
Making a Case for Distributed File Systems at Exascale

1,2Ioan Raicu, 2,3,4Ian T. Foster, 2,3,5Pete Beckman
1
 Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

2
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

3
Computation Institute, University of Chicago, Chicago, IL, USA

4
Department of Computer Science, University of Chicago, Chicago, IL, USA

5
Exascale Technology and Computing Institute, Argonne National Laboratory, Argonne, IL, USA

iraicu@cs.iit.edu, foster@anl.gov, beckman@anl.gov

ABSTRACT

Exascale computers will enable the unraveling of significant

scientific mysteries. Predictions are that 2019 will be the year of

exascale, with millions of compute nodes and billions of threads

of execution. The current architecture of high-end computing

systems is decades-old and has persisted as we scaled from

gigascales to petascales. In this architecture, storage is

completely segregated from the compute resources and are

connected via a network interconnect. This approach will not

scale several orders of magnitude in terms of concurrency and

throughput, and will thus prevent the move from petascale to

exascale. At exascale, basic functionality at high concurrency

levels will suffer poor performance, and combined with system

mean-time-to-failure in hours, will lead to a performance collapse

for large-scale heroic applications. Storage has the potential to be

the Achilles heel of exascale systems. We propose that future

high-end computing systems be designed with non-volatile

memory on every compute node, allowing every compute node to

actively participate in the metadata and data management and

leveraging many-core processors high bisection bandwidth in

torus networks. This position paper discusses this revolutionary

new distributed storage architecture that will make exascale

computing more tractable, touching virtually all disciplines in

high-end computing and fueling scientific discovery.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]; C.5.1 [Large and Medium

(``Mainframe'') Computers]; D.4.2 [Storage Management];

D.4.3 [File Systems Management]; D.4.5 [Reliability]; D.4.7

[Organization and Design]; D.4.8 [Performance]; H.3.4

[Systems and Software]

General Terms

Management, Performance, Reliability

Keywords

Exascale computing, distributed file systems, storage architecture,

many-task computing

1. INTRODUCTION
Today’s science is generating datasets that are increasing

exponentially in both complexity and volume, making their

analysis, archival, and sharing one of the grand challenges of the

21st century. Seymour Cray once said – “a supercomputer is a

device for turning compute-bound problems into I/O-bound

problems” – which addresses the fundamental shift in bottlenecks

as supercomputers gain more parallelism at exponential rates [1],

the storage infrastructure performance is increasing at a

significantly lower rate. This implies that the data management

and data flow between the storage and compute resources is

becoming the new bottleneck for large-scale applications. The

support for data intensive computing [2] is critical to advancing

modern science as storage systems have experienced a gap

between capacity and bandwidth that increased more than 10-fold

over the last decade. There is an emerging need for advanced

techniques to manipulate, visualize and interpret large datasets.

Many domains (e.g. astronomy, medicine, bioinformatics) share

these data management challenges, strengthening the potential

impact from generic solutions.

Exascale computers (e.g. capable of 1018 ops/sec) [3], with a

processing capability similar to that of the human brain, will

enable the unraveling of significant scientific mysteries and

present new challenges and opportunities. The US President made

the building of exascale systems a top national priority, stating [4]

that it will "dramatically increasing our ability to understand the

world around us through simulation and slashing the time needed

to design complex products such as therapeutics, advanced

materials, and highly-efficient autos and aircraft". Major

scientific opportunities arise in many fields (such as weather

modeling, understanding global warming, national security, drug

discovery, and economics) and may rely on revolutionary

advances that will enable exascale computing. [1] Many experts

predict [3] that exascale computing will be common by 2019:

millions of nodes, billions of threads of execution, hundreds of

petabytes of memory, and exabytes of persistent storage.

The current architecture of high-end computing (HEC) systems is

decades-old and has persisted as we scaled from gigascales to

petascales. In this architecture, storage is completely segregated

from the compute resources and are connected via a network

interconnect (e.g. parallel file systems running on network

attached storage, such as GPFS [5], PVFS [6], and Lustre [7]).

This approach will not scale several orders of magnitude in terms

of concurrency and throughput, and will thus prevent the move

from petascales to exascale. Unless significant research is

invested to revolutionize the storage hardware architecture and

parallel/distributed file system implementations, we will not be

able to build capability exascale systems. Supercomputers are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

LSAP’11, June 8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0703-1/11/06...$10.00.

mailto:iraicu@cs.iit.edu
mailto:foster@anl.gov
mailto:beckman@anl.gov

generally designed for either capability or capacity computing, as

Irving Wladawsky-Berger wrote in 2010.

“Capability supercomputers dedicate the whole

machine to solve a very large problem in the shortest

amount of time. Capacity supercomputers, on the other

hand, support large numbers of users solving different

kinds of problems simultaneously. While both kinds of

supercomputing are very important, initiatives designed

to push the envelope, like DOE’s exascale project, tend

to focus on the development of capability machines to

address Grand Challenge problems that could not be

solved in any other way. Capability computing has been

primarily applied to what is sometimes referred to as

heroic computations, where just about the whole

machine is applied to a single task.” [8]

2. ACHILLES HEEL
We believe storage systems in future exascale systems will be its

Achilles heel [9]), unless storage systems are re-architected to

ensure scalability to millions of nodes and potentially billions of

concurrent I/O requests. We believe that the system mean-time-to-

failure (MTTF) at exascale will be of the order of a few hours.

However, based on current trends, even basic functionality (e.g.

booting - Figure 1, metadata operations - Figure 2, read/write

operations - Figure 3 and Figure 4, loading applications - Figure

3, and check-pointing - Figure 5) at significant concurrency levels

are expected to take more time than the expected exascale

machine's MTTF, which will result in complete performance

collapse for grand challenge applications.

Booting: For example, booting the Blue Gene/P (see Figure 1) is

an expensive operation at 0.5 petaflops, as measured on the real

machine. On 256 processors, it takes 85 seconds to boot the

allocation; on the full 160K processors, it takes 1090 seconds.

Unfortunately, it appears that the machine boot time grows

linearly with the number of nodes, translating to potentially over

25K seconds (7+ hours) boot-time at 1M node scales. [10]

Figure 1: Booting a BlueGene/P; 160K-cores [10]

Metadata operations on parallel file systems can be inefficient at

large scale. Early experiments on the BlueGene/P system at 16K-

core scales (see Figure 2) shows the various costs (wall-clock time

measured at remote processor) for file/directory create on GPFS.

Ideal performance would be to have a flat line. If care is not taken

to avoid lock contention, performance degrades rapidly, with

operations (e.g. create directory) that took milliseconds on a

single core, taking over 1000 seconds at 16K-core scales. [10, 11]

Figure 2: File/dir create time on GPFS; 16K-cores [10]

Read/Write: Reading performance of common datasets (e.g.

application binaries, read-only databases) is challenging. The

experiment in Figure 3 shows the distribution of data from the

GPFS file system to the compute nodes with two approaches: 1)

pushing out the data over a spanning tree (CIO), and 2) pulling the

data from each compute node independently (GPFS). At the

relatively modest scale of 4k-cores, the CIO approach

outperforms GPFS by a factor of five, due to better utilization of

the bi-section bandwidth of the torus network. Writing from many

compute nodes directly to parallel file systems is also challenging;

Figure 4 shows the poor efficiency achieved (15%-70%) with 16

second tasks producing 1KB to 1MB output. [10, 11]

Figure 3: Data read; GPFS vs. spanning tree (CIO) [11]

Figure 4: GPFS write efficiency; 16sec tasks, 32K-cores [11]

0
120
240
360
480
600
720
840
960

1080
1200
1320

T
im

e
 (

s
e

c
)

Number of Processors

Booting Partitions

0.1

1

10

100

1000

10000

4 256 4096 8192 16384

T
im

e
 p

e
r

O
p

e
ra

ti
o

n
 (

s
e

c
)

Number of Processors

Directory Create (single dir)

File Create (single dir)

0

2000

4000

6000

8000

10000

12000

14000

4 256 512 1024 2048 4096

Number of Processors

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

CIO

GPFS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 2048 4096 8192 32768

E
ff

ic
ie

n
c
y

Number of Processors

16sec+GPFS(1KB)
16sec+GPFS(16KB)
16sec+GPFS(128KB)
16sec+GPFS(1MB)

Checkpointing is the state-of-the-art technique for delivering

fault tolerance for high-performance computing (HPC) on large-

scale systems. It has been shown that writing the state of a process

to persistent storage is the largest contributor to the performance

overhead of checkpointing [12]. Let's assume that parallel file

systems are expected to continue to improve linearly in

throughput with the growing number of nodes (an optimistic

assumption); however, note that per node memory (the amount of

state that is to be saved) will likely continue to grow

exponentially. Assume the MTTF is modeled after the BlueGene

with a claimed 1000 years MTTF per node (another optimistic

assumption). Figure 5 shows the expected MTTF of about 7 days

for a 0.8 petaflop IBM BlueGene/P with 64K nodes, while the

checkpointing overhead is about 34 minutes; at 1M nodes (~1

exaflop), the MTTF would be only 8.4 hours, while the

checkpointing overhead would be over 9 hours.

Figure 5: Expected checkpointing cost and MTTF towards

exascale

Simulations results (see Figure 6) from 1K nodes to 2M nodes

(simulating HEC from 2000 to 2019) show the application uptime

collapse for capability HEC systems. Today, 20% or more of the

computing capacity in a large HPC system is wasted due to

failures and recoveries [12], which is confirmed by the simulation

results.

Figure 6: Simulation application uptime towards exascale

The distributed file system shown in the simulation results is a

hypothetical file system that could scale near linearly by

preserving the data locality in checkpointing. The application

requirements are modeled to include 7 days of computing on the

entire HEC system. By 1M nodes, checkpointing with parallel file

systems (red line with circle symbol) has a complete performance

collapse (as was predicted from Figure 5). Note that the

hypothetical distributed file system (blue line with hollow circle

symbol) could still have 90%+ uptime even at exascale levels.

3. RADICAL NEW VISION
We believe the HEC community needs to develop both the

theoretical and practical aspects of building efficient and scalable

distributed storage for HEC systems that will scale four orders of

magnitude in concurrency. We believe that emerging distributed

file systems could co-exist with existing parallel file systems, and

could be optimized to support a subset of workloads critical for

HPC and MTC workloads at exascale. There have been other

distributed file systems proposed in the past, such as Google's

GFS [13] and Yahoo's HDFS [14]; however these have not been

widely adopted in HEC due to the workloads, data access patterns,

and supported interfaces (POSIX [15]) being quite different.

Current file systems lack scalable distributed metadata

management, and well defined interfaces to expose data locality

for general computing frameworks that are not constrained by the

map-reduce model to allow data-aware job scheduling with batch

schedulers (e.g. PBS [16], SGE [17], Condor [18], Falkon [19]).

We believe that future HEC systems should be designed with non-

volatile memory (e.g. solid state memory [20], phase change

memory [21]) on every compute node (Figure 7); every compute

node would actively participate in the metadata and data

management, leveraging the abundance of computational power

many-core processors will have and the many orders of magnitude

higher bisection bandwidth in multi-dimensional torus networks

as compared to available cost effective bandwidth into remote

network persistent storage. This shift in large-scale storage

architecture design will lead to improving application

performance and scalability for some of the most demanding

applications. This shift in design is controversial as it requires

storage architectures in HEC to be redefined from their traditional

architectures of the past several decades. This new approach was

not feasible up to recently due to the unreliable spinning disk

technology [22] that has dominated the persistent storage space

since the dawn of supercomputing. However, the advancements in

solid-state memory (with MTTF of over two million hours [23])

have opened up opportunities to rethink storage systems for HEC,

distributing storage on every compute node, without sacrificing

node reliability or power consumption. The benefits of this new

architecture lies in its enabling of some workloads to scale near-

linearly with systems scales by leveraging data locality and the

full network bisection bandwidth.

Figure 7: Proposed storage architecture with persistent local

storage on every compute node

0.1

1

10

100

1000

Sy
st

e
m

 M
T

T
F

(h
o

u
rs

)
C

h
e

ck
p

o
in

ti
n

g
O

ve
rh

e
ad

 (
h

o
u

rs
)

System Scale (# of Nodes)

System MTTF (hours)
Checkpoint Overhead (hours)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
p

p
li

ca
ti

o
n

 U
p

ti
m

e
 %

Scale (# of nodes)

No Checkpointing
Checkpointing to Parallel File System
Checkpointing to Distributed File System

2000
BG/L

1024 nodes

2007
BG/L

106,496 nodes

2009
BG/P

73,728 nodes

2019
~1,000,000 nodes

Network Link(s)
Parallel

File

System

Network Fabric

Compute & Storage Resources

NAS

Future storage systems should support distributed metadata

management, leveraging distributed data-structure tailored for

HEC. The distributed data-structures share some characteristics

with structured distributed hash tables [24], having resilience in

face of failures with high availability; however, they should

support constant time inserts/lookups/removes delivering low

latencies typically found in centralized metadata management.

The data should be partitioned into chunks and be spread out over

many storage nodes, based on the data access patterns to

maximize data locality. Replication [25] would be used to ensure

data availability, and cooperative caching [26] would deliver high

aggregate throughput. Data would be indexed, by including

descriptive, provenance, and system metadata with each file.

Various data access semantic should be used, from POSIX-like

interfaces for generality (e.g FUSE [27]), to relaxed semantics

(e.g. eventual consistency on data modifications [28], write-once

read-many [29]) to avoid consistency issues and increase

scalability.

We are working on delivering exactly such a distributed file

system, name FusionFS [30]. FusionFS is a new distributed

filesystem that will co-exist with current parallel filesystems in

High-End Computing, and it will be optimized for both a subset of

HPC and Many-Task Computing workloads. FusionFS is a user-

level filesystem with a POSIX-like interface through FUSE [27]

that runs on the compute resource infrastructure, and enables

every compute node to actively participate in the metadata and

data management. Distributed metadata management is

implemented using ZHT [31], a zero-hop distributed hashtable.

ZHT has been tuned for the specific requirements of high-end

computing. The data is partitioned and spread out over many

nodes based on the data access patterns. Replication and

cooperative caching are used to ensure data availability and high

throughput. Both FusionFS and ZHT are active projects

attempting to implement the radical new vision sought after by

this position paper.

4. A SURVEY OF THE LITERATURE
There has been a significant amount of research work over the last

several decades on how to build scalable storage systems, namely

on distributed hash tables, shared/parallel/distributed file systems,

and support for data-intensive distributed computing.

Distributed Hash Tables: There have been many distributed

hash table (DHT) algorithms and implementations proposed over

the years. We discuss DHTs in this section due to their important

role in building support for scalable metadata across extreme scale

systems. Some of the DHTs from the literature are Kademlia [32],

CAN [33], Chord [34], Pastry [35], Tapestry [36], Memcached

[37], Dynamo [38], Cycloid [39], Ketama [40], RIAK [41],

Maidsafe-dht [42], and C-MPI [43]. Most of these DHTs scale

logarithmically with system scales, but some (e.g. Cycloid) go as

far as reducing the number of operations to O(c) where c is a

constant related to the maximum size of the network (instead of

the actual size of the network), which in practice still results to c ~

log(n). It is important to point out that several key features of

traditional DHTs are not necessary in HEC, and that if some

simplifying assumptions could potentially reduce the number of

operations needed per insert/lookup down to a small constant (1

on average). Some of the emphasized key features of HEC are:

trustworthy/reliable hardware, fast network interconnects, non-

existent node "churn", the requirement for low latencies, and

scientific computing data-access patterns. Most HEC

environments are batch oriented, which implies that a system that

is configured at run time, generally has information about the

compute and storage resources that will be available. This means

that the amount of resources (e.g. number of nodes) would not

increase or decrease dynamically, and the only reason to decrease

the allocation is either to handle failed nodes, or to terminate the

allocation. By making dynamic membership optional, the

complexity of the system can be reduced and a low average

number of hops per operation can be achieved. Furthermore,

nodes in HEC are generally reliable and have predicable uptime

(nodes start on allocation, and nodes shut down on de-allocation).

This implies that node "churn" in HEC is virtually non-existent, a

property of HEC that should be leveraged to create a more

optimized distributed data structure. It is also important to point

out that nodes in a HEC system are generally trust-worthy, and

that stringent requirements to encrypt communication and/or data

would simply be adding overheads. HEC systems are generally

locked down from the outside world, behind login nodes and

firewalls, and although authentication and authorization is still

needed, full communication encryption is wasteful for a large

class of scientific computing applications that run on many HEC

systems. Most parallel file systems used in HEC communicate

between the client nodes and storage servers without any

encryption. There has been some uptake recently in using

traditional DHTs in HEC, namely the C-MPI [43] project, in

which the Kademlia DHT has been implemented and shown to

run well on 1000 nodes on a BlueGene/P supercomputer. C-MPI

is used to perform data management operations for the Swift

project [44], but it does not operate at the filesystem level and

does not attempt to optimize Kademlia for HEC. Another recent

project using DHTs on a HEC is DataSpaces [45], which deploys

a DHT on a Cray XT5 to coordinate in-memory data management

for simulation workflows. DataSpaces fails to optimize the DHT

for HEC, does not decouple the metadata from the data causing

poor data locality, and does not expose the work as a file system.

Shared, Parallel, and Distributed File Systems: There have

been many shared and parallel file systems proposed since the

1980s, such as the Network File System (NFS) [46], Andrew File

System (AFS) [47], General Purpose File System (GPFS) [13],

Parallel Virtual File System (PVFS) [6], Lustre [7], Panases [48],

Microsoft's Distributed File System (DFS) [49], GlusterFS [50],

OneFS [51], POHMELFS [52], and XtreemFS [53]. While the

majority of these file systems expose a POSIX-like interface

providing a global namespace, and many have been adopted in

cluster computing, grid computing, and even supercomputing, the

biggest critique of these file systems is their vision that compute

resources should be completely agnostic of the data locality on the

underlying storage system. All of these file systems assume that

the storage nodes/servers are significantly fewer than the

client/compute nodes that will access the file system, resulting in

an unbalanced architecture for data-intensive workloads. A variety

of distributed file systems have been developed to address this

unbalance from parallel file systems to support data-intensive

computing, such as GFS [13], HDFS [14], Sector [54],

CloudStore [55], Ceph [56], GFarm [57, 58], MooseFS [59],

Chirp [60], MosaStore [61], PAST [62], Circle [63], and

RAMCloud [64]. However, many of these file systems are tightly

coupled with execution frameworks (e.g. MapReduce [65],

Hadoop [14]), which means that scientific applications not using

these frameworks must be modified to use these underlying non-

POSIX-compliant file systems. For those that offer a POSIX-like

interface, they lack distributed metadata management. And for

those few (e.g. Ceph, PAST, Circle) that also have distributed

metadata management, they fail to decouple data and metadata

management making maximizing data locality difficult. The

majority of these systems also fail to expose the data locality

information for general computational frameworks (e.g. batch

schedulers) to harness the data locality through data-aware

scheduling. Also, with the exception of RAMCloud, none of the

filesystems were designed and optimized for solid state memory.

It is worth noting that the majority of these distributed file

systems were not designed specifically for HEC and scientific

computing workloads, and the scales that HEC are anticipating in

the coming years and are at a significant disadvantage.

Storage Systems for Data Intensive Computing: Over the past

decade, considerable work has been done on data management in

cluster and grid computing [19, 66 - 79]. All these projects

explore a similar space of how to support data-intensive

distributed scientific computing applications, and many draw

similar conclusions that data locality is critical to obtaining good

performance. However, none of this work was done at the file

system level, and certainly none of the work addressed the scales

this work addresses.

NSF Funded Projects: There has also been a large number of

NSF funded projects whose focus closely aligns with the proposed

work, ranging from CAREER to HECURA grants, with many of

these projects falling under HEC FSIO [80]. Some of these

proposals [81, 82] addressed petascale and exascale systems, but

didn't focus on the storage challenges. Others projects [83 - 87]

focused on supporting data-intensive distributed computing, but

didn't necessarily expose the data management with POSIX

interfaces, did not expose data locality for general consumption by

scheduling systems, did not address distributed metadata

management, and did not aim their solutions to exascale. More

promising work was in active storage [88 - 90] where data locality

is emphasized, however the work did not aim for HEC at

exascale. More traditional work in parallel I/O and filesystems

was proposed in various NSF HECURA proposals [91 - 95], but

these approaches have the inherent limitations outlined for parallel

file systems, namely the segregation of compute resource from

storage resources. Others focused on metadata management [96,

97], but emphasized more on the organization and search-ability

of metadata, rather than the scalable construction and

maintainability of the metadata at scales of millions of nodes. One

of the projects [98] specifically explored the use of non-volatile

memory to improve the I/O performance of HEC, supporting the

PI's claims that non-volatile memory is a critical next step in the

evolution of future HEC. Another project [99] identified non-

volatile memory to be critical in scaling distributed databases for

scientific computing in astronomy workloads. Two projects [100,

101] focused on optimizing for small I/O access patterns in

parallel file systems, an access pattern that this work also

addresses. Other work [102] focused on storage redundancy and

reliability, while another [103] focused on programming models

for data intensive computing. There are likely more relevant

projects, but in the end, they all distil to a simple summary,

extracted from the latest HEC FSIO 2008 Workshop Report [80]

(the following italics texts are excerpts from the report):

Data path today is the same as the data path 20 years

ago. There is a need for new technologies that will offer

greater scalability for file system metadata. Until

recently, I/O stacks and architectures have been static

forcing developers to adopt awkward solutions in order

to achieve target I/O rates. Studies into methods to deal

with small, unaligned I/O and mixed-size I/O workloads

as well as collaborative caching are also needed. Novel

approaches to I/O and file systems also need to be

explored including redistribution of intelligence, user

space file systems, data-aware file systems, and the use

of novel storage devices. Active disks have been an

active research topic, but there has been no good

interface and set of semantic rules has come along that

would make it generally useful. Most, if not all progress

to date in parallel file systems in HEC has been

evolutionary; what is lacking is revolutionary research;

no fundamental solutions are being proposed.

Revolutionary I/O technologies developments (both

software and hardware) are needed to address the

growing technology gap.

5. LONG TERM IMPACT
The ideas in this position paper are transformative due to their

departure from traditional HEC architectures and approaches,

while proposing radical storage architecture changes based on

distributed file systems to make exascale computing a reality. This

paper addresses fundamental technical challenges that will

become increasingly harder to address with existing solutions due

to a declining MTTF of future HEC systems.

This work will open doors for novel research in programming

paradigm shifts (e.g. Many-Task Computing [11, 29, 104 - 106])

needed as we approach exascale. Many-Task Computing aims to

bridge the gap between two computing paradigms, high-

throughput computing and high-performance computing,

generally producing both compute-intensive and data-intensive

workloads, and has been shown to contain a large set of scientific

computing applications from many domains. Some of the

challenges in supporting MTC at scale involving metadata and

read/write operations can be seen in Figure 2 - 4. More challenges

and solutions have been identified in prior work [10, 11, 19, 44,

72, 79, 107 - 109].

The controversial viewpoints of this paper can make exascale

computing more tractable, touching every branch of computing in

HEC. They will extend the knowledgebase beyond exascale

systems into commodity systems as the fastest supercomputers

generally become the mainstream computing system in less than a

decade; the solutions proposed here will be relevant to the data

centers and cloud [110] infrastructures of tomorrow. These

advancements will impact scientific discovery and global

economic development. They will also strengthen a wide range of

research activities enabling efficient access, processing, storage,

and sharing of valuable scientific data from many disciplines (e.g.

medicine, astronomy, bioinformatics, chemistry, aeronautics,

analytics, economics, and new emerging computational areas in

humanities, arts, and education). If these ideas materialize, they

will revolutionize the storage systems of future HEC systems, and

open the door to a much broader class of applications that would

have normally not been tractable. Furthermore, the concepts, data-

structures, algorithms, and implementations that underpin these

ideas in resource management at the largest scales can be applied

to new emerging paradigms, such as Cloud Computing.

Our main message is that by combining lessons learned from

parallel file systems and distributed file systems, along with new

advances in hardware (e.g. solid state memory), we can define a

new storage architecture that is optimized for future high-end

computing at exascale and has the potential to deliver a viable

storage architecture for future extreme scale high-end computing.

The position of this paper is revolutionary as it breaks the

accepted practice of segregating storage resource from

computational resources, and leveraging the abundance of

processing power, bisection bandwidth, and local I/O commonly

found in future high-end computing systems.

6. ACKNOWLEDGMENTS
This work was supported in part by the U.S. Dept. of Energy

under Contract DE-AC02-06CH11357, as well as the National

Science Foundation grant NSF-0937060 CIF-72 and NSF-

1054974. We want to thank our collaborators for the valuable

help, feedback, and insight leading up to this work, namely Mike

Wilde, Matei Ripeanu, Arthur Barney Maccabe, Marc Snir, Rob

Ross, Kamil Iskra, and Alok Choudhary. We also want to thank

the anonymous reviewers whose feedback was invaluable to

improving the clarity of the paper.

7. REFERENCES
[1] Top500 Supercomputer Sites, Performance Development,

http://www.top500.org/lists/2010/11/performance_develop

ment, November 2010

[2] T. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm:

Data-Intensive Scientific Discovery, Microsoft Research

2009

[3] V. Sarkar, et al. "ExaScale Software Study: Software

Challenges in Extreme Scale Systems", ExaScale

Computing Study, DARPA IPTO, 2009

[4] B. Obama. "A Strategy for American Innovation: Driving

Towards Sustainable Growth and Quality Jobs", National

Economic Council, 2009

 [5] F. Schmuck, R. Haskin, “GPFS: A Shared-Disk File

System for Large Computing Clusters,” FAST 2002

[6] P. H. Carns, W. B. Ligon III, R. B. Ross, R. Thakur.

"PVFS: A parallel file system for linux clusters",

Proceedings of the 4th Annual Linux Showcase and

Conference, 2000

[7] P. Schwan. "Lustre: Building a file system for 1000-node

clusters," Proc. of the 2003 Linux Symposium, 2003

[8] I. Wladawsky-Berger. “Opinion - Challenges to exascale

computing”, International Science Grid this Week, April

2010; http://www.isgtw.org/feature/opinion-challenges-

exascale-computing

[9] Wikipedia contributors. "Achilles' heel." Wikipedia, The

Free Encyclopedia. Wikipedia, The Free Encyclopedia, 8

Jun. 2010. Web. 29 Jun. 2010

[10] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K.

Iskra, B. Clifford. “Toward Loosely Coupled

Programming on Petascale Systems,” IEEE SC 2008

[11] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, M.

Wilde. “Design and Evaluation of a Collective I/O Model

for Loosely-coupled Petascale Programming”, IEEE

MTAGS08, 2008

[12] E.N. Mootaz Elnozahy, et al. "System Resilience at

Extreme Scale", Defense Advanced Research Project

Agency (DARPA), 2007

[13] S. Ghemawat, H. Gobioff, S.T. Leung. “The Google file

system,” 19th ACM SOSP, 2003

[14] A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley.

“Hadoop: A Framework for Running Applications on

Large Clusters Built of Commodity Hardware”, 2005

[15] J.S. Quarterman, S. Wilhelm, "UNIX, POSIX, and Open

Systems: The Open Standards Puzzle", Addison-Wesley,

Reading, MA, 1993

[16] B. Bode, et al. “The Portable Batch Scheduler and the

Maui Scheduler on Linux Clusters”, Usenix, 4th Annual

Linux Showcase & Conference, 2000

[17] W. Gentzsch. “Sun Grid Engine: Towards Creating a

Compute Power Grid,” IEEE CCGrid, 2001

[18] D. Thain, T. Tannenbaum, M. Livny, “Distributed

Computing in Practice: The Condor Experience”,

Concurrency and Computation: Practice and Experience,

2005

[19] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde.

“Falkon: A Fast and Light-weight tasK executiON

Framework,” IEEE/ACM SC 2007

[20] A. Birrell, M. Isard, C. Thacker, T. Wobber. "A design for

high-performance flash disks", Operating Systems

Review, 41(2):88–93, 2007

[21] Intel News Release. "Intel, STMicroelectronics deliver

industry’s first phase change memory prototypes",

http://www.intel.com/pressroom/archive/releases/2008020

6corp.htm, 2008

[22] W. Jiang, C. Hu, Y. Zhou, A. Kanevsky. "Are disks the

dominant contributor for storage failures? A

comprehensive study of storage subsystem failure

characteristics", In USENIX Conference on File and

Storage Technologies (FAST), pages 111–125, 2008

[23] Intel Product Manual. "Intel® X25-E SATA Solid State

Drive",

http://download.intel.com/design/flash/nand/extreme/3199

84.pdf, 2009

[24] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I.

Stoica. "Looking up data in P2P systems",

Communications of the ACM, 46(2):43–48, 2003

[25] H. Stockinger, A. Samar, B. Allcock, I. Foster, K.

Holtman, B. Tierney, “File and object replication in data

grids,” ACM HPDC-10, 2001

[26] S. Podlipnig, L. Böszörmenyi. “A survey of Web cache

replacement strategies”, ACM Computing Surveys

(CSUR), Volume 35 , Issue 4, Pages: 374 – 398, 2003

[27] "Filesystem in Userspace", http://fuse.sourceforge.net/,

2011

[28] W. Vogels, “Eventually consistent,” ACM Queue, 2008.

[29] I. Raicu, I. Foster, Y. Zhao. “Many-Task Computing for

Grids and Supercomputers”, IEEE MTAGS08, 2008

[30] FusionFS: Fusion distributed File System,

http://datasys.cs.iit.edu/projects/FusionFS/index.html,

2011

[31] ZHT: Zero-Hop Distributed Hash Table for High-End

Computing,

http://datasys.cs.iit.edu/projects/ZHT/index.html, 2011

[32] P. Maymounkov, D. Mazieres. “Kademlia: A Peer-to-peer

Information System Based on the XOR Metric”, In

Proceedings of IPTPS, 2002

[33] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.

Schenker, “A scalable content-addressable network,” in

Proceedings of SIGCOMM, pp. 161–172, 2001

[34] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H.

Balakrishnan, "Chord: A Scalable Peer-to-peer Lookup

http://www.top500.org/lists/2010/11/performance_development
http://www.top500.org/lists/2010/11/performance_development
http://www.isgtw.org/feature/opinion-challenges-exascale-computing
http://www.isgtw.org/feature/opinion-challenges-exascale-computing
http://www.intel.com/pressroom/archive/releases/20080206corp.htm
http://www.intel.com/pressroom/archive/releases/20080206corp.htm
http://download.intel.com/design/flash/nand/extreme/319984.pdf
http://download.intel.com/design/flash/nand/extreme/319984.pdf
http://fuse.sourceforge.net/
http://datasys.cs.iit.edu/projects/FusionFS/index.html
http://datasys.cs.iit.edu/projects/ZHT/index.html

Service for Internet Applications", ACM SIGCOMM, pp.

149-160, 2001

[35] A. Rowstron and P. Druschel, “Pastry: Scalable,

distributed object location and routing for large-scale peer-

to-peer systems,” in Proceedings of Middleware, pp. 329–

350, 2001

[36] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph,

and J.D. Kubiatowicz. "Tapestry: A Resilient Global-Scale

Overlay for Service Deployment", IEEE Journal on

Selected Areas in Communication, VOL. 22, NO. 1, 2004

[37] B. Fitzpatrick. “Distributed caching with memcached.”

Linux Journal, 2004(124):5, 2004

[38] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

W. Vogels. “Dynamo: Amazon’s Highly Available Key-

Value Store.” SIGOPS Operating Systems Review, 2007

[39] H. Shen, C. Xu, and G. Chen. Cycloid: A Scalable

Constant-Degree P2P Overlay Network. Performance

Evaluation, 63(3):195-216, 2006

[40] Ketama,

http://www.audioscrobbler.net/development/ketama/, 2011

[41] Riak, https://wiki.basho.com/display/RIAK/Riak, 2011

[42] Maidsafe-DHT, http://code.google.com/p/maidsafe-dht/,

2011

[43] C-MPI, http://c-mpi.sourceforge.net/, 2011

[44] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M.

Hategan, K. Iskra, P. Beckman, I. Foster. “Extreme-scale

scripting: Opportunities for large task-parallel applications

on petascale computers”, SciDAC09, 2009

[45] C. Docan, M. Parashar, S. Klasky. "DataSpaces: An

Interaction and Coordination Framework for Coupled

Simulation Workflows", ACM HPDC 2010

[46] H. Stern. "Managing NFS and NIS". O’Reilly &

Associates, Inc., 1991

[47] P.J. Braam. "The Coda distributed file system", Linux

Journal, #50, 1998

[48] D. Nagle, D. Serenyi, A. Matthews. "The panasas

activescale storage cluster: Delivering scalable high

bandwidth storage". In SC ’04: Proceedings of the 2004

ACM/IEEE conference on Supercomputing, 2004

[49] Microsoft Inc. "Distributed File System",

http://www.microsoft.com/windowsserversystem/dfs/defa

ult.mspx, 2011

[50] GlusterFS, http://www.gluster.com/, 2011

[51] Isilon Systems. "OneFS", http://www.isilon.com/, 2011

[52] "POHMELFS: Parallel Optimized Host Message

Exchange Layered File System",

http://www.ioremap.net/projects/pohmelfs/, 2011

[53] F. Hupfeld, T. Cortes, B. Kolbeck, E. Focht, M. Hess, J.

Malo, J. Marti, J. Stender, E. Cesario. "XtreemFS - a case

for object-based storage in Grid data management". VLDB

Workshop on Data Management in Grids, 2007

[54] Y. Gu, R. Grossman, A. Szalay, A. Thakar. “Distributing

the Sloan Digital Sky Survey Using UDT and Sector,” e-

Science 2006

[55] CloudStore, http://kosmosfs.sourceforge.net/, 2011

[56] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, C.

Maltzahn. "Ceph: A scalable, highperformance distributed

file system". In Proceedings of the 7th OSDI, 2006

[57] W. Xiaohui, W.W. Li, O. Tatebe, X. Gaochao, H. Liang, J.

Jiubin. “Implementing Data Aware Scheduling in Gfarm

Using LSF Scheduler Plugin Mechanism,” GCA05, 2005

[58] X. Wei, Li Wilfred W., T. Osamu, G. Xu, L. Hu, J. Ju.

“Integrating Local Job Scheduler – LSF with Gfarm,”

ISPA05, vol. 3758/2005, 2005

[59] MooseFS, http://www.moosefs.org/, 2011

[60] D. Thain, C. Moretti, J. Hemmes. “Chirp: A Practical

Global Filesystem for Cluster and Grid Computing,” JGC,

Springer, 2008

[61] S. Al-Kiswany, A. Gharaibeh, M. Ripeanu. "The Case for

a Versatile Storage System", Workshop on Hot Topics in

Storage and File Systems (HotStorage’09), 2009

[62] P. Druschel, A. Rowstron. "Past: Persistent and

anonymous storage in a peer-to-peer networking

environment". In Proceedings of the 8th IEEE Workshop

on Hot Topics in Operating Systems (HotOS), 2001

[63] Circle, http://savannah.nongnu.org/projects/circle/, 2011

[64] J. Ousterhout, et al. “The case for RAMclouds: Scalable

high-performance storage entirely in DRAM”. In

Operating system review, 2009

[65] J. Dean, S. Ghemawat. “MapReduce: Simplified Data

Processing on Large Clusters,” OSDI 2004

[66] A.L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman,

R. Schwartzkopf, “The Replica Location Service”, IEEE

HPDC, 2004

[67] A. Chervenak, R. Schuler. “The Data Replication

Service”, Technical Report, USC ISI, 2006

[68] K. Ranganathan I. Foster, “Simulation Studies of

Computation and Data Scheduling Algorithms for Data

Grids”, Journal of Grid Computing, V1(1) 2003

[69] T. Kosar. “A New Paradigm in Data Intensive Computing:

Stork and the Data-Aware Schedulers,” IEEE CLADE

2006

[70] D.E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau, B.

Chun, S. Lumetta, A. Mainwaring, R. Martin, C.

Yoshikawa, F. Wong. “Parallel computing on the berkeley

now”, Symposium on Parallel Processing, 1997

[71] R. Arpaci-Dusseau. “Run-time adaptation in river”, ACM

Transactions on Computer Systems, 21(1):36–86, 2003

[72] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M.

Wilde. “Realizing Fast, Scalable and Reliable Scientific

Computations in Grid Environments”, Grid Computing

Research Progress, Nova Publisher 2008

[73] M. Branco, “DonQuijote - Data Management for the

ATLAS Automatic Production System”, Computing in

High Energy and Nuclear Physics (CHEP04), 2004

[74] D.L. Adams, K. Harrison, C.L. Tan. “DIAL: Distributed

Interactive Analysis of Large Datasets”, Computing in

High Energy and Nuclear Physics (CHEP 06), 2006

[75] A. Chervenak, et al. “High-Performance Remote Access to

Climate Simulation Data: A Challenge Problem for Data

Grid Technologies”, Parallel Computing, Special issue on

http://www.audioscrobbler.net/development/ketama/
https://wiki.basho.com/display/RIAK/Riak
http://code.google.com/p/maidsafe-dht/
http://c-mpi.sourceforge.net/
http://www.microsoft.com/windowsserversystem/dfs/default.mspx
http://www.microsoft.com/windowsserversystem/dfs/default.mspx
http://www.gluster.com/
http://www.isilon.com/
http://www.ioremap.net/projects/pohmelfs/
http://kosmosfs.sourceforge.net/
http://www.moosefs.org/
http://savannah.nongnu.org/projects/circle/

High performance computing with geographical data,

2003

[76] M. Beynon, T.M. Kurc, U.V. Catalyurek, C. Chang, A.

Sussman, J.H. Saltz. “Distributed Processing of Very

Large Datasets with DataCutter”, Parallel Computing, Vol.

27, No. 11, pp. 1457-1478, 2001

[77] D.T. Liu, M.J. Franklin. “The Design of GridDB: A Data-

Centric Overlay for the Scientific Grid”, VLDB04, pp.

600-611, 2004

[78] H. Andrade, T. Kurc, A. Sussman, J. Saltz. "Active

Semantic Caching to Optimize Multidimensional Data

Analysis in Parallel and Distributed Environments",

Parallel Computing Journal, 2007

[79] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast,

Reliable, Loosely Coupled Parallel Computation,” IEEE

Workshop on Scientific Workflows 2007

[80] M. Bancroft, J. Bent, E. Felix, G. Grider, J. Nunez, S.

Poole, R. Ross, E. Salmon, L. Ward. "HEC FSIO 2008

Workshop Report", High End Computing Interagency

Working Group (HECIWG), Sponsored File Systems and

I/O Workshop HEC FSIO, 2009

[81] T. Hacker. "CAREER: Aon - An Integrative Approach to

Petascale Fault Tolerance", NSF CCF CAREER Award,

2010

[82] R. Vuduc. "CAREER: Autotuning Foundations for

Exascale Computing", NSF CCF CAREER Award, 2010

[83] J. Wang. "CAREER: Data-Intensive HPC Analytics: A

Systems Approach Through Extended Interfaces, Data

Restructuring and Data-centric Scheduling", NSF CCF

CAREER Award, 2010

[84] A. Butt. "CAREER: A Scalable Hierarchical Framework

for High-Performance Data Storage", NSF CCF CAREER

Award, 2008

[85] K. Shen. "CAREER: System Support for Data-Intensive

Online Applications", NSF CCF CAREER Award, 2005

[86] A. Sirer. "CAREER: Building Robust, High-Performance

Infrastructure Services Through Informed Resource

Tradeoffs", NSF CNS CAREER Award, 2006

[87] T. Kosar. "CAREER: Data-aware Distributed Computing

for Enabling Large-scale Collaborative Science", NSF

CNS CAREER Award, 2009

[88] D. Thain. "CAREER: Data Intensive Grid Computing on

Active Storage Clusters", NSF CNS CAREER Award,

2007

[89] J. A. Chandy, "Active Storage Networks for High End

Computing", NSF HECURA Award, 2006

[90] J. Chandy. "Active Object Storage to Enable Scalable and

Reliable Parallel File System", NSF HECURA Award,

2009

[91] A. Maccabe, K. Schwann. "Petascale I/O for High End

Computing", NSF HECURA Award, 2006

[92] W. Ligon. "Improving Scalability in Parallel File Systems

for High End Computing", NSF HECURA Award, 2006

[93] A. Choudhary, M. Kandemir. "Scalable I/O Middleware

and File System Optimizations for High-Performance

Computing", NSF HECURA Award, 2006

[94] X. Ma, A. Sivasubramaniam, Y. Zhou. "Application-

adaptive I/O Stack for Data-intensive Scientific

Computing", NSF HECURA Award, 2006

[95] K. Shen. "Concurrent I/O Management for Cluster-based

Parallel Storages", NSF HECURA Award, 2006

[96] H. Jiang, Yifeng Zhu. "SAM^2 Toolkit: Scalable and

Adaptive Metadata Management for High-End

Computing", NSF HECURA Award, 2006

[97] Y. Zhu, J. Hong. "A New Semantic-Aware Metadata

Organization for Improved File-System Performance and

Functionality in High-End Computing", NSF HECURA

Award, 2009

[98] T. Li, X. He, T. Zhang. "Cross-Layer Exploration of Non-

Volatile Solid-State Memories to Achieve Effective I/O

Stack for High-Performance Computing Systems", NSF

HECURA Award, 2009

[99] A. Szalay, H. Huang. "Balanced Scalable Architectures for

Data-Intensive Supercomputing", NSF HECURA Award,

2009

[100] C. Leiserson. "Microdata Storage Systems for High-End

Computing", NSF HECURA Award, 2006

[101] G.R. Gao. "A High Throughput Massive I/O Storage

Hierarchy for PETA-scale High-end Architectures", NSF

CPA Award 2007

[102] R. Arpaci-Dusseau. "HaRD: The Wisconsin

Hierarchically-Redundant, Decoupled Storage Project",

NSF HECURA Award, 2009

[103] V. Sarkar, J. Dennis, G. Gao. "Programming Models and

Storage System for High Performance Computation with

Many-Core Processors", NSF HECURA Award, 2009

[104] I. Raicu. "Many-Task Computing: Bridging the Gap

between High Throughput Computing and High

Performance Computing", Doctorate Dissertation,

University of Chicago, 2009

[105] I. Raicu. “Many-Task Computing: Bridging the Gap

between High Throughput Computing and High

Performance Computing”, VDM Verlag Dr. Muller

Publisher, 2009

[106] I. Raicu, et al. "Middleware Support for Many-Task

Computing", Cluster Computing, The Journal of

Networks, Software Tools and Applications, 2010

[107] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A.

Espinosa, M. Hategan, B. Clifford, I. Raicu. "Parallel

Scripting for Applications at the Petascale and Beyond",

IEEE Computer Nov. 2009 Special Issue on Extreme

Scale Computing, 2009

[108] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A.

Chaudhary, D. Thain. “The Quest for Scalable Support of

Data Intensive Workloads in Distributed Systems”, ACM

HPDC, 2009

[109] I. Raicu, I. Foster, A. Szalay, G. Turcu. "AstroPortal: A

Science Gateway for Large-scale Astronomy Data

Analysis", TeraGrid Conference, 2006

[110] I. Foster, Y. Zhao, I. Raicu, S. Lu. “Cloud Computing and

Grid Computing 360-Degree Compared”, IEEE GCE,

2008

