4) Heterogeneous 
and distributed data product management; (R5) High-end 
computing support; (R6) Workflow monitoring and failure 
handling; and (R7) Interoperability.  

A reference architecture for SWFMSs is proposed in [16] 
and an SOA-based instantiation is first implemented in the 
VIEW system. As shown in Figure 2, the reference 
architecture consists of four logical layers, seven major 
functional subsystems, and six interfaces. The first layer is 
the Operational Layer, which consists of a wide range of 
heterogeneous and distributed data sources, software tools, 
services, and their operational environments, including high-
end computing environments. The second layer is called the 
Task Management Layer. This layer consists of three 
subsystems: Data Product Management, Provenance 
Management, and Task Management.  The third layer, called 
the Workflow Management Layer, consists of Workflow 
Engine and Workflow Monitoring. Finally, the fourth layer – 
the Presentation Layer, consists of the Workflow Design 
subsystem and the Presentation and Visualization subsystem. 
A detailed description of the architecture is available in [20].  

We argue that the above reference architecture is still 
valid for a Cloud-enabled SWFMS. Such validity has been 
achieved by the layered approach of the reference 
architecture and the main design principle behind the 
architecture: with the fast advancement of underlying 
computing technology, upper layers of the reference 
architecture should not be disturbed. The reference 

architecture provides the guidance for designing a concrete 
solution for a particular SWFMS. Here, we consider four 
possible solutions for deploying the proposed reference 
architecture in a Cloud computing environment: 

• Operational-Layer-in-the-Cloud. In this solution, 

only the Operational Layer lies in the Cloud with an 
SWFMS running out of the Cloud. An SWFMS can now 
leverage Cloud applications as another type of task 
components. Cloud-based applications can take advantage of 
high scalability provided by the Cloud and large resource 
capacity provisioned by data centers. This solution also 
relieves a user from the concern of vendor lock-in due to the 
relative ease of using alternative Cloud platforms for running 
Cloud applications. However, the SWFMS itself cannot 
benefit from the scalability offered by the Cloud. 

• Task-Management-Layer-in-the-Cloud. In this 

solution, both the Operational Layer and the Task 
Management Layer will be deployed in the Cloud. In 
contrast to traditional deployment strategies, Data Product 
Management, Provenance Management, and Task 
Management can now leverage the high scalability provided 
by the Cloud. For Task Management, rather than 
accommodating the user’s request based on a batch-based 
scheduling system, all or most ready tasks can now be 
immediately deployed over Cloud computing nodes and 
executed instead of waiting in a job queue for the availability 
of resources. One limitation of this solution is that the 
economic cost associated with the storage of provenance and 
data products in the Cloud. Moreover, although task 
scheduling and management can benefit from the scalability 
offered by the Cloud, workflow scheduling and management 
do not since the workflow engine runs outside of the Cloud. 

 
Figure 2 A reference architecture for SWFMSs [16]. 

 

• Workflow-Management-Layer-in-the-Cloud. In this 

solution, the Operational Layer, the Task Management 
Layer, and the Workflow Management Layer are deployed in 
the Cloud with the Presentation Layer deployed at a client 
machine. This solution provides a good balance between 
system performance and usability: the management of 
computation, data, and storage and other resources are all 
encapsulated in the Cloud, while the Presentation Layer 
remains at the Client to support the key architectural 



requirement of user interface customizability and user 
interaction support [20]. Such a solution is also most suitable 
for a scientific workflow application system in which ad hoc 
domain-specific requirements are constantly evolving, 
demanding frequent changes to the Presentation Layer for 
that domain. In this solution, both workflow and task 
management can benefit from the scalability offered by the 
Cloud, but the downside is that they become more dependent 
on the Cloud platform over which they run. 

• All-in-the-Cloud.  In this solution, a whole SWFMS 

is deployed inside the Cloud and accessible via a Web 
browser. A distinct feature of this solution is that no software 
installation is needed for a scientist and the SWFMS can 
fully take advantage of all the services provided in a Cloud 
infrastructure. Moreover, the cloud-based SWFMS can 
provide highly scalable scientific workflows and task 
management as services, providing one kind of Software-as-
a-Service (SaaS). One concern the user might have is the 
economic cost associated with the necessity of using Cloud 
on a daily basis, the dependency on the availability and 
reliability of the Cloud, as well as the risk associated with 
vendor lock-in. 

As we described, each of the above solutions has its cons 
and pros. In practice, a hybrid approach might also be 
desirable, in which for each layer, one subsystem or a piece 
of the subsystem is deployed in the Cloud, while the rest is 
deployed outside of the Cloud. For each solution, a refined 
microarchitecture for each layer and subsystem desires 
further research. We are currently experimenting with the 
last two solutions in the context of the VIEW system. Our 
research results will be presented in a future publication. 

B. Integration challenge 

Many of the immediate challenges to running scientific 
workflows on the Cloud are to integrate scientific workflow 
systems with Cloud infrastructure and resources. As we have 
discussed in the previous section, the degree of integration 
also depends on how we choose to deploy an SWFMS into 
Clouds. While we certainly cannot cover all aspects of the 
integration problems that we could encounter in the “all-in-
the-cloud” approach, we strive to identify some practical 
ones and discuss possible solutions to them. 

Applications, services, and tools integration: In the 
operational-layer-in-the-Cloud approach, we treat 
applications, services, and tools hosted in the Cloud as task 
units in a workflow, the scheduling and management of a 
workflow are mostly outside the Cloud, where these task 
units are invoked as they are scheduled to execute. A 
majority of the mashup sites (such as those that leverage 
Google’s map service) take this approach, and they use ad 
hoc scripts and programs to glue the services together. An 
early exploration of the Taverna [14] workflow engine and 
gRAVI services in the caBIG project [25] can also be 
thought as an example of integrating an off-the-shelf 
workflow engine with Cloud/Grid services. 

Once we decide to get task dispatching and scheduling 
into the Cloud, resource provisioning becomes the next issue 
to resolve. Although conceptually Cloud offers uncapped 
resources, and a workflow can request as much resource as it 

requires, these all come with a cost, and presume that the 
workflow engine can talk directly with the allocated resource 
s(which is usually not true without tweaking the 
configuration of the workflow engine). Taking these two 
factors into consideration, some existing solutions such as 
Nimbus would acquire a certain number of virtual machines, 
and assemble them as a virtual cluster, onto which existing 
cluster management systems such as PBS can be deployed 
and used as job submission/execution service that a 
workflow engine can directly interact with.   

Debugging, monitoring, and provenance tracking for a 
workflow can be even more difficult in the Cloud, since 
compute resources are usually dynamically assigned and 
based on virtual machine instances, the environment that a 
task is executed on could be destroyed right after the task is 
finished, and assigned to a complete different user and task. 
Some Clouds also support task migration where tasks can be 
migrated to another virtual machine if there is problem with 
the node that the task is running on. 

Porting an SWFMS into the Cloud can also be a concern, 
which would usually involve wrapping up an SWFMS as a 
Cloud service. To fully explore the capability and scalability 
of the Cloud, a workflow engine may need to be re-
engineered to interact directly with various Cloud services 
such as storage, resource allocation, task scheduling, 
monitoring, etc. At the client side, either a complete Web-
based user interface needs to be developed to allow users to 
specify and interact with the SWFMS, or a thin off-the-
Cloud client needs to be developed to interact with the 
SWFMS Cloud service. 

C. Language challenge 

So far in the Cloud, MapReduce has been the “only” 
widely adopted computing model, and there are a number of 
variations of languages based on this model for task 
specification in the Cloud. MapReduce provides a very 
simple programming model and powerful runtime system for 
the processing of large datasets. The programming model is 
based on just two key functions: “map” and “reduce,” 
borrowed from functional languages. The runtime system 
automatically partitions input data and schedules the 
execution of programs in a large cluster of commodity 
machines. Sawzall [20] further simplifies the program 
specification and task parallelization. It is an interpreted 
language that builds on MapReduce and separates the 
filtering and aggregation phases. Microsoft has developed 
the Cosmos distributed storage system and dryad processing 
framework, and offers DryadLINQ [29] and SCOPE [7] as 
declarative programming model on top of the storage and 
computing infrastructure. DryadLINQ uses the object 
oriented LINQ query syntax where SCOPE provides basic 
operators similar to those of SQL such as Select, Join, 
Aggregation, etc., both translate the abstract specification 
into a detailed execution plan.  

While MapReduce and its variations provide certain data 
flow support, they all require application logic to be re-
written to follow the map-reduce-merge programming 
model. We call this kind of workflow organization the 
“White-Box” approach, as users need to fully understand the 



applications and port the applications before they can 
leverage the parallel computing infrastructure. Moreover, the 
data being processed also need to be stored in partitioned 
fashion, such as in GFS, or HDFS, so that the partitions can 
be operated in parallel. 

SwiftScript [30][31], on the other hand, serves as a 
general purpose coordination language, where existing 
applications can be invoked without modification. We call 
this the “Black-Box” approach, in which we focus more on 
the input data and output data of each computing node, and 
the flow of the data. Of course, some approaches will cross 
the edge of being white or black, as some form of 
modification or adaptation to the applications will be needed. 

SwiftScript provides foreach and iterate operators that 
correspond to the Map function in MapReduce, which 
basically iterates over an array of data and performs a certain 
operation on each of the data element in the array. For 
functionalities similar to the Reduce and Combine operations 
introduced above, it will have to rely on specific applications 
that perform such operations. SwiftScript also uses implicit 
parallelism: iterations are mapped into parallel operations 
automatically, and independent tasks are scheduled to run in 
parallel. The advantage to SwiftScript style workflows is that 
the organization of applications and data can be more 
flexible, and the execution of workflows can be scheduled to 
run on a single box, or onto Grids and Clouds, as it does not 
need to port existing applications, and does not rely on 
specific data partitioning.  

Mash-up’s and ad hoc scripts (Java Script, PHP, Python 
etc.) have become key technologies for developing Web 
applications that dynamically integrate multiple data or 
service sources. They are essentially data integration 
approaches, because they take the outputs from one 
service/application, transform them and feed into another. 
Google App Engine uses a modified Python runtime and 
chooses Python scripting language for Web application 
development. Clouds such as Amazon Web Services and 
Microsoft’s Azure Services Platform have generally adopted 
Web Services APIs where users access, configure and 
program Cloud services using pre-defined APIs, and HTTP, 
SOAP are the common protocols chosen for such services.  

For Cloud workflow coordination, no matter what forms 
of language we adopt, such as APIs and scripts provided by 
the MapReduce computing model, or scripting languages 
like SwiftScript, or service based business workflow like 
BPEL, they all need to address the following challenges: 

•Handle the mapping from input and output data into 

logical structures to facilitate data integration and logical 
operations on data. 

• Support large-scale parallelism via either implicit 

parallelism, or explicit declaratives such as Parallel Foreach. 

• Support data partitioning and task partitioning. 

Considering the scale of computation and data processing, 
data and tasks need to be efficiently partitioned and 
scheduled onto a large number of compute/storage nodes; 
and processed in parallel to improve system throughput and 
efficiency. 

• Require a scalable, reliable, and efficient runtime 

system that can support Cloud-scale task scheduling and 
dispatching, provide error recovery and fault tolerance under 
all kinds of hardware and service failures, and utilize a large 
pool of Cloud resources efficiently.   

D. Computing challenge 

Although Clouds can potentially offer unlimited 
resources to SWFMSs, managing large-scale of computing 
resources is not a trivial task. As we have mentioned in the 
integration challenge section, workflow systems may not be 
able to talk to Cloud resources directly, they may still need to 
go through middleware services such as Nimbus and Falkon 
that handle resource provisioning and task dispatching. 
Things can be even more complicated if we take into 
consideration issues such as workflow resource 
requirements, data dependencies, Cloud virtualization, etc. 
Before we dive into details, let’s take a look at how 
Amazon’s Elastic MapReduce service [3] handles a 
workflow (well, to be more precise, a data flow):    

Amazon Elastic MapReduce creates data processing job 
flows that are executed in the Hadoop platform on the web-
scale infrastructure of Amazon EC2. The service 
automatically launches and configures the number and type 
of Amazon EC2 instances specified by customers. It then 
kicks off a Hadoop implementation of the MapReduce 
programming model, which loads large amounts of user 
input data from Amazon S3 and then subdivides the data for 
parallel processing on Amazon EC2 instances. As processing 
completes, data are re-combined and reduced into a final 
solution, and the results deposited back into Amazon S3. 
Users can configure, manipulate, and monitor job flows 
through web service APIs or via the AWS Management 
Console. 

Essentially, it is the user’s responsibility to specify the 
type of resources (chosen out of a few pre-configured EC2 
instance types), and the number of resources. Data is copied 
in and out of the S3 storage service, and the user is able to 
monitor the status of the job flow. Different stages of a 
workflow may require different types of resources, and 
Cloud virtualization can configure Virtual Machines 
differently to meet such requirements, but to what extent (i.e. 
how much granularity) and how flexible it can be would be 
hard to decide. Amazon only offers a few EC2 instance types 
coarsely categorized as small, medium, and large, and they 
are charged differently according to the computing power 
they provide.  

Traditional SWFMSs also place special emphasis on fault 
tolerance and smart reruns. A workflow may involve a large 
number of computations and the whole process can be 
lengthy, so typically a SWFMS will try to automatically 
recover when non-fatal errors happen (by using mechanisms 
such as retry on error, re-schedule computation to a different 
resource, etc.). Also, in the case the workflow has to be 
stopped, detailed execution information will be logged, and 
the next time the workflow is re-started, it will be able to 
pick up from where it was stopped, this is called smart-rerun. 
In a Cloud environment, the scale of a workflow can be 
much larger, and more components (such as VMs) can be 



involved, some extra measures need to be taken to support 
such features.     

E. Data management challenge  

As scientific applications become more data intensive, 
the management of data resources and dataflow between the 
storage and compute resources is becoming the main 
bottleneck. Analyzing, visualizing, and disseminating these 
large data sets have become a major challenge and data 
intensive computing is now considered as the “fourth 
paradigm” [12] in scientific discovery after theoretical, 
experimental, and computational science. Within a Cloud, 
data management is as important as, and sometimes, even 
more critical than compute resource management. As we 
have mentioned before, in some Clouds, the nodes 
responsible for data storage are separated from computation 
nodes, while some others may require them to be collocated. 
From a workflow perspective, we care more about the 
following aspects of data management within a Cloud: data 
locality, where computation can be scheduled to leverage 
data dependencies among tasks; collective data management, 
where we can get high aggregated data throughput; and 
provenance and metadata management.  

Data Locality: As CPU cycles become cheaper and data 
sets double in size every year, the main challenge for 
efficient scaling of applications is the location of the data 
relative to the available computational resources – moving 
data repeatedly to distant CPUs is expensive and inefficient. 
There are large differences in IO speeds from local disk 
storage to wide area networks, which can drastically affect 
application performance. To achieve good scalability at 
Internet scales for Clouds, Grids, and their applications, data 
need to be distributed over many computers, and 
computations should be steered towards the best place to 
execute in order to minimize communication costs. Google’s 
MapReduce system runs on top of the Google File System, 
within which data is loaded, partitioned into chunks, and 
each chunk replicated. Thus data processing is collocated 
with data storage: when a file needs to be processed, the job 
scheduler consults a storage metadata service to get the host 
node for each chunk, and then schedules a “map” process on 
that node, so that data locality is exploited efficiently.  

Combining compute and data management: What is even 
more critical is the combination of the compute and data 
resource management, which leverages data locality in 
access patterns to minimize the amount of data movement 
and improve end-application performance and scalability 
[24]. Attempting to address storage and computational 
problems separately forces much data movement between 
computational and storage resources, which will not scale to 
tomorrow’s exascale datasets and millions of nodes, and will 
yield significant underutilization of the raw resources.  

Provenance: Provenance refers to the derivation history 
of a data product, including all the data sources, intermediate 
data products, and the procedures that were applied to 
produce the data product. Provenance information is vital in 
understanding, discovering, validating and sharing a certain 
data product as well as the applications and programs used to 
derive it [11]. In some disciplines such as finance and 

medicine, it is also mandatory to provide what is called an 
“audit trail” for auditing purpose. Provenance is still an 
unexplored area in Cloud environments, in which we need to 
deal with even more challenging issues such as tracking data 
production across different service providers (with different 
platform visibility and access policies) and across different 
software and hardware abstraction layers within one 
provider.  In addition, the scalability of Clouds would require 
much more scalable provenance systems that can handle the 
storage and querying of potentially millions of tasks. Also 
secure access of provenance information, which is largely 
missing in existing provenance systems, would be much 
needed in Clouds due to its multi-tenant nature. 

F. Service management challenge 

By talking about service management, we refer to both 
the engineering of the components of an SWFMS as 
services, and the orchestration and invocation of services 
from an SWFMS.  While the emergence of SOA as an 
architectural paradigm provides many benefits for distributed 
computing, where service abstraction, loose coupling, 
discoverability and interoperability are some key advantages 
specifically for the engineering and development of an 
SWFMS. As a matter of fact, many disciplines (especially in 
life science) have adopted service implementation, and the 
Taverna and LEAD [21] workflow systems deal with service 
workflows explicitly. There are thousands of services 
developed and available for the myExperiment project, and 
the LEAD system has developed a tool to wrap and convert 
ordinary science applications into services. 

Orchestrating and invoking services via an SWFMS 
within the Cloud poses some unique challenges in addition to 
commonly observed ones such as service description, 
discovery, and composition: Firstly, managing the large 
number of service instances would be an issue, each service 
instance needs to be properly deployed and configured, and 
for service invocations with state transitions, this would 
become more tricky as to when and where to instantiate and 
destroy the instances. Secondly, for services involving large 
volume of input and output data, data movements across 
different service instances (and ultimately, the underlying 
compute and storage instances) will be critical for throughput 
and performance considerations. In many cases, data services 
may need to be involved to manage such data movements 
and possibly data caching as out-of-band operations to the 
service invocations, passing data references or data service 
calls instead of embedding the actual data in the invocations. 
For a workflow that needs to call out to public available 
services (such as in the case of a mash-up application), the 
SWFMS also needs to handle security, interoperability, and 
data transformation issues.    

IV. RESEARCH DIRECTIONS 

    As have been identified in the previous section, there are 

a variety of challenges in getting workflows to run in the 

Cloud. However, those are also key areas to which we can 

put our research efforts and make breakthroughs and 

advancement towards Cloud based workflows. We want to 



put our emphasis on the workflow reference architecture 

and direct research interests towards implementing the key 

components in the different layers of the architecture, and 

also putting interoperability and reusability as top priority. 

There are many existing SWFMS’s, but it is difficult to 

make them interact with each other, due to the lack of clear 

definition of responsibilities and interfaces. However, 

transitioning into the Cloud gives the opportunity to 

engineer and implement the various key components of an 

SWFMS, preferably by different people with different 

specialties, and make them work together. By implementing 

the building blocks in the reference architecture, we can also 

leverage existing Cloud technologies, such as monitoring, 

data management, resource provisioning, etc. 

    However, we are not advocating building a Cloud based 

SWFMS from ground up. Middleware technologies that can 

bridge existing workflow systems with the Cloud would 

seem more cost effective. For instance, virtual cluster 

technologies such as the ones provided by Nimbus and 

Falkon, give workflow systems the familiar environment of 

a cluster, to which they can dispatch tasks to, with minimal 

adaptation. We believe that there will be a burgeoning of 

middleware development in the areas of resource 

management, monitoring, messaging for Clouds that can be 

used as extensions to existing SWFMSs.  

    Many task computing (MTC) [22] has been defined to 

distinguish from traditional high performance computing 

(HPC) and high throughput computing (HTC), in the 

emphasis of using large number of computing resources 

over short periods of time to accomplish many 

computational tasks (i.e. including both dependent and 

independent tasks), where primary metrics are measured in 

seconds (e.g. FLOPS, tasks/sec, MB/s), as opposed to 

operations (e.g. jobs) per month, while MTC has primarily 

been applied in Grids and supercomputers, in the Cloud, it 

would be equally or even more critical, since a large Cloud 

workflow could involve the execution of millions of tasks, 

each taking a short time to finish. Methods for improving 

resource utilization, scheduling efficiency, and IO rates will 

benefit both Cloud service providers and end users.    

    Scripting can be an interesting and powerful direction too. 

We have seen the applicability of simple shell scripts [26], 

SCOPE and Swiftscript to large scale computing problems 

on large scale computing resources. Scripting has the 

advantage of being concise and flexible, yet powerful when 

combined with parallel semantics and logical operations. 

We expect to see scripting languages that have a mixture of 

these semantics, combining the coordination of applications 

and services (e.g. Swift), the general Map-Reduce-Merge 

Cloud computing model, and its relational flavored 

extensions (e.g. SCOPE), and things beyond. 

    As the Cloud is usually associated with cost, and there are 

many ways to configure, procure resources and execute 

tasks, it is to our nature to analyze the cost for computation 

and resource utilization, and to estimate and optimize the 

return on investment. Such optimization will again be more 

challenging in Clouds than in traditional cluster and Grid 

environments, but it will be more rewarding too.  

    Provenance in Cloud can adopt the SOA model as this 

would make provenance less coupled with an SWFWS than 

it currently does. The development of a standard, open and 

universal representation and query provenance model is 

underway by the Open Provenance Model initiative 

(http://openprovenance.org). Scalability would be top 

concern for implementation of such a model. 

    Security has been identified as one of the main concerns 

for the adoption and success of the Cloud [4] and is the first 

major service that needs to be provided by a Cloud provider. 

For example, Microsoft Azure Cloud Platform offers access 

control as a primary service of the .NET Services. Although 

much research has been done on workflow security, security 

for Cloud-based SWFMSs is still preliminary, of which we 

shed some lights on the following three aspects: 

Access control. Access control concerns about which 

principals have the privileges to access which resources 

[8][28]. In a Cloud-based SWFMS, the resources include 

Cloud services, SWFMS services and products such as 

scientific workflows, tasks, provenance, data products, and 

other artifacts. Due to the dynamic nature (artifacts can be 

produced constantly) and the large-scale data, metadata, and 

service sharing nature of the Cloud, access control is a 

challenging but important research problem. 

Information flow control. Information flow control concerns 

about to whom a piece of information can be passed on. 

Since a scientific workflow might orchestrate a large 

number of distributed services, data, and applications, 

particularly in a large-scale Cloud environment, the 

mechanism that controls mission-critical information and 

intellectual property (e.g., secrete parameters used to run a 

scientific workflow) not being propagated to an 

unauthorized user is worth looking into. 

Secure electronic transaction protocol. Cloud Computing is 

one kind of utility computing based on the pay-as-you-go 

pricing model. A secure electronic transaction protocol is to 

ensure goods atomicity – a user is charged if and only if a 

service or resource is used by a user and the charge should 

be no more and no less. To prevent the abuse of Cloud 

accounts and double or wrong charges by a Cloud provider, 

further research might be needed to ensure the security of 

Cloud-based transaction protocols.   

V. CONCLUSIONS 

As more and more customers and applications migrate 
into Cloud, the requirement to have workflow systems to 
manage the ever more complex task dependencies, and to 
handle issues such as large parameter space exploration, 
smart reruns, and provenance tracking will become more 
urgent. As it stands now, mash-up’s and MapReduce style 
task management have been acting in place of a workflow 
system in the Cloud. Cloud needs the more structured and 
mature workflow technologies, and vice versa, as Cloud 
offers unprecedented scalability to workflow systems, and 



could potentially change the way we perceive and conduct 
scientific experiments. The scale and complexity of the 
science problems that can be handled can be greatly 
increased on the Cloud, and the on-demand nature of 
resource allocation on the Cloud will also help improve 
resource utilization and user experience. In this paper, we 
discuss the opportunities and challenges in bringing 
workflow systems into the Cloud, with a focus on scientific 
workflow management systems; we also identify key 
research directions in realizing scientific workflows in Cloud 
environments. The key challenges span from fundamental 
challenges such as architecture challenge, integration 
challenge, to computing and data management challenges in 
the middle, and upper layer language challenges. 
Nevertheless, the challenges are also great opportunities for 
us to look into and tackle the problems and issues in the way, 
towards running scientific workflows on the Cloud. 

REFERENCES 

[1] http://www-03.ibm.com/press/us/en/pressrelease/22613.wss 

[2] http://www.microsoft.com/azure/default.mspx 

[3]  “Introduction to Amazon elastic MapReduce,” available from 
http://awsmedia.s3.amazonaws.com/pdf/introduction-to-amazon-
elastic-mapreduce.pdf. 

[4] I. Foster, Y. Zhao, I. Raicu, S. Lu. "Cloud Computing and Grid 
Computing 360-Degree Compared", IEEE Grid Computing 
Environments (GCE08) 2008, co-located with IEEE/ACM 
Supercomputing 2008.  

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. 
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica and M. 
Zaharia, Above the Clouds: A Berkeley View of Cloud Computing, 
EECS Department, University of California, Berkeley, Technical 
Report No. UCB/EECS-2009-28, February 10, 2009. 

[6] http://www.psc.edu/general/software/packages/genbank/,2010 

[7] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. 
Weaver, and J. Zhou, SCOPE: Easy and Efficient Parallel Processing 
of Massive Data Sets. in Proc. of the 2008 VDLB Conference 
(VLDB’08). 

[8] A. Chebotko, S. Lu, S. Chang, F. Fotouhi, and P. Yang, "Secure 
Abstraction Views for Scientific Workflow Provenance Querying", 
IEEE Transactions on Services Computing, 3(4), pp.322-337, 2010. 

[9] Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data 
processing on large clusters. OSDI 2004: 137-149.  

[10] Xubo Fei, Shiyong Lu, and Cui Lin: A MapReduce-Enabled 
Scientific Workflow Composition Framework, ICWS 2009: 663-670. 

[11] Foster, I., Voeckler, J., Wilde, M. and Zhao, Y., Chimera: A Virtual 
Data System for Representing, Querying, and Automating Data 
Derivation, In 14th Conference on Scientific and Statistical Database 
Management, 2002. 

[12] The Fourth Paradigm: Data-Intensive Scientific Discovery, Edited by 
Tony Hey, Stewart Tansley, and Kristin Tolle. Microsoft Research. 

[13] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. 
Berriman, J. Good, “On the Use of Cloud Computing for Scientific 
Workflows”, 3rd International Workshop on Scientific Workflows 
and Business Workflow Standards in e-Science (SWBES), 10 
December 2008 in Indianapolis, Indiana, USA 

[14] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and 
T. Oinn, “Taverna: a tool for building and running workflows of 
services.,” Nucleic Acids Research, vol. 34, iss. Web Server issue, pp. 
729-732, 2006. 

[15] Keahey K., T. Freeman. Science Clouds: Early Experiences in Cloud 
Computing for Scientific Applications, Cloud Computing and Its 
Applications 2008 (CCA-08), Chicago, IL. October 2008 

[16] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J. 
Hua, “A Reference Architecture for Scientific Workflow Management 
Systems and the VIEW SOA Solution”, IEEE Transactions on 
Services Computing (TSC), 2(1), pp.79-92, 2009. 

[17] Cui Lin, Shiyong Lu, Zhaoqiang Lai, Artem Chebotko, Xubo Fei, Jing 
Hua, and Farshad Fotouhi, “Service-Oriented Architecture for VIEW: 
a Visual Scientific Workflow Management System”, In Proc. of the 
IEEE 2008 International Conference on Services Computing (SCC), 
Honolulu, Hawaii, USA, July 2008, pp.335-342. 

[18] Shiyong Lu and Jia Zhang. “Collaborative Scientific Workflows”, 
IEEE International Conference on Web Services (ICWS), pp.527-
534, Los Angeles, CA, 2009. 

[19] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. 
Youseff, D. Zagorodnov, The Eucalyptus Open-source Cloud-
computing System, in Proceedings of 9th IEEE International 
Symposium on Cluster Computing and the Grid, Shanghai, China. 

[20] Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan: 
Interpreting the data: Parallel analysis with Sawzall. Scientific 
Programming 13(4): 277-298 (2005). 

[21] Plale, B., D. Gannon, J. Brotzge, K. Droegemeier, J. Kurose, D. 
McLaughlin, R. Wilhelmson, S. Graves, M. Ramamurthy, R.D. Clark, 
S. Yalda, D.A. Reed, E. Joseph, V. Chandrasekar, CASA and LEAD: 
Adaptive Cyberinfrastructure for Real-Time Multiscale Weather 
Forecasting, Computer special issue on System-Level Science, IEEE 
Computer Science Press, Vol. 39, No. 11, pp. 56-63. Nov 2006. 

[22] Ioan Raicu, Ian Foster, Yong Zhao. "Many-Task Computing for Grids 
and Supercomputers", IEEE Workshop on Many-Task Computing on 
Grids and Supercomputers (MTAGS08), 2008, co-located with 
IEEE/ACM Supercomputing 2008. 

[23] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, Mike 
Wilde.  "Falkon: a Fast and Light-weight tasK executiON framework, 
IEEE/ACM SuperComputing 2007. 

[24] Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. "Accelerating 
Large-scale Data Exploration through Data Diffusion", International 
Workshop on Data-Aware Distributed Computing 2008, co-locate 
with ACM/IEEE International Symposium High Performance 
Distributed Computing (HPDC) 2008.  

[25] W. Tan, K. Chard, D. Sulakhe, R. K. Madduri, I. T. Foster, S. S.-
Reyes, C. A. Goble: Scientific Workflows as Services in caGrid: A 
Taverna and gRAVI Approach. ICWS 2009: 413-420. 

[26] Edward Walker, Weijia Xu, Vinoth Chandar, Composing and 
executing parallel data-flow graphs with shell pipes, Proceedings of 
the 4th Workshop on Workflows in Support of Large-Scale Science 
2009, Portland, Oregon, November 16 - 16, 2009.   

[27] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, Allan Espinosa, 
Mihael Hategan, Ben Clifford, Ioan Raicu. "Parallel Scripting for 
Applications at the Petascale and Beyond", IEEE Computer Nov. 
2009 Special Issue on Extreme Scale Computing, 2009. 

[28] Zijiang Yang, Shiyong Lu, Ping Yang: Itinerary-Based Access 
Control for Mobile Tasks in Scientific Workflows. Ubisafe: 506-511 

[29] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, 
and J. Currey, DryadLINQ: A System for General-Purpose 
Distributed Data-Parallel Computing Using a High-Level Language, 
Symposium on Operating System Design and Implementation 
(OSDI), San Diego, CA, 2008. 

[30] Y. Zhao, J. Dobson, I. Foster, L. Moreau, M. Wilde, A Notation and 
System for Expressing and Executing Cleanly Typed Workflows on 
Messy Scientific Data, SIGMOD Record, Volume 34, Number 3, 
September 2005 

[31] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski, I. Raicu, 
T. Stef-Praun, M. Wilde.  "Swift: Fast, Reliable, Loosely Coupled 
Parallel Computation", IEEE Workshop on Scientific Workflows 
2007. 

 


