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ABSTRACT 

Exascale computers will enable the unraveling of significant 

scientific mysteries. Predictions are that 2019 will be the year of 

exascale, with millions of compute nodes and billions of threads 

of execution. The current architecture of high-end computing 

systems is decades-old and has persisted as we scaled from 

gigascales to petascales. In this architecture, storage is 

completely segregated from the compute resources and are 

connected via a network interconnect. This approach will not 

scale several orders of magnitude in terms of concurrency and 

throughput, and will thus prevent the move from petascale to 

exascale. At exascale, basic functionality at high concurrency 

levels will suffer poor performance, and combined with system 

mean-time-to-failure in hours, will lead to a performance collapse 

for large-scale heroic applications. Storage has the potential to be 

the Achilles heel of exascale systems. We propose that future 

high-end computing systems be designed with non-volatile 

memory on every compute node, allowing every compute node to 

actively participate in the metadata and data management and 

leveraging many-core processors high bisection bandwidth in 

torus networks. This position paper discusses this revolutionary 

new distributed storage architecture that will make exascale 

computing more tractable, touching virtually all disciplines in 

high-end computing and fueling scientific discovery.  

Categories and Subject Descriptors 

C.2.4 [Distributed Systems]; C.5.1 [Large and Medium 

(``Mainframe'') Computers]; D.4.2 [Storage Management]; 

D.4.3 [File Systems Management]; D.4.5 [Reliability]; D.4.7 

[Organization and Design]; D.4.8 [Performance]; H.3.4 

[Systems and Software] 

General Terms 

Management, Performance, Reliability 

Keywords 

Exascale computing, distributed file systems, storage architecture, 

many-task computing  

1. INTRODUCTION 
Today’s science is generating datasets that are increasing 

exponentially in both complexity and volume, making their 

analysis, archival, and sharing one of the grand challenges of the 

21st century. Seymour Cray once said – “a supercomputer is a 

device for turning compute-bound problems into I/O-bound 

problems” – which addresses the fundamental shift in bottlenecks 

as supercomputers gain more parallelism at exponential rates [1], 

the storage infrastructure performance is increasing at a 

significantly lower rate. This implies that the data management 

and data flow between the storage and compute resources is 

becoming the new bottleneck for large-scale applications. The 

support for data intensive computing [2] is critical to advancing 

modern science as storage systems have experienced a gap 

between capacity and bandwidth that increased more than 10-fold 

over the last decade. There is an emerging need for advanced 

techniques to manipulate, visualize and interpret large datasets. 

Many domains (e.g. astronomy, medicine, bioinformatics) share 

these data management challenges, strengthening the potential 

impact from generic solutions.  

Exascale computers (e.g. capable of 1018 ops/sec) [3], with a 

processing capability similar to that of the human brain, will 

enable the unraveling of significant scientific mysteries and 

present new challenges and opportunities. The US President made 

the building of exascale systems a top national priority, stating [4] 

that it will "dramatically increasing our ability to understand the 

world around us through simulation and slashing the time needed 

to design complex products such as therapeutics, advanced 

materials, and highly-efficient autos and aircraft". Major 

scientific opportunities arise in many fields (such as weather 

modeling, understanding global warming, national security, drug 

discovery, and economics) and may rely on revolutionary 

advances that will enable exascale computing. [1] Many experts 

predict [3] that exascale computing will be common by 2019: 

millions of nodes, billions of threads of execution, hundreds of 

petabytes of memory, and exabytes of persistent storage. 

The current architecture of high-end computing (HEC) systems is 

decades-old and has persisted as we scaled from gigascales to 

petascales. In this architecture, storage is completely segregated 

from the compute resources and are connected via a network 

interconnect (e.g. parallel file systems running on network 

attached storage, such as GPFS [5], PVFS [6], and Lustre [7]). 

This approach will not scale several orders of magnitude in terms 

of concurrency and throughput, and will thus prevent the move 

from petascales to exascale. Unless significant research is 

invested to revolutionize the storage hardware architecture and 

parallel/distributed file system implementations, we will not be 

able to build capability exascale systems. Supercomputers are 
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generally designed for either capability or capacity computing, as 

Irving Wladawsky-Berger wrote in 2010.  

“Capability supercomputers dedicate the whole 

machine to solve a very large problem in the shortest 

amount of time. Capacity supercomputers, on the other 

hand, support large numbers of users solving different 

kinds of problems simultaneously. While both kinds of 

supercomputing are very important, initiatives designed 

to push the envelope, like DOE’s exascale project, tend 

to focus on the development of capability machines to 

address Grand Challenge problems that could not be 

solved in any other way. Capability computing has been 

primarily applied to what is sometimes referred to as 

heroic computations, where just about the whole 

machine is applied to a single task.” [8] 

2. ACHILLES HEEL 
We believe storage systems in future exascale systems will be its 

Achilles heel [9]), unless storage systems are re-architected to 

ensure scalability to millions of nodes and potentially billions of 

concurrent I/O requests. We believe that the system mean-time-to-

failure (MTTF) at exascale will be of the order of a few hours. 

However, based on current trends, even basic functionality (e.g. 

booting - Figure 1, metadata operations - Figure 2, read/write 

operations - Figure 3 and Figure 4, loading applications - Figure 

3, and check-pointing - Figure 5) at significant concurrency levels 

are expected to take more time than the expected exascale 

machine's MTTF, which will result in complete performance 

collapse for grand challenge applications.  

Booting: For example, booting the Blue Gene/P (see Figure 1) is 

an expensive operation at 0.5 petaflops, as measured on the real 

machine. On 256 processors, it takes 85 seconds to boot the 

allocation; on the full 160K processors, it takes 1090 seconds. 

Unfortunately, it appears that the machine boot time grows 

linearly with the number of nodes, translating to potentially over 

25K seconds (7+ hours) boot-time at 1M node scales. [10] 

 
Figure 1: Booting a BlueGene/P; 160K-cores [10] 

Metadata operations on parallel file systems can be inefficient at 

large scale. Early experiments on the BlueGene/P system at 16K-

core scales (see Figure 2) shows the various costs (wall-clock time 

measured at remote processor) for file/directory create on GPFS. 

Ideal performance would be to have a flat line. If care is not taken 

to avoid lock contention, performance degrades rapidly, with 

operations (e.g. create directory) that took milliseconds on a 

single core, taking over 1000 seconds at 16K-core scales. [10, 11] 

 
Figure 2: File/dir create time on GPFS; 16K-cores [10]  

Read/Write: Reading performance of common datasets (e.g. 

application binaries, read-only databases) is challenging. The 

experiment in Figure 3 shows the distribution of data from the 

GPFS file system to the compute nodes with two approaches: 1) 

pushing out the data over a spanning tree (CIO), and 2) pulling the 

data from each compute node independently (GPFS). At the 

relatively modest scale of 4k-cores, the CIO approach 

outperforms GPFS by a factor of five, due to better utilization of 

the bi-section bandwidth of the torus network. Writing from many 

compute nodes directly to parallel file systems is also challenging; 

Figure 4 shows the poor efficiency achieved (15%-70%) with 16 

second tasks producing 1KB to 1MB output. [10, 11] 

 
Figure 3: Data read; GPFS vs. spanning tree (CIO) [11] 

 
Figure 4: GPFS write efficiency; 16sec tasks, 32K-cores [11] 
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Checkpointing is the state-of-the-art technique for delivering 

fault tolerance for high-performance computing (HPC) on large-

scale systems. It has been shown that writing the state of a process 

to persistent storage is the largest contributor to the performance 

overhead of checkpointing [12]. Let's assume that parallel file 

systems are expected to continue to improve linearly in 

throughput with the growing number of nodes (an optimistic 

assumption); however, note that per node memory (the amount of 

state that is to be saved) will likely continue to grow 

exponentially. Assume the MTTF is modeled after the BlueGene 

with a claimed 1000 years MTTF per node (another optimistic 

assumption). Figure 5 shows the expected MTTF of about 7 days 

for a 0.8 petaflop IBM BlueGene/P with 64K nodes, while the 

checkpointing overhead is about 34 minutes; at 1M nodes (~1 

exaflop), the MTTF would be only 8.4 hours, while the 

checkpointing overhead would be over 9 hours.  

 
Figure 5: Expected checkpointing cost and MTTF towards 

exascale 

Simulations results (see Figure 6) from 1K nodes to 2M nodes 

(simulating HEC from 2000 to 2019) show the application uptime 

collapse for capability HEC systems. Today, 20% or more of the 

computing capacity in a large HPC system is wasted due to 

failures and recoveries [12], which is confirmed by the simulation 

results.  

 
Figure 6: Simulation application uptime towards exascale 

The distributed file system shown in the simulation results is a 

hypothetical file system that could scale near linearly by 

preserving the data locality in checkpointing. The application 

requirements are modeled to include 7 days of computing on the 

entire HEC system. By 1M nodes, checkpointing with parallel file 

systems (red line with circle symbol) has a complete performance 

collapse (as was predicted from Figure 5). Note that the 

hypothetical distributed file system (blue line with hollow circle 

symbol) could still have 90%+ uptime even at exascale levels. 

3. RADICAL NEW VISION 
We believe the HEC community needs to develop both the 

theoretical and practical aspects of building efficient and scalable 

distributed storage for HEC systems that will scale four orders of 

magnitude in concurrency. We believe that emerging distributed 

file systems could co-exist with existing parallel file systems, and 

could be optimized to support a subset of workloads critical for 

HPC and MTC workloads at exascale. There have been other 

distributed file systems proposed in the past, such as Google's 

GFS [13] and Yahoo's HDFS [14]; however these have not been 

widely adopted in HEC due to the workloads, data access patterns, 

and supported interfaces (POSIX [15]) being quite different. 

Current file systems lack scalable distributed metadata 

management, and well defined interfaces to expose data locality 

for general computing frameworks that are not constrained by the 

map-reduce model to allow data-aware job scheduling with batch 

schedulers (e.g. PBS [16], SGE [17], Condor [18], Falkon [19]).  

We believe that future HEC systems should be designed with non-

volatile memory (e.g. solid state memory [20], phase change 

memory [21]) on every compute node (Figure 7); every compute 

node would actively participate in the metadata and data 

management, leveraging the abundance of computational power 

many-core processors will have and the many orders of magnitude 

higher bisection bandwidth in multi-dimensional torus networks 

as compared to available cost effective bandwidth into remote 

network persistent storage. This shift in large-scale storage 

architecture design will lead to improving application 

performance and scalability for some of the most demanding 

applications. This shift in design is controversial as it requires 

storage architectures in HEC to be redefined from their traditional 

architectures of the past several decades. This new approach was 

not feasible up to recently due to the unreliable spinning disk 

technology [22] that has dominated the persistent storage space 

since the dawn of supercomputing. However, the advancements in 

solid-state memory (with MTTF of over two million hours [23]) 

have opened up opportunities to rethink storage systems for HEC, 

distributing storage on every compute node, without sacrificing 

node reliability or power consumption. The benefits of this new 

architecture lies in its enabling of some workloads to scale near-

linearly with systems scales by leveraging data locality and the 

full network bisection bandwidth. 

 

Figure 7: Proposed storage architecture with persistent local 

storage on every compute node 
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Future storage systems should support distributed metadata 

management, leveraging distributed data-structure tailored for 

HEC. The distributed data-structures share some characteristics 

with structured distributed hash tables [24], having resilience in 

face of failures with high availability; however, they should 

support constant time inserts/lookups/removes delivering low 

latencies typically found in centralized metadata management. 

The data should be partitioned into chunks and be spread out over 

many storage nodes, based on the data access patterns to 

maximize data locality. Replication [25] would be used to ensure 

data availability, and cooperative caching [26] would deliver high 

aggregate throughput. Data would be indexed, by including 

descriptive, provenance, and system metadata with each file. 

Various data access semantic should be used, from POSIX-like 

interfaces for generality (e.g FUSE [27]), to relaxed semantics 

(e.g. eventual consistency on data modifications [28], write-once 

read-many [29]) to avoid consistency issues and increase 

scalability.  

We are working on delivering exactly such a distributed file 

system, name FusionFS [30]. FusionFS is a new distributed 

filesystem that will co-exist with current parallel filesystems in 

High-End Computing, and it will be optimized for both a subset of 

HPC and Many-Task Computing workloads. FusionFS is a user-

level filesystem with a POSIX-like interface through FUSE [27] 

that runs on the compute resource infrastructure, and enables 

every compute node to actively participate in the metadata and 

data management. Distributed metadata management is 

implemented using ZHT [31], a zero-hop distributed hashtable. 

ZHT has been tuned for the specific requirements of high-end 

computing. The data is partitioned and spread out over many 

nodes based on the data access patterns. Replication and 

cooperative caching are used to ensure data availability and high 

throughput. Both FusionFS and ZHT are active projects 

attempting to implement the radical new vision sought after by 

this position paper.   

4. A SURVEY OF THE LITERATURE 
There has been a significant amount of research work over the last 

several decades on how to build scalable storage systems, namely 

on distributed hash tables, shared/parallel/distributed file systems, 

and support for data-intensive distributed computing.  

Distributed Hash Tables: There have been many distributed 

hash table (DHT) algorithms and implementations proposed over 

the years. We discuss DHTs in this section due to their important 

role in building support for scalable metadata across extreme scale 

systems. Some of the DHTs from the literature are Kademlia [32], 

CAN [33], Chord [34], Pastry [35], Tapestry [36], Memcached 

[37], Dynamo [38], Cycloid [39], Ketama [40], RIAK [41], 

Maidsafe-dht [42], and C-MPI [43]. Most of these DHTs scale 

logarithmically with system scales, but some (e.g. Cycloid) go as 

far as reducing the number of operations to O(c) where c is a 

constant related to the maximum size of the network (instead of 

the actual size of the network), which in practice still results to c ~ 

log(n). It is important to point out that several key features of 

traditional DHTs are not necessary in HEC, and that if some 

simplifying assumptions could potentially reduce the number of 

operations needed per insert/lookup down to a small constant (1 

on average). Some of the emphasized key features of HEC are: 

trustworthy/reliable hardware, fast network interconnects, non-

existent node "churn", the requirement for low latencies, and 

scientific computing data-access patterns. Most HEC 

environments are batch oriented, which implies that a system that 

is configured at run time, generally has information about the 

compute and storage resources that will be available. This means 

that the amount of resources (e.g. number of nodes) would not 

increase or decrease dynamically, and the only reason to decrease 

the allocation is either to handle failed nodes, or to terminate the 

allocation. By making dynamic membership optional, the 

complexity of the system can be reduced and a low average 

number of hops per operation can be achieved. Furthermore, 

nodes in HEC are generally reliable and have predicable uptime 

(nodes start on allocation, and nodes shut down on de-allocation). 

This implies that node "churn" in HEC is virtually non-existent, a 

property of HEC that should be leveraged to create a more 

optimized distributed data structure. It is also important to point 

out that nodes in a HEC system are generally trust-worthy, and 

that stringent requirements to encrypt communication and/or data 

would simply be adding overheads. HEC systems are generally 

locked down from the outside world, behind login nodes and 

firewalls, and although authentication and authorization is still 

needed, full communication encryption is wasteful for a large 

class of scientific computing applications that run on many HEC 

systems. Most parallel file systems used in HEC communicate 

between the client nodes and storage servers without any 

encryption. There has been some uptake recently in using 

traditional DHTs in HEC, namely the C-MPI [43] project, in 

which the Kademlia DHT has been implemented and shown to 

run well on 1000 nodes on a BlueGene/P supercomputer. C-MPI 

is used to perform data management operations for the Swift 

project [44], but it does not operate at the filesystem level and 

does not attempt to optimize Kademlia for HEC. Another recent 

project using DHTs on a HEC is DataSpaces [45], which deploys 

a DHT on a Cray XT5 to coordinate in-memory data management 

for simulation workflows. DataSpaces fails to optimize the DHT 

for HEC, does not decouple the metadata from the data causing 

poor data locality, and does not expose the work as a file system.  

Shared, Parallel, and Distributed File Systems: There have 

been many shared and parallel file systems proposed since the 

1980s, such as the Network File System (NFS) [46], Andrew File 

System (AFS) [47], General Purpose File System (GPFS) [13], 

Parallel Virtual File System (PVFS) [6], Lustre [7], Panases [48], 

Microsoft's Distributed File System (DFS) [49], GlusterFS [50], 

OneFS [51], POHMELFS [52], and XtreemFS [53]. While the 

majority of these file systems expose a POSIX-like interface 

providing a global namespace, and many have been adopted in 

cluster computing, grid computing, and even supercomputing, the 

biggest critique of these file systems is their vision that compute 

resources should be completely agnostic of the data locality on the 

underlying storage system. All of these file systems assume that 

the storage nodes/servers are significantly fewer than the 

client/compute nodes that will access the file system, resulting in 

an unbalanced architecture for data-intensive workloads. A variety 

of distributed file systems have been developed to address this 

unbalance from parallel file systems to support data-intensive 

computing, such as GFS [13], HDFS [14], Sector [54], 

CloudStore [55], Ceph [56], GFarm [57, 58], MooseFS [59], 

Chirp [60], MosaStore [61], PAST [62], Circle [63], and 

RAMCloud [64]. However, many of these file systems are tightly 

coupled with execution frameworks (e.g. MapReduce [65], 

Hadoop [14]), which means that scientific applications not using 

these frameworks must be modified to use these underlying non-

POSIX-compliant file systems. For those that offer a POSIX-like 

interface, they lack distributed metadata management. And for 

those few (e.g. Ceph, PAST, Circle) that also have distributed 

metadata management, they fail to decouple data and metadata 

management making maximizing data locality difficult. The 



majority of these systems also fail to expose the data locality 

information for general computational frameworks (e.g. batch 

schedulers) to harness the data locality through data-aware 

scheduling. Also, with the exception of RAMCloud, none of the 

filesystems were designed and optimized for solid state memory. 

It is worth noting that the majority of these distributed file 

systems were not designed specifically for HEC and scientific 

computing workloads, and the scales that HEC are anticipating in 

the coming years and are at a significant disadvantage.  

Storage Systems for Data Intensive Computing: Over the past 

decade, considerable work has been done on data management in 

cluster and grid computing [19, 66 - 79]. All these projects 

explore a similar space of how to support data-intensive 

distributed scientific computing applications, and many draw 

similar conclusions that data locality is critical to obtaining good 

performance. However, none of this work was done at the file 

system level, and certainly none of the work addressed the scales 

this work addresses.  

NSF Funded Projects: There has also been a large number of 

NSF funded projects whose focus closely aligns with the proposed 

work, ranging from CAREER to HECURA grants, with many of 

these projects falling under HEC FSIO [80]. Some of these 

proposals [81, 82] addressed petascale and exascale systems, but 

didn't focus on the storage challenges. Others projects [83 - 87] 

focused on supporting data-intensive distributed computing, but 

didn't necessarily expose the data management with POSIX 

interfaces, did not expose data locality for general consumption by 

scheduling systems, did not address distributed metadata 

management, and did not aim their solutions to exascale. More 

promising work was in active storage [88 - 90] where data locality 

is emphasized, however the work did not aim for HEC at 

exascale. More traditional work in parallel I/O and filesystems 

was proposed in various NSF HECURA proposals [91 - 95], but 

these approaches have the inherent limitations outlined for parallel 

file systems, namely the segregation of compute resource from 

storage resources. Others focused on metadata management [96, 

97], but emphasized more on the organization and search-ability 

of metadata, rather than the scalable construction and 

maintainability of the metadata at scales of millions of nodes. One 

of the projects [98] specifically explored the use of non-volatile 

memory to improve the I/O performance of HEC, supporting the 

PI's claims that non-volatile memory is a critical next step in the 

evolution of future HEC. Another project [99] identified non-

volatile memory to be critical in scaling distributed databases for 

scientific computing in astronomy workloads. Two projects [100, 

101] focused on optimizing for small I/O access patterns in 

parallel file systems, an access pattern that this work also 

addresses. Other work [102] focused on storage redundancy and 

reliability, while another [103] focused on programming models 

for data intensive computing. There are likely more relevant 

projects, but in the end, they all distil to a simple summary, 

extracted from the latest HEC FSIO 2008 Workshop Report [80] 

(the following italics texts are excerpts from the report): 

Data path today is the same as the data path 20 years 

ago. There is a need for new technologies that will offer 

greater scalability for file system metadata. Until 

recently, I/O stacks and architectures have been static 

forcing developers to adopt awkward solutions in order 

to achieve target I/O rates. Studies into methods to deal 

with small, unaligned I/O and mixed-size I/O workloads 

as well as collaborative caching are also needed. Novel 

approaches to I/O and file systems also need to be 

explored including redistribution of intelligence, user 

space file systems, data-aware file systems, and the use 

of novel storage devices. Active disks have been an 

active research topic, but there has been no good 

interface and set of semantic rules has come along that 

would make it generally useful. Most, if not all progress 

to date in parallel file systems in HEC has been 

evolutionary; what is lacking is revolutionary research; 

no fundamental solutions are being proposed. 

Revolutionary I/O technologies developments (both 

software and hardware) are needed to address the 

growing technology gap. 

5. LONG TERM IMPACT 
The ideas in this position paper are transformative due to their 

departure from traditional HEC architectures and approaches, 

while proposing radical storage architecture changes based on 

distributed file systems to make exascale computing a reality. This 

paper addresses fundamental technical challenges that will 

become increasingly harder to address with existing solutions due 

to a declining MTTF of future HEC systems.  

This work will open doors for novel research in programming 

paradigm shifts (e.g. Many-Task Computing [11, 29, 104 - 106]) 

needed as we approach exascale. Many-Task Computing aims to 

bridge the gap between two computing paradigms, high-

throughput computing and high-performance computing, 

generally producing both compute-intensive and data-intensive 

workloads, and has been shown to contain a large set of scientific 

computing applications from many domains. Some of the 

challenges in supporting MTC at scale involving metadata and 

read/write operations can be seen in Figure 2 - 4. More challenges 

and solutions have been identified in prior work [10, 11, 19, 44, 

72, 79, 107 - 109]. 

The controversial viewpoints of this paper can make exascale 

computing more tractable, touching every branch of computing in 

HEC. They will extend the knowledgebase beyond exascale 

systems into commodity systems as the fastest supercomputers 

generally become the mainstream computing system in less than a 

decade; the solutions proposed here will be relevant to the data 

centers and cloud [110] infrastructures of tomorrow. These 

advancements will impact scientific discovery and global 

economic development. They will also strengthen a wide range of 

research activities enabling efficient access, processing, storage, 

and sharing of valuable scientific data from many disciplines (e.g. 

medicine, astronomy, bioinformatics, chemistry, aeronautics, 

analytics, economics, and new emerging computational areas in 

humanities, arts, and education). If these ideas materialize, they 

will revolutionize the storage systems of future HEC systems, and 

open the door to a much broader class of applications that would 

have normally not been tractable. Furthermore, the concepts, data-

structures, algorithms, and implementations that underpin these 

ideas in resource management at the largest scales can be applied 

to new emerging paradigms, such as Cloud Computing.  

Our main message is that by combining lessons learned from 

parallel file systems and distributed file systems, along with new 

advances in hardware (e.g. solid state memory), we can define a 

new storage architecture that is optimized for future high-end 

computing at exascale and has the potential to deliver a viable 

storage architecture for future extreme scale high-end computing. 

The position of this paper is revolutionary as it breaks the 

accepted practice of segregating storage resource from 

computational resources, and leveraging the abundance of 

processing power, bisection bandwidth, and local I/O commonly 

found in future high-end computing systems.   
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