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Abstract 

Many-task computing aims to bridge the gap between two computing paradigms, 

high-throughput computing and high-performance computing. Many-task computing is 

reminiscent to high-throughput computing, but it differs in the emphasis of using many 

computing resources over short periods of time to accomplish many computational tasks, 

where the primary metrics are measured in seconds (e.g. tasks per second, I/O per 

second), as opposed to operations per month (e.g. jobs per month). Many-task computing 

denotes high-performance computations comprising of multiple distinct activities, 

coupled via file system operations. Tasks may be small or large, uniprocessor or 

multiprocessor, compute-intensive or data-intensive. The set of tasks may be static or 

dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. The 

aggregate number of tasks, quantity of computing, and volumes of data may be extremely 

large. Many-task computing includes loosely coupled applications that are generally 

communication-intensive but not naturally expressed using message passing interface 

commonly found in high-performance computing, drawing attention to the many 

computations that are heterogeneous but not “happily” parallel. 

This dissertation explores fundamental issues in defining the many-task computing 

paradigm, as well as theoretical and practical issues in supporting both compute and data 

intensive many-task computing on large scale systems.  We have defined an abstract 

model for data diffusion – an approach to supporting data-intensive many-task 

computing, have defined data-aware scheduling policies with heuristics to optimize real 

world performance, and developed a competitive online caching eviction policy. We also 
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designed and implemented the necessary middleware – Falkon – to enable the support of 

many-task computing on clusters, grids and supercomputers. Falkon, a Fast and Light-

weight tasK executiON framework, addresses shortcomings in traditional resource 

management systems that support high throughput and high performance computing that 

are not suitable or efficient at supporting many-task computing applications.  

Falkon was designed to enable the rapid and efficient execution of many tasks on 

large scale systems (i.e. through multi-level scheduling and streamlined distributed task 

dispatching), and integrate novel data management capabilities (i.e. data diffusion which 

uses data caching and data-aware scheduling to exploit data locality) to extend data 

intensive applications scalability well beyond that of traditional shared or parallel file 

systems. As the size of scientific data sets and the resources required for their analysis 

increase, data locality becomes crucial to the efficient use of large scale distributed 

systems for data-intensive many-task computing. We propose a “data diffusion” approach 

that acquires compute and storage resources dynamically, replicates data in response to 

demand, and schedules computations close to data. As demand increases, more resources 

are acquired, allowing faster response to subsequent requests that refer to the same data, 

and as demand drops, resources are released. This approach provides the benefits of 

dedicated hardware without the associated high costs, depending on workload and 

resource characteristics.   

Micro-benchmarks have shown Falkon to achieve over 15K+ tasks/sec throughputs, 

scale to millions of queued tasks, to execute billions of tasks per day, and achieve 

hundreds of Gb/s I/O rates. Falkon has shown orders of magnitude improvements in 
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performance and scalability across many diverse workloads (e.g heterogeneous tasks 

from milliseconds to hours long, compute/data intensive, varying arrival rates) and 

applications (e.g. astronomy, medicine, chemistry, molecular dynamics, economic 

modeling, and data analytics) at scales of billions of tasks on hundreds of thousands of 

processors across Grids (e.g. TeraGrid) and supercomputers (e.g. IBM Blue Gene/P and 

Sun Constellation).  
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1 Introduction 

Many-task computing aims to bridge the gap between two computing paradigms, 

high throughput computing and high performance computing. Many-task computing is 

reminiscent to high throughput computing, but it differs in the emphasis of using many 

computing resources over short periods of time to accomplish many computational tasks 

(i.e. including both dependent and independent tasks), where the primary metrics are 

measured in seconds (e.g. FLOPS, tasks/sec, MB/s I/O rates), as opposed to operations 

(e.g. jobs) per month. Many-task computing denotes high-performance computations 

comprising multiple distinct activities, coupled via file system operations or message 

passing. Tasks may be small or large, uniprocessor or multiprocessor, compute-intensive 

or data-intensive. The set of tasks may be static or dynamic, homogeneous or 

heterogeneous, loosely coupled or tightly coupled. The aggregate number of tasks, 

quantity of computing, and volumes of data may be extremely large. Many-task 
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computing includes loosely coupled applications that are generally communication-

intensive but not naturally expressed using standard message passing interface commonly 

found in high performance computing, drawing attention to the many computations that 

are heterogeneous but not “happily” parallel. 

Many-task computing has taken shape from a fusion of many publications over the 

past several years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23] and various workshops and sessions [24, 25]. The definitions and positions of this 

chapter have been published in [20]. 

1.1 Defining Many-Task Computing 

We want to enable the use of large-scale distributed systems for task-parallel 

applications, which are linked into useful workflows through the looser task-coupling 

model of passing data via files between dependent tasks. This potentially larger class of 

task-parallel applications is precluded from leveraging the increasing power of modern 

parallel systems such as supercomputers (e.g. IBM Blue Gene/L [26] and Blue Gene/P 

[27]) because the lack of efficient support in those systems for the “scripting” 

programming model [28]. With advances in e-Science and the growing complexity of 

scientific analyses, more scientists and researchers rely on various forms of scripting to 

automate end-to-end application processes involving task coordination, provenance 

tracking, and bookkeeping. Their approaches are typically based on a model of loosely 

coupled computation, in which data is exchanged among tasks via files, databases or 

XML documents, or a combination of these. Vast increases in data volume combined 

with the growing complexity of data analysis procedures and algorithms have rendered 
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traditional manual processing and exploration unfavorable as compared with modern high 

performance computing processes automated by scientific workflow systems. [18] 

The problem space can be partitioned into four main categories (Figure 1 and Figure 

2).  1) At the low end of the spectrum (low number of tasks and small input size), we 

have tightly coupled MPI [29] applications (white).  2) As the data size increases, we 

move into the analytics category, such as data mining and analysis (blue); MapReduce 

[30] is an example for this category.  3) Keeping data size modest, but increasing the 

number of tasks moves us into the loosely coupled applications involving many tasks 

(yellow); Swift/Falkon [13, 4] and Pegasus/DAGMan [31] are examples of this category.  

4) Finally, the combination of both many tasks and large datasets moves us into the data-

intensive many-task computing category (green); examples of this category are 

Swift/Falkon and data diffusion [1], Dryad [32], and Sawzall [33].  

High performance computing can be considered to be part of the first category 

(denoted by the white area). High throughput computing [34] can be considered to be a 

subset of the third category (denoted by the yellow area). Many-Task Computing can be 

considered as part of categories three and four (denoted by the yellow and green areas). 

This chapter focuses on defining many-task computing, and the challenges that arise as 

datasets and computing systems are growing exponentially.  

Clusters and Grids have been the preferred platform for loosely coupled applications 

that have been traditionally part of the high throughput computing class of applications, 

which are managed and executed through workflow systems or parallel programming 

systems.  
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Various properties of a new emerging applications, such as large number of tasks 

(i.e. millions or more), relatively short per task execution times (i.e. seconds to minutes 

long), and data intensive tasks (i.e. tens of MB of I/O per CPU second) have lead to the 

definition of a new class of applications called Many-Task Computing. MTC emphasizes 

on using much large numbers of computing resources over short periods of time to 

accomplish many computational tasks, where the primary metrics are in seconds (e.g., 

FLOPS, tasks/sec, MB/sec I/O rates), while HTC requires large amounts of computing 

for long periods of time with the primary metrics being operations per month [34]. MTC 

applications are composed of many tasks (both independent and dependent tasks) that can 

be individually scheduled on many different computing resources across multiple 

administrative boundaries to achieve some larger application goal.  

MTC denotes high-performance computations comprising multiple distinct activities, 

coupled via file system operations or message passing. Tasks may be small or large, 

uniprocessor or multiprocessor, compute-intensive or data-intensive. The set of tasks may 

be static or dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. 

The aggregate number of tasks, quantity of computing, and volumes of data may be 

extremely large. Is MTC really different enough to justify coining a new term? There are 

certainly other choices we could have used instead, such as multiple program multiple 

data (MPMD), high throughput computing, workflows, capacity computing, or 

embarrassingly parallel.  

MPMD is a variant of Flynn’s original taxonomy [35], used to denote computations 

in which several programs each operate on different data at the same time. MPMD can be 
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contrasted with SPMD, in which multiple instances of the same program each execute on 

different processors, operating on different data. MPMD lacks the emphasis that a set of 

tasks can vary dynamically. High throughput computing [34], a term coined by Miron 

Livny within the Condor project [36], to contrast workloads for which the key metric is 

not floating-point operations per second (as in high performance computing) but “per 

month or year.” MTC applications are often just as concerned with performance as is the 

most demanding HPC application; they just don't happen to be SPMD programs. The 

term “workflow” was first used to denote sequences of tasks in business processes, but 

the term is sometimes used to denote any computation in which control and data passes 

from one “task” to another. We find it often used to describe many-task computations (or 

MPMD, HTC, MTC, etc.), making its use too general. “Embarrassingly parallel 

computing” is used to denote parallel computations in which each individual (often 

identical) task can execute without any significant communication with other tasks or 

with a file system. Some MTC applications will be simple and embarrassingly parallel, 

but others will be extremely complex and communication-intensive, interacting with 

other tasks and shared file-systems. 

Is “many-task computing” a useful distinction? Perhaps we could simply have said 

“applications that are communication-intensive but are not naturally expressed in MPI”. 

Through the new term MTC, we are drawing attention to the many computations that are 

heterogeneous but not “happily” parallel. 



7 

1.2 MTC for Clusters, Grids, and Supercomputers 

We claim that MTC applies to traditional HTC environments such as clusters and 

Grids, assuming appropriate support in the middleware, but also to supercomputers. 

Emerging petascale computing systems, such as IBM’s Blue Gene/P [27], incorporate 

high-speed, low-latency interconnects and other features designed to support tightly 

coupled parallel computations. Most of the applications run on these computers have a 

single program multiple data (SMPD) structure, and are commonly implemented by using 

the Message Passing Interface (MPI) [29] to achieve the needed inter-process 

communication. I believe that MTC is a viable paradigm for supercomputers. As the 

computing and storage scales increase, the set of problems that must be overcome to 

make MTC practical (ensuring good efficiency and utilization at large-scale) are 

enlarged. These challenges include local resource manager scalability and granularity, 

efficient utilization of the raw hardware, shared file system contention and scalability, 

reliability at scale, application scalability, and understanding the limitations of the HPC 

systems in order to identify promising and scientifically valuable MTC applications.  

One could ask, why use petascale systems for problems that might work well on 

terascale systems? We point out that petascale scale systems are more than just many 

processors with large peak petaflop ratings. They normally come well balanced, with 

proprietary, high-speed, and low-latency network interconnects to give tightly-coupled 

applications that use MPI good opportunities to scale well at full system scales. Even 

IBM has proposed in their internal project Kittyhawk [37] that the Blue Gene/P can be 

used to run non-traditional workloads (e.g. HTC).  
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Four factors motivate the support of MTC applications on petascale HPC systems.  

1) The I/O subsystem of petascale systems offers unique capabilities needed by MTC 

applications. For example, collective I/O operations [17] could be implemented to use the 

specialized high-bandwidth and low-latency interconnects; we show preliminary results 

for collective I/O in Section 6.6. MTC applications could be composed of individual 

tasks that are themselves parallel programs, many tasks operating on the same input data, 

and tasks that need considerable communication among themselves. Furthermore, the 

aggregate shared file system performance of a supercomputer can be potentially larger 

than that found in a distributed infrastructure (i.e., Grid), with data rates in the 10GB+/s 

range, rather than the more typical 0.1GB/s to 1GB/s range of most Grid sites.  

2) The cost to manage and run on petascale systems like the Blue Gene/P is less than 

that of conventional clusters or Grids. [37] For example, a single 13.9 TF Blue Gene/P 

rack draws 40 kilowatts, for 0.35 GF/watt. Two other systems that get good compute 

power per watt consumed are the SiCortex with 0.32 GF/watt and the Blue Gene/L with 

0.23 GF/watt. In contrast, the average power consumption of the Top500 systems is 0.12 

GF/watt [38]. Furthermore, we also argue that it is more cost effective to manage one 

large system in one physical location, rather than many smaller systems in geographically 

distributed locations.  

3) Large-scale systems inevitably have utilization issues. Hence it is desirable to 

have a community of users who can leverage traditional back-filling strategies to run 

loosely coupled applications on idle portions of petascale systems.  
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4) Perhaps most important, some applications are so demanding that only petascale 

systems have enough compute power to get results in a reasonable timeframe, or to 

leverage new opportunities. With petascale processing of ordinary applications, it 

becomes possible to perform vast computations quickly, thus answering questions in a 

timeframe that can make a quantitative difference in addressing significant scientific 

challenges or responding to emergencies.  

1.3 The Data Deluge Challenge and the Growing Storage/Compute Gap 

Within the science domain, the data that needs to be processed generally grows faster 

than computational resources and their speed.  The scientific community is facing an 

imminent flood of data expected from the next generation of experiments, simulations, 

sensors and satellites. Scientists are now attempting calculations requiring orders of 

magnitude more computing and communication than was possible only a few years ago. 

Moreover, in many currently planned and future experiments, they are also planning to 

generate several orders of magnitude more data than has been collected in the entire 

human history [39].  

For instance, in the astronomy domain the Sloan Digital Sky Survey [40] has 

datasets that exceed 10 terabytes in size. They can reach up to 100 terabytes or even 

petabytes if we consider multiple surveys and the time dimension.  In physics, the CMS 

detector being built to run at CERN’s Large Hadron Collider [41] is expected to generate 

over a petabyte of data per year. In the bioinformatics domain, the rate of growth of DNA 

databases such as GenBank [42] and European Molecular Biology Laboratory (EMBL) 
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[43] has been following an exponential trend, with a doubling time estimated to be 9-12 

months.  

To enable the storage and analysis of large quantities of data and to achieve rapid 

turnaround, data needs to be distributed over thousands to tens of thousands of compute 

nodes. In such circumstances, data locality is crucial to the successful and efficient use of 

large scale distributed systems for data-intensive applications [19]. Scientific computing 

is generally executed on a shared infrastructure such as TeraGrid [44], Open Science Grid 

[45], and dedicated clusters, where data movement relies on shared or parallel file 

systems that are known bottlenecks for data intensive operations. If data analysis 

workloads have locality of reference, then it is feasible to cache and replicate data at each 

individual compute node, as high initial data movement costs can be offset by many 

subsequent data operations performed on cached data [1].  

The rate of increase in the number of processors per system is outgrowing the rate of 

performance increase of parallel file systems, which requires rethinking existing data 

management techniques. For example, a cluster that was placed in service in 2002 with 

316 processors has a parallel file system (i.e. GPFS [46]) rated at 1GB/s, yielding 

3.2MB/s per processor of bandwidth. The second largest open science supercomputer, the 

IBM Blue Gene/P from Argonne National Laboratory, has 160K processors, and a 

parallel file system (i.e. also GPFS) rated at 8GB/s, yielding a mere 0.05MB/s per 

processor. That is a 65X reduction in bandwidth between a system from 2002 and one 

from 2008. Unfortunately, this trend is not bound to stop, as advances multi-core and 
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many-core processors will increase the number of processor cores one to two orders of 

magnitude over the next decade.  

We argue that in such circumstances, data locality is critical to the successful and 

efficient use of large distributed systems for data-intensive applications [19, 47]. Large 

scale data management needs to be a primary objective for any middleware targeting to 

support MTC workloads, to ensure data movement is minimized by intelligent data-aware 

scheduling both among distributed computing sites (assuming that each site has a local 

area network shared storage infrastructure), and among compute nodes (assuming that 

data can be stored on compute nodes’ local disk and/or memory). 

1.4 Middleware Support for MTC 

As high throughput computing (HTC) is a subset of MTC, it is worth mentioning the 

various efforts in enabling HTC on large scale systems. Some of these systems are 

Condor [36], MapReduce [30], Hadoop [48], and BOINC [49].  

Condor and glide-ins [50] are the original tools to enable HTC, but their emphasis on 

robustness and recoverability limits their efficiency for MTC applications in large-scale 

systems. We found that relaxing some constraints (e.g. recoverability) from the 

middleware and encouraging the end applications to implement these constraints has 

enabled significant improvements in middleware performance and efficiency at large 

scale.  

MapReduce (including Hadoop) is typically applied to a data model consisting of 

name/value pairs, processed at the programming language level. Its strengths are in its 

ability to spread the processing of a large dataset to thousands of processors with minimal 
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expertise in distributed systems; however it often involves the development of custom 

filtering scripts and does not support “black box” application execution as is commonly 

found in MTC or HTC applications.  

BOINC is known to scale well to large number of compute resources, but lacks 

support for data intensive applications due to the nature of the wide area network 

deployment BOINC typically has, as well as lack of support for “black box” applications.  

On the IBM Blue Gene supercomputer, various works [51, 52] have leveraged the 

HTC-mode [53] support in Cobalt [54] scheduling system. These works have aimed at 

integrating their solution as much as possible in Cobalt; however, it is not clear that the 

current implementations will be able to support the largest MTC applications at the 

largest scales. Furthermore, these works focus on compute resource management, and 

ignore data management altogether.  

Swift [13, 55] and Falkon [4] have been used to execute MTC applications on 

clusters, multi-site Grids (e.g., Open Science Grid [45], TeraGrid [44]), specialized large 

machines (SiCortex [56]), and supercomputers (e.g., Blue Gene/P [27]). Swift enables 

scientific workflows through a data-flow-based functional parallel programming model. 

It is a parallel scripting tool for rapid and reliable specification, execution, and 

management of large-scale science and engineering workflows. The runtime system in 

Swift relies on the CoG Karajan [57] workflow engine for efficient scheduling and load 

balancing, and it integrates with the Falkon light-weight task execution dispatcher for 

optimized task throughput and efficiency, as well as improved data management 

capabilities to ensure good scalability with increasing compute resources. Large-scale 
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applications from many domains (e.g., astronomy [4, 58], medicine [4, 59, 60], chemistry 

[10], molecular dynamics [61], economics [62, 63], and data analytics [16]) have been 

run at scales of up to millions of tasks on up to hundreds of thousands of processors. This 

chapter focuses on defining MTC, as well the theory and practice to enable MTC a wide 

range of systems from the average cluster to the largest supercomputers. The Falkon 

middleware represents the practical aspects of enabling MTC workloads on these 

systems.  

1.5 MTC Applications 

We have found many applications that are a better fit for MTC than HTC or HPC. 

Their characteristics include having a large number of small parallel jobs, a common 

pattern in many scientific applications [13]. They also use files (instead of messages, as 

in MPI) for intra-processor communication, which tends to make these applications data 

intensive.  

While we can push hundreds or even thousands of such small jobs via GRAM to a 

traditional local resource manager (e.g. PBS [64], Condor [50], SGE [65]), the achieved 

utilization of a modest to large resource set will be poor due to high queuing and 

dispatching overheads, which ultimately results in low job throughput. A common 

technique to amortize the costs of the local resource management is to “cluster” multiple 

jobs into a single larger job. Although this lowers the per job overhead, it is best suited 

when the set of jobs to be executed are homogenous in execution times, or accurate 

execution time information is available prior to the job execution; with heterogeneous job 

execution times, it is hard to maintain good load balancing of the underlying resource, 
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causing low resource utilization. We claim that it is not enough to “cluster” jobs, and that 

the middleware that manages jobs (or tasks used synonymously throughout) must be 

streamlined and made as light-weight as possible to allow applications with heterogonous 

execution times to execute without “clustering” with high efficiency. 

Traditionally, scientific applications rely on centralized server(s) (e.g. shared file 

system, parallel file systems, ftp server, web server, gridftp server) making these 

applications scalability limited depending on how data/meta-data intensive they are. 

MTC applications are often data and/or meta-data intensive, as each job requires at least 

one input file and one output file, and can sometimes involve many files per job. In order 

to support MTC applications in general, additional data management techniques are 

needed to handle both data intensive and meta-data intensive applications. These data 

management techniques need to make good utilization of the full network bandwidth of 

large scale systems, which is a function of the number of nodes and networking 

technology employed, as opposed to the relatively small number of storage servers that 

are behind a parallel file system or GridFTP server.  

We have identified various loosely coupled applications from many domains as 

potential good candidates that have these characteristics to show examples of many-task 

computing applications. These applications cover a wide range of domains, from 

astronomy, physics, astrophysics, pharmaceuticals, bioinformatics, biometrics, 

neuroscience, medical imaging, chemistry, climate modeling, economics, and data 

analytics. They often involve many tasks, ranging from tens of thousands to billions of 

tasks, and have a large variance of task execution times ranging from hundreds of 
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milliseconds to hours. Furthermore, each task is involved in multiple reads and writes to 

and from files, which can range in size from kilobytes to gigabytes. These characteristics 

made traditional resource management techniques found in HTC inefficient; also, 

although some of these applications could be coded as HPC applications, due to the wide 

variance of the arrival rate of tasks from many users, an HPC implementation would also 

yield poor utilization. Furthermore, the data intensive nature of these applications can 

quickly saturate parallel file systems at even modest computing scales. 

Astronomy: One of the first applications that motivated much of this work was 

called the “AstroPortal” [12], which offered a stacking service of astronomy images from 

the Sloan Digital Sky Survey (SDSS) dataset using grid resources. Astronomical image 

collections usually cover an area of sky several times (in different wavebands, different 

times, etc). On the other hand, there are large differences in the sensitivities of different 

observations: objects detected in one band are often too faint to be seen in another survey. 

In such cases we still would like to see whether these objects can be detected, even in a 

statistical fashion. There has been a growing interest to re-project each image to a 

common set of pixel planes, then stacking images. The stacking improves the signal to 

noise, and after coadding a large number of images, there will be a detectable signal to 

measure the average brightness/shape etc of these objects. This application involved the 

SDSS dataset [40] (currently at 10TB with over 300 million objects, but these datasets 

could be petabytes in size if we consider multiple surveys in both time and space) [18], 

many tasks ranging from 10K to millions of tasks, each requiring 100ms to seconds of 

compute and 100KB to MB of input and output data.  
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Astronomy: Another related application in astronomy is MONTAGE [66, 58], a 

national virtual observatory project [67] that stitches tiles of images of the sky from 

various sky surveys (e.g. SDSS [40], etc) into a photorealistic single image. Execution 

times per task range in the 100ms to 10s of seconds, and each task involves multiple 

input images and at least one image output. This application is both compute intensive 

and data intensive, and has been run as both a HTC (using Pegasus/DAGMan [31], and 

Condor [36]) and a HPC (using MPI) application, but we found its scalability to be 

limited when run under HTC or HPC.    

Astrophysics: Another application is from astrophysics, which analyzes the Flash 

turbulence dataset (simulation data) [68] from various perspectives, using volume 

rendering and vector visualization.  The dataset is composed of 32 million files (1000 

time steps times 32K files) taking up about 15TB of storage resource, and contains both 

temporal and spatial locality. In the physics domain, the CMS detector being built to run 

at CERN’s Large Hadron Collider [41] is expected to generate over a petabyte of data per 

year. Supporting applications that can perform a wide range of analysis of the LHC data 

will require novel support for data intensive applications.  

Economic Modeling: An application from the economic modeling domain that we 

have investigated as a good MTC candidate is Macro Analysis of Refinery Systems 

(MARS) [62], which studies economic model sensitivity to various parameters. MARS 

models the economic and environmental impacts of the consumption of natural gas, the 

production and use of hydrogen, and coal-to-liquids co-production, and seeks to provide 

insights into how refineries can become more efficient through the capture of waste 
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energy. Other economic modeling applications perform numerical optimization to 

determine optimal resource assignment in energy problems. This application is 

challenging as the parameter space is extremely large, which can produce millions, even 

billions of individual tasks, each with a relatively short execution time of only seconds 

long.  

Pharmaceutical Domain: In the pharmaceutical domain, there are applications that 

screen KEGG [69] compounds and drugs against important metabolic protein targets 

using DOCK6 [61] to  simulate the “docking” of small molecules, or ligands, to the 

“active sites” of large macromolecules of known structure called “receptors”. A 

compound that interacts strongly with a receptor (such as a protein molecule) associated 

with a disease may inhibit its function and thus act as a beneficial drug. The economic 

and health benefits of speeding drug development by rapidly screening for promising 

compounds and eliminating costly dead-ends is significant in terms of both resources and 

human life. The parameter space is quite large, totaling to more than one billion 

computations that have a large variance of execution times from seconds to hours, with 

an average of 10 minutes. The entire parameter space would require over 22,600 CPU 

years, or over 50 days on a 160K processor Blue Gene/P supercomputer [27]. This 

application is challenging as there many tasks, each task has a wide range of execution 

times with little to no prior knowledge about its execution time, and involves significant 

I/O for each computation as the compounds are typically stored in a database (i.e. 10s to 

100s of MB large) and must be read completely per computation.  
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Chemistry: Another application in the same domain is OOPS [70], which aims to 

predict protein structure and recognize docking partners. In chemistry, specifically in 

molecular dynamics, we have an application MolDyn whose goal is to calculate the 

solvation free energy of ligands and protein-ligand binding energy, with structures 

obtained from the NIST Chemistry WebBook database. [71] Solvation free energy is an 

important quantity in Computational Chemistry with a variety of applications, especially 

in drug discovery and design. These applications have similar characteristics as the 

DOCK application previously discussed.   

Bioinformatics: In bioinformatics, Basic Local Alignment Search Tool (BLAST), is 

a family of tools for comparing primary biological sequence information (e.g. amino-acid 

sequences of proteins, nucleotides of DNA sequences). A BLAST search enables one to 

compare a query sequence with a library or database of sequences, and identify library 

sequences that resemble the query sequence above a certain threshold. [72]. Although the 

BLAST codes have been implemented in both HTC and HPC, they are often both data 

and compute intensive, requiring multi-GB databases to be read for each comparison (or 

kept in memory if possible), and each comparison can be done within minutes on a 

modern processor-core. MTC and its support for data intensive applications is critical in 

scaling BLAST on large scale resources with thousands to hundreds of thousands of 

processors. 

Neuroscience Domain: In the neuroscience domain, we have the Computational 

Neuroscience Applications Research Infrastructure (CNARI), which aims to manage 

neuroscience tools and the heterogeneous compute resources on which they can enable 
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large-scale computational projects in the neuroscience community. The analysis includes 

the aphasia study, structural equation modeling, and general use of R for various data 

analysis. [73] The application workloads involve many tasks, relatively short on the order 

of seconds, and each task containing many small input and output files making the 

application meta-data intensive at large scale. 

Cognitive Neuroscience: The fMRI application is a workflow from the cognitive 

neuroscience domain with a four-step pipeline, which includes Automated Image 

Registration (AIR), Preprocessing and stats from NIH and FMRIB (AFNI and FSL), and 

Statistical Parametric Mapping (SPM2) [59]. An fMRI Run is a series of brain scans 

called volumes, with a Volume containing a 3D image of a volumetric slice of a brain 

image, which is represented by an Image and a Header. Each volume can contain 

hundreds to thousands of images, and with multiple patients, the number of individual 

analysis tasks can quickly grow. Task execution times were only seconds long, and the 

input and output files ranged from kilobytes to megabytes in size. This application could 

run as an HTC one at small scales, but needs MTC support to scale up. 

Data Analytics: Data analytics and data mining is a large field that covers many 

different applications. Here, we outline several applications that fit MTC well. One 

example is the analysis of log data from millions computations. Another set of 

applications are ones commonly found in the MapReduce [30] paradigm, namely “sort” 

and “word count”. Both of these applications are essential to World Wide Web search 

engines, and are challenging at medium to large scale due to their data intensive nature. 
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All three applications involve many tasks, many input files (or many disjoint sub-sections 

of few files), and are data intensive.  

Data Mining: Another set of applications that perform data analysis can be 

classified in the “All-Pairs” class of applications. These applications aim to understand 

the behavior of a function on two sets, or to learn the covariance of these sets on a 

standard inner product. Two common applications in All-Pairs are data mining and 

biometrics. Data mining is the study of extracting meaning from large data sets; one 

phase of knowledge discovery is reacting to bias or other noise within a set. Different 

classifiers work better or worse for varying data, and hence it is important to explore 

many different classifiers in order to be able to determine which classifier is best for that 

type of noise on a particular distribution of the validation set.  

Biometrics: Biometrics aims to identifying humans from measurements of the body 

(e.g. photos of the face, recordings of the voice, and measurements of body structure). A 

recognition algorithm may be thought of as a function that accepts two images (e.g. face) 

as input and outputs a number between zero and one indicating the similarity between the 

two input images. The application would then compare all images of a database and 

create a scoring matrix which can later be easily searched to retrieve the most similar 

images. These All-Pairs applications are extremely challenging as the number of tasks 

can rapidly grow in the millions and billions, with each task being hundreds of 

milliseconds to tens of seconds, with multi-megabyte input data per task.  

MPI Ensembles: Finally, another class of applications is managing an ensemble of 

MPI applications. One example is from the climate modeling domain, which has been 
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studying climate trends and predicting global warming [74], is already implemented as an 

HPC MPI application. However, the current climate models could be run as ensemble 

runs (many concurrent MPI applications) to quantify climate model uncertainty. This is 

challenging in large scale systems such as supercomputers (a typical resource such 

models would execute on), as the local resource managers (e.g. Cobalt) favor large jobs 

and have policy against running many jobs at the same time (i.e. where many is more 

than single digit number of jobs per user). 

All these applications pose significant challenges to traditional resource management 

found in HPC and HTC, from both job management and storage management 

perspective, and are in critical need of MTC support as the scale of these resources 

grows. We discuss these applications in more details in Chapter 7, and explore their 

performance scalability across a wide range of systems, such as clusters, grids, and 

supercomputers. 

1.6 Conclusions 

Clusters with 62K processor cores (e.g., TACC Sun Constellation System, Ranger), 

Grids (e.g., TeraGrid) with over a dozen sites and 161K processors, and supercomputers 

with 160K processors (e.g., IBM Blue Gene/P) are now available to the scientific 

community. These large HPC systems are considered efficient at executing tightly 

coupled parallel jobs within a particular machine using MPI to achieve inter-process 

communication. We proposed using HPC systems for loosely-coupled applications, 

which involve the execution of independent, sequential jobs that can be individually 

scheduled, and using files for inter-process communication. 
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We believe that there is more to HPC than tightly coupled MPI, and more to HTC 

than embarrassingly parallel long running jobs. Like HPC applications, and science itself, 

applications are becoming increasingly complex opening new doors for many 

opportunities to apply HPC in new ways if we broaden our perspective. We hope this 

dissertation leaves the broader community with a stronger appreciation of the fact that 

applications that are not tightly coupled MPI are not necessarily embarrassingly parallel. 

Some have just so many simple tasks that managing them is hard. Applications that 

operate on or produce large amounts of data need sophisticated data management in order 

to scale. There exist applications that involve many tasks, each composed of tightly 

coupled MPI tasks. Loosely coupled applications often have dependencies among tasks, 

and typically use files for inter-process communication.  Efficient support for these sorts 

of applications on existing large scale systems, including future ones (e.g. Blue Gene/Q 

[75] and Blue Water supercomputers) involves substantial technical challenges and will 

have big impact on science. 

We have already shown good support for MTC on a variety of resources from 

clusters, grids, and supercomputers through our work on Swift [10, 13, 55] and Falkon [2, 

4]. Furthermore, we have taken the first steps to address data-intensive MTC by 

offloading much of the I/O away from parallel file systems and into the network, making 

full utilization of caches (both on disk and in memory) and the full network bandwidth of 

commodity networks (e.g. gigabit Ethernet) as well as proprietary and more exotic 

networks (Torus, Tree, and Infiniband). [1, 3, 17] 
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1.7 Dissertation Roadmap 

The rest of this dissertation is organized in several chapters, each with their unique 

contributions.  Chapter 2 is titled “Background Information and Related Work”, which 

covers essential background information on the topics of clusters, grids, supercomputers, 

high throughput computing, high performance computing, and testbeds used throughout 

the dissertation. The chapter also discusses related work in three main areas, local 

resource management, resource provisioning, and data management. Chapter 3 is “Multi-

Level Scheduling and Streamlined Task Dispatching”, which covers the practical 

foundation of this dissertation in the form of Falkon, a Fast and Light-weight tasK 

executiON framework.  Chapter 4 titled “Distributing the Falkon Architecture to Support 

Petascale Systems“ extends the work from Chapter 3 by distributing the Falkon 

architecture and showing that Falkon can scale to 160K processors on the IBM Blue 

Gene/P.  Chapter 5, “Dynamic Resource Provisioning”, covers the techniques needed to 

allow applications resource usage to adapt to dynamic and varying workloads for both 

resource efficiency and application performance reasons.  Chapter 6 titled “Towards Data 

Intensive Many-Task Computing with Data Diffusion” covers work and results aimed to 

support data-intensive MTC, and shows how data locality can be leveraged in order to 

achieve significantly better performance and scalability; this chapter also covers support 

for data-intensive applications on the IBM Blue Gene/P supercomputer with collective 

I/O primitives to enable efficient distribution of input data files to computing nodes and 

gathering of output results from them. Chapter 7, titled “Accelerating Scientific 

Applications on Clusters, Grids, and Supercomputers”, showcases the end-product of this 
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entire dissertation, the wide range of applications that have been run using the proposed 

techniques, and what improvements they have achieved in both performance and 

scalability.  Chapter 8 concludes this dissertation with a summary of our contributions, 

concluding statements, and a discussion of my future research directions. 
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2 Background Information and Related Work 

This chapter covers essential background information on the topics of clusters, grids, 

supercomputers, high throughput computing, high performance computing, and testbeds 

used throughout the dissertation. This chapter also discusses related work in three main 

areas: 1) local resource management, 2) resource provisioning, and 3) data management. 

2.1 Clusters, Grids, and Supercomputers 

A computer cluster is a collection of computers, connected together by some 

networking fabric, and is composed of commodity processors, network interconnects, and 

operating systems. Clusters are usually aimed to improve performance and availability 

over that of a single computer; furthermore, clusters are typically more cost-effective 

than a single computer of comparable speed or availability. Middleware such as MPI 

allows cluster computing to be portable to a wide variety of cluster architectures, 
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operating systems, and networking offering high performance computing over 

commodity hardware. [76] High throughput computing [34] has also seen good success 

on clusters, as the needed computations are more loosely coupled and most scientists can 

be satisfied by commodity CPUs and memory, essentially making high efficiency not 

playing a major role. 

Grids tend to be composed of multiple clusters, and are typically loosely coupled, 

heterogeneous, and geographically dispersed. The term “the Grid” was coined in the mid 

1990s to denote a proposed distributed computing infrastructure for advanced science and 

engineering [77].  Foster et al. describes the definition of Grid Computing to be about 

large scale resource sharing, innovative applications, and high performance computing.  

It is meant to offer flexible, secure, coordinated resource sharing among dynamic 

collections of individuals, institutions, and resources, namely virtual organizations. Some 

examples of grids are TeraGrid [44], Open Science Grid (OSG) [45], and Enabling Grids 

for E-sciencE (EGEE) [78]. Some of the major grid middleware are the Globus Toolkit 

[79] and Unicore [80]. Grids have also been used for both HPC and HTC, just as clusters 

have; HPC is more challenging for grids as resources can be geographically distributed 

which can increases latency significantly between nodes, but it can still be done 

effectively with careful tuning for some HPC applications. 

A supercomputer is a highly-tuned computer clusters using commodity processors 

combined with custom network interconnects and typically customized operating system. 

The term supercomputer is rather fluid, as today's supercomputer usually ends up being 

an ordinary computer within a decade. Figure 3 shows the Top500 [38] trends in the 
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fastest supercomputers for the past fifteen years, and projecting out for the next decade. 

We have currently surpassed the petaflop/s rating, and it is predicted that we will surpass 

an exaflop/s within the next decade. Much of the predicted increase computing power 

comes from the prediction of increasing the number of cores per processor (see Figure 4), 

which is expected to be in the hundreds to thousands within a decade [81]. Until recently, 

supercomputers have been strictly HPC systems, but more recently they have gained 

support for HTC as well.  

 

Figure 3: Projected Performance of Top500, November 2008 
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Figure 4: Projected number of cores per processor, November 2007 
With the work presented in this dissertation, we have shown that many-task 

computing [20] is also a viable computing model for all these platforms, from clusters, 

grids, and supercomputers, and in fact, many more applications naturally fit in MTC than 

HTC, and without having to rewrite them in HPC. 

2.2 Testbeds 

The experiments conducted in this dissertation were completed over the span of 

several years, on a range of systems from single machines, small clusters, to grids, to 

specialized systems, to supercomputers. This sub-section describes all these systems for 

easy reference for the rest of the dissertation where we discuss experimental results. 
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One of the testbeds was the ANL/UC Linux cluster (a 128 node cluster from the 

TeraGrid), which consisted of dual Xeon 2.4 GHz CPUs or dual Itanium 1.3GHz CPUs 

with 4GB of memory and 1Gb/s network connectivity.  We also used two other systems: 

1) VIPER.CI was a dual Xeon 3GHz with HT (4 hardware threads), 2GB of RAM, Linux 

kernel 2.6, and 1Gb/s network connectivity; and 2) GTO.CI was a dual Xeon 2.33 GHz 

with quad cores each (8-cores), 6GB of RAM, Linux kernel 2.6, and 1Gb/s network 

connectivity. Both machines were located at University of Chicago and had a network 

latency of less than 2 ms to and from the resources it managed that were housed at 

Argonne National Laboratory (ANL).   

ANL also acquired a new 6 TFlop machine named the SiCortex [56] (see Figure 5); it 

has 6-core processors for a total of 5832-cores each running at 500 MHz, has a total of 

4TB of memory, and runs a standard Linux environment with kernel 2.6. The system is 

connected to a NFS shared file system which is only served by one server, and can 

sustain only about 320 Mb/s read performance. A PVFS shared file system is also 

planned that will increase the read performance to 12,000 Mb/s, but that was not 

available to us during out testing. All experiment on the SiCortex were performed using 

the NFS shared file system, the only available shared file system at the time of the 

experiments.  

The IBM Blue Gene/P Supercomputer [27, 75] (named Intrepid and hosted at 

Argonne National Laboratory) has quad-core processors with a total of 160K cores. The 

Blue Gene/P is rated at 557TF Rmax (450TF Rpeak) with 160K PPC450 processors 

running at 850MHz, with a total of 80 TB of main memory. The Blue Gene/P GPFS is 
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rated at 8GB/s. In our experiments, we use an alpha version of Argonne’s Linux-based 

ZeptoOS [82] compute node kernel. The BG/P architecture overview is depicted in 

Figure 6.   

 

Figure 5: SiCortex Model 5832 
   The full BG/P at ANL is over 500 TFlops with 160K PPC450 processors running at 

850MHz, with a total of 80 TB of main memory. The system architecture is designed to 

scale to 3 PFlops for a total of 4.3 million processors. The BG/P has both GPFS and 

PVFS file systems available; the GPFS we tested was rated at 8GB/s I/O rates. 

Experiments involving the BG/P were done on both the reference pre-production BG/P 

that had 4096 processors, and the full production 160K processor system, and using the 

GPFS parallel file system. 
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Figure 6: BG/P Architecture Overview 
The various systems we used in this dissertation are outlined in Table 1.  

Table 1: Summary of testbeds used in this dissertation 

Name NodesCPUs 
CPU 
Type 
Speed 

RAM 
File 

System 
Peak 

Operating 
System 

BG/P.4K 1024  
4096 PPC450 0.85GHz 2TB GPFS 

775Mb/s 
Linux 

(ZeptOS) 

BG/P.160K 40960  
163840 PPC450 0.85GHz 80TB GPFS 

64Gb/s 
Linux 

(ZeptOS) 

BG/P.Login 8  
32 

PPC 
2.5GHz 32GB GPFS 

775Mb/s Linux Kernel 2.6

SiCortex 972 5832 MIPS64 0.5GHz 3.5TB NFS 
320Mb/s Linux Kernel 2.6

ANL/UC 
98 196 Xeon  

2.4GHz 0.4TB GPFS 
3.4Gb/s Linux Kernel 2.4

62 124 Itanium 1.3GHz 0.25TB GPFS 
3.4Gb/s Linux Kernel 2.4

VIPER.CI 1  
2 Xeon 3GHz 2GB Local 

800Mb/s Linux Kernel 2.6

GTO.CI 1 
8 Xeon 2.3GHz 6GB Local 

800Mb/s Linux Kernel 2.6

13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 1x1x1

13.6 GF/s
2 GB DDR

(32 chips  4x4x2)
32 compute, 0-4 IO cards

435 GF/s
64 GB 

32 Node Cards

32 Racks

500TF/s
64 TB 

Cabled 8x8x16Rack

Baseline System

Node Card

Compute Card

Chip

14 TF/s
2 TB 
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2.3 Local Resource Management 

Full-featured local resource managers (LRMs) such as Condor [36, 83], Portable 

Batch System (PBS) [64], Load Sharing Facility (LSF) [84], and Sun Grid Engine (SGE) 

[65] support client specification of resource requirements, data staging, process 

migration, check-pointing, accounting, and daemon fault recovery. In contrast, we have 

focused on efficient task dispatch and thus can omit some of these features in order to 

streamline task submission. This narrow focus is possible as we can rely on certain 

functions (e.g., accounting) on other LRMs and others (e.g., recovery, data staging) on 

client applications. 

The BOINC “volunteer computing” system [49, 85] has a similar architecture to that 

of Falkon. BOINC’s database-driven task dispatcher is estimated to be capable of 

dispatching 8.8M tasks per day to 400K workers. This estimate is based on extrapolating 

from smaller synthetic benchmarks of CPU and I/O overhead, on the task distributor 

only, for the execution of 100K tasks. We have achieved throughputs in excess of 15K 

tasks/sec, in comparison to 101 tasks/sec delivered by BOINC.  

Due to the only recent availability of parallel systems with 100K cores or more for 

open science research, and the even scarcer experience or success in loosely coupled 

programming at this scale, we find that there is little existing work with which we can 

compare, although we found two papers that explored a similar space of high throughput 

computing on large-scale supercomputers, such as the IBM Blue Gene/L [26]. Cope et al. 

aimed at integrating their solution as much as possible in the Cobalt scheduling system 

(as opposed to bringing in another system such as Falkon); their implementation was on 
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the Blue Gene/L using the HTC-mode [53] support in Cobalt, and the majority of the 

performance study was done at a small scale (64 nodes, 128 processors). [51] In 

summary, Cope’s results were at least one order of magnitude worse at small scales, and 

the performance gap would only increase with larger scale tests as their approach has 

higher overheads (i.e. nodes reboot after each task, in contrast with simply forking 

another process). Furthermore, Peter’s et al. from IBM also recently published some 

performance numbers on the HTC-mode [52] native support in Cobalt [54], which shows 

a similar one order of magnitude difference between HTC-mode on Blue Gene/L. We 

will show detailed comparisons on similar benchmarks between this work (Cope at al. 

[51] and Peter et al. [52]) and our own work on the Blue Gene/P supercomputer.  

Task farming is a general concept that has been applied on a wide range of systems, 

and is loosely related to resource management and high throughput computing in which 

many individual jobs can be scheduled to a processor farm. The Blue Gene 

supercomputer is one example which has defined and implemented task farms in order to 

implement parallelism in some applications. [86] Casanova et al. addresses basic 

scheduling strategies for task farming in Grids [87]; they acknowledge the difficulties 

that arise in scheduling task farms in dynamic and heterogeneous systems, but do little to 

address these problems. M. Danelutto argues the inefficiencies of task farms in 

heterogeneous and unreliable environments; he proposes various adaptive task farm 

implementation strategies [88] to address these classical inefficiencies found in task 

farms. H. Gonzalez-Velez argues for similar inefficiencies for task farms due to 

heterogeneity typically found in Grids. He claims that the dynamicity of Grids also leads 
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to sub-optimal task farm solutions. He proposes an adaptive skeletal task farm for Grids 

[89] which take into account predictions of network bandwidth, network latency, and 

processor availability.  Heymann et al. investigates scheduling strategies that dynamically 

measures the execution times of tasks and uses this information to dynamically adjust the 

number of workers to achieve a desirable efficiency, minimizing the impact in loss of 

speedup. [90] Petrou et al. show how scheduling speculative tasks in a compute farm [91] 

can significantly reduce the visible response time. The basic idea is that a typical end use 

would submit more work than he really needed in the hopes of allowing the scheduler 

ample opportunities to schedule work before the end user needed to retrieve the results. 

We believe that this model of scheduling would work only in a lightly loaded compute 

farm, which is not the norm in today’s deployed Grids.   

In summary, our proposed work in light-weight task dispatching offers many orders 

of magnitude better performance and scalability than traditional resource management 

techniques, which is changing the types of applications that can efficiently execute on 

large scale distributed resources; this was one of the reasons that led us to defining many-

task computing, as once the capability of light-weight task dispatching was available, a 

whole new set of applications emerged that could make use of this capability to 

efficiently run at large scale. We have achieved these improvements by narrowing the 

focus of the resource management by not supporting various expensive features, and by 

relaxing other constraints from the resource management framework effectively pushing 

them to the application or the clients. Furthermore, we differentiate our work from 
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previous work on task farming by addressing data-aware scheduling to optimize the raw 

compute and storage resources utilization.  

2.4 Resource Provisioning 

Multi-level scheduling has been applied at the OS level [92, 93] to provide faster 

scheduling for groups of tasks for a specific user or purpose by employing an overlay that 

does lightweight scheduling within a heavier-weight container of resources: e.g., threads 

within a process or pre-allocated thread group. 

Frey and his colleagues pioneered the application of resource provisioning to clusters 

via their work on Condor “glide-ins” [50]. Requests to a batch scheduler (submitted, for 

example, via Globus GRAM) create Condor “startd” processes, which then register with 

a Condor resource manager that runs independently of the batch scheduler. Others have 

also used this technique. For example, Mehta et al. [94] embed a Condor pool in a batch-

scheduled cluster, while MyCluster [95] creates “personal clusters” running Condor or 

SGE. Such “virtual clusters” can dedicated to a single workload; thus, Singh et al. find, in 

a simulation study [96], a reduction of about 50% in completion time. However, because 

they rely on heavyweight schedulers to dispatch work to the virtual cluster, the per-task 

dispatch time remains high, and hence the wait queue times are likely to remain 

significantly higher than in the ideal case due to the schedulers’ inability to push work 

out faster. 

In a different space, Bresnahan et al. [97] describe a multi-level scheduling 

architecture specialized for the dynamic allocation of compute cluster bandwidth. A 



36 

modified Globus GridFTP server varies the number of GridFTP data movers as server 

load changes. 

Appleby et al. [98] were one of several groups to explore dynamic resource 

provisioning within a data center. Ramakrishnan et al. [99] also address adaptive 

resource provisioning with a focus primarily on resource sharing and container level 

resource management. 

In summary, this work’s innovation is the combination of dynamic resource 

provisioning and lightweight scheduling overlay on top of virtual clusters with the use of 

standard grid protocols for adaptive resource allocation.  This combination of techniques 

allows us to achieve lower average queue wait times, lower end-to-end application run 

times, while also offering applications the ability to trade-off system responsiveness, 

resource utilization, and execution efficiency. 

2.5 Data Management 

There has been much work in the general space of data management in distributed 

systems over the last decade. The Globus Toolkit includes two components (Replica 

Location Service [100] and Data Replication Service [101]) that can be used to build data 

management services for Grid environments. Data management on its own is useful, but 

not as useful as it could be if it were to be coupled with compute resource management as 

well. Ranganathan et al. used simulation studies [102] to show that proactive data 

replication can improve application performance. The Stork [103] scheduler seeks to 

improve performance and reliability when batch scheduling by explicitly scheduling data 

placement operations. While Stork can be used with other system components to co-
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schedule CPU and storage resources, there is no attempt to retain nodes and harness data 

locality in data access patterns between tasks. 

The GFarm [104, 105] team implemented a data-aware scheduler in Gfarm using an 

LSF scheduler plugin [106, 107]. Their performance results are for a small system in 

comparison to our own results and offer relatively slow performance (6 nodes, 300 jobs, 

900 MB input files, 0.1–0.2 jobs/sec, and 90MB/s to 180MB/s data rates); furthermore, 

the papers present no evidence that their system scales. In contrast, we have tested our 

proposed data diffusion with 200 processors, 2M jobs, input data ranging from 1B to 

1GB per job, working sets of up to 1TB, workflows exceeding 1000 jobs/sec, and data 

rates exceeding 9GB/s. 

The NoW [108] project aimed to create massively parallel processors (MPPs) from a 

collection of networked workstations; NoW has its similarities with the Falkon task 

dispatching framework, but it differs in the level of implementation, Falkon being higher-

level (i.e. cluster local resource manager) and NoW being lower-level (i.e. OS). The 

proceeding River [109] project aimed to address specific challenges in running data 

intensive applications via a data-flow system, specifically focusing on database 

operations (e.g. selects, sorts, joins). The Swift [13, 10] parallel programming system, 

which can use Falkon as an underlying execution system, is a general purpose parallel 

programming system that is data-flow based, and has all the constructs of modern 

programming languages (e.g. variables, functions, loops, conditional statements). One of 

the limitations of River is that one of its key enabling concepts, graduated declustering 

(GD), requires data to be fully replicated throughout the entire cluster. This indicates that 
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their scheduling policies are simpler than those found in data diffusion, as all data can be 

found everywhere; this assumption also incurs extra costs for replication, and has large 

wastage in large-scale systems. River is a subset of the combination of Swift, Falkon and 

data diffusion.  

BigTable [110], Google File System (GFS) [111], MapReduce [30], and Hadoop 

[48] couple data and computing resources to accelerate data-intensive applications. 

However, these systems all assume a dedicated set of resources, in which a system 

configuration dictates nodes with roles (i.e., clients, servers) at startup, and there is no 

support to increase or decrease the ratio between client and servers based on load; note 

that upon failures, nodes can be dynamically removed from these systems, but this is 

done for system maintenance, not to optimize performance or costs. This is a critical 

difference, as these systems are typically installed by a system administrator and operate 

on dedicated clusters. Our work (Falkon and data diffusion) works on batch-scheduled 

distributed resources (such as those found in clusters and Grids used by the scientific 

community) which are shared by many users. Although MapReduce/Hadoop systems can 

also be shared by many users, nodes are shared by all users and data can be stored or 

retrieved from any node in the cluster at any time. In batch scheduled systems, sharing is 

done through abstraction called jobs which are bound to some number of dedicated nodes 

at provisioning time. Users can only access nodes that are provisioned to them, and when 

nodes are released there are no assumptions on the preservation of node local state (i.e. 

local disk and ram). Data diffusion supports dynamic resource provisioning by allocating 

resources from batch-scheduled systems when demand is high, and releasing them when 
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demand is low, which efficiently handles workloads which have much variance over 

time. The tight coupling of execution engine (MapReduce, Hadoop) and file system 

(GFS, HDFS) means that scientific applications must be modified, to use these 

underlying non-POSIX compliant filesystems to read and write files. Data diffusion 

coupled with the Swift parallel programming system [13, 10] can enable the use of data 

diffusion without any modifications to scientific applications, which typically rely on 

POSIX compliant file systems. Furthermore, through the use of Swift’s check-pointing at 

a per task level, failed application runs (synonymous with a job for MapReduce/Hadoop) 

can be restarted from the point they previously failed; although tasks can be retried in 

MapReduce/Hadoop, a failed task can render the entire MapReduce job failed. It is also 

worth mentioning that data replication in data diffusion occurs implicitly due to demand 

(e.g. popularity of a data item), while in Hadoop it is an explicit parameter that must be 

tuned per application. We believe Swift and data diffusion is a more generic solution for 

scientific applications and is better suited for batch-scheduled clusters and grids. 

Two systems that often compare themselves with MapReduce and GFS are Sphere 

[112] and Sector [113]. Sphere is designed to be used with the Sector Storage Cloud, and 

implements certain specialized, but commonly occurring, distributed computing 

operations. For example, the MapReduce programming model is a subset of the Sphere 

programming model, as the Map and Reduce functions could be any arbitrary functions 

in Sphere.  Sector is the underlying storage cloud that provides persistent storage for the 

data required by Sphere and manages the data for Sphere operations. Sphere is analogous 

to Swift, and Sector is analogous with data diffusion, although they each differ 
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considerably. For example, Swift is a general purpose parallel programming system, and 

the programming model of both MapReduce and Sphere are a subset of the Swift 

programming model. Data diffusion and Sector are quite similar in function, both 

providing the underlying data management for Falkon and Sphere, respectively. 

However, Falkon and data diffusion has been mostly tested within LANs, while Sector 

seems to be targeting WANs. Data diffusion has been architected to run in non-dedicated 

environments, where the resource pool (both storage and compute) varies based on load, 

provisioning resources on-demand, and releasing them when they are idle. Sector seems 

to be running on dedicated resources, and only handles decreasing the resource pool due 

to failures. Another important difference between Swift running over Falkon and data 

diffusion, as opposed to Sphere running over Sector, is the capability to run “black box” 

applications on distributed resources without any need to modify legacy applications, and 

access to files are done over POSIX read and write operations. Sphere and Sector seem to 

take the approach of MapReduce, in which applications are modified to support the read 

and write operations of applications.  

Our work is motivated by the potential to improve application performance and even 

enable the ease of implementation of certain applications that would otherwise be 

difficult to implement with adequate performance. This sub-section covers an overview 

of a broad range of systems used to perform analysis on large datasets.  The DIAL project 

that is part of the PPDG/ATLAS project focuses on the distributed interactive analysis of 

large datasets [114]. Chervenak et al. developed the Earth System Grid-I prototype to 

analyze climate simulation data using data Grid technologies [115]. The Mobius project 
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developed a sub-project DataCutter for distributed processing of large datasets [116]. A 

database oriented view for data analysis is taken in the design of GridDB, a data-centric 

overlay for the scientific Grid [117]. Olson et al. discusses Grid service requirements for 

interactive analysis of large datasets [118]. Several large projects (Mobius [119] and 

ATLAS [120]) implemented their own data management systems to aid in the respective 

application’s implementations. 

With respect to provable performance results, several online competitive algorithms 

are known for a variety of problems in scheduling (see [141] for a survey) and for some 

problems in caching (see [142] for a survey), but there are none, to the best of our 

knowledge, that combine the two.  The closest problem in caching is the two weight 

paging problem [143]; it allows for different page costs but assumes a single cache.   

In summary, we have seen very little work that tries to combine data management 

and compute management to harness data locality down to the node level, and to do this 

in a dynamic environment that has the capability to expand and contract its resource pool. 

Data aware scheduling has typically been done at the site level (within Grids), or perhaps 

rack level (for MapReduce and Hadoop), but no work has addressed data-aware 

scheduling down to the node or processor core level. Exploiting data locality in access 

patterns is the key to enabling scalable storage systems to efficiently scale to petascale 

systems and beyond. Furthermore, most of other work lack the assumption that Grid 

systems are managed by batch schedulers, which can complicate the deployment of 

permanent data management infrastructure such as Google’s GFS (or Hadoop’s HDFS) 

and the GFarm file system, making them impractical to be operated in a non-dedicated 
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environment at the user level. Another assumption of batch scheduled systems is the 

ability to run “black box” applications, an assumption that is not true for systems such as 

MapReduce, Hadoop, or Sphere.  

Much of our work is pushing the limits of the traditional scientific computing 

environments which heavily rely on parallel file systems for application runtimes, which 

are generally separated from the compute resources via a high speed network. Our work 

strives to make better use of the local resources found on most compute nodes (i.e. local 

memory and disk) and to minimize the reliance on shared infrastructure (i.e. parallel file 

systems) that can hamper performance and scalability of data-intensive applications at 

scale.   
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3 Multi-Level Scheduling and Streamlined Task Dispatching 

To enable the rapid execution of many tasks on compute clusters, we have developed 

Falkon, a Fast and Light-weight tasK executiON framework. Falkon integrates (1) multi-

level scheduling to separate resource acquisition (via, e.g., requests to batch schedulers) 

from task dispatch, and (2) a streamlined dispatcher. Falkon’s integration of multi-level 

scheduling and streamlined dispatchers delivers performance not provided by any other 

system. We describe Falkon architecture and implementation, and present performance 

results for both microbenchmarks and applications. Microbenchmarks show that Falkon 

throughput and scalability are one to two orders of magnitude better than other systems 

used in production Grids.  

The results presented in this chapter have been published in [4]. 



44 

3.1 Overview 

Many interesting computations can be expressed conveniently as data-driven task 

graphs, in which individual tasks wait for input to be available, perform computation, and 

produce output. Systems such as DAGMan [36], Karajan [55], Swift [13], and VDS [121] 

support this model. These systems have all been used to encode and execute thousands of 

individual tasks.   

In such task graphs, as well as in the popular master-worker model [122], many tasks 

may be logically executable at once. Such tasks may be dispatched to a parallel compute 

cluster or (via the use of grid protocols [123]) to many such clusters. The batch 

schedulers used to manage such clusters receive individual tasks, dispatch them to idle 

processors, and notify clients when execution is complete. 

This strategy of dispatching tasks directly to batch schedulers has three 

disadvantages. First, because a typical batch scheduler provides rich functionality (e.g., 

multiple queues, flexible task dispatch policies, accounting, per-task resource limits), the 

time required to dispatch a task can be large—30 secs or more—and the aggregate 

throughput relatively low (perhaps two tasks/sec). Second, while batch schedulers may 

support different queues and policies, the policies implemented in a particular 

instantiation may not be optimized for many tasks. For example, a scheduler may allow 

only a modest number of concurrent submissions for a single user. Third, the average 

wait time of grid jobs is higher in practice than the predictions from simulation-based 

research. [124] These factors can cause problems when dealing with application 

workloads that contain a large number of tasks. 
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One solution to this problem is to transform applications to reduce the number of 

tasks. However, such transformations can be complex and/or may place a burden on the 

user. Another approach is to employ multi-level scheduling [92, 93]. A first-level request 

to a batch scheduler allocates resources to which a second-level scheduler dispatches 

tasks. The second-level scheduler can implement specialized support for task graph 

applications. Frey [50] and Singh [125] create an embedded Condor pool by “gliding in” 

Condor workers to a compute cluster, while MyCluster [95] can embed both Condor 

pools and Sun Grid Engine (SGE) clusters. Singh et al. [96, 94] report 50% reductions in 

execution time relative to a single-level approach. 

We seek to achieve further improvements by:  

1. Reducing task dispatch time by using a streamlined dispatcher that eliminates 

support for features such as multiple queues, priorities, accounting, etc. 

2. Using an adaptive provisioner to acquire and/or release resources as 

application demand varies.  

To explore these ideas, we have developed Falkon, a Fast and Light-weight tasK 

executiON framework. Falkon incorporates a lightweight task dispatcher, to receive, 

enqueue, and dispatch tasks; a simple task executor, to receive and execute tasks; and a 

provisioner, to allocate and deallocate executors. 

Microbenchmarks show that Falkon can process millions of task and scale to 54,000 

executors. A synthetic application demonstrates the benefits of adaptive provisioning. 

Finally, results for two applications demonstrate that substantial speedups can be 

achieved for real scientific applications. 
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3.2 Falkon Architecture  

Our description of the Falkon architecture encompasses execution model, 

communication protocol, performance enhancements, and information regarding ease of 

use of the Falkon API.  

3.2.1 Execution Model 

Each task is dispatched to a computational resource, selected according to the 

dispatch policy. If a response is not received after a time determined by the replay policy, 

or a failed response is received, the task is re-dispatched according to the dispatch policy 

(up to some specified number of retries). The resource acquisition policy determines 

when and for how long to acquire new resources, and how many resources to acquire. 

The resource release policy determines when to release resources. 

Dispatch policy. We consider here a next-available policy, which dispatches each 

task to the next available resource. We assume here that all data needed by a task is 

available in a shared file system. In the future, we will examine dispatch policies that take 

into account data locality.  

Resource acquisition policy. This policy determines the number of resources, n, to 

acquire; the length of time for which resources should be requested; and the request(s) to 

generate to LRM(s) to acquire those resources. We have implemented five strategies that 

variously generate a single request for n resources, n requests for a single resource, or a 

series of arithmetically or exponentially larger requests, or that use system functions to 

determine available resources. The experiments reported in this chapter only considered 

the first policy (“all-at-once”), which allocates all needed resources in a single request. 
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Resource release policy. We distinguish between centralized and distributed 

resource release policies. In a centralized policy, decisions are made based on state 

information available at a central location. For example: “if there are no queued tasks, 

release all resources” or “if the number of queued tasks is less than q, release a resource.” 

In a distributed policy, decisions are made at individual resources based on state 

information available at the resource. For example: “if the resource has been idle for time 

t, the resource should release itself.” Note that resource acquisition and release policies 

are typically not independent: in most batch schedulers, a set of resources allocated in a 

single request must all be de-allocated before the requested resources become free and 

ready to be used by the next allocation. Ideally, one must release all resources obtained in 

a single request at once, which requires a certain level of synchronization among the 

resources allocated within a single allocation. In the experiments reported in this chapter, 

we used a distributed policy, releasing individual resources after a specified idle time was 

reached. In the future, we plan to improve our distributed policy by coordinating between 

all the resources allocated in a single request to de-allocate all at the same time. 

3.2.2 Architecture 

Falkon consists of a dispatcher, a provisioner, and zero or more executors (Figure 7). 

Figure 8 has the series of message exchanges that occur between the various Falkon 

components. As we describe the architecture and the components' interaction, we will 

denote the message numbers from Figure 8 in square braces; some messages have two 

numbers, denoting both a send and receive, while others have only a single number, 

denoting a simple send.  
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The dispatcher accepts tasks from clients and implements the dispatch policy. The 

provisioner implements the resource acquisition policy. Executors run tasks received 

from the dispatcher. Components communicate via Web Services (WS) messages (solid 

lines in Figure 8), except that notifications are performed via a custom TCP-based 

protocol (dotted lines). The notification mechanism is implemented over TCP because 

when we first implemented the core Falkon components using GT3.9.5, the Globus 

Toolkit did not support brokered WS notifications. The recent GT4.0.5 release supports 

brokered notifications. 

The dispatcher implements the factory/instance pattern, providing a create instance 

operation to allow a clean separation among different clients. To access the dispatcher, a 

client first requests creation of a new instance, for which is returned a unique endpoint 

reference (EPR). The client then uses that EPR to submit tasks {1,2}, monitor progress 

(or wait for notifications {8}), retrieve results {9,10}, and (finally) destroy the instance.  

A client “submit” request takes an array of tasks, each with working directory, 

command to execute, arguments, and environment variables. It returns an array of 

outputs, each with the task that was run, its return code, and optional output strings 

(STDOUT and STDERR contents). A shared notification engine among all the different 

queues is used to notify executors that work is available for pick up. This engine 

maintains a queue, on which a pool of threads operate to send out notifications. The GT4 

container also has a pool of threads that handle WS messages. Profiling shows that most 

dispatcher time is spent communicating (WS calls, notifications). Increasing the number 
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of threads should allow the service to scale effectively on newer multicore and 

multiprocessor systems.  

 
Figure 7: Falkon architecture overview 
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Figure 8: Falkon components and message exchange 
The dispatcher runs within a Globus Toolkit 4 (GT4) [79] WS container, which 

provides authentication, message integrity, and message encryption mechanisms, via 

transport-level, conversation-level, or message-level security [126]. 

The provisioner is responsible for creating and destroying executors. It is initialized 

by the dispatcher with information about the state to be monitored and how to access it; 

the rule(s) under which the provisioner should create/destroy executors; the location of 

the executor code; bounds on the number of executors to be created; bounds on the time 

for which executors should be created; and the allowed idle time before executors are 

destroyed.  

The provisioner periodically monitors dispatcher state {POLL} and, based on policy, 

determines whether to create additional executors, and if so, how many, and for how 

long. Creation requests are issued via GRAM4 [127] to abstract LRM details.  
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A new executor registers with the dispatcher. Work is then supplied as follows: the 

dispatcher notifies the executor when work is available {3}; the executor requests work 

{4}; the dispatcher returns the task(s) {5}; the executor executes the supplied task(s) and 

returns results, including return code and optional standard output/error strings {6}; and 

the dispatcher acknowledges delivery {7}. 

3.2.3 Push vs. Pull Model  

We considered both a push and a pull model when designing the Dispatcher-

Executor communication protocol. We explain here why we chose a hybrid push/pull 

model, where the push is a notification {3} and the pull is the get work {4}. 

In a pull model, Executors request work from the Dispatcher. A “get work” request 

can be either blocking or non-blocking. A blocking request can provide better 

responsiveness than a non-blocking request (as it avoids polling), but requires that the 

Dispatcher maintain state for each Executor waiting for work. In the case of non-blocking 

requests, Executors must poll the Dispatcher periodically, which can reduce 

responsiveness and scalability. For example, we find that when using Web Services 

operations to communicate requests, a cluster with 500 Executors polling every second 

keeps Dispatcher CPU utilization at 100%. Thus, the polling interval must be increased 

for larger deployments, which reduces responsiveness accordingly. Additionally, the 

Dispatcher does not control the order and rate of Executor requests, which can hinder 

efficient scheduling due to the inability for the scheduler to decide the order dispatched 

tasks. Despite all these negative things about a pull model, there are two advantages: 1) it 

is friendly with firewalls, and 2) it simplifies the Dispatcher logic. 
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A push model assumes that the Dispatcher can initiate a communication with its 

Executors, which implies one of the following three implementation alternatives for the 

Executor:  

1. It is implemented as a Web Service (as opposed to a simpler client that can 

only initiate WS communication). Thus, a WS container must be deployed on 

every compute node (in the absence of a shared file system); this alternative 

has the largest footprint but is easy to implement. 

2. It supports notifications. Here, we only need the client code plus a few 

libraries required for WS communications. This alternative has a medium-

sized footprint with a medium implementation complexity (WS and 

notification). 

3. It uses a custom communication protocol and can be both a server and a 

client. This approach only needs the libraries to support that protocol (e.g., 

TCP). It has the smallest footprint but requires the implementation of the 

custom protocol.  

All three approaches have problems with firewalls, but we have not found this to be 

a big issue in deployments to date, as the Dispatcher and Executors are typically located 

within a single site in which firewalls are not an issue. Chapter 4 addresses this problem 

via a three-tier architecture that supports both cross-firewall communications and 

communications with Executors operating in a private IP space. 

We decided to use alternative two, with medium footprint and medium 

implementation complexity. A notification simply identifies the resource key where the 
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work can be picked up from at the Dispatcher, and then the Executor uses a WS call to 

request the corresponding work. 

This hybrid pull/push model provides the following benefits: higher system 

responsiveness and efficiency relative to a pure push model; higher scalability relative to 

a pure pull model; medium size disk and memory footprint; more controllable throttling 

than a pure pull model; and the ability to implement more sophisticated (e.g., data-aware) 

schedulers. 

3.2.4 Performance Enhancements 

Communication costs can be reduced by task bundling between client and dispatcher 

and/or dispatcher and executors. In the latter case, problems can arise if task sizes vary 

and one executor gets assigned many large tasks, although that problem can be addressed 

by having clients assign each task an estimated runtime. We use client-dispatcher 

bundling in experiments described below, but (lacking runtime estimates) not dispatcher-

executor bundling. Another technique that can reduce message exchanges is to piggy-

back new task dispatches when acknowledging result delivery (messages {6,7} from 

Figure 8). 

Using both task bundling and piggy-backing, we can reduce the average number of 

message exchanges per task to be arbitrarily close to zero, by increasing the bundle size. 

In practice, we find that performance degrades for bundle sizes of greater than 300 

tasks—and, as noted above, bundling cannot always be used between dispatcher and 

executors. 
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With client-dispatcher bundling and piggy-backing alone, we can reduce the number 

of messages to two per task (one message from executor to dispatcher to deliver a result, 

and one associated response from dispatcher to executor to acknowledge receipt and 

provide a new task); these two messages make up a single WS call. Line shading in 

Figure 8 shows where bundling optimization can be used: black lines denote that the 

corresponding message occurs on a per-task basis, while grey lines denote that through 

bundling optimizations, the corresponding messages occur for a set of tasks.  

3.2.5 Ease of Use 

We modified the Swift parallel programming system by implementing a new 

provider to use Falkon for task dispatch. The Falkon provider has 840 lines of Java code, 

a value comparable to GRAM2 provider (850 lines), GRAM4 provider (517 lines), and 

the Condor provider (575 lines).  

3.3 Performance Evaluation 

Table 2 lists the platforms used in experiments, in addition to those from Section 2.2.  

Table 2: Platform descriptions 

 

Name # of 
Nodes Processors Memory Network

TG_ANL_IA32 98 Dual Xeon 
2.4GHz 4GB 1Gb/s

TG_ANL_IA64 64 Dual Itanium 
1.5GHz 4GB 1Gb/s

TP_UC_x64 122 Dual Opteron 
2.2GHz 4GB 1Gb/s

UC_x64 1 Dual Xeon 
3GHz w/ HT 2GB 100 Mb/s

UC_IA32 1 Intel P4 
2.4GHz 1GB 100 Mb/s
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Latency between these systems was one to two milliseconds. We assume a one-to-

one mapping between executors and processors in all experiments. Of the 162 nodes on 

TG_ANL_IA32 and TG_ANL_IA64, 128 were free for our experiments. 

3.3.1 Throughput without Data Access 

To determine maximum throughput, we measured performance running “sleep 0.” 

We ran executors on TG_ANL_IA32 and TG_ANL_IA64, the dispatcher on UC_x64, 

and the client generating the workload on TP_UC_x64. As each node had two processors, 

we ran two executors per node, for a total of 256 executors. We measured Falkon 

throughput for short (“sleep 0”) tasks both without any security and with 

GSISecureConversation that performs both authentication and encryption. We enabled 

two optimizations discussed below, namely client-dispatcher bundling and piggy-

backing; however, every task is transmitted individually from dispatcher to an executor. 

For purposes of comparison, we also tested GT4 performance with all security 

disabled. We created a simple service that incremented a counter for each WS call made 

to a counter service, and measured the number of WS calls per second that could be 

achieved from a varying number of machines. We claim this to be the upper bound on 

Falkon throughput performance that can be achieved on the tested hardware (UC_x64), 

assuming that there is no task bundling between dispatcher and executors, and that each 

task is handled via a separate dispatch. 

Figure 9 shows GT4 without security achieves 500 WS calls/sec; Falkon reaches 487 

tasks/sec (without security) and 204 tasks/sec (with security). A single Falkon executor 

without and with security can handle 28 and 12 tasks/sec, respectively.  
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We also measured Condor and PBS performance on the same testbed, with nodes 

managed by PBS v2.1.8. To measure PBS throughput, we submitted 100 short tasks 

(sleep 0) and measured the time to completion on the 64 available nodes. The experiment 

took on average 224 seconds for 10 runs netting 0.45 tasks/sec. As we did not have 

access to a dedicated Condor pool, we used MyCluster [95] to create a 64-node Condor 

v6.7.2 pool via PBS submissions. Once the 64 nodes were allocated from PBS and were 

available within MyCluster, we performed the same experiment, 100 short tasks over 

Condor. The total time was on average 203 seconds for 10 runs netting 0.49 tasks/sec. As 

far as we could tell, neither PBS nor Condor were using any security mechanisms 

between the various components within these systems. MyCluster does use authentication 

and authorization to setup the virtual cluster (a one time cost), but thereafter no security 

was used. It is also worth mentioning that we intentionally used a small number of tasks 

to test PBS and Condor as the achieved throughput drops as tasks accumulate in the wait 

queue, and our goal was to measure the best case scenario for their ability to dispatch and 

execute small tasks.  

There are newer versions of both Condor and PBS, and both systems can likely be 

configured for higher throughput. We do not know whether or not these experiments 

reflect performance with security enabled or not, and all the details regarding the 

hardware used; see Table 3 for details on the various hardware used and a summary of 

the reported throughputs. In summary, Falkon’s throughput performance compares 

favorably to all, regardless of the security settings used be these other systems. 
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Figure 9: Throughput as function of executor count 

Table 3: Measured and cited throughput for Falkon, Condor, and PBS 
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2GB 487
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Dual Xeon 3GHz w/ HT
2GB 204

Condor (v6.7.2) Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) 0.42
Condor (v6.9.3) 11

Condor-J2 Quad Xeon 3 GHz, 4GB 22
BOINC Dual Xeon 2.4GHz, 2GB 93
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3.3.2 Throughput with Data Access 

Most tasks started via a system such as Falkon, Condor, or PBS will need to read and 

write data. A comprehensive evaluation of these systems’ I/O performance is difficult 

because of the wide range of I/O architectures encountered in practical settings. 

As a first step towards such an evaluation, we measured Falkon throughput with 

synthetic tasks that performed data staging as well as computation. We fixed the number 

of executors at 128 (64 nodes) and performed four sets of experiments in which, for 

varying data sizes from one byte to one GB, we varied (a) data location (on GPFS shared 

file system or the local disk of each compute node), and (b) whether tasks only read or 

both read and wrote the data. All experiments were performed without security. 

Figure 10 shows our results. All scales are logarithmic. The solid lines denote 

throughput in tasks/sec and the dotted lines denote throughput in Mb/sec. Falkon 

maintained high task throughput (within a few percent of the peak 487 tasks/sec) for up 

to 1 MB data sizes (for GPFS read and LOCAL read+write) and up to 10 MB data size 

(for LOCAL read). For GPFS read+write, the best throughput Falkon could achieve was 

150 tasks/sec, even with 1 byte data sizes. We attribute this result to the GPFS shared file 

system’s inability to support many write operations from 128 concurrent processors. (The 

GPFS shared file system in our testbed has eight I/O nodes.) 

As data sizes increase, throughput (Mb/sec: dotted lines) plateaus at either 1 MB or 

10 MB data sizes, depending on the experiment. GPFS read+write peaks at 326 Mb/sec, 

GPFS read at 3,067 Mb/sec, LOCAL read+write at 32,667 Mb/sec, and LOCAL read at 
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52,015 Mb/sec. With 1 GB data, throughput was 0.04 tasks/sec, 0.4 tasks/sec, 4.28 

tasks/sec, and 6.81 tasks/sec, respectively. 

 

Figure 10: Throughput as a function of data size on 64 nodes 
We have not performed comparable experiments with the PBS and Condor systems 

considered earlier. However, as tasks started via these systems will access data via the 

same mechanisms as those evaluated here, we can expect that as the amount of data 

accesses increases, I/O costs will come to dominate and performance differences among 

the systems will become smaller.  

More importantly, these results emphasize the importance of using local disk to 

cache data products written by one task and read by another on local disk—a feature 

supported by Falkon, although not evaluated here. 

0.001
0.01
0.1

1
10

100
1000

10000
100000

1B 1K
B

10
KB

10
0K

B
1M

B
10

MB

10
0M

B
1G

B

Data Size

Th
ro

ug
hp

ut
So

lid
 L

in
es

 (T
as

ks
/s

ec
)

D
ot

te
d 

Li
ne

s 
(M

b/
s)

GPFS Read+Write (tasks/sec) GPFS Read+Write (Mb/sec)
GPFS Read (tasks/sec) GPFS Read (Mb/sec)
LOCAL Read+Write (tasks/sec) LOCAL Read+Write (Mb/sec)
LOCAL Read (tasks/sec) LOCAL Read (Mb/sec)



60 

3.3.3 Bundling 

It has been shown that real grid workloads comprise a large percentage of tasks 

submitted as batches of tasks. [128] In order to optimize the task submission 

performance, we propose to bundle many tasks together in each submission.  We 

measured performance for a workload of “sleep 0” tasks as a function of task bundle size. 

Figure 11 shows that performance increases from about 20 tasks/sec, without bundling, to 

a peak of almost 1500 tasks/sec, with bundling.  

 
Figure 11: Bundling throughput and cost per task 

Performance decreases after around 300 tasks per bundle. We attribute this drop to 
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bigger array each time its size increases.) We will investigate this inefficiency to attempt 

to remedy this limitation. 

3.3.4 Efficiency and Speedup 

Figure 12 shows efficiency (EP=SP/P) as a function of number of processors (P) and 

task length; speedup is defined as SP=T1/TP, where Tn is the execution time on n 

processors. These experiments were conducted on TG_ANL_IA32 and TG_ANL_IA64 

with no security and with optimizations such as bundling and “piggy-backing” enabled.  

 
Figure 12: Efficiency for various task length and executors 

We see that even with short (1 sec) tasks, we achieve high efficiencies (95% in the 
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executors beyond the maximum throughput we can sustain (487 executors with 1 sec 

long tasks, netting the 487 tasks/sec), the efficiency of the 1 sec tasks will start to drop as 

the Dispatcher’s CPU utilization will be saturated. In the worst case (1 sec tasks), we 

achieve a speedup of 242 with 256 executors; with 64 sec tasks, the speedup is 255.5. 

We performed two similar experiments on Condor and PBS to gain insight into how 

Falkon efficiency compared with that of other systems. We fixed the number of resources 

to 32 nodes and measured the time to complete 64 tasks of various lengths (ranging from 

1 sec to 16384).  

We see Falkon’s efficiency to be 95% with 1 sec tasks and 99% with 8 sec tasks. In 

contrast, both PBS (v2.1.8) and Condor (v6.7.2) have an efficiency of less than 1% for 1 

sec tasks and require about 1,200 sec tasks to get 90% efficiency and 3,600 sec tasks to 

get 95% efficiency. They only achieve 99% efficiency with 16,000 sec tasks.  

As both the tested PBS and Condor versions that are in production on the 

TG_ANL_IA32 and TG_ANL_IA64 clusters are not the latest versions, we also derived 

the efficiency curve for Condor version 6.9.3, the latest development Condor version, 

which is claimed to have a throughput of 11 tasks/sec [129] (up from our measured 

0.45~0.49 tasks/sec and the 2 tasks/sec reported by others [83]). Efficiency is much 

improved, reaching 90%, 95%, and 99% for task lengths of 50, 100, and 1000 secs. 

respectively.  

The results in Figure 13 for Condor v6.9.3 are derived, not measured. We derived 

based on the achieved throughput cited in [129] of 11 tasks/sec for sleep 0 tasks. 

Essentially, we computed the per task overhead of 0.0909 seconds, which we could then 
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add to the ideal time of each respective task length to get an estimated task execution 

time. With this execution time, we could compute speedup, which we then used to 

compute efficiency. Our derivation of efficiency is simplistic, but it allowed us to plot the 

likely efficiency of the latest development Condor code against the older production 

Condor code, the PBS production code, and Falkon. It should be noted that Figure 13 

illustrates the efficiency of these systems for a relatively small set of resources (only 64 

processors), and that the efficiency gap will likely only increase as the number of 

resources increases. 

 

Figure 13: Efficiency of resource usage for varying task lengths on 64 processors 
comparing Falkon, Condor and PBS 
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3.3.5 Scalability 

To test scalability and robustness, we performed experiments that pushed Falkon to 

its limits, both in terms of memory consumption and in terms of CPU utilization.  

Our first experiment studies Falkon’s behavior as the task queue increases in length. 

We constructed a client that submits two million “sleep 0” tasks to a dispatcher 

configured with a Java heap size set to 1.5GB. We created 64 executors on 32 machines 

from TG_ANL_IA32 and ran the dispatcher on UC_x64 and the client on TP_UC_x64.  

Figure 14 results show the entire run over time. The solid black line is the 

instantaneous queue length, the light blue dots are raw samples (once per sec) of achieved 

throughput in terms of task completions, and the solid blue line is the moving average 

(over 60 sample intervals, and thus 60 secs) of raw throughput. Average throughput was 

298 tasks/sec. Note the slight increase of about 10~15 tasks/sec when the queue stopped 

growing, as the client finished submitting all two million tasks.  

The graph shows the raw throughput samples (taken at 1 second intervals) to be 

between 400 and 500 tasks per second for the majority of the experiment, yet the moving 

average was around 300 tasks/sec. A close analysis shows frequent raw throughput 

samples at 0 tasks/sec, which we attribute to JVM garbage collection. We may be able to 

reduce this variation by configuring the JVM to garbage collect more frequently. These 

results are from an early version of our implementation, which has been improved 

significantly. Performance results from the latest version of Falkon can be found in 

Chapter 4. 
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Figure 14: Long running test with 2M tasks 
In a second experiment, we tested how many executors the dispatcher could handle. 
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the client and the dispatcher. Note that piggy-backing would have made no difference as 

each executor only processed one task each. More recently, we have been able to run 

Falkon at extremely large scale, on 160K executors on 160K real processors on the IBM 

Blue Gene/P supercomputer; more on these results can be found in Chapter 4. 

Figure 15 shows that the dispatch rate (green line) equals the submit rate. The black 

line shows the number of busy executors, which increases from 0 to 54K in 408 secs. As 

soon as the first task finishes after 480 secs (the task length), results start to be delivered 

to the client at about the same rate as they were submitted and dispatched. Overall 

throughput (including ramp up and ramp down time) was about 60 tasks/sec. 

We also measured task overhead, by which we mean the time it takes an executor to 

create a thread to handle the task, pick up a task via one WS call, perform an Java exec 

on the specified command (“sleep 480”), and send the result (the exit return code) back 

via one WS call, minus 480 secs (the task run time). Figure 16 shows per task overhead 

in millisecs for each task executed in the experiment of Figure 15, ordered by task start 

time.  

We see that most overheads were below 200 ms, with just a few higher than that and 

a maximum of 1300 ms. (As we have 900 executors per physical machine, overhead is 

higher than normal as each thread gets only a fraction of the computer’s resources.) 
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Figure 15: Falkon scalability with 54K executors 

 
Figure 16: Task overhead with 54K executors 
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3.4 Conclusion 

The schedulers used to manage parallel computing clusters are not typically 

configured to enable easy configuration of application-specific scheduling policies. In 

addition, their sophisticated scheduling algorithms and feature-rich code base can result 

in significant overhead when executing many short tasks.  

We have designed Falkon, a Fast and Light-weight tasK executiON framework, to 

enable the efficient dispatch and execution of many small tasks. To this end, it uses a 

multi-level scheduling strategy to enable separate treatment of resource allocation (via 

conventional schedulers) and task dispatch (via a streamlined, minimal-functionality 

dispatcher). Clients submit task requests to a dispatcher, which in turn passes tasks to 

executors. A provisioner is responsible for allocating and de-allocating resources in 

response to changing demand; thus, users can trade off application execution time and 

resource utilization. Bundling and piggybacking can reduce further per-task dispatch cost. 

Microbenchmarks show that Falkon can achieve one to two orders of magnitude 

higher throughput (487 tasks/sec) when compared to other batch schedulers. It can 

sustain high throughput with up to 54,000 managed executors and can process 2,000,000 

tasks in 112 minutes, operating reliably with queue lengths exceeding 1,500,000 tasks.  

Falkon’s novelty consist in its combination of a fast lightweight scheduling overlay 

on top of virtual clusters with the use of grid protocols for adaptive resource allocation. 

This approach allows us to achieve higher task throughput than previous systems, while 

also allowing applications to trade off system responsiveness, resource utilization, and 

execution efficiency. 
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4 Distributing the Falkon Architecture to Support Petascale 

Systems 

We have extended the Falkon lightweight task execution framework to make loosely 

coupled programming on petascale systems a practical and useful programming model. 

This work studies and measures the performance factors involved in applying this 

approach to enable the utilization of petascale systems by a broader user community, and 

with greater ease. Our work enables the execution of highly parallel computations 

composed of loosely coupled serial jobs with no modifications to the respective 

applications. This approach allows new—and potentially far larger—class of applications 

to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present 

the challenges of I/O performance encountered in making this model practical, and show 

results using both micro-benchmarks and real applications from two domains, economic 
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energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 

160K processor cores with high efficiency, and can achieve thousands of tasks/sec 

sustained execution rates. 

The results presented in this chapter have been published in [2]. 

4.1 Overview 

Emerging petascale computing systems, such as IBM’s Blue Gene/P [27], 

incorporate high-speed, low-latency interconnects and other features designed to support 

tightly coupled parallel computations. The majority of the applications run on these 

computers have a single program multiple data (SMPD) structure, and are commonly 

implemented by using the Message Passing Interface (MPI) to achieve the needed inter-

process communication.  

We want to enable the use of these systems for task-parallel applications, which are 

linked into useful workflows through the looser task-coupling model of passing data via 

files between dependent tasks. This potentially larger class of task-parallel applications is 

precluded from leveraging the increasing power of modern parallel systems due to the 

lack of efficient support in those systems for the “scripting” programming model. With 

advances in e-Science and the growing complexity of scientific analyses, more scientists 

and researchers rely on various forms of scripting to automate end-to-end application 

processes involving task coordination, provenance tracking, and bookkeeping. Their 

approaches are typically based on a model of loosely coupled computation, in which data 

is exchanged among tasks via files, databases or XML documents, or a combination of 

these. Furthermore, with technological advances in both scientific instrumentation and 
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simulation, the volume of scientific datasets is growing exponentially. This vast increase 

in data volume combined with the growing complexity of data analysis procedures and 

algorithms have rendered traditional manual processing and exploration unfavorable as 

compared with modern high performance computing processes automated by scientific 

workflow systems. [18] 

We claim that MTC applications can be executed efficiently on today’s 

supercomputers; this chapter provides empirical evidence to prove our hypothesis. The 

chapter also describes the set of problems that must be overcome to make loosely coupled 

programming practical on emerging petascale architectures: local resource manager 

scalability and granularity, efficient utilization of the raw hardware, shared file system 

contention, and application scalability. We address these problems, and identify the 

remaining challenges that need to be overcome to make loosely coupled supercomputing 

a practical reality. Through our work, we have enabled a Blue Gene/P to efficiently 

support loosely coupled parallel programming without any modifications to the 

respective applications (except for recompilation), enabling the same applications that 

execute in a distributed grid environment to be run efficiently on a supercomputer. The 

Blue Gene/P that we refer to is the new IBM Blue Gene/P supercomputer (also known as 

Intrepid) at the U.S. Department of Energy's Argonne National Laboratory (ANL), which 

is ranked number 3 in the Top500 rankings [38] with 160K processor-cores with a Rpeak 

of 557 TF and Rmax of 450 TF. Throughout this chapter, we will use the term Blue 

Gene/P to denote the specific Blue Gene/P named Intrepid from ANL.  
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We validate our hypothesis by testing and measuring two systems, Swift [13, 55] and 

Falkon [4], which have been used to execute large-scale loosely coupled applications on 

clusters and grids. We present results for both micro-benchmarks and real applications 

executed on the Blue Gene/P. Micro-benchmarks show that we can scale to 160K 

processor-cores with high efficiency, and can achieve sustained execution rates of 

thousands of tasks per second. We also investigated two applications from different 

domains, economic energy modeling and molecular dynamics, and show excellent 

application scalability, speedup and efficiency as they scale to 128K cores. Note that for 

the remainder of this chapter, we will use the terms processors, CPUs, and cores 

interchangeably to mean the same thing. 

4.2 Requirements and Implementation 

The contribution of this work is the ability to enable a new class of applications—

large-scale loosely coupled—to efficiently execute on petascale systems which are 

traditionally HPC systems. This is accomplished primarily through three mechanisms: 1) 

multi-level scheduling, 2) efficient task dispatch, and 3) extensive use of caching to avoid 

shared infrastructure (e.g. file systems and interconnects). 

Multi-level scheduling is essential on a system such as the Blue Gene/P because the 

local resource manager (LRM, Cobalt [54]) works at a granularity of psets [130], rather 

than individual computing nodes or processor cores. On the Blue Gene/P, a pset is a 

group of 64 quad-core compute nodes and one I/O node. Psets must be allocated in their 

entirety to user application jobs by the LRM, which imposes the constraint that the 

applications must make use of all 256 cores. Tightly coupled MPI applications are well 
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suited for this constraint, but loosely coupled applications generally have many single 

processor jobs, each with possibly unique executables and parameters. Naively running 

such applications on the Blue Gene/P using the system’s Cobalt LRM would yield a 

utilization of 1/256. We use multi-level scheduling to allocate compute resources from 

Cobalt at the pset granularity, and then make these resources available to applications at a 

single processor core granularity. Using this multi-level scheduling mechanism, we are 

able to launch a unique application, or the same application with unique arguments, on 

each core, and to launch such tasks repetitively throughout the allocation period. This 

capability is made possible through Falkon [4] and its resource provisioning mechanisms.  

A related obstacle to loosely coupled programming when using the native Blue 

Gene/P LRM is the overhead of scheduling and starting resources. The Blue Gene/P 

compute nodes are powered off when not in use and must be booted when allocated to a 

job. As the compute nodes do not have local disks, the boot up process involves reading 

the lightweight IBM compute node kernel (or Linux-based ZeptoOS [82]) kernel image 

from a shared file system, which can be expensive if compute nodes are allocated and de-

allocated frequently. Using multi-level scheduling allows this high initial cost to be 

amortized over many jobs, reducing it to an insignificant overhead. With the use of multi-

level scheduling, executing a job is reduced to its bare and lightweight essentials: loading 

the application into memory, executing it, and returning its exit code – a process that can 

occur in milliseconds. We contrast this with the cost to reboot compute nodes, which is 

on the order of multiple seconds (for a single node) and can be as high as a thousand 

seconds in the case of 40K nodes all booting at the same time (see Figure 19).  
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The second mechanism that enables loosely coupled applications to be executed on 

the Blue Gene/P is a streamlined task submission framework (Falkon [4]). Falkon relies 

on LRMs for many functions (e.g., reservation, policy-based scheduling, accounting) and 

client frameworks such as workflow systems or distributed scripting systems for others 

(e.g., recovery, data staging, job dependency management). This specialization allows it 

to achieve several orders of magnitude higher performance (3773 tasks/sec in a Linux 

cluster environment, 3057 tasks/sec on the SiCortex, and 3071 tasks/sec on the Blue 

Gene/P—compared to 0.5 to 22 jobs per second for traditional LRMs such as Condor 

[36] and PBS [64]) [4]. These high throughputs are critical in running large number of 

tasks on many processors as efficiently as possible. For example, running many 60-

second tasks on 160K processors on the Blue Gene/P requires that we sustain an average 

throughput of 2730 tasks/sec; considering the best LRM performance of 22 tasks/sec 

[83], we would need 2 hour long tasks to get reasonable efficiency.  

The third mechanism we employ for enabling loosely coupled applications to 

execute efficiently on the Blue Gene/P is extensive caching of application data to allow 

better application scalability by avoiding shared file systems. As workflow systems 

frequently employ files as the primary communication medium between data-dependent 

jobs, having efficient mechanisms to read and write files is critical. The compute nodes 

on the Blue Gene/P do not have local disks, but they have both a shared file system 

(GPFS [46]) and local file system implemented in RAM (“ramdisk”). We make extensive 

use of the ramdisk local file system, to cache files such as application scripts and binary 

executables, static input data which is constant across many jobs running an application, 
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and in some cases, output data from the application until enough data is collected to allow 

efficient writes to the shared file system. We found that naively executing applications 

directly against GPFS yielded unacceptably poor performance, but with successive levels 

of caching we were able to increase the execution efficiency to within a few percent of 

ideal.  

The caching we refer to in this chapter is a different mechanism than the data 

diffusion described in [3, 19, 1], which is covered in Chapter 6. Data diffusion deals with 

dynamic data caching and replication, as well as with data-aware scheduling. Due to the 

network topology of the Blue Gene/P, and the architecture changes in which we 

distributed the Falkon dispatcher, where compute nodes are grouped into private 

networks per pset (in groups of 256 CPUs), we have not been able to use data diffusion in 

its current form on the Blue Gene/P. Despite the simple caching scheme we have 

employed on the Blue Gene/P, it has proved to be quite effective in scaling applications 

up to 128K processors (while the same applications and workloads didn’t scale well 

beyond 8K processors). Note that caching is done completely automated, via a wrapper 

script that we facilitate to the application.  

4.2.1 Swift and Falkon 

To harness a wide array of loosely coupled applications that have already been 

implemented and executed in clusters and grids, we build upon the Swift [13, 10] and 

Falkon [4] systems. Swift enables scientific workflows through a data-flow-based 

functional parallel programming model. It is a parallel scripting tool for rapid and reliable 

specification, execution, and management of large-scale science and engineering 
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workflows. The runtime system in Swift relies on the CoG Karajan [57] workflow engine 

for efficient scheduling and load balancing, and it integrates with the Falkon light-weight 

task execution dispatcher for optimized task throughput and efficiency.  

Swift and Falkon have been used in a variety of environments from clusters, to 

multi-site Grids (e.g., Open Science Grid [45], TeraGrid [44]), to specialized large 

machines (SiCortex [56]), to supercomputers (e.g., Blue Gene/P [27]). Large-scale 

applications from many domains (e.g., astronomy [58, 4], medicine [59, 4, 60], chemistry 

[10], molecular dynamics [61], and economics [62, 63]) have been run at scales of up to 

millions of tasks on up to hundreds of thousands of processors.  

4.2.2 Implementation Details 

Significant engineering efforts were needed to get Falkon and Swift to work on 

systems such as the Blue Gene/P. This section discusses extensions we made to both 

systems, and the problems and bottlenecks they addressed. 

Static Resource Provisioning: When using static resource provisioning, applications 

requests a number of processors for a fixed duration directly from the Cobalt LRM. For 

example, the following command “falkon-start-bgp-ram.sh prod 1024 60” submits a 

single job to Cobalt to the “prod” queue and asks for 1024 nodes (4096 processors) for 60 

minutes; once the job goes into a running state and the Falkon framework is 

bootstrapped, applications interact directly with Falkon to submit single processor tasks 

for the duration of the allocation.  

Alternative Implementations: Performance depends critically on the behavior of our 

task dispatch mechanisms. The initial Falkon implementation was 100% Java, and made 
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use of GT4 Java WS-Core to handle Web Services communications. [79] The Java-only 

implementation works well in typical Linux clusters and Grids, but the lack of Java on 

the Blue Gene/L, Blue Gene/P, and SiCortex prompted us to re-implement some 

functionality in C. Table 4 has a summary of the differences between the two 

implementations. 

Table 4: Feature comparison between the Java and C Executor implementations 

Description Java C 
Robustness high Medium 

Security 
GSITransport, 

GSIConversation, 
GSIMessageLevel 

none 
could support SSL 

Communication 
Protocol WS-based TCP-based 

Error Recovery yes yes 
Lifetime Management yes no 

Concurrent Tasks yes no 

Push/Pull Model PUSH 
notification based PULL 

Firewall no yes 
NAT / Private 
Networks 

no in general 
yes in certain cases yes 

Persistent Sockets no - GT4.0 
yes - GT4.2 yes 

Performance Medium~High 
600~3700 tasks/s 

High 
1700~3200 tasks/s 

Scalability High ~ 54K CPUs Medium ~ 10K CPUs 
Portability medium high (needs recompile) 

Data Caching yes no 
In order to keep the implementation simple that would work on these specialized 

systems, we used a simple TCP-based protocol (to replace the prior WS-based protocol), 

internally between the dispatcher and the executor. We implemented a new component 

called TCPCore to handle the TCP-based communication protocol. TCPCore is a 

component to manage a pool of threads that lives in the same JVM as the Falkon 
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dispatcher, and uses in-memory notifications and shared objects for communication. For 

performance reasons, we implemented persistent TCP sockets so connections can be 

reused across tasks. In the future, we will consider switching the TCP-based proprietary 

protocol back to a WS-based one for the C implementation. It was not sufficient to 

change the worker implementation, as the service required corresponding revisions. In 

addition to the existing support for WS-based protocol, we implemented a new 

component called “TCPCore” to handle the TCP-based communication protocol (see 

Figure 17).  

 
Figure 17: The TCPCore overview, replacing the GT4 WS-Core component 

TCPCore is a component to manage a pool of threads that lives in the same JVM as 

the Falkon service, and uses in-memory notifications and shared objects to communicate 
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with the Falkon service. In order to make the protocol as efficient as possible, we 

implemented persistent TCP sockets (which are stored in a hash table based on executor 

ID or task ID, depending on what state the task is in).  

Distributed Falkon Architecture: The original Falkon architecture [4] use a single 

dispatcher (running on one login node) to manage many executors (running on compute 

nodes). The architecture of the Blue Gene/P is hierarchical, in which there are 10 login 

nodes, 640 I/O nodes, and 40K compute nodes. This led us to the offloading of the 

dispatcher from one login node (quad-core 2.5GHz PPC) to the many I/O nodes (quad-

core 0.85GHz PPC); Figure 18 shows the distribution of components on different parts of 

the Blue Gene/P.  

Experiments show that a single dispatcher, when running on modern node with 4 to 8 

cores at 2GHz+ and 2GB+ of memory, can handle thousands of tasks/sec and tens of 

thousands of executors. However, as we ramped up our experiments to 160K processors 

(each executor running on one processor), the centralized design began to show its 

limitations. One limitation (for scalability) was the fact that our implementation 

maintained persistent sockets to all executors (two sockets per executor). With the current 

implementation, we had trouble scaling a single dispatcher to 160K executors (320K 

sockets). Another motivation for distributing the dispatcher was to reduce the load on 

login nodes. The system administrators of the Blue Gene/P did not approve of the high 

system utilization (both memory and processors) of a login node for extended periods of 

time when we were running intense MTC applications. 
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Figure 18: 3-Tier Architecture Overview 

Our change in architecture from a centralized one to a distributed one allowed each 

dispatcher to manage a disjoint set of 256 executors, without requiring any inter-

dispatcher communication. The most challenging architecture change was the additional 

client-side functionality to communicate and load balance task submission across many 

dispatchers, and to ensure that it did not overcommit tasks that could cause some 

dispatchers to be underutilized while others queued up tasks. Our new architecture solved 

both our scalability problems to 160K processors and in reducing the load on the login 

nodes. 
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Reliability Issues at Large Scale: We discuss reliability only briefly here, to explain 

how our approach addresses this critical requirement. The Blue Gene/L has a mean-time-

to-failure (MTBF) of 10 days [26], which can pose challenges for long-running 

applications. When running loosely coupled applications via Swift and Falkon, the failure 

of a single node only affects the task(s) that were being executed by the failed node at the 

time of the failure. I/O node failures only affect their respective psets (256 processors); 

these failures are identified by heartbeat messages or communication failures. Falkon has 

mechanisms to identify specific errors, and act upon them with specific actions. Most 

errors are generally passed back up to the application (Swift) to deal with them, but other 

(known) errors can be handled by Falkon directly by rescheduling the tasks. Falkon can 

suspend offending nodes if too many tasks fail in a short period of time. Swift maintains 

persistent state that allows it to restart a parallel application script from the point of 

failure, re-executing only uncompleted tasks. There is no need for explicit check-pointing 

as is the case with MPI applications; check-pointing occurs inherently with every task 

that completes and is communicated back to Swift.  

4.3 Micro-Benchmarks Performance 

We use micro-benchmarks to determine performance characteristics and potential 

bottlenecks on systems with many cores. We measure startup costs, task dispatch rates, 

and costs for various file system operations (read, read+write, invoking scripts, mkdir, 

etc) on the shared file systems (GPFS) that we use when running large-scale applications. 
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4.3.1 Startup Costs 

Our first micro-benchmark attempts to capture the incremental costs involved (see 

Figure 19) in variously booting the Blue Gene/P at various scales (red), starting the 

Falkon framework (green), and initializing the Falkon framework so it is ready to process 

tasks (blue). On a single pset (256 processors), it takes 125 seconds to prepare Falkon to 

process the first task; on the full 160K processors, it takes 1326 seconds. At the smallest 

scale, starting and initializing the Falkon framework constitutes 31% of the total time, but 

at large scales, the boot time starts to dominate and on 160K nodes the Falkon framework 

takes only 17% of total time. 

 

Figure 19: Startup costs in booting the Blue Gene/P, starting the Falkon framework, 
and initializing Falkon 
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We examine where the 1090 seconds is spent when booting ZeptOS on 160K nodes. 

The largest part of this time (708 seconds) is spent mounting GPFS. The next big block 

of time is the sending of the kernels and ramdisks to the compute and I/O nodes, which 

takes 213 seconds. Mounting NFS takes 55 seconds. Starting various services from NFS, 

such as SSH, takes 85 seconds. These costs account for over 97% of the 1090 seconds 

required to boot the Blue Gene/P.  

4.3.2 Falkon Task Dispatch Performance 

One key component to achieving high utilization of large-scale systems is achieving 

high task dispatch and execute rates. Figure 20 has a summary of the dispatch rates 

Falkon achieved on various testbeds. In Chapter 3, we reported that Falkon with a Java 

Executor and WS-based communication protocol achieves 487 tasks/sec in a Linux 

cluster (ANL/UC) with 256 CPUs, where each task was a “sleep 0” task with no I/O. We 

repeated the peak throughput experiment on a variety of systems (ANL/UC Linux cluster, 

SiCortex, and Blue Gene/P) for both versions of the executor (Java and C, WS-based and 

TCP-base respectively) at significantly larger scales. We achieved 2534 tasks/sec (Linux 

cluster, 1 dispatcher, 200 CPUs), 3186 tasks/sec (SiCortex, 1 dispatcher, 5760 CPUs), 

1758 tasks/sec (Blue Gene/P, 1 dispatcher, 4096 CPUs), and 3071 tasks/sec (Blue 

Gene/P, 640 dispatchers, 163840 CPUs). The throughput numbers that indicate “1 

dispatcher” are tests done with the original centralized architecture. The last throughput 

of 3071 tasks/sec was achieved with the dispatchers distributed over 640 I/O nodes, each 

managing 256 processors. 
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Figure 20: Task dispatch and execution throughput for trivial tasks with no I/O 
(sleep 0) 

In order to make visualizing the state of Falkon easier, we have formatted various 

Falkon  logs to be printed in a specific format that can be read by the GKrellm [131] 

monitoring GUI to display real time state information. Figure 21 shows 1 million tasks 

(sleep 60) executed on 160K processors on the IBM Blue Gene/P supercomputer. 

Overall, it took 453 seconds to complete 1M tasks, with an ideal time being 420 seconds, 

achieving 93% efficiency. To place this benchmark in context, of what an achievement it 

is to be able to run 1 million tasks in 7.5 minutes, others [132] have managed to run 1 

million jobs in 6 months. Grant it that the 1 million jobs they referred to in [132] were 

real computations with real data, and not just “sleep 60” tasks, due to the large overheads 

of scheduling jobs through Condor [36] and other production local resource managers, 
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running 1 million jobs, no matter how short they are, will likely still take on the order of 

days (not minutes as is the case with Falkon). 

 

Figure 21: Monitoring via GKrellm while running 1M tasks on 160K processors 
The experiments presented in Figure 20 and Figure 21 were conducted using one 

million tasks. We thought it would be worthwhile to conduct a larger scale experiment, 

with one billion tasks, to validate that the Falkon service can reliably run under heavy 

stress for prolonged periods of time. Figure 22 depicts the endurance test running one 

billion tasks (sleep 0) on 128 processors, which took 19.2 hours to complete. We ran the 

distributed version of the Falkon dispatcher using four instances on an 8-core server 

using bundling of 100, which allowed the aggregate throughput to be four times higher 

than that reported in Figure 20. Over the course of the experiment, the throughput 

decreased from 17K+ tasks/sec to just over 15K+ tasks/sec, with an average throughput 
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of 15.6K tasks/sec. The loss in throughput is attributed to a memory leak in the client, 

which was making the free heap size smaller and smaller, and hence invoking the 

garbage collection more frequently. We estimated that 1.5 billion tasks would have been 

sufficient to exhaust the 1.5GB heap we had allocated the client, and the client would 

have likely failed at that point. Nevertheless, 1.5 billion tasks is larger than any 

application parameter space we have today, and is many orders of magnitude larger than 

what other systems support. The following sub-section attempts to compare and contrast 

the throughputs achieved between Falkon and other local resource managers. 

 

Figure 22: Endurance test with 1B tasks on 128 CPUs in ANL/UC cluster 
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4.3.2.1 Comparing Falkon to Other LRMs and Solutions 

It is instructive to compare with task execution rates achieved by other local resource 

managers. In Chapter 3, we measured Condor (v6.7.2, via MyCluster [95]) and PBS 

(v2.1.8) performance in a Linux environment (the same environment where we test 

Falkon and achieved 2534 tasks/sec throughputs). The throughputs we measured for PBS 

was 0.45 tasks/sec and for Condor was 0.49 tasks/sec; other studies in the literature have 

measured Condor’s performance as high as 22 tasks/sec in a research prototype called 

Condor J2 [83].  

We also tested the performance of Cobalt (the Blue Gene/P’s LRM), which yielded a 

throughput of 0.037 tasks/sec; recall that Cobalt also lacks the support for single 

processor tasks, unless HTC-mode [53] is used. HTC-mode means that the termination of 

a process does not release the allocated resource and initiates a node reboot, after which 

the launcher program is used to launch the next application. There is still some 

management (which we implemented as part of Falkon) that needs to happen on the 

compute nodes, as exit codes from previous application invocations need to be persisted 

across reboots (e.g. to shared file system), sent back to the client, and have the ability to 

launch an arbitrary application from the launcher program. Running Falkon in 

conjunction with Cobalt’s HTC-mode support yielded a 0.29 task/sec throughput. We 

only investigated the performance of HTC-mode on the Blue Gene/L at small scales, as 

we realized that it will not be sufficient for MTC applications due to the high overhead of 

node reboots across tasks; we did not pursue it at larger scales, or on the Blue Gene/P.  
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As we covered in the related work section, Cope et al. [51] also explored a similar 

space as we have, leveraging HTC-mode [53] support in Cobalt on the Blue Gene/L. The 

authors had various experiments, which we tried to replicate for comparison reasons. The 

authors measured an overhead of 46.4±21.2 seconds for running 60 second tasks on 1 

pset of 64 processors on the Blue Gene/L. In a similar experiment in running 64 second 

tasks on 1 pset of 256 processors on the Blue Gene/P, we achieve an overhead of 1.2±2.8 

seconds, more than an order of magnitude better. Another comparison is the task startup 

time, which they measured to be on average about 25 seconds, but sometimes as high as 

45 seconds; the startup times for tasks in our system are 0.8±2.7 seconds. Another 

comparison is average task load time by number of simultaneously submitted tasks on a 

single pset and executable image size of 8MB (tasks return immediately, so the reported 

run time shows overhead). The authors reported an average of 40~80 seconds for 32 

simultaneous tasks on 32 compute nodes on the Blue Gene/L (1 pset, 64 CPUs). We 

measured our overheads of executing an 8MB binary to be 9.5±3.1 seconds on 64 

compute nodes on the Blue Gene/P (1 pset, 256 CPUs). Since these times include the 

time it took to cache the binary in ramdisk, we believe these numbers will remain 

relatively stable (within an order of magnitude) as we scale up to full 160K processors. 

Note that the work by Cope et al. is based on Cobalt’s HTC-mode [53], which implies 

that they perform a node reboot for every task, while we simply fork the application as a 

separate process for each task.  

Finally, Peter’s et al. from IBM also recently published some performance numbers 

on the HTC-mode native support in Cobalt [52], which shows a similar one order of 
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magnitude difference between HTC-mode on Blue Gene/L and our Falkon support for 

MTC workloads on the Blue Gene/P. For example, the authors reported a workload of 

32K tasks on 8K processors and 32 dispatchers take 182.85 seconds to complete (an 

overhead of 5.58ms per task), but the same workload on the same number of processors 

using Falkon completed in 30.31 seconds with 32 dispatchers (an overhead of 0.92ms per 

task). Note that a similar workload of 1M tasks on 160K processors run by Falkon can be 

completed in 368 seconds, which translates to 0.35ms per task overheads.   

4.3.2.2 Efficiency and Speedup 

To better understand the performance achieved for different workloads, we measured 

performance as a function of task length. We made measurements in two different 

configurations: 1) 1 dispatcher and up to 2K processors, and 2) N/256 dispatchers on up 

to N=160K processors, with 1 dispatcher managing 256 processors. We varied the task 

lengths from 1 second to 256 seconds (using sleep tasks with no I/O), and ran workloads 

ranging from 1K tasks to 1M tasks (depending on the task lengths, to ensure that the 

experiments completed in a reasonable amount of time). 

Figure 23 investigates the effects of efficiency of 1 dispatcher running on a faster 

login node (quad core 2.5GHz PPC) at relatively small scales. With 4 second tasks, we 

can get high efficiency (95%+) across the board (up to the measured 2K processors). 

Figure 24 shows the efficiency with the distributed dispatchers on the slower I/O nodes 

(quad core 850 MHz PPC) at larger scales. It is interesting to notice that the same 4 

second tasks that offered high efficiency in the single dispatcher configuration now 

achieves relatively poor efficiency, starting at 65% and dropping to 7% at 160K 
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processors. This is due to both the extra costs associated with running the dispatcher on 

slower hardware, and the increasing need for high throughputs at large scales. If we 

consider the 160K processor case, based on our experiments, we need tasks to be at least 

64 seconds long to get 90%+ efficiency. Adding I/O to each task will further increase the 

minimum task length in order to achieve high efficiency.  

 
Figure 23: Efficiency graph for the Blue Gene/P for 1 to 2048 processors and task 

lengths from 1 to 32 seconds using a single dispatcher on a login node 
To summarize: distributing the Falkon dispatcher from a single (fast) login node to 

many (slow) I/O nodes has both advantages and disadvantages. The advantage is that we 

achieve good scalability to 160K processors, but at the cost of significantly worse 

efficiency at small scales (less than 4K processors) and short tasks (1 to 8 seconds). We 

believe both approaches are valid, depending on the application task execution 

distribution and scale of the application.  
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Figure 24: Efficiency graph for the Blue Gene/P for 256 to 160K processors and task 

lengths ranging from 1 to 256 seconds using N dispatchers with each dispatcher 
running on a separate I/O node 

4.3.2.3 Dispatch Processing Overheads 

In trying to understand the various costs leading to the throughputs achieved in Figure 

20, Figure 25 profiles the service code, and breaks down the CPU time by code block. 

This test was done on the VIPER.CI and the ANL/UC Linux cluster with 200 CPUs, with 

throughputs reaching 487 tasks/sec and 1021 tasks/sec for the Java and C 

implementations respectively.  A significant portion of the CPU time is spent in 

communication (WS and/or TCP). With bundling (not shown in Figure 25), the 

communication costs are reduced to 1.2 ms (down from 4.2 ms), as well as other costs. 

Our conclusion is that the peak throughput for small tasks can be increased by both 

adding faster processors, more processor cores to the service host, and reducing the 

communication costs by lighter weight protocols or by bundling where possible. 
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Figure 25: Falkon profiling comparing the Java and C implementation on 
VIPER.CI (dual Xeon 3GHz w/ HT) 

4.3.2.4 Dispatch Network Overheads 

The previous several experiments all investigated the throughput and efficiency of 

executing tasks which had a small and compact description. For example, the task 

“/bin/sleep 0” requires only 12 bytes of information. The following experiment (Figure 

26) investigates how the throughput is affected by increasing the task description size. 

For this experiment, we compose 4 different tasks, “/bin/echo ‘string’”, where string is 

replaced with a different length string to make the task description 10B, 100B, 1KB, and 

10KB. We ran this experiment on the SiCortex with 1002 CPUs and the service on 

GTO.CI, and processed 100K tasks for each case.  
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We see the throughput with 10B tasks is similar to that of sleep 0 tasks on 5760 CPUs 

with a throughput of 3184 tasks/sec. When the task size is increased to 100B, 1KB, and 

10KB, the throughput is reduced to 3011, 2001, and 662 tasks/sec respectively. To better 

understand the throughput reduction, we also measured the network level traffic that the 

service experienced during the experiments. We observed that the aggregate throughput 

(both received and sent on a full duplex 100Mb/s network link) increases from 2.9MB/s 

to 14.4MB/s as we vary the task size from 10B to 10KB.  

 

Figure 26: Task description size on the SiCortex and 1K CPUs 
 The bytes/task varies from 934 bytes to 22.3 KB for the 10B to 10KB tasks. The 

formula to compute the bytes per task is 2*task_size + overhead of TCP-based protocol 

(including TCP/IP headers) + overhead of WS-based submission protocol (including 

XML, SOAP, HTTP, and TCP/IP) + notifications of results from executors back to the 
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service, and from the service to the user. We need to double the task size since the service 

first receives the task description from the user (or application), and then dispatches it to 

the remote executor. Only a brief notification with the task ID and exit code of the 

application is sent back. We might assume that the overhead is 934 – 2*10 = 914 bytes, 

but from looking at the 10KB tasks, we see that the overhead is 22.3KB – 2*10KB = 

2.3KB (higher than 0.9KB). We measured the number of TCP packets to be 7.36 

packets/task (10B tasks) and 28.67 packets/task (10KB tasks). The difference in TCP 

overhead 853 bytes (with 40 byte headers for TCP/IP, 28.67*40 - 7.36*40) explains most 

of the difference. We suspect that the remainder of the difference (513 bytes) is due to 

extra overhead in XML/SOAP/HTTP when submitting the tasks. 

4.3.3 Shared File System Performance 

Another key component to getting high utilization and efficiency on large-scale 

systems is to understand the shared resources well, and to make sure that the compute-to-

I/O ratio is appropriate. This sub-section discusses the shared file system performance of 

the Blue Gene/P. This is important as many MTC applications use files for inter-process 

communication, and these files are typically transferred from one node to another through 

the shared file system. Future work will remove this bottleneck, by using TCP pipes, MPI 

messages, or data diffusion [3, 1]. We conducted (see Figure 27) several experiments 

with various data sizes (1KB to 10MB) on a varying number of processors (4 to 16K); we 

conducted both read-only tests (dotted lines) and read+write tests (solid lines).  

At 16K processors, we were not able to saturated GPFS – note the throughput lines 

never plateau. GPFS is configured with 16 I/O servers, each with 10Gb/s network 
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connectivity, and can sustain 8GB/s aggregate I/O rates. We were able to achieve 

4.4GB/s read rates, and 1.3GB/s read+write rates with 10MB files and 16K processors 

(we used the Linux “dd” utility to read or read+write data in 128KB blocks). We made 

our measurements in a production system, where the majority (90%+) of the system was 

in use by other applications, which might have been using the shared file system as well, 

influencing the results from this micro-benchmark. 

 

Figure 27: GPFS Throughput in MB/s measured through Falkon on various file 
sizes (1KB-10MB) and number of processors (4-16384) 

It is also important to understand how operation costs scale with increasing number 

of processors (see Figure 28). We tested file and directory creation in two scenarios; 

when all files or directories are created in the same directory (single dir), when each file 

or directory is created in a unique pre-created directory (across many dirs). We also 
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investigate the costs to invoke a script from GPFS. Finally, we measure the Falkon 

overhead (from a client perspective) of executing a trivial task with no I/O (sleep 0). Both 

the file and directory create when performed in the same directory are expensive 

operations as we scale up the number of processors; for example, at 16K processors, it 

takes (on average) 404 seconds to create a file, and 1217 seconds to create a directory.  

 

Figure 28: Time per operation (mkdir, touch, script execution) on GPFS on various 
number of processors (256-16384) 

These overheads translate to an aggregate throughput of 40 file creates per second 

and 13 directory creates per second. At these rates, 160K processors would require 68 

and 210 minutes to create 160K files or directories. In contrast, when each file or 

directory create take place in a unique directory, performance is significantly improved; 

at small scales (256 processors), a file/directory create (in a unique directory) only takes 
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8 seconds longer than a basic task with no I/O; at large scales (16K processors), the 

overhead grows to 11 seconds. We conclude that I/O writes should be split over many 

directories, to avoid lock contention within GPFS from concurrent writers. These times 

reflect the costs of creating a file or directory when all processors perform the operation 

concurrently; many applications have a wide range of task lengths, and read/write 

operations only occur at the beginning and/or end of a task (as is the case with our 

caching mechanism), the time per operation will be notably less due to the natural 

staggering of I/O calls.  

4.3.4 Running applications through Swift 

The results presented in these last several sections are from a static workload 

processed directly with Falkon. Swift on the other hand can be used to make the 

workload more dynamic, reliable, and provide a natural flow from the results of this 

application to the input of the following stage in a more complex workflow. Swift incurs 

its own overheads in addition to what Falkon experiences when running these 

applications. These overheads include 1) managing the data (staging data in and out, 

copying data from its original location to a workflow-specific location, and back from the 

workflow directory to the result archival location), 2) creating per-task working 

directories from the compute nodes (via mkdir on the shared file system), and 3) creation 

and tracking of several status logs files for each task.  

We ran a 16K task workload for the MARS application 144 model runs batched per 

task (65 second tasks) on 2048 CPUs which yielded an end-to-end efficiency of 20% with 

the default Swift settings and implementation. We investigated the main bottlenecks, and 
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they seemed to be shared file system related. We applied three distinct optimizations to 

the Swift wrapper script: 1) the placement of temporary directories in local ramdisk 

rather than the shared filesystem; 2) copies the input data to the local ramdisk of the 

compute node for each job execution; and 3) creates the per job logs on local ramdisk and 

only copies them at the completion of each job (rather than appending a file on shared file 

system at each job status change). These optimizations allowed us to increase the 

efficiency from 20% to 70% on 2048 processors for the MARS application. We will be 

working to narrow the gap between the efficiencies found when running Swift and those 

when running Falkon alone, and hope to get the Swift efficiencies up in the 90% range 

while reaching larger experiments involving 100K~1M tasks on 10K~160K CPUs.  

4.4 Characterizing MTC Applications for PetaScale Systems 

Based on our experience with the Blue Gene/P at 160K CPU scale (nearly 0.5 

petaflop Rpeak) and its shared file system (GPFS, rated at 8GB/s), we identify the 

following characteristics that define MTC applications that are most suitable for peta-

scale systems: 

• number of tasks >> number of CPUs 

• average task execution time > O(60 sec) with minimal I/O to achieve 90%+ 

efficiency 

• 1 sec of compute per processor core per 5KB~50KB of I/O to achieve 90%+ 

efficiency  
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The main bottleneck we found was the shared file system. GPFS is used throughout 

our system, from booting the compute nodes and I/O nodes, starting the Falkon 

dispatcher and executors, starting the applications, and reading and writing data for the 

applications. Assuming a large enough application, the startup costs (e.g. 1326 seconds to 

bootstrap and be ready to process the first task at 160K processors) can be amortized to 

an insignificant value. We offloaded the shared file system to in-memory operations by 

caching the Falkon middleware, the applications binaries, and the static input data needed 

by the applications in memory, so repeated use could be handled completely from 

memory. We found that the three applications we worked with all had poor write access 

patterns, in which many small line-buffered writes in the range of 100s of bytes were 

performed throughout the task execution. When 160K CPUs are all doing these small I/O 

calls concurrently, it can slow down the shared file system to a crawl, or even worse, 

crash it. The solution was to read dynamic input data from shared file system into 

memory in bulk (e.g., dd with block sizes of 128KB), let applications interact with their 

input and output files directly in memory, and write dynamic output data from memory to 

shared file system in bulk (e.g., dd, merge many output files into a single tar archive). 

4.5 Conclusions 

Clusters with 50K+ processor cores (e.g., TACC Sun Constellation System, Ranger), 

Grids (e.g., TeraGrid) with a dozen sites and 100K+ processors, and supercomputers with 

160K and 200K processors (e.g., IBM Blue Gene/P and Blue Gene/L respectively) are 

now available to the scientific community. This chapter focused on the ability to manage 

and execute large-scale applications on petascale class systems. Large clusters and 
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supercomputers have traditionally been HPC systems, as they are efficient at executing 

tightly coupled parallel jobs within a particular machine with low-latency interconnects, 

typically using MPI to achieve the needed inter-process communication. On the other 

hand, Grids have been the preferred platform for more loosely coupled applications that 

tend to be managed and executed through workflow or parallel programming systems. 

We have characterized these loosely coupled applications as many-task computing, 

which generally involve the execution of independent, sequential jobs that can be 

individually scheduled on many different computing resources across multiple 

administrative boundaries, and often use files for inter-process communication.  

Our work shows that today’s existing HPC systems are a viable platform to host 

MTC applications. We identified challenges in running large-scale loosely coupled 

applications on petascale systems, which can hamper the efficiency and utilization of 

these large-scale machines. These challenges vary from local resource manager 

scalability and granularity, efficient utilization of the raw hardware, shared file system 

contention and scalability, reliability at scale, application scalability, and understanding 

the limitations of the HPC systems in order to identify promising and scientifically 

valuable MTC applications. This chapter presented new research and implementations in 

scaling loosely coupled applications micro-benchmarks up to 160K processors.  
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5 Dynamic Resource Provisioning 

Batch schedulers commonly used to manage access to parallel computing clusters are 

not typically configured to enable easy configuration of application-specific scheduling 

policies. In addition, their sophisticated scheduling algorithms can be relatively expensive 

to execute. Thus, for example, applications that require the rapid execution of many small 

tasks often do not perform well. It has been proposed that these problems be overcome by 

separating the two tasks of provisioning and scheduling. This chapter focuses on resource 

provisioning, the various allocation and de-allocation policies, and how dynamic and 

adaptive provisioning can be in light of varying workloads.  We couple the proposed 

dynamic resource provisioning (DRP) with an existing system, Falkon, which is used for 

the scheduling of tasks to the provisioned resources. We describe the DRP architecture 

and implementation, and present performance results for both microbenchmarks and 

applications. Microbenchmarks show that DRP can allocate resources on the order of 10s 
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of seconds across multiple Grid sites and can reduce average queue wait times by up to 

95% (effectively yielding queue wait times within 3% of ideal). 

The results presented in this chapter have been published in [4, 6]. 

5.1 Overview 

Chapter 3 introduced the concept of dynamic resource provisioning, but it mainly 

focused on streamlined task dispatching. This chapter will focus on dynamic resource 

provisioning, and offer results to show its effectiveness.  

We seek to achieve improvements by:  

• Using an adaptive provisioner to acquire and/or release resources as application 

demand varies  

• Reducing average queue wait times by amortizing high overhead of resource 

allocation over the execution of many tasks  

To explore these ideas, we defined and implemented an architecture that permits the 

embedding of different provisioning and scheduling strategies.  We have implemented a 

range of provisioning strategies, and evaluate their performance.  We also integrated 

provisioning into Falkon, a Fast and Light-weight tasK executiON framework, which 

handles the scheduling and dispatching of independent tasks to provisioned resources. 

We use synthetic applications to demonstrate the benefits of adaptive provisioning, and 

quantify the effects of various allocation and de-allocation policies.   
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5.2 Architecture and Implementation 

5.2.1 Execution Model 

The resource acquisition policy determines when and for how long to acquire new 

resources, and how many resources to acquire. The resource release policy determines 

when to release resources. 

Resource Acquisition Policy. We have implemented various resource acquisition 

policies, which decide when and how to acquire new resources. This policy determines 

the state information that will be used to trigger new resource acquisitions. It also 

determines the number of resources to acquire based on the appropriate state information, 

as well as the length of time for which the resources should be required.  Having decided 

that n resources should be acquired, we then need to determine what request(s) to 

generate to the LRM to acquire those resources.  We have implemented four different 

strategies, with a fifth that we could implement if the LRMs support it. 

The first strategy, Optimal, assumes that we can query the resource manager to 

determine the maximum number of resources available to us. We then simply request that 

number if it is less than n, and request n otherwise.  This policy has not been 

implemented due to the fact that this feature is not the common case among LRMs and 

what they expose to applications.  The TeraGrid [44] for example is a case where such 

information is available, but it is done via batch queue prediction mechanisms which can 

be used to statistically predict the number of resources that could be allocated in a 

relatively short period of time.  
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The other strategies assume that we cannot obtain this maximum number via a query. 

In the One-at-a-time strategy, we submit n requests for a single resource. In the All-at-

once strategy, we issue a single request for n resources. In the Additive, strategy, for i=1, 

2, …, the ith request requests i resources; thus, ⎡ ⎤2/)118( −+n   requests are required to 

allocate n resources. Finally, in the Exponential strategy, for i=1, 2, …, the ith request 

requests 2i-1 resources. Thus, ⎡ ⎤)1(log2 +n  requests are required to allocate n resources.  

For the purpose of this chapter and the experiments conducted in this chapter that 

pertained to the resource provisioning, we used the all-at-once strategy.  

Resource Release Policy. We distinguish between centralized and distributed 

resource release policies. In a centralized policy, decisions are made based on state 

information available at a central location. For example: “if there are no tasks to process, 

release all resources,” and “if the number of queued tasks is less than q, release a 

resource.” In a distributed policy, decisions are made at individual resources based on 

state information available at the resource. For example: “if the resource has been idle for 

time t, the acquired resource should release itself.” Note that resource acquisition and 

release policies are typically not independent: in most batch schedulers, one must release 

all resources obtained in a single request at once. In the experiments reported in this 

chapter, we used a distributed policy, releasing resources after a specified idle time. 

5.2.2 Architecture 

As illustrated in Figure 29, our dynamic resource provisioning (DRP) system 

comprises: (1) user(s); (2) a DRP Utilizing Application (i.e. a Web Service such as 
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Falkon); (3) the Provisioner; (4) a Resource Manager (i.e. GRAM, Condor, PBS, etc); 

and (5) a resource pool.  The interaction between these various components is as follows.   

 

Figure 29: Dynamic Resource Provisioning Architecture 
The DRP utilizing application initializes the provisioner with a set of configuration 

parameters via message (0).  These parameters include: the state that needs to be 

monitored and how to access it, the rule(s) and conditions under which the provisioner 

should allocate/de-allocate resources, the location of the worker code that is specific to 

the DRP utilizing application, the minimum/maximum number of resources it should 

allocate, the minimum/maximum length of time resources should be allocated for, and the 

allowed idle time per resource before resources are de-allocated.  Once the provisioner 

was initialized, the application would be ready to interact with its users and process work.   
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The users submit work to their application via message (1), which internally queues 

up the work making it ready for processing by an executor.  The provisioner monitors the 

internal queue state of the application via message (poll), and based on the rules and 

conditions from the initialization phase, the provisioner makes the decision how many 

resources and for how long to allocate.  When the provisioner detects the need to allocate 

more resources, it contacts the Resource Manager with the appropriate resource 

allocation via message (2).  In our implementation, these resources are allocated using 

GRAM in order to abstract away all the local resource managers that could be used in 

Grids (PBS, LSF, Condor, etc).  The resource manager is used to bootstrap the executor 

that is specific to the DRP utilizing application with message (3), which then registers 

with message (4) with the application and becomes ready to process work.  Once the 

application has executors available for work, it sends notifications in message (5) directly 

to executors that work is available for pickup, after which the executors that received the 

notifications contact the application directly to pick up the relevant work in message (6).  

When the work results are complete, the executors delivers the results back to the 

application in message (7), which then triggers a notification in message (8), and finally 

leading to the user collecting the final result from the application in message (9). 

At first sight, this seems to be relatively complex and likely to add overhead to the 

execution of application work.  It should be noted that while these executors are available 

(which is dictated by the resource de-allocation policies), any subsequent work requests 

from the user can simply use the same resources that have already been allocated 

(according to the resource allocation policy), without the need to go through the entire 
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allocation process.  After the initial phases in which resources are allocated and executors 

are started, a high volume of work broken down into many smaller tasks can essentially 

be performed using just messages 1, 5, 6, 7, 8, and 9.  With some optimizations (task 

bundling and piggy-backing [4]), these messages can be reduced on average to only 

message 7 and 8 per task.  

5.2.3 Provisioning in Falkon 

Falkon, a Fast and Light-weight tasK executiON framework, provides a system for 

scheduling and dispatching of independent tasks to a set of executors.  Integrating the 

provisioning mechanisms proposed in this chapter into Falkon gives Falkon expanded 

capabilities to dynamically deploy and run executors across multiple Grid sites based on 

Falkon’s load (i.e. wait queue length).  Falkon consists of a dispatcher and zero or more 

executors (Figure 7); the provisioner is added as a third component that acts as a mediator 

between he dispatcher and the Grid resources on which the executors are to run on.  The 

dispatcher accepts tasks from clients and implements the dispatch policy. The provisioner 

implements the resource acquisition policy. Executors run tasks received from the 

dispatcher. Components communicate via Web Services (WS) messages, except for 

notifications are performed via a custom TCP-based protocol. 

The dispatcher implements the factory/instance pattern, providing a create instance 

operation to allow a clean separation among different clients. To access the dispatcher, a 

client first requests creation of a new instance, for which is returned a unique endpoint 

reference (EPR). The client then uses that EPR to submit tasks, monitor progress, retrieve 

results, and (finally) destroy the instance. Each instance can be thought of as a separate 
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instantiation of the dispatcher, maintaining its own task queue and related state.  The 

dispatcher runs within a Globus Toolkit 4 (GT4) [79] WS container, which provides 

authentication, message integrity, and message encryption mechanisms, via transport-

level, conversation-level, or message-level security [126]. 

The provisioner is responsible for creating and destroying executors. It is initialized 

by the dispatcher with information about the state to be monitored and how to access it; 

the rule(s) under which the provisioner should create/destroy executors; the location of 

the executor code; bounds on the number of executors to be created; bounds on the time 

for which executors should be created; and the allowed idle time before executors are 

destroyed.  The provisioner periodically monitors dispatcher state and, based on the 

supplied rules, determines whether to create additional executors, and if so, how many, 

and for how long. Creation requests are issued via GRAM4 [127], to abstract away LRM 

details.  

A new executor registers with the dispatcher. Work is then supplied as follows: (1) 

the dispatcher notifies the executor when work is available; (2) the executor requests 

work; (3) the dispatcher returns the task(s); (4) the executor executes the supplied task(s) 

and returns results, including return code and optional standard output/error strings; and 

(5) the dispatcher acknowledges delivery. 

5.3 Performance Evaluation 

This subsection investigates the performance of dynamic resource provisioning with 

respect to various allocation policies and de-allocation policies. 
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5.3.1 Allocation Policies 

We use two metrics to evaluate our DRP system: Provisioning Latency (i.e., the time 

required to obtain all required resources) and Accumulated CPU Time (i.e., the total CPU 

time obtained since the first request to the DRP system). We expect these metrics to help 

us identify the best dynamic resource provisioning strategies in real world systems (i.e. 

TeraGrid).  

We perform experiments in two scenarios on the ANL/UC TeraGrid site, which has 

96 IA32 processors and is managed by the PBS local resource manager. In the first case, 

the site is relatively idle with only 2 of the 96 resources utilized; these results are shown 

in solid lines in Figure 30. Thus, our requests (for up to 48 resources) can be served 

”immediately.” Due to PBS overheads, it takes about 40 seconds for the first resource to 

be allocated in all cases, despite the queue being idle; we observed this overhead vary 

between 30 seconds to as high as 100 seconds in other experiments we performed.  

Figure 30 shows the number of worker resources that have registered back at the 

application and are ready to receive work as the experiment time progressed; this time 

includes several steps: time to allocate the resources with GRAM, time needed to 

coordinate between GRAM and PBS the resource allocation, time PBS needed to prepare 

the physical resource for use, time needed to start up the worker code, and the time 

needed for the worker code to register back at the main application.   

We see that the one-at-a-time strategy is the slowest, due to the high number of batch 

scheduler submissions: it takes 105 seconds to allocate all 48 resources vs. 22 to 36 
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seconds for the other strategies. Note that the accumulated CPU time after 3 minutes of 

the experiment for one-at-a-time is almost 30 CPU minutes behind the other strategies.  

In a more realistic setting, sites are rarely idle, and hence some resource requests will 

end up waiting in the local resource manager’s queue. To explore this case, we consider a 

scenario in which the site has only 47 resources available until the 160 second mark, at 

which point availability increases to 48; these results are shown in dotted lines in Figure 

30. Thus, each strategy has their last resource request held in the wait queue until the 160 

second mark. Those last requests are for 1, 3, 17, and 48 resources for One-at-a-time, 

Additive, Exponential, and All-at-once, respectively. On one extreme, the 1-at-a-time 

strategy manages to allocate 47 resources and has only 1 resource in the waiting queue; 

the other extreme, the all-at-once strategy has all 48 resources in the waiting queue 

waiting for a single resource to free up before it can process the entire request.  This is 

evidence of the back-filling strategies of the local resource manager.  Therefore, the all-

at-once is now the worst overall, being over 60 CPU minutes behind One-at-a-time and 

Exponential, and almost 90 CPU minutes behind Additive.  Note that these lags in 

accumulated CPU time will remain until the resources begin to de-allocate, at which time 

the strategies that received their resources later will also hang on to the resources later; in 

the end, all strategies should get the same accumulated CPU time eventually.     

We conclude that different provisioning strategies must be used depending on how 

utilized a given set of resources are, with the all-at-once strategy being preferred if the 

resources are mostly idle, the additive and exponential strategies being appropriate for 

medium loaded resources, and the one-at-a-time being preferred when the resources are 
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heavily loaded. Note that the finer grained the request sizes, the more likely it will be that 

DRP will be able to benefit from the back-filling of the local resource managers, but the 

higher the cost will be in terms of how fast the resources can be allocated.   

 

Figure 30: Provisioning latency in acquiring 48 resources for various strategies; the 
solid lines represent the time to acquire the resources in an idle system, while the 

dotted lines is the time to acquire the resources in a busy system 

Table 5: Accumulated CPU time in seconds after 180 seconds in both an idle and 
busy system 

Strategy Accumulated CPU Time 
IDLE 

Accumulated CPU Time 
BUSY 

1-at-a-time 4220 sec 4205 sec 
additive 6048 sec 5773 sec 

exponential 5702 sec 4267 sec 
all-at-once 6156 sec 409 sec 

optimal 6059 sec 6059 sec 
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Another important issue we do not addressed, concerns with the length of time for 

which resources should be requested. Many batch schedulers give preference to short 

requests and/or can schedule short requests into empty slots in their schedule (what is 

termed “backfilling”). Short requests may also minimize idle time. On the other hand, 

short requests increase more scheduling overhead and may cause problems for long-

running user tasks.  We envision the length of time to allocate resources to be application 

dependent, depending on the tasks complexity and granularity.  Ideally, the length of time 

resources are allocated for should be large enough to ensure that several tasks can be 

performed on each resource, effectively amortizing the cost of the queue wait times for 

the coarse granular resource allocation. 

5.3.2 De-Allocation Policies 

To study provisioner performance, we constructed a synthetic 18-stage workload, in 

which the numbers of tasks and task lengths vary between stages. Figure 31 shows the 

number of tasks per stage and the number of machines needed per stage if each task is 

mapped to a separate machine (up to a maximum of 32 machines). Note the exponential 

ramp up in the number of tasks for the first few stages, a sudden drop at stage 8, and a 

sudden surge of many tasks in stages 9 and 10, another drop in stage 11, a modest 

increase in stage 12, followed by a linear decrease in stages 13 and 14, and finally an 

exponential decrease until the last stage has only a single task. All tasks run for 60 secs 

except those in stages 8, 9, and 10, which run for 120, 6, and 12 secs, respectively. In 

total, the 18 stages have 1,000 tasks, summing to 17,820 CPU secs, and can complete in 

an ideal time of 1,260 secs on 32 machines. We choose this workload to showcase and 
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evaluate the flexibility of Falkon’s dynamic resource provisioning, as it can adapt to 

varying resource requirements and task durations.  

We configured the provisioner to acquire at most 32 machines from TG_ANL_IA32 

and TG_ANL_IA64, both of which were relatively lightly loaded. (100 machines were 

available of the total 162 machines.) We measured the execution time in six 

configurations:  

• GRAM4+PBS (without Falkon): Each task was submitted as a separate GRAM4 task to 

PBS, without imposing any hard limits on the number of machines to use; there were 

about 100 machines available for this experiment.  

• Falkon-15, Falkon-60, Falkon-120, Falkon-180: Falkon configured to use a minimum 

of zero and a maximum of 32 machines; the allocation policy we used was all-at-once, 

and the resource release policy idle time was set to 15, 60, 120, and 180 secs (to give 

four separate experiments).  

• Falkon-∞: Falkon, with the provisioner configured to retain a full 32 machines for one 

hour.  

Table 6 gives, for each experiment, the average per-task queue time and execution 

time, and also the ratio exec_time/(exec_time+queue_time). The queue_time includes 

time waiting for the provisioner to acquire nodes, time spent starting executors, and time 

tasks spend in the dispatcher queue. We see that the ratio improves from 17% to 28.7% as 

the idle time setting increases from 15 to 180 secs; for Falkon-∞, it reaches 29.2%, a 

value close to the ideal of 29.7%. (The ideal is less than 100% because several stages 

have more than 32 tasks, which means tasks must be queued when running, as we do 
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here, on 32 machines.) GRAM4+PBS yields the worst performance, with only 8.5% on 

average, less than a third of ideal. 

 
Figure 31: Dynamic Resource Provisioning: 18-stage synthetic workload. 

Table 6: Average per-task queue and execution times for synthetic workload 

 
The average per-task queue times range from a near optimal 43.5 secs (42.2 secs is 

ideal) to as high as 87.3 secs, more than double the ideal. In contrast, GRAM4+PBS 

experiences a queue time of 611.1 secs: 15 times larger than the ideal. Also, note the 
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same across all the experiments, and is within 100 ms of ideal (which essentially 

accounts for the dispatch cost and delivering the result); in contrast, GRAM4+PBS has an 

average execution time of 56.5 secs, significantly larger than the ideal time. This large 

difference in execution time is attributed to the large per task overhead GRAM4 and PBS 

have, which further strengthens our argument that they are not suitable for short tasks.  

Table 7 shows, for each strategy, the time to complete the 18 stages, resource 

utilization, execution efficiency, and number of resource allocations. We define resource 

utilization and execution efficiency as follows:  

wastedresourcesusedresources
usedresourcesnutilizatioresource

__
__

+
=  

Equation 1: Resource utilization 

timeactual
timeidealefficiencyexec

_
__ =

 

Equation 2: Execution efficiency 
We define resources as “wasted,” for the Falkon strategies, when they have been 

allocated and registered with the dispatcher, but are idle. For the GRAM4+PBS case, the 

“wasted” time is the difference between the measured and reported task execution time, 

where the reported task execution time is from the time GRAM4 sends a notification of 

the task becoming “Active”—meaning that PBS has taken the task off the wait queue and 

placed into the active queue assigned to some physical machine—to the time the state 

changes to “Done,” at which point the task has finished execution. 

The resources used are the same (17,820 CPU secs) for all cases, as we have fixed 

run times for all 1000 tasks. We expected GRAM4+PBS to not have any wasted 
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resources, as each machine is released after one task is run; in reality, the measured 

execution times were longer than the actual task execution times, and hence the resources 

wasted was high in this case: 41,040 secs over the entire experiment. The average 

execution time of 56.5 secs shows that GRAM4+PBS is slower than Falkon in 

dispatching the task to the remote machine, preparing the remote machine to execute the 

task, and cleaning up and releasing the machine. Note that the reception of the “Done” 

state change in GRAM4 does not imply that the utilized machine is ready to receive 

another task—PBS takes even longer to make the machine available again for more work, 

which makes GRAM4+PBS resource wastage yet worse.  

Falkon with dynamic resource provisioning fairs better from the perspective of 

resource wastage. Falkon-15 has the fewest wasted resources (2032 secs) and Falkon-∞ 

the worst (22,940 CPU secs). The resource utilization shows the fraction of time the 

machines were executing tasks vs. idle. Due to its high resource wastage, GRAM4+PBS 

achieves a utilization of only 30%, while Falkon-15 reaches 89%. Falkon-∞ is 44%. 

Notice that as the resource utilization increases, so does the time to complete—as we 

assume that the provisioner has no foresight regarding future needs, delays are incurred 

allocating machines previously de-allocated due to a shorter idle time setting. Note the 

number of resource allocations (GRAM4 calls requesting resources) for each experiment, 

ranging from 1000 allocations for GRAM4+PBS to less than 11 for Falkon with 

provisioning. For Falkon-∞, the number of resource allocations is zero, since machines 

were provisioned prior to the experiment starting, and that time is not included in the time 

to complete the workload.  
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If we had used a different allocation policy (e.g., one-at-a-time), the Falkon results 

would have been less close to ideal, as the number of resource allocations would have 

grown significantly. The relatively slow handling of such requests by GRAM4+PBS 

(~0.5/sec on TG_ANL_IA32 and TG_ANL_IA64) would have delayed executor startup 

and thus increased the time tasks spend in the queue waiting to be dispatched.  

The higher the desired resource utilization (due to more aggressive dynamic resource 

provisioning to avoid resource wastage), the longer the elapsed execution time (due to 

queuing delays and overheads of the resource provisioning in the underlying LRM). This 

ability to trade off resource utilization and execution efficiency is an advantage of 

Falkon. 

Table 7: Resource utilization and execution efficiency summary 

 
To illustrate how provisioning works in practice, we show in Figure 32, Figure 33, 

Figure 34, Figure 35, and Figure 36 the execution details for Falkon-15, Falkon-60, 

Falkon-120, Falkon-180, and Falkon-inf respectively. The number following Falkon (e.g. 

15, 60, 120, 180, inf) denote the allowable number of seconds a processor was allowed to 

be idle before it would de-allocate it to avoid wasting resources. These figures show the 

instantaneous number of allocated, registered, and active executors over time.  

GRAM4
+PBS

Falkon
-15

Falkon
-60

Falkon
-120

Falkon
-180

Falkon
-∞

Ideal 
(32 nodes)

Time to 
complete 

(sec)
4904 1754 1680 1507 1484 1276 1260

Resouce 
Utilization 30% 89% 75% 65% 59% 44% 100%

Execution 
Efficiency 26% 72% 75% 84% 85% 99% 100%

Resource 
Allocations 1000 11 9 7 6 0 0
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Figure 32: Dynamic Resource Provisioning: Synthetic workload for Falkon-15 
Allocated (blue) are executors for which creation and registration are in progress. 

Creation and registration time can vary between 5 and 65 secs, depending on when a 

creation request is submitted relative to the PBS scheduler polling loop, which we believe 

occurs at 60 second intervals. JVM startup time and registration generally consume less 

than five secs. Registered executors (red) are ready to process tasks, but are not active. 

Finally, active executors (green) are actively processing tasks. In summary, blue is 

startup cost, red is wasted resources, and green is utilized resources. We see that Falkon-

15 has fewer idle resources (as they are released sooner) but spends more time acquiring 

resources and overall has a longer total execution time than Falkon-60. 
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Figure 33: Dynamic Resource Provisioning: Synthetic workload for Falkon-60 

 

Figure 34: Dynamic Resource Provisioning: Synthetic workload for Falkon-120 
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Figure 35: Dynamic Resource Provisioning: Synthetic workload for Falkon-180 

 

Figure 36: Dynamic Resource Provisioning: Synthetic workload for Falkon-inf 
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5.4 Conclusions 

The schedulers used to manage parallel computing clusters are not typically 

configured to enable easy configuration of application-specific scheduling policies. In 

addition, their sophisticated scheduling algorithms and feature-rich code base can result 

in significant overhead when executing many short tasks.  

Falkon, a Fast and Light-weight tasK executiON framework, is designed to enable 

the efficient dispatch and execution of many small tasks. To this end, it uses a multi-level 

scheduling strategy to enable separate treatment of resource allocation (via conventional 

schedulers) and task dispatch (via a streamlined, minimal-functionality dispatcher). 

Clients submit task requests to a dispatcher, which in turn passes tasks to executors. A 

separate provisioner is responsible for creating and destroying provisioners in response to 

changing client demand; thus, users can trade off application execution time and resource 

utilization.  

Dynamic resource provisioning can lead to significant savings in end-to-end 

application execution time, enable the use of batch-scheduled Grids for interactive use, 

and alleviate the high queue wait times typically found in production Grid environments.  

We have described a dynamic resource provisioning architecture and presented 

performance results we obtained on the TeraGrid. We have also integrated the dynamic 

resource provisioning into Falkon, a Fast and Light-weight tasK executiON framework, 

which allowed us to measure various performance aspects of resource provisioning with 

both real applications and synthetic workloads. Microbenchmarks show that DRP can 

allocate resources on the order of 10s of seconds across multiple Grid sites and can 
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reduce average queue wait times by up to 95% (effectively yielding queue wait times 

within 3% of ideal).  

 Chapter 6 covers more results on dynamic resource provisioning for a variety of 

data-intensive workloads. 
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6 Towards Data Intensive Many-Task Computing with Data 

Diffusion 

Many-task computing aims to bridge the gap between two computing paradigms, 

high throughput computing and high performance computing. Many-task computing 

denotes high-performance computations comprising multiple distinct activities, coupled 

via file system operations. The aggregate number of tasks, quantity of computing, and 

volumes of data may be extremely large. Traditional techniques to support many-task 

computing commonly found in scientific computing (i.e. the reliance on parallel file 

systems with static configurations) do not scale to today’s largest systems for data 

intensive application, as the rate of increase in the number of processors per system is 

outgrowing the rate of performance increase of parallel file systems. We argue that in 

such circumstances, data locality is critical to the successful and efficient use of large 
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distributed systems for data-intensive applications. We propose a “data diffusion” 

approach to enable data-intensive many-task computing. Data diffusion acquires compute 

and storage resources dynamically, replicates data in response to demand, and schedules 

computations close to data, effectively harnessing data locality in application data access 

patterns. As demand increases, more resources are acquired, thus allowing faster response 

to subsequent requests that refer to the same data; when demand drops, resources are 

released. This approach can provide the benefits of dedicated hardware without the 

associated high costs, depending on workload and resource characteristics. To explore the 

feasibility of data diffusion, we offer both a theoretical and empirical analysis. We define 

an abstract model for data diffusion, define and implement scheduling policies with 

heuristics that optimize real world performance, and develop a competitive online 

caching eviction policy. We also offer many empirical experiments to explore the 

benefits of data diffusion, both under static and dynamic resource provisioning. We show 

performance improvements of one to two orders of magnitude across three diverse 

workloads when compared to the performance of parallel file systems with throughputs 

approaching 80Gb/s on a modest cluster of 200 processors. We also compare data 

diffusion with a best model for active storage, contrasting the difference between a pull-

model found in data diffusion and a push-model found in active storage, on up to 5832 

processors. We finally conclude with some preliminary results for collective I/O, an 

alternative technique to data diffusion we have used to scale data-intensive applications 

to the largest supercomputers with 98K processors. 

The results presented in this chapter have been published in [1, 3, 14, 17, 19, 21, 23]. 



125 

6.1 Overview 

Within the science domain, the data that needs to be processed generally grows faster 

than computational resources and their speed.  The scientific community is facing an 

imminent flood of data expected from the next generation of experiments, simulations, 

sensors and satellites. Scientists are now attempting calculations requiring orders of 

magnitude more computing and communication than was possible only a few years ago. 

Moreover, in many currently planned and future experiments, they are also planning to 

generate several orders of magnitude more data than has been collected in the entire 

human history [39].  

Many applications in the scientific computing generally use a shared infrastructure 

such as TeraGrid [44] and Open Science Grid [45], where data movement relies on 

shared or parallel file systems. The rate of increase in the number of processors per 

system is outgrowing the rate of performance increase of parallel file systems, which 

requires rethinking existing data management techniques. For example, a cluster that was 

placed in service in 2002 with 316 processors has a parallel file system (i.e. GPFS [46]) 

rated at 1GB/s, yielding 3.2MB/s per processor of bandwidth. The second largest open 

science supercomputer, the IBM Blue Gene/P from Argonne National Laboratory, has 

160K processors, and a parallel file system (i.e. also GPFS) rated at 8GB/s, yielding a 

mere 0.05MB/s per processor. That is a 65X reduction in bandwidth between a system 

from 2002 and one from 2008. Unfortunately, this trend is not bound to stop, as advances 

multi-core and many-core processors will increase the number of processor cores one to 

two orders of magnitude over the next decade. [18]  
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We believe that data locality is critical to the successful and efficient use of large 

distributed systems for data-intensive applications [19, 47] in the face of a growing gap 

between compute power and storage performance. Large scale data management needs to 

be a primary objective for any middleware targeting to support MTC workloads, to 

ensure data movement is minimized by intelligent data-aware scheduling both among 

distributed computing sites, and among compute nodes. 

We propose an alternative data diffusion approach [1], in which resources required 

for data analysis are acquired dynamically from a local resource manager (LRM), in 

response to demand. Resources may be acquired either “locally” or “remotely”; their 

location only matters in terms of associated cost tradeoffs. Both data and applications 

“diffuse” to newly acquired resources for processing. Acquired resources and the data 

that they hold can be cached for some time, allowing more rapid responses to subsequent 

requests. Data diffuses over an increasing number of processors as demand increases, and 

then contracts as load reduces, releasing processors back to the LRM for other uses.  

Data diffusion involves a combination of dynamic resource provisioning, data 

caching, and data-aware scheduling. The approach is reminiscent of cooperative caching 

[133], cooperative web-caching [134], and peer-to-peer storage systems [135]. Other 

data-aware scheduling approaches tend to assume static resources [106, 136], in which a 

system configuration dedicates nodes with roles (i.e. clients, servers) at startup, and there 

is no support to increase or decrease the ratio between client and servers based on load. 

However, in our approach we need to acquire dynamically not only storage resources but 

also computing resources. In addition, datasets may be terabytes in size and data access is 
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for analysis (not retrieval). Further complicating the situation is our limited knowledge of 

workloads, which may involve many different applications. In principle, data diffusion 

can provide the benefits of dedicated hardware without the associated high costs. The 

performance achieved with data diffusion depends crucially on the characteristics of 

application workloads and the underlying infrastructure.  

This chapter is organized as follows. Section 6.2 covers our proposed support for 

data-intensive many-task computing, specifically through our work with the Falkon [4, 2] 

light-weight task execution framework and its data management capabilities in data 

diffusion [1, 3, 23, 21]. This section discusses the data-aware scheduler and scheduling 

policies. Section 6.3 defines a data diffusion abstract model; towards developing 

provable results we offer 2Mark, an O(NM)-competitive caching eviction policy, for a 

constrained problem on N stores each holding at most M pages. This is the best possible 

such algorithm with matching upper and lower bounds (barring a constant factor). 

Section 6.4 offer a wide range of micro-benchmarks evaluating data diffusion, our 

parallel file system performance, and the data-aware scheduler performance. Section 6.5 

explores the benefits of both static and dynamic resource provisioning through three 

synthetic workloads. The first two workloads explore dynamic resource provisioning 

through the Monotonically-Increasing workload and the Sin-Wave workload. We also 

explore the All-Pairs workload [137] which allows us to compare data diffusion with a 

best model for active storage [138]. Section 7.7 covers a real large-scale application from 

the astronomy domain, and how data diffusion improved its performance and scalability. 
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Section 2.5 covers related work, which have addressed data management issues to 

support data intensive applications. We finally conclude the chapter with Section 6.6. 

6.2 Data Diffusion Architecture 

We implement data diffusion [1] in the Falkon task dispatch framework [4]. We 

describe Falkon and data diffusion, offer justifications to why we chose a centralized 

scheduler approach, and finally discuss the data-aware scheduler and its various 

scheduling policies.  

6.2.1 Falkon and Data Diffusion 

To enable the rapid execution of many tasks on distributed resources, Falkon 

combines (1) multi-level scheduling [92] to separate resource acquisition (via requests to 

batch schedulers) from task dispatch, and (2) a streamlined dispatcher to achieve several 

orders of magnitude higher throughput (487 tasks/sec) and scalability (54K executors, 

2M queued tasks) than other resource managers [4]. Recent work has achieved 

throughputs in excess of 3750 tasks/sec and scalability up to 160K processors [2].  

Figure 37 shows the Falkon architecture, including both the data management and 

data-aware scheduler components. Falkon is structured as a set of (dynamically allocated) 

executors that cache and analyze data; a dynamic resource provisioner (DRP) that 

manages the creation and deletion of executors; and a dispatcher that dispatches each 

incoming task to an executor. The provisioner uses tunable allocation and de-allocation 

policies to provision resources adaptively. Falkon supports the queuing of incoming 

tasks, whose length triggers the dynamic resource provisioning to allocate resources via 
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GRAM4 [127] from the available set of resources, which in turn allocates the resources 

and bootstraps the executors on the remote machines. Individual executors manage their 

own caches, using local eviction policies, and communicate changes in cache content to 

the dispatcher. The scheduler sends tasks to compute nodes, along with the necessary 

information about where to find related input data. Initially, each executor fetches needed 

data from remote persistent storage. Subsequent accesses to the same data results in 

executors fetching data from other peer executors if the data is already cached elsewhere. 

The current implementation runs a GridFTP server [139] at each executor, which allows 

other executors to read data from its cache. This scheduling information are only hints, as 

remote cache state can change frequently and is not guaranteed to be 100% in sync with 

the global index. In the event that a data item is not found at any of the known cached 

locations, it attempts to retrieve the item from persistent storage; if this also fails, the 

respective task fails. In Figure 37, the black dotted lines represent the scheduler sending 

the task to the compute nodes, along with the necessary information about where to find 

input data. The red thick solid lines represent the ability for each executor to get data 

from remote persistent storage. The blue thin solid lines represent the ability for each 

storage resource to obtain cached data from another peer executor.  

In our experiments, we assume data follows the normal pattern found in scientific 

computing, which is to write-once/read-many (the same assumption as HDFS makes in 

the Hadoop system [48]). Thus, we avoid complicated and expensive cache coherence 

schemes other parallel file systems enforce. We implement four cache eviction policies: 
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Random, FIFO, LRU, and LFU [133]. Our empirical experiments all use LRU, and we 

will study the other policies in future work. 

 

Figure 37: Architecture overview of Falkon extended with data diffusion (data 
management and data-aware scheduler) 

To support data-aware scheduling, we implement a centralized index within the 

dispatcher that records the location of every cached data object; this is similar to the 

centralized NameNode in Hadoop’s HDFS [48]. This index is maintained loosely 

coherent with the contents of the executor’s caches via periodic update messages 

generated by the executors. In addition, each executor maintains a local index to record 

the location of its cached data objects. We believe that this hybrid architecture provides a 

good balance between latency to the data and good scalability. The next section (Section 

6.2.2) covers a deeper analysis in the difference between a centralized index and a 

distributed one, and under what conditions a distributed index is preferred.  
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6.2.2 Centralized vs. Distributed Cache Index  

Our central index and the separate per-executor indices are implemented as in-

memory hash tables. The hash table implementation in Java 1.5 requires about 200 bytes 

per entry, allowing for index sizes of 8M entries with 1.5GB of heap, and 43M entries 

with 8GB of heap. Update and lookup performance on the hash table is excellent, with 

insert times in the 1~3 microseconds range (tested on up to 8M entries), and lookup times 

between 0.25 and 1 microsecond (tested on up to 8M entries) on a modern 2.3GHz Intel 

Xeon processor. Thus, we can achieve an upper bound throughput of 4M lookups/sec.  

In practice, the scheduler may make multiple updates and lookups per scheduling 

decision, so the effective scheduling throughput that can be achieved is lower. Falkon’s 

non-data-aware load-balancing scheduler can dispatch tasks at rates of 3800 tasks/sec on 

an 8-core system, which reflects the costs of communication. In order for the data-aware 

scheduler to not become the bottleneck, it needs to make decisions within 2.1 

milliseconds, which translates to over 3700 updates or over 8700 lookups to the hash 

table. Assuming we can keep the number of queries or updates within these bounds per 

scheduling decision, the rate-liming step remains the communication between the client, 

the service, and the executors.  

Nevertheless, our centralized index could become saturated in a sufficiently large 

enough deployment. In that case, a more distributed index might perform and scale better. 

Such an index could be implemented using the peer-to-peer replica location service (P-

RLS) [100] or distributed hash table (DHT) [140]. Chervenak et al. [100] report that P-

RLS lookup latency for an index of 1M entries increases from 0.5 ms to just over 3 ms as 
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the number of P-RLS nodes grows from 1 to 15 nodes. To compare their data with a 

central index, we present in Figure 38. We see that although P-RLS latencies do not 

increase significantly with number of nodes (from 0.5 ms with 1 node to 15 ms with 1M 

nodes) [1], a considerable number of nodes are required to match that of an in-memory 

hash table. P-RLS would need more than 32K nodes to achieve an aggregate throughput 

similar to that of an in-memory hash table, which is 4.18M lookups/sec. In presenting 

these results we do not intend to argue that we need 4M+ lookups per second to maintain 

4K scheduling decisions per second. However, these results do lead us to conclude that a 

centralized index can often perform better than a distributed index at small to modest 

scales.  

 

Figure 38: P-RLS vs. Hash Table performance for 1M entries 
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There are two disadvantages to our centralized index. The first is the requirement 

that the index fit in memory. Single SMP nodes can be bought with 256GB of memory, 

which would allow 1.3B entries in the index. Large-scale applications that are data 

intensive [137, 12, 66, 68] typically have terabytes to tens of terabytes of data spread over 

thousands to tens of millions of files, which would comfortably fit on a single node with 

8GB of memory. However, this might not suffice for applications that have datasets with 

many small files. The second disadvantage is the single point of failure; it is worth noting 

that other systems, such as Hadoop [48], also have a single point of failure in the 

NameNode which keeps track of the global state of data. Furthermore, our centralized 

index load would be lower than that of Hadoop as we operate at the file level, not block 

level, which effectively reduces the amount of metadata that must be stored at the 

centralized index.  

We have investigated distributing the entire Falkon service in the context of the IBM 

Blue Gene/P supercomputer, where we run N dispatchers in parallel to scale to 160K 

processors; we have tested N up to 640. However, due to limitations of the operating 

systems on the compute nodes, we do not yet support data diffusion on this system. 

Furthermore, the client submitting the workload is currently not dispatcher-aware to 

optimize data locality across multiple dispatchers, and currently only performs load-

balancing in the event that the dispatcher is distributed over multiple nodes. There is no 

technical reason for not adding this feature to the client, other than not having the need 

for this feature so far. An alternative solution would be to add support for 

synchronization among the distributed dispatchers, to allow them to forward tasks 
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amongst each other to optimize data locality. We will explore both of these alternatives in 

future work. 

6.2.3 Data-Aware Scheduler 

Data-aware scheduling is central to the success of data diffusion, as harnessing data-

locality in application access patterns is critical to performance and scalability. We 

implement four dispatch policies.  

The first-available (FA) policy ignores data location information when selecting an 

executor for a task; it simply chooses the first available executor, and provides the 

executor with no information concerning the location of data objects needed by the task. 

Thus, the executor must fetch all data needed by a task from persistent storage on every 

access. This policy is used for all experiments that do not use data diffusion. 

The max-cache-hit (MCH) policy uses information about data location to dispatch 

each task to the executor with the largest amount of data needed by that task. If that 

executor is busy, task dispatch is delayed until the executor becomes available. This 

strategy is expected to reduce data movement operations compared to first-cache-

available and max-compute-util, but may lead to load imbalances where processor 

utilization will be sub optimal, if nodes frequently join and leave. 

The max-compute-util (MCU) policy leverages data location information, 

attempting to maximize resource utilization even at the potential higher cost of data 

movement. It sends a task to an available executor, preferring executors with the most 

needed data locally.  



135 

The good-cache-compute (GCC) policy is a hybrid MCH/MCU policy. The GCC 

policy sets a threshold on the minimum processor utilization to decide when to use MCH 

or MCU. We define processor utilization to be the number of processors with active tasks 

divided by the total number of processors allocated. MCU used a threshold of 100%, as it 

tried to keep all allocated processors utilized. We find that relaxing this threshold even 

slightly (e.g., 90%) works well in practice as it keeps processor utilization high and it 

gives the scheduler flexibility to improve cache hit rates significantly when compared to 

MCU alone.  

The scheduler is a window based one, that takes the scheduling window W size (i.e. 

|W| is the number of tasks to consider from the wait queue when making the scheduling 

decision), and starts to build a per task scoring cache hit function. If at any time, a best 

task is found (i.e. achieves a 100% hit rate to the local cache), the scheduler removes this 

task from the wait queue and adds it to the list of tasks to dispatch to this executor. This is 

repeated until the maximum number of tasks were retrieved and prepared to be sent to the 

executor. If the entire scheduling window is exhausted and no best task was found, the m 

tasks with the highest cache hit local rates are dispatched. In the case of MCU, if no tasks 

were found that would yield any cache hit rates, then the top m tasks are taken from the 

wait queue and dispatched to the executor. For MCH, no tasks are returned, signaling that 

the executor is to return to the free pool of executors. For GCC, the aggregate CPU 

utilization at the time of scheduling decision determines which action to take. Pre-binding 

of tasks to nodes can negatively impact cache-hit performance if multiple tasks are 

assigned to the same node, and each task requires the entire cache size, effectively 
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thrashing the cache contents at each task invocation. In practice, we find that per task 

working sets are small (megabytes to gigabytes) while cache sizes are bigger (tens of 

gigabytes to terabytes) making the worst case not a common case. 

We define several variables first in order to understand the scheduling algorithm 

pseudo-code (see Figure 39 and Figure 40); the algorithm is separated into two sections, 

as the first part (Figure 39) decides which executor will be notified of available tasks, 

while the second part (Figure 40) decides which task to be submitted to the respective 

executor:  

Q wait queue 

Ti task at position i in the wait queue 

Eset executor sorted set; element existence indicates the executor is free, busy, 

or pending 

Imap file index hash map; the map key is the file logical name and the value is 

an executor sorted set of where the file is cached 

Emap executor hash map; the map key is the executor name, and the value is a 

sorted set of logical file names that are cached at the respective executor 

W scheduling window of tasks to consider from the wait queue when making 

the scheduling decision 

The scheduler’s complexity varies with the policy used. For FA, the cost is constant, 

as it simply takes the first available executor and dispatches the first task in the queue. 

MCH, MCU, and GCC are more complex with a complexity of O(|Ti| + min(|Q|, W)), 

where Ti is the task at position i in the wait queue and Q is the wait queue. This could 
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equate to many operations for a single scheduling decision, depending on the maximum 

size of the scheduling window and queue length. Since all data structures used to keep 

track of executors and files use in-memory hash maps and sorted sets, operations are 

efficient (see Section 6.2.2).  

 
Figure 39: Pseudo Code for part #1 of algorithm which sends out the notification for 

work 

 
Figure 40: Pseudo Code for part #2 of algorithm which decides what task to assign 

to each executor 

21 while tasksInspected < W
22  fileSeti = all files in Ti 
23  cacheHiti = |intersection fileSeti and Emap(executor)| 
24  if cacheHiti > minCacheHit || CPUutil < minCPUutil then 
25   remove Ti from Q and add Ti to list to dispatch 
26  end 
27  if list of tasks to dispatch is long enough then 
28   assign tasks to executor 
29   break 
30     end 
31 end 

1 while Q !empty 
2  foreach files in T0 
3   tempSet = Imap(filei) 
4   foreach executors in tempSet 
5    candidates[tempSetj]++ 
6   end 
7  end 
8  sort candidates[] according to values 
9  foreach candidates 
10   if Eset(candidatei) = freeState then 
11    Mark executor candidatei as pending 
12    Remove T0 from wait queue and mark as pending 
13    sendNotificatoin to candidatei to pick up T0 
14    break 
15   end 
16   if no candidate is found in the freeState then 
17    send notification to the next free executor 
18   end 
19  end 
20 end 
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6.3 Theoretical Evaluation 

We define an abstract model that captures the principal elements of data diffusion in 

a manner that allows analysis. We first define the model and then analyze the 

computational time per task, caching performance, workload execution times, arrival 

rates, and node utilization. Finally, we present an O(NM)-competitive algorithm for the 

scheduler as well as a proof of its competitive ratio.  

6.3.1 Abstract Model 

Our abstract model includes computational resources on which tasks execute, storage 

resources where data needed by the tasks is stored, etc. Simplistically, we have two 

regimes: the working data set fits in cache, S≥W, where S is the aggregate allocated 

storage and W is the working data set size; and the working set does not fit in cache, 

S<W. We can express the time T required for a computation associated with a single data 

access as follows (see Equation 3), both depending on Hl (data found on local disk), Hc 

(remote disks), or Hs (centralized persistent storage): 

S ≥W : (Rl+C) ≤ T ≤ (Rc+C) 

S <W : (Rc+C) ≤ T < (Rs+C) 
Equation 3: Time T required to complete computation with a single data access 

Where Rl, Rc, Rs are the average cost of accessing local data (l), cached data (c), or 

persistent storage (s), and C is the average amount of computing per data access. The 

relationship between cache hit performance and T can be found in Equation 4. 

S ≥W : T = (Rl+C)*HRl + (Rc+C)*HRc 

S <W : T = (Rc+C)*HRc + (Rs+C)*HRs 
Equation 4: Relationship between cache hit performance and time T 
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Where HRl is the cache hit local disk ratio, HRc is the remote cache ratio, and HRs is 

the cache miss ratio;  HRl/c/s = HL/C/S/(HL + HC + HS). We can merge the two cases into a 

single one, such as the average time to complete task i is TKi = 

(Rl+C)*HRl+(Rc+C)*HRc+(Rs+C)*HRs. This can also be expressed as (see Equation 5):  

TKi = C + Rl*HRl + Rc*HRc + Rs*HRs 
Equation 5: Average time to complete task i 

The time needed to complete an entire workload D with K tasks on N processors is, 

where D is a function of K, W, A, C, and L (see Equation 6): 

TN(D) = ∑
=

K

i
iTK

1
 

Equation 6: Time to complete an entire workload D 
Having defined the time to complete workload D, we define speedup as Equation 7: 

SP = T1(D) / TN(D) 
Equation 7: Speedup 

And efficiency can be defined as (see Equation 8): 

EF = SP / N 
Equation 8: Efficiency 

What is the maximum task arrival rate (A) that a particular scenario can sustain? We 

have (see Equation 9): 

S ≥W : N*P/(Rl+C) ≤ Amax ≤ N*P/(Rc+C) 
S <W : N*P/(Rc+C) ≤ Amax < N*P/(Rs+C) 

Equation 9: Maximum task arrival rate (A) that can be sustained 
Where P is the execution speed of a single node. These regimes can be collapsed into 

a single formula (see Equation 10):  

A = (N*P/T)*K 
Equation 10: Arrival rate 

We can express a formula to evaluate tradeoffs between node utilization (U) and 

arrival rate; counting data movement time in node utilization, we have (see Equation 11): 
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U = A*T/(N*P) 
Equation 11: Utilization 

Although the presented model is quite simplistic, it manages to model quite 

accurately an astronomy application with a variety of workloads (the topic of Section 

7.7.6) 

6.3.2 O(NM)-Competitive Caching   

Among known algorithms with provable performance for minimizing data access 

costs, there are none that can be applied to data diffusion, even if restricted to the caching 

problem it entails.  For instance, LRU maximizes the local store performance, but is 

oblivious of the cached data in the system and persistent storage.  As a step to developing 

a provably sound algorithm we present an online algorithm that is O(NM)-competitive to 

the offline optimum for a constrained version of the caching problem. For definitions of 

competitive ratio, online algorithm, and offline optimum see [142].  In brief, an online 

algorithm solves a problem without knowledge of the future, an offline optimal is a 

hypothetical algorithm that has knowledge of the future.  The competitive ratio is the 

worst-case ratio of their performance and is a measure of the quality of the online 

algorithm, independent of a specific request sequence or workload characteristics.  

In the constrained version of the problem there are N stores each capable of holding 

M objects of uniform size. Requests are made sequentially to the system, each specifying 

a particular object and a particular store. If the store does not have the object at that time, 

it must load the object to satisfy the request. If the store is full, it must evict one object to 

make room for the new object. If the object is present on another store in the system, it 

can be loaded for a cost of Rc, which we normalize to 1. If it is not present in another 



141 

store, it must be loaded from persistent storage for a cost of Rs, which we normalize to 

cs RRs /= . Note that if cs RR <  for some reason, we can use LRU at each node instead of 

2Mark to maintain competitive performance. We assume Rl is negligible. 

All stores in the system our allowed to cooperate (or be managed by a single 

algorithm with complete state information). This allows objects to be transferred between 

stores in ways not directly required to satisfy a request (e.g., to back up an object that 

would otherwise be evicted). Specifically, two stores may exchange a pair of objects for a 

cost of 1 without using an extra memory space. Further, executors may write to an object 

in their store. To prevent inconsistencies, the system is not allowed to contain multiple 

copies of one object simultaneously on different stores.  

We propose an online algorithm 2Mark  (which uses the well known marking 

algorithm [142] at two levels) for this case of data diffusion.  Let the corresponding 

optimum offline algorithm be OPT . For a sequence σ , let )(σ2Mark  be the cost 2Mark  

incurs to handle the sequence and define )(σOPT  similarly. 2Mark  may mark and unmark 

objects in two ways, designated  local-marking an object and  global-marking an object. 

An object may be local-marked with respect to a particular store (a bit corresponding to 

the object is set only at that store) or global-marked with respect to the entire system. 

2Mark  interprets the request sequence as being composed of two kinds of phases,  local-

phases and  global-phases. A local-phase for a given store is a contiguous set of requests 

received by the store for M distinct objects, starting with the first request the store 

receives. A global-phase is a contiguous set of requests received by the entire system for 

NM distinct objects, starting with the first request the system receives.  We prove 
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Equation 12 which establishes that 2Mark is O(NM)-competitive. From the lower bound on 

the competitive ratio for simple paging [142], this is the best possible deterministic online 

algorithm for this problem, barring a constant factor. 

)())/(/2()( σσ OPT2Mark ⋅+++≤ vsNMsMNM  for all sequences σ  
Equation 12: The relation we seek to prove to establish that 2Mark is O(NM)-

competitive  

2Mark essentially uses an M-competitive marking algorithm to manage the objects on 

individual stores and the same algorithm on a larger scale to determine which objects to 

keep in the system as a whole. When a store faults on a request for an object that is on 

another store, it exchanges the object it evicts for the object requested (see Figure 41). 

We will establish a bound on the competitive ratio by showing that every cost incurred by 

2Mark  can be correlated to one incurred by OPT . These costs may be s-faults (in which an 

object is loaded from persistent storage for a cost of s) or they may be 1-faults (in which 

an object is loaded from another cache for a cost of 1). The number of 1-faults and s-

faults incurred by 2Mark  can be bounded by the number of 1-faults and s-faults incurred 

by OPT  in sequence σ , as described in the following.     

To prevent multiple copies of the same object in different caches, we assume that the 

request sequence is renamed in the following manner: when some object p requested at a 

store X is requested again at a different store Y we rename the object once it arrives at Y 

to p’ and rename all future requests for it at Y to p’. This is done for all requests.  Thus if  

this object is requested at X in the future, the object and all requests for it at X are 

renamed to p”. This ensures that even if some algorithm inadvertently leaves behind a 

copy of p at X it is not used again when p is requested at X after being requested at Y.  

Observe that the renaming does not increase the cost of any correct algorithm. 
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Consider the ith global phase.  During this global phase, let OPT load objects from 

persistent storage u times and exchange a pair of objects between stores v times, incurring 

a total cost of su+v. 

Every object loaded from persistent storage by 2Mark is globally-marked and not 

evicted from the system until the end of the global phase.  Since the system can hold at 

most NM objects, the number of objects loaded by 2Mark in the ith global phase is at most 

NM. We claim OPT loads at least one object from persistent storage during this global 

phase.  This is trivially true if this is the first global phase as all the objects loaded by 

2Mark have to be loaded by OPT as well.  If this is not the first global phase, OPT must 

satisfy each of the requests for the distinct NM objects in the previous global phase by 

objects from the system and thus must s-fault at least once to satisfy requests in this 

global phase.  

Within the ith global phase consider the jth local phase at some store X.  The 

renaming of objects ensures that any object p removed from X because of a request for p 

at some other store Y is never requested again at X.  Thus the first time an object is 

requested at X in this local phase, it is locally marked and remains in X for all future 

requests in this local phase.  Thus X can 1-fault for an object only once during this local 

phase.  Since X can hold at most M objects, it incurs at most M 1-faults in the jth local 

phase.  We claim that when j≠1 OPT incurs at least one 1-fault in this local phase.  The 

reasoning is similar to that for the ith global phase: since OPT satisfies each of the 

requests for M distinct objects in the previous local phase from cache, it must 1-fault at 

least once in this local phase.  When j=1, however, it may be that the previous local phase 
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did not contain requests for M distinct objects.  There are, however, at most NM 1-faults 

by 2Mark in all the local phases in which j=1, for the N stores each holding M objects, in 

the ith global phase. 

Since OPT has the benefit of foresight, it may be able to service a pair of 1-faults 

through a single exchange.  In this both the stores in the exchange get objects which are 

useful to them, instead of just one store benefiting from the exchange.  Thus since OPT 

has v exchanges in the ith global phase, it may satisfy at most 2v 1-faults and 2Mark

correspondingly has at most 2vM +NM 1-faults.  The second term is due 1-faults in the 

first local phase for each store in this global phase. 

Thus the total cost in the ith global phase by 2Mark is at most sNM +2vM + NM, 

while that of OPT is at least s+v, since u≥1 in every global phase. This completes the 

proof. 
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Figure 41: Algorithm 2Mark 

Input:    Request for object p  at store X  from sequence σ   
1 if p  is not on X  then 
2  if X  is not full then /* No eviction required */ 
3   if p  is on some store Y  then 
4    Transfer p  from Y  to X  
5   else 
6    Load p  to X  from persistent storage 
7   end 
8  else /* Eviction required to make space in X */ 
9   if all objects on X  are local-marked then 
10    local-unmark all  /*Begins new local phase */ 
11   end 
12   if p is on some store Y  then 
13    Select an arbitrary local-unmarked object q on X  
14    Exchange q  and p  on X  and Y  
    /* X now has p  and Y  has q */ 
15    if p  was local-marked on Y  then 
16     local-mark q  on Y  
17    end 
18   else /* p must be loaded from persistent storage */ 
19    if all objects in system are global-marked then 
20     global-unmark and local-unmark all objects 
                   /*Begins new global phase  & local phases at each store */ 
21    end 
22    if all objects on X  are global-marked then 
23     Select an arbitrary local-unmarked object q  on X  
24     Select an arbitrary store Y  with at least one global-unmarked object or empty space 
25     Transfer q  to Y , replacing an arbitrary global-unmarked object or empty space 
26    else 
27     Evict an arbitrary global-unmarked object q  on X  
28    end 
29    Load p  to X from persistent storage 
30   end 
31  end 
32 end 
33 global-mark and local-mark p  
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6.4 Micro-Benchmarks  

This section describes our performance evaluation of data diffusion using micro-

benchmarks.  

6.4.1 Testbed Description  

Table 8 lists the platforms used in the micro-benchmark experiments. The UC_x64 

node was used to run the Falkon service, while the TG_ANL_IA32 and TG_ANL_IA64 

clusters [144] were used to run the executors. Both clusters are connected internally via 

Gigabit Ethernet, and have a shared file system (GPFS) mounted across both clusters that 

we use as the “persistent storage” in our experiments. The GPFS file system has 8 I/O 

nodes to handle the shared file system traffic. We assume a one-to-one mapping between 

executors and nodes in all experiments. Latency between UC_x64 and the compute 

clusters was between one and two milliseconds.  

Table 8: Platform descriptions 

 

6.4.2 File System Performance  

In order to understand how well the proposed data diffusion works, we decided to 

model the shared file system (GPFS) performance in the ANL/UC TG cluster where we 

conducted all our experiments.  The following graphs represent 160 different 

experiments, covering 19.8M files transferring 3.68TB of data and consuming 162.8 CPU 

Name # of Nodes Processors Memory Network
TG_ANL_IA32 98 Dual Xeon 2.4 GHz 4GB 1Gb/s
TG_ANL_IA64 64 Dual Itanium 1.3 GHz 4GB 1Gb/s

UC_x64 1 Dual Xeon 3GHz w/ HT 2GB 100Mb/s
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hours; the majority of this time was spent measuring the GPFS performance, but a small 

percentage was also spent measuring the local disk performance of a single node.  The 

dataset we used was composed of 5.5M files making up 2.4TB of data.  In the hopes to 

eliminate as much variability or bias as possible from the results (introduced by Falkon 

itself), we wrote a simple program that took in some parameters, such as the input list of 

files, output directory, length of time to run experiment (while never repeating any files 

for the corresponding experiment); the program then randomized the input files and ran 

the workload of reading or reading+writing the corresponding files in 32KB chunks 

(larger buffers than 32KB didn’t offer any improvement in read/write performance for 

our testbed).  Experiments were ordered in such a manner that the same files would only 

be repeated after many other accesses, making the probability of those files being in any 

cache of the operating system or parallel file system I/O nodes small.  Most graphs 

(unless otherwise noted) represent the GPFS read or read+write performance for 1 to 64 

(1, 2, 4, 8, 16, 32, 64) concurrent nodes accessing files ranging from 1 byte to 1GB in 

size (1B, 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB). 

As a first comparison, we measured the read and read+write performance of one 

node as it performed the operations on both the local disk and the shared file system.  

Figure 42 shows that local disk is more than twice as fast when compared to the shared 

file system performance in all cases, a good motivator to favor local disk access 

whenever possible.  Note that this gap would likely grow as the access patterns shift from 

few large I/O calls (as was the case in these experiments) to many small I/O calls (which 

is the case for many astronomy applications and datasets). 
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Figure 42: Comparing performance between the local disk and the shared file 

system GPFS from one node 
Notice that the GPFS read performance (Figure 43) tops out at 3420 Mb/s for large 

files, and it can achieve 75% of its peak bandwidth with files as small as 1MB if there are 

enough nodes concurrently accessing GPFS.  It is worth noting that the performance 

increase beyond 8 nodes is only apparent for small files; for large files, the difference is 

small (<6% improvement from 8 nodes to 64 nodes).  This is due to the fact that there are 

8 I/O servers serving GPFS, and 8 nodes are enough to saturate the 8 I/O servers given 

large enough files. 

The read+write performance (Figure 44) is lower than that of the read performance, 

as it tops out at 1123Mb/s.  Just as in the read experiment, there seems to be little gain 

from having more than 8 nodes concurrently accessing GPFS (with the exception of 

small files).   
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Figure 43: Read performance for GPFS expressed in Mb/s; only the x-axis is 

logarithmic; 1-64 nodes for GPFS; 1B – 1GB files 

 
Figure 44: Read+write performance for GPFS expressed in Mb/s; only the x-axis is 

logarithmic; 1-64 nodes for GPFS; 1B – 1GB files  
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These final two graphs (Figure 45 and Figure 46) show the theoretical read+write 

and read throughput (measured in Mb/s) for local disk access.  These results are 

theoretical, as they are simply a derivation of the 1 node performance (see Figure 42), 

extrapolated to additional nodes (2, 4, 8, 16, 32, 64) linearly (assuming that local disk 

accesses are completely independent of each other across different nodes).  Notice the 

read+write throughput approaches 25GB/s (up from 1Gb/s for GPFS) and the read 

throughput 76Gb/s (up from 3.5Gb/s for GPFS).  This upper bound potential is a great 

motivator for applications to favor the use of local disk over that of shared disk, 

especially as applications scale beyond the size of the statically configured number of I/O 

servers servicing the shared file systems normally found in production clusters and grids. 

 
Figure 45: Theoretical read performance of local disks expressed in Mb/s; only the 

x-axis is logarithmic; 1-64 nodes for local disk access; 1B – 1GB files  
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Figure 46 (local model 1-64 nodes r+w): Theoretical read+write performance of 
local disks expressed in Mb/s; only the x-axis is logarithmic; 1-64 nodes for local 

disk access; 1B – 1GB files  

6.4.3 Data Diffusion Performance  

We measured performance for five configurations, two variants (read and 

read+write), seven node counts (1, 2, 4, 8, 16, 32, 64), and eight file sizes (1B, 1KB, 

10KB, 100KB, 1MB, 10MB, 100MB, 1GB), for a total of 560 experiments. For all 

experiments (with the exception of the 100% data locality experiments where the caches 

were warm), data was initially located only on persistent storage, which in our case was 

GPFS parallel file system. The six configurations are: Model (local disk), Model 

(persistent storage), FA Policy, MCU Policy (0% locality), and MCU Policy (100% 

locality). 
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Figure 47 shows read throughput for 100MB files, seven of the eight configurations, 

and varying numbers of nodes. Configuration (8) has the best performance: 61.7Gb/s 

with 64 nodes (~94% of ideal). Even the first-cache-available policy which dispatches 

tasks to executors without concern for data location performs better (~5.7Gb/s) than the 

shared file system alone (~3.1Gb/s) when there are more than 16 nodes. With eight or 

less nodes, data-unaware scheduling with 100% data locality performs worse than GPFS 

(note that GPFS also has eight I/O servers); one hypothesis is that data is not dispersed 

evenly among the caches, and load imbalances reduce aggregate throughput, but we need 

to investigate further to better understand the performance of data-unaware scheduling at 

small scales. 

 

Figure 47: Read throughput (Mb/s) for large files (100MB) for seven configurations 
for 1 – 64 nodes 
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Figure 48 shows read+write performance, which is also good for the max-compute-

util policy, yielding 22.7Gb/s (~96% of ideal). Without data-aware scheduling, 

throughput is 6.3Gb/s; when simply using persistent storage, it is a mere 1Gb/s. In Figure 

47 and Figure 48, we omit configuration (4) as it had almost identical performance to 

configuration (3). Recall that configuration (4) introduced a wrapper script that created a 

temporary sandbox for the application to work in, and afterwards cleaned up by removing 

the sandbox. The performance of these two configurations was so similar here because of 

the large file sizes (100MB) used, which meant that the cost to create and remove the 

sand box was amortized over a large and expensive operation.  

 

Figure 48: Read+Write throughput (Mb/s) for large files (100MB) for seven 
configurations and 1 – 64 nodes 
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In order to show some of the large overheads of parallel file systems such as GPFS, 

we execute the FA policy using a wrapper script similar to that used in many applications 

to create a sandbox execution environment. The wrapper script creates a temporary 

scratch directory on persistent storage, makes a symbolic link to the input file(s), 

executes the task, and finally removes the temporary scratch directory from persistent 

storage, along with any symbolic links. Figure 49 shows read and read+write 

performance on 64 nodes for file sizes ranging from 1B to 1GB and comparing the model 

performance with the FA policy with and without a wrapper. Notice that for small file 

sizes (1B to 10MB), the FA policy with wrapper had one order of magnitude lower 

throughput than those without the wrapper. We find that the best throughput that can be 

achieved by 64 concurrent nodes with small files is 21 tasks/sec. The limiting factor is the 

need, for every task, to create a directory on persistent storage, create a symbolic link, 

and remove the directory. Many applications that use persistent storage to read and write 

files from many compute processors use this method of a wrapper to cleanly separate the 

data between different application invocations. This offers further example of how GPFS 

performance can significantly impact application performance, and why data diffusion is 

desirable as applications scale.  

Overall, the shared file system seems to offer good performance for up to eight 

concurrent nodes (mostly due to there being eight I/O nodes servicing GPFS), however 

when more than eight nodes require access to data, the data diffusion mechanisms 

significantly outperform the persistent storage system. The improved performance can be 
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attributed to the linear increase in I/O bandwidth with compute nodes, and the effective 

data-aware scheduling performed. 

 

Figure 49: Read and Read+Write throughput (Mb/s) for a wide range of file sizes 
for three configurations on 64 nodes 
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each. We use files of 1 byte to measure the scheduling time and cache hit rates with 

minimal impact from the actual I/O performance of persistent storage and local disk. We 

compare the FA policy using no I/O (sleep 0), FA policy using GPFS, MCU policy, 

MCH policy, and GCC policy. The scheduling window size was set to 100X the number 

of nodes, or 3200. We also used 0.8 as the CPU utilization threshold in the GCC policy to 

determine when to switch between the MCH and MCU policies. Figure 50 shows the 

scheduler performance under different scheduling policies.  

 

Figure 50: Data-aware scheduler performance and code profiling for the various 
scheduling policies 
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the costs combined, including scheduling. The scheduling is quite inexpensive for this 

policy as it simply load balances across all workers. However, we see that with the 3 

data-aware policies, the scheduling costs (red and light blue areas) are more significant.  

6.5 Synthetic Workloads  

We measured the performance of the data-aware scheduler on various workloads, 

both with static (SRP) and dynamic (DRP) resource provisioning, and ran experiments on 

the ANL/UC TeraGrid [144] (up to 100 nodes, 200 processors). The Falkon service ran 

on an 8-core Xeon@2.33GHz, 2GB RAM, Java 1.5, 100Mb/s network, and 2 ms latency 

to the executors. The persistent storage was GPFS [46] with <1ms latency to executors.  

The three sub-sections that follow cover three diverse workloads: Monotonically-

Increasing (MI: Section 6.5.1), Sine-Wave (SI: Section 6.5.2), and All-Pairs (AP: Section 

6.5.3). We use workloads MI and SI to explore the dynamic resource provisioning 

support in data diffusion, and the various scheduling policies (e.g. FA, GCC, MCH, 

MCU) and cache sizes (e.g. 1GB, 1.5GB, 2GB, 4GB). We use the AP workload to 

compare data diffusion with active storage [137].  

6.5.1 Monotonically Increasing Workload 

The MI workload has a high I/O to compute ratio (10MB:10ms). The dataset is 

100GB large (10K x 10MB files). Each task reads one file chosen at random (uniform 

distribution) from the dataset, and computes for 10ms. The arrival rate is initially 1 

task/sec and is increased by a factor of 1.3 every 60 seconds to a maximum of 1000 

tasks/sec. The increasing function is shown in Equation 13. 
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Equation 13: Monotonically Increasing Workload arrival rate function 
This function varies arrival rate A from 1 to 1000 in 24 distinct intervals makes up 

250K tasks and spans 1415 seconds; we chose a maximum arrival rate of 1000 tasks/sec 

as that was within the limits of the data-aware scheduler (see Section 6.2.2), and offered 

large aggregate I/O requirements at modest scales. This workload aims to explore a 

varying arrival rate under a systematic increase in task arrival rate, to explore the data-

aware scheduler’s ability to optimize data locality with an increasing demand. This 

workload is depicted in Figure 51.   

 

Figure 51: Monotonically Increasing workload overview 
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We investigated the performance of the FA, MCH, MCU, and GCC policies, while 

also analyzing cache size effects by varying node cache size (1GB to 4GB). Several 

measured or computed metrics are relevant in understanding the following set of graphs: 

Demand (Gb/s): throughput needed to satisfy arrival rate 

Throughput (Gb/s): measured aggregate transfer rates 

Wait Queue Length: number of tasks ready to run 

Cache Hit Global: file access from a peer executor cache 

Cache Hit Local: file access from local cache 

Cache Miss: file accesses from the parallel file system  

Speedup (SP): SP = TN(FA) / TN(GCC|MCH|MCU) 

CPU Time (CPUT): the amount of processor time used 

Performance Index (PI): PI=SP/CPUT, normalized [0…1]  

Average Response Time (ARi): time to complete task i, including queue time, 

execution time, and communication costs 

Slowdown (SL): measures the factor by which the workload execution times are 

slower than the ideal workload execution time 

6.5.1.1 Cache Size Effects on Data Diffusion  

The baseline experiment (FA policy) ran each task directly from GPFS, using 

dynamic resource provisioning. Aggregate throughput matches demand for arrival rates 

up to 59 tasks/sec, but remains flat at an average of 4.4Gb/s beyond that. At the transition 

point when the arrival rate increased beyond 59, the wait queue length also started 
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growing to an eventual maximum of 198K tasks. The workload execution time was 5011 

seconds, yielding 28% efficiency (ideal being 1415 seconds).  

 
Figure 52: MI workload, 250K tasks, 10MB:10ms ratio, up to 64 nodes using DRP, 

FA policy  
We ran the same workload with data diffusion with varying cache sizes per node 

(1GB to 4GB) using the GCC policy, optimizing cache hits while keeping processor 

utilization high (90%). The dataset was diffused from GPFS to local disk caches with 

every cache miss (the red area in the graphs); global cache hits are in yellow and local 

cache hits in green. The working set was 100GB, and with a per-node cache size of 1GB, 

1.5GB, 2GB, and 4GB caches, we get aggregate cache sizes of 64GB, 96GB, 128GB, and 

256GB. The 1GB and 1.5GB caches cannot fit the working set in cache, while the 2GB 

and 4GB cache can.  

Figure 53 shows the 1GB cache size experiment. Throughput keeps up with demand 

better than the FA policy, up to 101 tasks/sec arrival rates (up from 59), at which point 
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the throughput stabilizes at an average of 5.2Gb/s. Within 800 seconds, working set 

caching reaches a steady state with a throughput of 6.9Gb/s. The overall cache hit rate 

was 31%, resulting in a 57% higher throughput than GPFS. The workload execution time 

is reduced to 3762 seconds, down from 5011 seconds for the FA policy, with 38% 

efficiency.  

 
Figure 53: MI workload, 250K tasks, 10MB:10ms ratio, up to 64 nodes using DRP, 

GCC policy, 1GB caches/node 
Figure 54 increases the per node cache size from 1Gb to 1.5GB, which increases the 

aggregate cache size to 96GB, almost enough to hold the entire working set of 100GB. 

Notice that the throughput hangs on further to the ideal throughput, up to 132 tasks/sec 

when the throughput increase stops and stabilizes at an average of 6.3Gb/s. Within 350 

seconds of this stabilization, the cache hit performance increased significantly from 25% 

cache hit rates to over 90% cache hit rates; this increase in cache hit rates also results in 
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the throughput increase up to an average of 45.6Gb/s for the remainder of the experiment. 

Overall, it achieved 78% cache hit rates, 1% cache hit rates to remote caches, and 21% 

cache miss rates. The workload execution time was reduced drastically from the 1GB per 

node cache size, down to 1596 seconds; this yields an 89% efficiency when compared to 

the ideal case. Both the 1GB and 1.5GB cache sizes achieve reasonable cache hit rates, 

despite the fact that the cache sizes are smaller than the working set; this is due to the fact 

that the data-aware scheduler looks deep (i.e. window size set to 2500) in the wait queue 

to find tasks that will improve the cache hit performance. 

 

Figure 54: MI workload, 250K tasks, 10MB:10ms ratio, up to 64 nodes using DRP, 
GCC policy, 1.5GB caches/node 
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attribute this good performance to the ability to cache the entire working set and then 

schedule tasks to the nodes that have required data to achieve cache hit rates approaching 

98%. Note that the queue length never grew beyond 7K tasks, significantly less than for 

the other experiments (91K to 198K tasks long). With an execution time of 1436 seconds, 

efficiency was 98.5%.   

 
Figure 55: MI workload, 250K tasks, 10MB:10ms ratio, up to 64 nodes using DRP, 

GCC policy, 2GB caches/node 
Investigating if it helps to increase the cache size further to 4GB per node, we 

conduct the experiment whose results are found in Figure 56. We see no significant 

improvement in performance from the experiment with 2GB caches. The execution time 

is reduced slightly to 1427 seconds (99.2% efficient), and the overall cache hit rates are 

improved to 88% cache hit rates, 6% remote cache hits, and 6% cache misses.  
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Figure 56: MI workload, 250K tasks, 10MB:10ms ratio, up to 64 nodes using DRP, 
GCC policy, 4GB caches/node 
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To study the impact of scheduling policy on performance, we reran the workload for 
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Overall workload execution time increased, to 2888 seconds (49% efficiency, down from 

99% for GCC).  

 
Figure 57: MI workload, 250K tasks, 10MB:10ms ratio, up to 64 nodes using DRP, 

MCH policy, 4GB caches/node  
Figure 58 shows the MCU policy, which attempts to maximize the CPU utilization at 

the expense of data movement. We see the workload execution time is improved 

(compared to MCH) down to 2037 seconds (69% efficient), but it is still far from the 

GCC policy that achieved 1436 seconds. The major difference here is that the there are 
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a spike in throughout from 14Gb/s to 40Gb/s. Although we maintained 100% CPU 

utilization, due to the extra costs of moving data from remote executors, the performance 

was worse than the GCC policy when 4.5% of the CPUs were left idle. 

 
Figure 58: MI workload, 250K tasks, 10MB:10ms ratio, up to 64 nodes using DRP, 

MCU policy, 4GB caches/node  
The next several sub-sections will summarize these experiments, and compare them 

side by side.  

6.5.1.3 Cache Performance  

Figure 59 shows cache performance over six experiments involving data diffusion, 
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miss rate was 70%, which is to be expected considering only 70% of the working set fit 

in cache at most, and cache thrashing was hampering the scheduler’s ability to achieve 

better cache miss rates. The other extreme, the 4GB cache size cases, all achieved near 

perfect cache miss rates of 4%~5.5%.   

 
Figure 59: MI workload cache performance  
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in job submission rate: it may be viewed as a measure of how far a particular method can 

go in keeping up with user demands. 

 
Figure 60: MI workload average and peak (99 percentile) throughput 

We see that the FA policy had the lowest average throughput of 4Gb/s, compared to 
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opposed to 6Gb/s for the FA policy.  
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with 3.6Gb/s due to all the cache misses, while FA tests had 4Gb/s load. However, as the 

cache sizes increased and the working set fit in cache, the load on GPFS became as low 

as 0.4Gb/s; similarly, the network load was considerably lower, with the highest values of 

1.5Gb/s for the MCU policy, and less than 1Gb/s for the other policies. 

6.5.1.5 Performance Index and Speedup  

The performance index attempts to capture the speedup per CPU time achieved. 

Figure 61 shows PI and speedup data.  

 
Figure 61: MI workload PI and speedup comparison 
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resource usage was due to the larger caches, which in turn allowed the system to perform 

better with fewer resources for longer durations, and hence the wait queue did not grow 

as fast, which resulted in less aggressive resource allocation. Notice the performance 

index of the FA policy which uses GPFS solely; although the speedup gains with data 

diffusion compared to the FA policy are modest (1.3X to 3.5X), the performance index of 

data diffusion is significantly more (2X to 34X). 

6.5.1.6 Slowdown  

Speedup compares data diffusion to the base case, but does not tell us how well data 

diffusion performed in relation to the ideal case. Recall that the ideal case is computed 

from the arrival rate of tasks, assuming zero communication costs and infinite resources 

to handle tasks in parallel; in our case, the ideal workload execution time is 1415 

seconds. Figure 62 shows the slowdown for our experiments as a function of arrival rates. 

Slowdown (SL) measures the factor by which the workload execution times are slower 

than the ideal workload execution time; the ideal workload execution time assumes 

infinite resources and 0 cost communication, and is computed from the arrival rate 

function.    

These results in Figure 62 show the arrival rates that could be handled by each 

approach, showing the FA policy (the GPFS only case) to saturate the earliest at 59 

tasks/sec denoted by the rising red line. It is evident that larger cache sizes allowed the 

saturation rates to be higher (essentially perfect for some cases, such as the GCC with 

4GB caches). It interesting to point out the GCC policy with 1.5GB caches slowdown 

increase relatively early (similar to the 1GB case), but then towards the end of the 
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experiment the slowdown is reduced from almost 5X back down to an almost ideal 1X. 

This sudden improvement in performance is attributed to a critical part of the working set 

being cached and the cache hit rates increasing significantly. Also, note the odd 

slowdown (as high as 2X) of the 4GB cache DRP case at arrival rates 11, 15, and 20; this 

slowdown matches up to the drop in throughput between time 360 and 480 seconds in 

Figure 58 (the detailed summary view of this experiment), which in turn occurred when 

an additional resource was allocated. It is important to note that resource allocation takes 

on the order of 30~60 seconds due to LRM’s overheads, which is why it took the 

slowdown 120 seconds to return back to the normal (1X), as the dynamic resource 

provisioning compensated for the drop in performance.   

 
Figure 62: MI workload slowdown as we varied arrival rate 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Sl
ow

do
w

n

Arrival Rate per Second

FA
GCC 1GB
GCC 1.5GB
GCC 2GB
GCC 4GB
MCH 4GB
MCU 4GB



172 

6.5.1.7 Response Time  

The response time is probably one of the most important metrics interactive 

applications. Average Response Time (ARi) is the end-to-end time from task submission 

to task completion notification for task i; ARi = WQi+TKi+Di, where WQi is the wait 

queue time, TKi is the task execution time, and Di is the delivery time to deliver the 

result. Figure 63 shows response time results across all 14 experiments in log scale.  

 
Figure 63: MI workload average response time 
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seconds per task) to the worst data diffusion (1084 seconds) and the worst GPFS (1870 

seconds). That is over 500X difference between the data diffusion GCC policy and the 

FA policy (GPFS only) response time. A principal factor influencing the average 

response time is the time tasks spend in the Falkon wait queue. In the worst (FA) case, 
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the queue length grew to over 200K tasks as the allocated resources could not keep up 

with the arrival rate. In contrast, the best (GCC with 4GB caches) case only queued up 

7K tasks at its peak. The ability to keep the wait queue short allowed data diffusion to 

keep average response times low (3.1 seconds), making it a better for interactive 

workloads.  

6.5.2 Sine-Wave Workload 

The previous sub-section explored a workload with monotonically increasing arrival 

rates. To explore how well data diffusion deals with decreasing arrival rates as well, we 

define a sine-wave (SW) workload that follows the function (where time is elapsed 

minutes from the beginning of the experiment): 

( ) ( ) ⎥
⎦

⎥
⎢
⎣

⎢
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟
⎠
⎞

⎜
⎝
⎛ += 705.5*11.0*1859678.2*11.0sin timetimesqrtA  

Equation 14: Sine-Wave Workload arrival rate function 
This workload aims to explore the data-aware scheduler’s ability to optimize data 

locality in face frequent joins and leaves of resources due to variability in demand. This 

function is essentially a sine wave pattern (see Figure 64, red line), in which the arrival 

rate increases in increasingly stronger waves, increasing up to 1000 tasks/sec arrival 

rates. The working set is 1TB large (100K files of 10MB each), and the I/O to compute 

ratio is 10MB:10ms. The workload is composed of 2M tasks (black line) where each task 

accesses a random file (uniform distribution), and takes 6505 seconds to complete in the 

ideal case. 
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Figure 64: SW workload overview 

Our first experiment consisted of running the SW workload with all computations 

running directly from the parallel file system and using 100 nodes with static resource 

provisioning. We see the measured throughput keep up with the demand up to the point 

when the demand exceeds the parallel file system peak performance of 8Gb/s; beyond 

this point, the wait queue grew to 1.4M tasks, and the workload needed 20491 seconds to 

complete (instead of the ideal case of 6505 seconds), yielding an efficiency of 32%. Note 

that although we are using the same cluster as in the MI workload (Section 6.5.1), 

GPFS’s peak throughput is higher (8Gb/s vs. 4Gb/s) due to a major upgrade to both 

hardware and software in the cluster between running these experiments. 
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Figure 65: SW workload, 2M tasks, 10MB:10ms ratio, 100 nodes, FA policy 
Enabling data diffusion with the GCC policy, setting the cache size to 50GB, the 

scheduling window size to 2500, and the processor utilization threshold to 90%, we get a 

run that took 6505 seconds to complete (see Figure 66), yielding an efficiency of 100%. 

We see the cache misses (red) decrease from 100% to 0% over the course of the 

experiment, while local cache hits (green) frequently making up 90%+ of the cache hits. 

Note that the data diffusion mechanism was able to keep up with the arrival rates 

throughout with the exception of the peak of the last wave, when it was only able to 

achieve 72Gb/s (instead of the ideal 80Gb/s), at which point the wait queue grew to its 

longest length of 50K tasks. The global cache hits (yellow) is stable at about 10% 

throughout, which is reflected from the fact that the GCC policy is oscillating between 

0
10
20
30
40
50
60
70
80
90

100
N

od
es

 A
llo

ca
te

d
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h 

(x
1K

)

Time (sec)
Throughput (Gb/s) Demand (Gb/s)
Wait Queue Length Number of Nodes



176 

optimizing cache hit performance and processor utilization around the configured 90% 

processor utilization threshold.  

 
Figure 66: SW workload, 2M tasks, 10MB:10ms ratio, 100 nodes, GCC policy, 

50GB caches/node 
Enabling dynamic resource provisioning, Figure 67 shows the workload still 

manages to complete in 6697 seconds, yielding 97% efficiency. In order to minimize 

wasted processor time, we set each worker to release its resource after 30 seconds of 

idleness. Note that upon releasing a resource, its cache is reset; thus, after every wave, 

cache performance is again poor until caches are rebuilt. The measured throughput does 

not fit the demand line as well as the static resource provisioning did, but it increases 

steadily in each wave, and achieves the same peak throughput of 72Gb/s after enough of 

the working set is cached.  
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Figure 67: SW workload, 2M tasks, 10MB:10ms ratio, up to 100 nodes with DRP, 

GCC policy, 50GB caches/node 
In summary, we see data diffusion make a significant impact. Using the dynamic 

provisioning where the number of processors is varied based on load does not hinder data 

diffusion’s performance significantly (achieves 97% efficiency) and yields less processor 

time consumed (253 CPU hours as opposed to 361 CPU hours for SRP with data 

diffusion and 1138 CPU hours without data diffusion). 

6.5.3 All-Pairs Workload Evaluation 

In previous work, several of the co-authors addressed large scale data intensive 

problems with the Chirp [138] distributed filesystem. Chirp has several contributions, 

such as delivering an implementation that behaves like a file system and maintains most 

of the semantics of a shared filesystem, and offers efficient distribution of datasets via a 
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spanning tree making Chirp ideal in scenarios with a slow and high latency data source. 

However, Chirp does not address data-aware scheduling, so when used by All-Pairs 

[137], it typically distributes an entire application working data set to each compute node 

local disk prior to the application running. We call the All-Pairs use of Chirp active 

storage. This requirement hinders active storage from scaling as well as data diffusion, 

making large working sets that do not fit on each compute node local disk difficult to 

handle, and producing potentially unnecessary transfers of data. Data diffusion only 

transfers the minimum data needed per job. This section aims to compare the 

performance between data diffusion and a best model of active storage. 

Variations of the AP problem occur in many applications, for example when we 

want to understand the behavior of a new function F on sets A and B, or to learn the 

covariance of sets A and B on a standard inner product F (see Figure 68). [137] The AP 

problem is easy to express in terms of two nested for loops over some parameter space 

(see Figure 69). This regular structure also makes it easy to optimize its data access 

operations. Thus, AP is a challenging benchmark for data diffusion, due to its on-

demand, pull-mode data access strategy. Figure 70 shows a sample 100x100 problem 

space, where each black dot represents a computation computing some function F on data 

at index i and j; in this case, the entire compute space is composed of 10K separate 

computations. 

 

Figure 68: All-Pairs definition 

All-Pairs( set A, set B, function F ) returns matrix M: 
Compare all elements of set A to all elements of set B via function F, yielding matrix M, 

such that M[i,j] = F(A[i],B[j]) 



179 

 

Figure 69: All-Pairs Workload Script 

 

Figure 70: Sample 100x100 All-Pairs problem, where each dot represents a 
computation at index i,j 

In previous work [137], we conducted experiments with biometrics and data mining 

workloads using Chirp. The most data-intensive workload was where each function 

executed for 1 second to compare two 12MB items, for an I/O to compute ratio of 

24MB:1000ms. At the largest scale (50 nodes and 500x500 problem size), we measured 

an efficiency of 60% for the active storage implementation, and 3% for the demand 

paging (to be compared to the GPFS performance we cite). These experiments were 

conducted in a campus wide heterogeneous cluster with nodes at risk for suspension, 
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network connectivity of 100Mb/s between nodes, and a shared file system rated at 

100Mb/s from which the dataset needed to be transferred to the compute nodes.  

Due to differences in our testing environments, a direct comparison is difficult, but 

we compute the best case for active storage as defined in [137], and compare measured 

data diffusion performance against this best case. Our environment has 100 nodes (200 

processors) which are dedicated for the duration of the allocation, with 1Gb/s network 

connectivity between nodes, and a parallel file system (GPFS) rated at 8Gb/s. For the 

500x500 workload (see Figure 71), data diffusion achieves a throughput that is 80% of 

the best case of all data accesses occurring to local disk (see Figure 75).  

 
Figure 71: AP workload, 500x500=250K tasks, 24MB:1000ms, 100 nodes, GCC 

policy, 50GB caches/node 
We computed the best case for active storage to be 96%, however in practice, based 

on the efficiency of the 50 node case from previous work [137] which achieved 60% 
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efficiency, we believe the 100 node case would not perform significantly better than the 

80% efficiency of data diffusion. Running the same workload through Falkon directly 

against a parallel file system achieves only 26% of the throughput of the purely local 

solution.  

In order to push data diffusion harder, we made the workload 10X more data-

intensive by reducing the compute time from 1 second to 0.1 seconds, yielding a I/O to 

compute ratio of 24MB:100ms (see Figure 72).  

 
Figure 72: AP workload, 500x500=250K tasks, 24MB:100ms, 100 nodes, GCC 

policy, 50GB caches/node 
For this workload, the throughput steadily increased to about 55Gb/s as more local 

cache hits occurred. We found extremely few cache misses, which indicates the high data 

locality of the AP workload. Data diffusion achieved 75% efficiency. Active storage and 

data diffusion transferred similar amounts of data over the network (1536GB for active 
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storage and 1528GB for data diffusion with 0.1 sec compute time and 1698GB with the 1 

sec compute time workload) and to/from the parallel file system (12GB for active storage 

and 62GB and 34GB for data diffusion for the 0.1 sec and 1 sec compute time workloads 

respectively). With such similar bandwidth usage throughout the system, similar 

efficiencies were to be expected. 

In order to explore larger scale scenarios, we emulated (ran the entire Falkon stack 

on 200 processors with multiple executors per processor and emulated the data transfers) 

two systems, an IBM Blue Gene/P and a SiCortex. We configured the Blue Gene/P with 

4096 processors, 2GB caches per node, 1Gb/s network connectivity, and a 64Gb/s 

parallel file system. We also increased the problem size to 1000x1000 (1M tasks), and set 

the I/O to compute ratios to 24MB:4sec (each processor on the Blue Gene/P and SiCortex 

is about ¼ the speed of those in our 100 node cluster). On the emulated Blue Gene/P, we 

achieved an efficiency of 86%. The throughputs steadily increased up to 180Gb/s (of a 

theoretical upper bound of 187Gb/s). It is possible that our emulation was optimistic due 

to a simplistic modeling of the Torus network, however it shows that the scheduler scales 

well to 4K processors and is able to do 870 scheduling decisions per second to complete 

1M tasks in 1150 seconds. The best case active storage yielded only 35% efficiency. We 

justify the lower efficiency of the active storage due to the significant time that is spent to 

distribute the 24GB dataset to 1K nodes via the spanning tree. Active storage used 

12.3TB of network bandwidth (node-to-node communication) and 24GB of parallel file 

system bandwidth, while data diffusion used 4.7TB of network bandwidth, and 384GB of 

parallel file system bandwidth (see Table 9).  
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Figure 73: AP workload on emulated Blue Gene/P, 1000x1000=1M tasks, 

24MB:4000ms, 1024 nodes (4096 processors), GCC policy, 2GB caches/node 
The emulated SiCortex was configured with 5832 processors, 3.6GB caches, and a 

relatively slow parallel file system rated at 4Gb/s.  The throughput on the SiCortex 

reached 90Gb/s, far from the upper bound of 268Gb/s. It is interesting that the overall 

efficiency for data diffusion on the SiCortex was 27%, the same efficiency that the best 

case active storage achieved. The slower parallel file system significantly reduced the 

efficiency of the data diffusion (as data diffusion performs the initial cache population 

completely from the parallel file system, and needed 906GB of parallel file system 

bandwidth), however it had no effect on the efficiency of the active storage as the 

spanning tree only required one read of the dataset from the parallel file system (a total of 

24GB). With sufficiently large workloads, data diffusion would likely improve its 
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efficiency as the expensive cost to populate its caches would get amortized over more 

potential cache hits. 

 
Figure 74: AP workload on emulated SiCortex, 1000x1000=1M tasks, 

24MB:4000ms, 972 nodes (5832 processors), GCC policy, 3.6GB caches/node 
There are some interesting oscillations in the cache hit/miss ratios as well as the 

achieved. We believe the oscillation occurred due to the slower parallel file system of the 

SiCortex, which was overwhelmed by thousands of processors concurrently accessing 

tens of MB each. Further compounding the problem is the fact that there were twice as 

many cache misses on the SiCortex than there were on the Blue Gene/P, which seems 

counter-intuitive as the per processor cache size was slightly larger (500MB for Blue 

Gene/P and 600MB for the SiCortex). We will investigate these oscillations further to 

find their root cause, which might very well be due to our emulation, and might not 

appear in real world examples. 
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In reality, the best case active storage would require cache sizes of at least 24GB, 

and the existing 2GB or 3.6GB cache sizes for the Blue Gene/P and SiCortex respectively 

would only be sufficient for an 83X83 problem size, so this comparison (Figure 73 and 

Figure 74) is not only emulated, but also hypothetical. Nevertheless, it is interesting to 

see the significant difference in efficiency between data diffusion and active storage at 

this larger scale.  

 
Figure 75: AP workload efficiency for 500x500 problem size on 200 processor 

cluster and 1000x1000 problem size on the Blue Gene/P and SiCortex emulated 
systems with 4096 and 5832 processors respectively 

Our comparison between data diffusion and active storage fundamentally boils down 

to a comparison of pushing data versus pulling data.  The active storage implementation 

pushes all the needed data for a workload to all nodes via a spanning tree. With data 

diffusion, nodes pull only the files immediately needed for a task, creating an incremental 

spanning forest (analogous to a spanning tree, but one that supports cycles) at runtime 

that has links to both the parent node and to any other arbitrary node or persistent storage. 
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We measured data diffusion to perform comparably to active storage on our 200 

processor cluster, but differences exist between the two approaches. Data diffusion is 

more dependent on having a well balanced persistent storage for the amount of 

computing power (as could be seen in comparing the Blue Gene/P and SiCortex results), 

but can scale to larger number of nodes due to the more selective nature of data 

distribution. Furthermore, data diffusion only needs to fit the per task working set in local 

caches, rather than an entire workload working set as is the case for active storage.  

Table 9: Data movement for the best case active storage and Falkon data diffusion 

 

6.6 Collective I/O for MTC 

Collective I/O is orthogonal to the data diffusion presented in this chapter, but 

nevertheless has similar goals to enable data-intensive MTC. This section evaluates a 
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prototype collective IO model for file-based MTC. The model enables efficient and easy 

distribution of input data files to computing nodes and gathering of output results from 

them. It eliminates the need for such manual tuning and makes the programming of large-

scale clusters using a loosely coupled model easier. Our approach, inspired by in-memory 

approaches to collective operations for parallel programming, builds on fast local file 

systems to provide high-speed local file caches for parallel scripts, uses a broadcast 

approach to handle distribution of common input data, and uses efficient scatter/gather 

and caching techniques for input and output. We describe the design of the prototype 

model, its implementation on the Blue Gene/P supercomputer, and present preliminary 

measurements of its performance on synthetic benchmarks and on a large-scale molecular 

dynamics application. Note that while our data diffusion experiments were emulated on 

the Blue Gene/P, our collective I/O experiments are running on the real system with real 

applications and data. 

The specific problem we address here is that as the number of nodes in large-scale 

clusters contending for shared resources grows large, the IO bandwidth, volume and/or 

file management transaction rate exceeds some aggregate capacity limit, bottlenecks arise 

and the system becomes unbalanced. Thus, CPU cycles are wasted because the IO 

subsystem cannot service the CPUs fast enough. (We are concerned here with 

applications with high enough IO-to-compute ratios for IO to become the primary 

obstacle to parallel speedup. Applications that do relatively little IO while computing for 

long periods typically perform well in loosely coupled settings without any change to 

their IO strategy.) 
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While petascale systems have massive shared IO subsystems, these subsystems often 

have vulnerabilities in handling file management transactions (e.g., creating and writing 

huge numbers of files at high rates) that are ill-matched with the needs of loosely coupled 

programs. Our work remedies this deficiency and makes petascale systems attractive for 

this important and productive paradigm for knitting existing scientific programs into 

powerful workflows.  

Our strategy of collective IO is inspired by the collective data operations employed 

by tightly coupled message passing programming models. In these models, data is 

exchanged, both between in-memory tasks and between tasks and files, using operations 

such as scatter (often assisted by broadcast) and gather. In our model: 

• Input files are broadcast from shared file systems to local file systems. 

• Output files are locally batched up from applications and efficiently transferred to 

shared persistent storage. 

• Intermediate file systems are provided within the cluster to aid in efficient input 

and output staging and to overcome the limitations that large-scale clusters 

impose on local file system capacity. 

We present measurements from the Argonne ALCF Blue Gene/P supercomputer, 

running under ZeptoOS and Falkon. We have evaluated various features on up to 98,304 

(out of 163,840) processors. Dedicated test time on the entire facility is rare, so all tests 

below were done with the background noise of activity from other jobs running on other 

processors. Nonetheless, the trends indicated are fairly clear, and we expect that they will 

be verifiable in future tests in a controlled, dedicated environment. We have made 
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measurements in both areas of the proposed collective IO primitives (denoted as CIO 

throughout this section), such as input data distribution, and output data collection.  

6.6.1 Input Data Distribution  

Our first set of results investigated how effectively compute nodes can read data 

from the IFSs (over the torus network), examining various data volumes and various 

IFS/LFS ratios. We used the lightweight Chirp file system [138] and the Fuse interface to 

read files from IFS to LFS. Figure 76 shows higher aggregate performance with larger 

files, and with higher ratios, with the best IFS performance reaching 162 MB/s for 100 

MB files and a 256:1 ratio. However, as the bandwidth is split between 256 clients, the 

per-node throughput is only 0.6 MB/s. Computing the per-node throughput for the 64:1 

ratio yields 2.3 MB/s, a significant increase. Thus, we conclude that a 64:1 ratio is good 

when trying to maximize the bandwidth per node. Larger ratios reduce the number of 

IFSs that need to be managed; however, there are practical limits that prohibit these ratios 

from being extremely large. In the case of a 512:1 ratio and 100 MB files, our 

benchmarks failed due to memory exhaustion when 512 compute nodes simultaneously 

connected to 1 compute node to transfer the 100 MB file. This needs further analysis. 

Our next set of experiments used the lightweight MosaStore file system [145] to 

explore how effectively we can stripe LFSs to form a larger IFS. Our preliminary results 

in Figure 77 show that as we increase the degree of striping we get significant increases 

in aggregate throughput, up from 158 MB/s to 831 MB/s. 
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Figure 76: Read performance while varying the ratio of LFS to IFS from 64:1 to 

512:1 using the Torus network. 
The best performing configuration was 32 compute nodes aggregating their 2GB-

per-node LFSs into a 64 GB IFS. This aggregation not only increases performance, but 

also allows compute nodes to keep their IO relatively local when working with large files 

that do not fit in a single compute node 2GB RAM-based LSF. 

Our final experiment for the input data distribution section focused on how quickly 

we can distribute data from GFS to a set of IFSs, or potentially to LFSs. As in our 

previous experiment, we use Chirp (see Figure 78). Chirp has a native operation that 

allows a file (or set of files) to be distributed to a set of nodes over a spanning tree of 

copy operations. The spanning tree has the benefit of requiring fewer data transfers: 

log(n) instead of n, where n is the number of nodes.  
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Figure 77: Read performance, varying the degree of striping of data across multiple 

nodes from 1 to 32 using the torus network 
In the case of a naïve data distribution in which compute nodes read data directly 

from GFS (GPFS in our case as noted in the figure), computing the aggregate throughput 

is straightforward: throughput = nodes*dataSize/workloadTime. For the spanning tree 

distribution, computing the actual throughput is problematic since the number of transfers 

is lower than in the naïve method. To make the comparison fair, we compute throughput 

for the spanning tree distribution with the same formula as for the naïve data distribution, 

although the actual network traffic would have been significantly less. We believe this is 

the correct way to compare the two approaches, as it emphasizes the time to complete the 

workload. On up to 4K processors, GPFS achieves 2.4 GB/s at the largest scale (2.4 

MB/s per node). This is the peak rated performance for the file system we tested (/home). 

However, the spanning tree approach achieves an equivalent of 12.5 GB/s on 4K 
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processors. We plan to explore the performance of the spanning tree distribution at larger 

scales to find the torus network saturation point. We expect to achieve at least one order 

of magnitude better performance (for distributing a set of files to many compute nodes) at 

large scales when using the spanning tree approach as opposed to the naïve approach 

which reads each file from GPFS directly.  

 
Figure 78: CIO distribution via spanning tree over Torus network vs. GPFS over 

Ethernet & Tree networks 

6.6.2 Output Data Distribution  

Our second goal for the collective IO primitives was to support the aggregation and 

transfer of many files from multiple LFSs or IFSs to the GFS. When writing from many 
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possible writing to GFS concurrently to limit any locking contention, and to allow the 

largest buffer sizes and aggregation and potentially small files into larger ones. It is also 

desirable to make write operations as asynchronous as possible to allow the overlap of 

computing and data transfer from the compute node. To achieve all these desirable 

features, we have implemented an output data collector (CIO, which we previously 

discussed) that resides on an IFS and acts as an intermediate buffer space for output 

generated on compute nodes. We use a ratio of 64:1 IFS to LFS, which significantly 

reduces the number of clients that write to GFS.  

Our measurements (see Figure 79 and Figure 80) show that the CIO collector 

strategy yields close to the ideal efficiency when compared to compute tasks of the same 

length with no IO. For example, in Figure 79 we show the efficiency achieved with short 

tasks (4 seconds) that produce output files with sizes ranging from 1KB to 1MB. We see 

that CIO (the dotted lines) is able to achieve > 90% efficiency in most cases, and almost 

80% in the worst case with larger files. In contrast, the same workload achieved only 

10% to < 50% efficiency when using GPFS. We also observed an anomaly: a slight 

efficiency increase at the largest scale of 32K processors. One possible cause of this is 

that we reached the limit of Falkon dispatch throughput.  

Figure 80 is similar to Figure 79, but uses 32 second tasks. We see a similar pattern, 

in which CIO achieves 90% efficiency, while GPFS achieves almost 90% efficiency with 

256 processors but less than 10% on 96K processors.  
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Figure 79: CIO vs. GFS efficiency for 4 second tasks, varying data size (1KB to 

1MB) on 256 to 32K processors 

 
Figure 80: CIO vs GPFS efficiency for 32 second tasks, varying data size (1KB to 

1MB) for 256 to 96K processors. 
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We also extract from these experiments the achieved aggregate throughput (shown in 

Figure 81). We limit this plot to the 1 MB case for readability. Notice the extremely poor 

GPFS write performance as the number of processors increases, peaking at only 250 

MB/s. The CIO throughput is almost an order of magnitude higher, peaking at 2100 

MB/s, and is within a few percent of the ideal case (tasks with the same duration, but 

with only local IO to RAM-based LFS, labeled 4sec+RAM and 32sec+RAM).   

 
Figure 81: CIO collection write performance compared to GPFS write performance 

on up to 96K processors 
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attention to the many computations that are heterogeneous but not “happily” parallel. We 

believe that today’s existing HPC systems are a viable platform to host MTC 

applications. We also believe MTC is a broader definition than HTC, allowing for finer 

grained tasks, independent tasks as well as ones with dependencies, and allowing tightly 

coupled applications and loosely coupled applications to co-exist on the same system.  

Furthermore, having native support for data intensive applications is central to MTC, 

as there is a growing gap between storage performance of parallel file systems and the 

amount of processing power. As the size of scientific data sets and the resources required 

for analysis increase, data locality becomes crucial to the efficient use of large scale 

distributed systems for scientific and data-intensive applications [19]. We believe it is 

feasible to allocate large-scale computational resources and caching storage resources 

that are relatively remote from the original data location, co-scheduled together to 

optimize the performance of entire data analysis workloads which are composed of many 

loosely coupled tasks.  

When building systems to perform such analyses, we face difficult tradeoffs. Do we 

dedicate computing and storage resources to analysis tasks, enabling rapid data access but 

wasting resources when analysis is not being performed? Or do we move data to compute 

resources, incurring potentially expensive data transfer costs? We envision “data 

diffusion” as a process in which data is stochastically moving around in the system, and 

that different applications can reach a dynamic equilibrium this way. One can think of a 

thermodynamic analogy of an optimizing strategy, in terms of energy required to move 

data around (“potential wells”) and a “temperature” representing random external 
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perturbations (“job submissions”) and system failures. This chapter proposes exactly such 

a stochastic optimizer. Our work is significant due to the support data intensive 

applications require with the growing gap between parallel file system performance and 

the increase in the number of processors per system. We have shown good support for 

MTC on a variety of resources from clusters, grids, and supercomputers through our 

work on Swift [13, 55, 10] and Falkon [4, 2]. Furthermore, we have addressed data-

intensive MTC by offloading much of the I/O away from parallel file systems and into 

the network, making full utilization of caches (both on disk and in memory) and the full 

network bandwidth of commodity networks (e.g. gigabit Ethernet) as well as proprietary 

and more exotic networks (Torus, Tree, and Infiniband). [1, 17] We have used two 

techniques, data diffusion to harness data locality in the application data access patterns, 

and collective I/O to efficiently distribute data and aggregate results in an efficient 

manner. 

We believe that there is more to HPC than tightly coupled MPI, and more to HTC 

than embarrassingly parallel long running jobs. Like HPC applications, and science itself, 

applications are becoming increasingly complex opening new doors for many 

opportunities to apply HPC in new ways if we broaden our perspective. We hope the 

definition of Many-Task Computing leads to a stronger appreciation of the fact that 

applications that are not tightly coupled via MPI are not necessarily embarrassingly 

parallel: some have just so many simple tasks that managing them is hard, some operate 

on or produce large amounts of data that need sophisticated data management in order to 

scale. There also exist applications that involve MPI ensembles, essentially many jobs 
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where each job is composed of tightly coupled MPI tasks, and there are loosely coupled 

applications that have dependencies among tasks, but typically use files for inter-process 

communication. Efficient support for these sorts of applications on existing large scale 

systems, including future ones will involve substantial technical challenges and will have 

big impact on science. 
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7 Accelerating Scientific Applications on Clusters, Grids, and 

Supercomputers 

This chapter showcases the end-product of this entire dissertation, the wide range of 

applications that have been run using the proposed techniques, and what improvements 

they have achieved in both performance and scalability. The results presented in this 

chapter have been published in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. 

7.1 Falkon Usage 

Over the past year, Falkon [2, 4] has seen wide deployment and usage across a 

variety of systems, from the TeraGrid [44], the SiCortex [56] at Argonne National 

Laboratory (ANL), the IBM Blue Gene/P [146] supercomputer at ALCF ANL, and the 

Sun Constellation supercomputer from the TeraGrid [44]. Figure 82 shows plot of Falkon 

across these various systems from December 2007 - October 2008. Each blue dot 
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represents a 60 second average of allocated processors, and the black line denotes the 

number of completed tasks. In summary, there were 163K peak number of processors, 

with 1.4 million CPU hours consumed and 164 million tasks for an average task 

execution time of 31 seconds.  

 

Figure 82: December 2007 - October 2008 plot of Falkon across various systems 
(ANL/UC TG 316 processor cluster, SiCortex 5832 processor machine, IBM Blue 

Gene/P 4K and 160K processor machines) 
Figure 83 filters the workloads to only those executed on the IBM Blue Gene/P 

supercomputer (both the 4K and 160K processor machines), and extends the plot to 

December 2008. We see that we have substantially less overall number of tasks, down to 

52 million tasks, yet the processor time consumed is still 1.4 million CPU hours. In fact, 

there were 200K CPU hours consumed in November and December on the Blue Gene/P 
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machines, which allows us to deduce that the other systems (SiCortex and ANL/UC 

TeraGrid cluster) had consumed 200K CPU hours over the past year. On the Blue Gene 

machines, it appears that the average task execution time is also higher at 97 seconds per 

task. 

 

Figure 83: March 2008 – December 2008 plot of Falkon on the IBM Blue Gene/P 
machines with 4K and 160K processors 

Many of the results presented in this chapter are represented in Figure 82 and Figure 

83, although some applications were run in 2007 prior to the history log repository being 

instantiated.  

7.2 Swift 

Many of the applications presented in this chapter were executed via the Swift 

runtime system (see Figure 84). Swift is a scalable environment for efficient 
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specification, scheduling, monitoring and tracking of SwiftScript programs. The system 

consists a SwiftScript compiler that compiles SwiftScript programs into abstract 

computation plans, an execute engine built on CoG Karajan and a set of libraries and 

tools for the scheduling and execution of the computation plans, a provenance tracking 

tool that records the execution process, and resource provisioning mechanism for 

submission to diverse computation and storage resources.  

 

Figure 84: The Swift Runtime System 
We have integrated Falkon into the Karajan [13, 55] workflow engine, which in term 

is used by the Swift parallel programming system [13]. Thus, Karajan and Swift 

applications can use Falkon without modification. We observe reductions in end-to-end 

run time by as much as 90% when compared to traditional approaches in which 

applications used batch schedulers directly. 
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Swift has been applied to applications in the physical sciences, biological sciences, 

social sciences, humanities, computer science, and science education. Table 10 

characterizes some applications in terms of the typical number of tasks and stages. 

Table 10: Swift applications 

 

7.3 Functional Magnetic Resonance Imaging 

We note that for each volume, each individual task in the fMRI workflow required 

just a few seconds on an ANL_TG cluster node, so it is quite inefficient to schedule each 

job over GRAM and PBS, since the overhead of GRAM job submission and PBS 

resource allocation is large compared with the short execution time.  In Figure 85 we 

show the execution time for different input data sizes for the fMRI workflow.  

Application #Tasks/workflow #Stages
ATLAS: High Energy 

Physics Event Simulation 500K 1

fMRI DBIC: 
AIRSN Image Processing 100s 12

FOAM: Ocean/Atmosphere Model 2000 3
GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4
NVO/NASA: Photorealistic 

Montage/Morphology 1000s 16

QuarkNet/I2U2: 
Physics Science Education 10s 3 ~ 6

RadCAD: Radiology 
Classifier Training 1000s 5

SIDGrid: EEG Wavelet 
Processing, Gaze Analysis 100s 20

SDSS: Coadd, 
Cluster Search 40K, 500K 2, 8

SDSS: Stacking, AstroPortal 10Ks ~ 100Ks 2 ~ 4
MolDyn: Molecular Dynamics 1Ks ~ 20Ks 8
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Figure 85 Execution Time for the fMRI Workflow 
We submitted from UC_SUBMIT to ANL_TG and measured the turnaround time for 

the workflows. A 120-volume input (each volume consists of an image file of around 

200KB and a header file of a few hundred bytes) involves 480 computations for the four 

stages, whereas the 480-volume input has 1960 computation tasks. The GRAM+PBS 

submission had low throughput although it could have potentially used all the available 

nodes on the site (62 nodes to be exact, as we only used the IA64 nodes). We can 

however bundle small jobs together using the clustering mechanism in Swift, and we 

show the execution time was reduced by up to 4 times (jobs were bundled into roughly 8 

groups, as the grouping of jobs was a dynamic process) with GRAM and clustering, as 

the overhead was amortized by the bundled jobs. The Falkon execution service (with 8 

worker nodes) however further cuts down the execution time by 40-70%, as each job was 
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dispatched efficiently to the workers. We carefully chose the bundle size for the 

clustering so that the clustered jobs only required 8 nodes to execute. This choice allowed 

us to compare GRAM/Clustering against Falkon, which used 8 nodes, fairly. We also 

experimented with different bundle sizes for the 120-volume run, but the overall 

variations for groups of 4, 6 and 10 were not significant (within 10% of the total 

execution time for the 8 groups, plus or minus). 

7.4 MolDyn (Chemistry Domain) 

We further illustrate the execution process in Falkon using a molecular dynamics 

(MolDyn) application. The goal of this study is to optimize and automate the 

computational workflow that can be used to generate the necessary parameters and other 

input files for calculating the solvation free energy of ligands, and can also be extended to 

protein-ligand binding energy. Solvation free energy is an important quantity in 

Computational Chemistry with a variety of applications, especially in drug discovery and 

design. The accurate prediction of solvation free energies of small molecules in water is 

still a largely unsolved problem, which is mainly due to the complex nature of the water-

solute interactions. In the study, a library of 244 neutral ligands is chosen for free energy 

perturbation calculations. This library contains compounds with various chemical 

functional groups. Also, the absolute free energies of solvation for these compounds are 

known experimentally, and will serve as a tool to benchmark our calculations. All the 

structures were obtained from the NIST Chemistry WebBook database. 

The MolDyn workflow consists of the following 8 stages:  

• Stage 1: Annotate each of the molecules in the study with charges.  
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• Stage 2: For each molecule, the ligand structures are modified using Antechamber 

to generate the individual parameter and topology files for CHARMM Program. 

Antechamber automatically detects the atom type, bond type and bond order from 

the three-dimensional geometry of the molecule, and generates the residue 

topology file. 

• Stage 3: The ligand structure is equilibrated using CHARMM program.  

• Stage 4: Compute the solvation energy using three coupling (staging) parameters 

using the PERT module of the program CHARMM.  

• Stage 6 computes the free energy for each of the resulting input configurations of 

each molecule in the study using weighted histogram analysis method (WHAM).  

• Stages 7 and 8 extract the free energy value from prior stages and put the final 

data into a tabular form.  

Stage 1 is done once for all molecules in the workflow, stages 2-8 are done for each 

molecule. The number of jobs in the workflow is about 1 + 84N where N is the number 

of molecules. The computation for each molecule takes about 235.4 minutes on one 

ANL_TG node processor, and 22.7 min given up to 32 ANL_TG nodes (64 processors); 

this resulted in a speedup of 10.4x, significantly less than 64 (the number of processors 

used at most), mostly due to the structure of the workflow which had several stages 

which were not parallelizable.  Figure 86 shows the graphical representation of each task 

for the 1 molecule experiment.  Red denotes wait queue time in Falkon and green denotes 

execution time per task.   



207 

 

Figure 86: MolDyn 1 Molecule Workflow Task View 
We were using the dynamic resource provisioning capabilities of Falkon in this 

experiment, and hence resources were only allocated on demand when they were needed.  

Notice the first job queue time is about 81 seconds, essentially the time it took from when 

Falkon requested one node and when it was allocated and ready to process work.  Then, 

after the first three jobs completed in serial fashion), there was a stage with 68 

independent jobs, which in turn triggered Falkon to allocated 31 more nodes (dual 

processors each) to be able to process all 68 independent jobs in parallel.  The red lines 

for these 68 jobs shows the time delay that the allocation request took to traverse 

GRAM4 and PBS until the workers were ready to process jobs. 
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Figure 86 showed the execution of 1 molecule, which is composed of 85 jobs that 

consume 235.4 CPU minutes.  Our next experiment performed a 244 molecule run, which 

is composed of 20497 jobs that should take less than 957.3 CPU hours to complete; in 

practice, it takes even less as some job executions are shared between molecules.  Figure 

88 shows the resource utilization in relation to Falkon queue length as the experiment 

progressed.  We see that as resources were acquired (using the dynamic resource 

provisioning, starting with 0 CPUs and ending with 216 CPUs at the peak), the CPU 

utilization was near perfect (green means utilized, red mean idle) with the exception of 

the end of the experiment as the last few jobs completed (the last 43 seconds).  Figure 88 

shows the same information on a per task basis, while Figure 90 shows the information 

on a per executor basis.  The entire experiment with the exception of the last 43 seconds 

consumed 866.33 CPU hours and wasted 0.09 CPU hours (99.98971% efficiency); if we 

include the last 43 seconds as the experiment was winding down, the workflow consumed 

867.1 CPU hours and it wasted 1.78 CPU hours, with a final efficiency of 99.7949013%.  

The experiment completed in 15091 seconds on a maximum of 216 processors, which 

results in a speedup of 206.9; note the average number of processors for the entire 

experiment was 207.26 CPUs, so the speedup of 206.9 reflects the 99.79% computed 

efficiency.     
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Figure 88: 244 Molecule MolDyn application; summary view showing executor’s 

utilization in relation to the Falkon wait queue length as experiment time progressed 

 
Figure 89: 244 Molecule MolDyn application; task view showing per task wait queue 

time and execution time as experiment time progressed 
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It is worth comparing the performance we obtained for MolDyn using Falkon with 

that of MolDyn over traditional GRAM/PBS.  Due to reliability issues (with GRAM and 

PBS) when submitting 20K jobs over the course of hours, we were not able to 

successfully run the same 244 molecule run over GRAM/PBS.  We therefore tried to do 

some smaller experiments, in the hopes that it would increase the probability of doing a 

successful run.  We tried several runs with 50 molecules (4201 of jobs for the 50 

molecule run, instead of 20497 jobs for the 244 molecule run); the best execution times 

we were able to achieve for the 50 molecule runs with GRAM/PBS (on the same testbed 

as we have used for Falkon, using up to 200 processors) took 25292 seconds.  So we 

achieved a speedup of only 25.3X compared to 206.9X speedup when using Falkon on 

the same workflow and the same Grid site in a similar state.   

We explain this drastic difference mostly due to the typical job duration (~200 

seconds) and the submission rate throttling of 1/5 jobs per second; the best case scenario 

is that the workflow could have kept 40 machines busy, but in reality the number of 

concurrent jobs ranged between 30~40 jobs. Increasing the submission rate throttle 

resulted in GRAM/PBS gateway instability, or even causing it to stop functioning.  

Furthermore, each node was only using a single processor of the dual processors 

available on the compute nodes due to the local site PBS policy that allocates each job an 

entire (dual processor) machine and does not allow other jobs to run on allocated 

machines; it is left up to the application to fully utilize the entire machine, through multi-

threading, or by invoking several different jobs to run in parallel on the same machine.  

This is a great example of having a system like Falkon that allows the specific 
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configuration of new queues that behave appropriately on a per application basis, which 

is quite impractical to do (mostly due to policy) in real-world deployed Grids. 

 
Figure 90 244 Molecule MolDyn application: Executor’s view showing each task 
that it executed (green) delineated by the black vertical bars showing each task 

boundary 
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The evaluation of the Swift runtime system shows that it is fast and scalable in 

executing large scale scientific computations. Swift leverages lightweight threading 

techniques and can schedule hundreds of thousands of parallel computations efficiently; 

its combination of type checking, retry mechanism and restart log supports reliable 

workflow execution. The abstract provider interface and various implementations allow 

workflows to be executed either on a single desktop, on a cluster managed by a batch 

scheduler, or on multi-site distributed resources. The integration with the lightweight 

Falkon execution service significantly improves system throughput for large number of 

small jobs. In particular, we show that Swift plus Falkon can achieve comparable 

performance to MPI execution for the Montage workflow, and also can reduce execution 

time by as much as 90% for the fMRI pipeline when compared with GRAM and PBS 

submission.  We also showed a large scale MolDyn workflow with 20K tasks that was 

able to achieve 99.8% efficiency on 216 processors over a period of 15K seconds; Falkon 

was able to achieve an application speedup of 206.9X when GRAM/PBS was only able 

to achieve a 25.3X speedup on the same Grid site with similar usage conditions. 

7.5 Molecular Dynamics: DOCK 

Our first project deals with virtual screening on the Blue Gene/P of core metabolic 

targets against KEGG [69] compounds and drugs, and uses the DOCK6 [61] application. 

DOCK6 addresses the problem of “docking” molecules to each other. In general, 

“docking” is the identification of the low-energy binding modes of a small molecule, or 

ligand, within the active site of a macromolecule, or receptor, whose structure is known. 

A compound that interacts strongly with a receptor (such as a protein molecule) 
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associated with a disease may inhibit its function and thus act as a beneficial drug. 

Development of antibiotic and anticancer drugs is a process fraught with dead ends. Each 

dead end costs potentially millions of dollars, wasted years and lives. Computational 

screening of protein drug targets helps researchers prioritize targets and determine leads 

for drug candidates. In this application run, nine proteins that perform key enzymatic 

functions in the core metabolism of bacteria and humans were selected for screening 

against a database of 15,351 natural compounds and existing drugs in KEGG’s Ligand 

Database.  

The goal of this project was to 1) validate our ability to approximate the binding 

mechanism of the protein’s natural ligand (a.k.a compound that binds), 2) determine key 

interaction pairings of chemical functional groups from different compounds with the 

protein’s amino acid residues, 3) study the correlation between a natural ligand that is 

similar to other compounds and its binding affinity with the protein’s binding pocket, and 

4) prioritize the proteins for further study.  

7.5.1 Molecular Dynamics: DOCK5 

Prior to running the real workload with nearly 1M molecules, which exhibits wide 

variability in its job durations, we investigated the scalability of the application under 

larger than normal I/O to compute ratios and by reducing the number of variables. From 

the ligand search space, we selected one that needed 17.3 seconds to complete. We then 

ran a workload with this specific molecule (replicated to many files) on a varying number 

of processors from 6 to 5760 on the SiCortex. The ratio of I/O to compute was about 35 

times higher in this synthetic workload than the real workload whose average task 



215 

execution time was 660 seconds.  Figure 91 shows the results of the synthetic workload 

on the SiCortex system.  

 
Figure 91: Synthetic workload with deterministic job execution times (17.3 seconds) 

while varying the number of processors from 6 to 5760 on the SiCortex 
Up to 1536 processors, the application had excellent scalability with 98% efficiency, 

but due to shared file system contention in reading the input data and writing the output 

data, the efficiency dropped to below 70% for 3072 processors and below 40% for 5760 

processors. We concluded that shared file system contention caused the loss in efficiency, 

0

10

20

30

40

50

60

70

80

90

100

0 120 240 360 480 600 720
Time (sec)

Ex
ec

ut
io

n 
Ti

m
e 

pe
r T

as
k 

(s
ec

)

1

10

100

1000

10000

6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

57
60

Number of CPU Cores

Sp
ee

du
p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fic

ie
nc

y

Speedup
Ideal Speedup
Efficiency



216 

due to the average execution time per job and the standard deviation as we increased the 

number of processors. Notice in the lower left corner of Figure 91 how stable the 

execution times are when running on 768 processors, 17.3 seconds average and 0.336 

seconds standard deviation. However, the lower right corner shows the performance on 

5760 processors to be an average of 42.9 seconds, and a standard deviation of 12.6 

seconds. Note that we ran another synthetic workload that had no I/O (sleep 18) at the 

full 5760 processor machine scale, which showed an average of 18.1 second execution 

time (0.1 second standard deviation), which rules out the dispatch/execute mechanism. 

The likely contention was due to the application’s I/O patterns to the shared file system.  

The real workload of the DOCK application involves a wide range of job execution 

times, ranging from 5.8 seconds to 4178 seconds, with a standard deviation of 478.8 

seconds. This workload (Figure 92 and Figure 93) has a 35X smaller I/O to compute ratio 

than the synthetic workload presented in Figure 91. Expecting that the application would 

scale to 5760 processors, we ran a 92K job workload on 5760 processors. In 3.5 hours, 

we consumed 1.94 CPU years, and had 0 failures throughout the execution of the 

workload. We also ran the same workload on 102 processors to compute speedup and 

efficiency, which gave the 5760 processor experiment a speedup of 5650X (ideal being 

5760) and an efficiency of 98.2%. Each horizontal green line represents a job 

computation, and each black tick mark represents the beginning and end of the 

computation. Note that a large part of the efficiency was lost towards the end of the 

experiment as the wide range of job execution times yielded the slow ramp-down of the 

experiment and leaving a growing number of processors idle. 
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Figure 92: DOCK application (summary view) on the SiCortex; 92K jobs using 5760 
processor cores 

Despite the loosely coupled nature of this application, our preliminary results show 

that the DOCK application performs and scales well on thousands of processors. The 

excellent scalability (98% efficiency when comparing the 5760 processor run with the 

same workload executed on 102 processors) was achieved only after careful 

consideration was taken to avoid the shared file system, which included the caching of 

the multi-megabyte application binaries, and the caching of 35MB of static input data that 

would have otherwise been read from the shared file system for each job. Note that each 

job still had some minimal read and write operations to the shared file system, but they 

were on the order of 10s of KB, with the majority of the computations being in the 100s 

of seconds, with an average of 660 seconds. 
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Figure 93: DOCK application (per processor view) on the SiCortex; 92K jobs using 

5760 processor cores 
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Running the entire workload consisting of 934,803 molecules on 116K CPU cores 

took 2.01 hours (see Figure 94). The per-task execution time was quite varied (even more 

so than the DOCK6 runs from Figure 95), with a minimum of 1 second, a maximum of 

5030 seconds, and a mean of 713±560 seconds. The two-hour run has a sustained 

utilization of 99.6% (first 5700 seconds of experiment) and an overall utilization of 78% 

(due to the tail end of the experiment). Note that we had allocated 128K CPUs, but only 

116K CPUs registered successfully and were available for the application run; this was 

due to GPFS contention in bootstrapping Falkon on 32 racks, and was fixed in later large 

runs by moving the Falkon framework to RAM before starting, and by pre-creating log 

directories on GPFS to avoid lock contention. We have made dozens on runs at 32 and 40 

rack scales, and we have not encountered this specific problem again.  

Despite the loosely coupled nature of this application, our preliminary results show 

that the DOCK application performs and scales well to nearly full scale (116K of 160K 

CPUs). The excellent scalability (99.7% efficiency when compared to the same workload 

at half the scale of 64K CPUs) was achieved only after careful consideration was taken to 

avoid the shared file system, which included the caching of the multi-megabyte 

application binaries, and the caching of 35MB of static input data that would have 

otherwise been read from the shared file system for each job. Note that each job still had 

some minimal read and write operations to the shared file system, but they were on the 

order of 10s of KB (only at the beginning and end of computations), with the majority of 

the computations being in the 100s of seconds, with an average of 713 seconds. 
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Figure 94: 934,803 DOCK5 runs on 118,784 CPU cores on Blue Gene/P 

7.5.2 DOCK6 Performance Evaluation 

We also ran the computation of the binding affinity between each compound in the 

database and each protein was performed with 138,159 runs of DOCK6 (a newer version 

of DOCK5 we ran in the previous sub-sections) on the Blue Gene/P. Using 32 racks on 

the Blue Gene/P (128K cores at 0.85 GHz), these runs took 2807 seconds (see Figure 95), 

totaling 3.5 CPU years.  

The sustained utilization (while there were enough tasks to be done, roughly 600 

seconds) was 95%, with the overall utilization being 30%. The large underutilization was 

caused by the heterogeneous task execution time (23/783/2802 +/- 300 seconds, for 

min/aver/max +/- stdev respectively). Expecting a significant underutilization, we had 
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overlapped another application to start running as soon as the sustained period ended at 

around 600 seconds. The other application had enough work to be done that it actually 

used all of the idle CPUs from Figure 95 (the red area) with 97% utilization.  

 

Figure 95: 138,159 DOCK6 runs on 131,072 CPU cores on Blue Gene/P 

7.5.3 DOCK Application using CIO 

We have shown significant performance and scalability improvements for synthetic 

data-intensive workloads using the proposed collective I/O in Section 6.6. To determine 

how these improvements translate into real application performance, we evaluated the 

utility of collective IO on a molecular dynamics workflow which screens candidate drug 

compounds against metabolic protein targets using the DOCK6 application [61]. In this 
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application run, a database of 15,351 compounds was screened against nine proteins that 

perform key enzymatic functions in the metabolism of bacteria and humans. 

The molecular dynamics docking workflow has 3 stages: 1) read input, compute the 

docking, and write output; 2) summarize, sort, and select results; and 3) archive results. 

In out tests, the DOCK6 invocations averaged 10KB of output every 550 seconds. 

In the simple case where we use GFS, the input data of stage 1 is read from GFS to 

LFS, the application reads from LFS and writes its output to LFS, and finally the output 

is synchronously copied back to GFS. Stage 1 is parallelized to process each DOCK 

invocation on a separate processor core. Both stage 2 and stage 3 were originally a single 

process application that would run on a login node and access input data directly from 

GFS. In the case of using CIO, the stages are a bit different: stage 1 writes the output data 

from LFS to IFS asynchronously; stage 2 is parallelized across all processors and works 

on IFS; stage 3 copies the data from IFS to GFS. Figure 96 shows the breakdown of the 3 

stages, and where time was being spent, for a total of 1412 seconds for CIO and 2140 

seconds for GPFS. The first stage is negligibly  faster with CIO (1.06X), and the third 

stage is 1.5X faster, but the second stage is 11.7X faster with 694 seconds being reduced 

down to 59 seconds. Stage 2 summarizes, sorts and filters the results, which CIO can 

handle much better in a distributed fashion (as opposed to the centralized GFS solution) 

with data accesses localized to IFS instead of GFS.  

In order to see the effects of CIO at larger scale, we also ran the DOCK6 stage 1 with 

135K tasks on 96K processors. The net result was a 1.12X speedup using CIO (1772 
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seconds) as compared to GPFS (1981 seconds) – a negligible speedup, as we expected for 

this compute-bound workload. 

 

Figure 96: DOCK6 application summary with 15K tasks on 8K processor 
comparing CIO with GPFS 

7.5.4 DOCK6 Scientific Results 

The natural compound for 6 of the 8 targets scored reasonably well in terms of 

interaction energy and ranking (2/8 in top 2%, 2/8 in the top 10%, 2/8 in top 16%), 

especially considering these are natural compounds which rely on higher concentration 

levels for enzyme interaction compared to optimized inhibitors which rely on higher 

binding affinities. The 2D representation of best scoring compound, D03361, against 

protein NAD Kinase, is displayed in Figure 97.  
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natural compound that is similar to many other compounds is more generic and lacks the 

shape and residue constraints for strong binding affinity. If this is the case, a protein with 

a more differentiated pocket (higher possible binding affinities) may be a more attractive 

target and should be pursued with a higher priority since it would lower concentrations of 

the drug required for inhibition. It is interesting to note for 7/8 of the proteins existing 

drugs were the top hit. The drugs included an antiplatelet agent, anti-hypertensive agent, 

a treatment for chronic dry eye, a vitamin precursor, and an opthalmic agent. Since these 

are safe for use in humans, performing follow-up wet lab assays for inhibition could lead 

rapidly to a novel application for an existing drug. 

7.5.5 DOCK Application Conclusions 

These computations are, however, just the beginning of a much larger computational 

pipeline that will screen millions of compounds and tens of thousands of proteins. The 

downstream stages use even more computationally intensive and sophisticated programs 

that provide for more accurate binding affinities by allowing for the protein residues to be 

flexible and the water molecules to be explicitly modeled. Computational screening, 

which is relatively inexpensive, cannot replace the wet lab assays, but can significantly 

reduce the number of dead ends by providing more qualified protein targets and leads. 

To grasp the magnitude of this application, the largest run we made of 934,803 tasks 

we performed represents only 0.09% of the search space (1 billion runs) being considered 

by the scientists we are working with; simple calculations project a search over the entire 

parameter space to need 20,938 CPU years, the equivalent of 48 days on the 160K-core 

Blue Gene/P. This is a large problem that cannot be solved in a reasonable amount of 



226 

time without a system that has at least tens of thousands of processors. Our loosely 

coupled approach holds great promise for making this problem tractable and manageable 

on today’s largest supercomputers. 

7.6 Economic Modeling: MARS 

We also evaluated MARS (Macro Analysis of Refinery Systems), an economic 

modeling application for petroleum refining developed by D. Hanson and J. Laitner at 

Argonne [62]. This modeling code performs a fast but broad-based simulation of the 

economic and environmental parameters of petroleum refining, covering over 20 primary 

& secondary refinery processes. MARS analyzes the processing stages for six grades of 

crude oil (from low-sulfur light to high-sulfur very-heavy and synthetic crude), as well as 

processes for upgrading heavy oils and oil sands. It includes eight major refinery products 

including gasoline, diesel and jet fuel, and evaluates ranges of product shares. It models 

the economic and environmental impacts of the consumption of natural gas, the 

production and use of hydrogen, and coal-to-liquids co-production, and seeks to provide 

insights into how refineries can become more efficient through the capture of waste 

energy. 

While MARS analyzes this large number of processes and variables, it does so at a 

coarse level without involving intensive numerics. It consists of about 16K lines of C 

code, and can process many internal model execution iterations, with a range from 0.5 

seconds (1 internal iteration) to hours (many thousands of internal iterations) of Blue 

Gene/P CPU time. Using the power of the Blue Gene/P we can perform detailed multi-
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variable parameter studies of the behavior of all aspects of petroleum refining covered by 

MARS. 

As a simple test of utilizing the BG/P for refinery modeling, we performed a 2D 

parameter sweep to explore the sensitivity of the investment required to maintain 

production capacity over a 4-decade span on variations in the diesel production yields 

from low sulfur light crude and medium sulfur heavy crude oils. This mimics one 

possible segment of the many complex multivariate parameter studies that become 

possible with ample computing power.  A single MARS model execution involves an 

application binary of 0.5MB, static input data of 15KB, 2 floating point input variables 

and a single floating point output variable. The average micro-task execution time is 

0.454 seconds. To scale this efficiently, we performed task-batching of 144 model runs 

into a single task, yielding a workload with 1KB of input and 1KB of output data, and an 

average execution time of 65.4 seconds. 

We executed a workload with 7 million model runs (49K tasks) on 2048 processors 

on the BG/P (Figure 99 and Figure 100). The experiment consumed 894 CPU hours and 

took 1601 seconds to complete. At the scale of 2048 processors, the per micro-task 

execution times were quite deterministic with an average of 0.454 seconds and a standard 

deviation of 0.026 seconds; this can also be seen from Figure 100 where we see all 

processors start and stop executing tasks at about the same time, the banding effects in 

the graph) . As a comparison, a 4 processor experiment of the same workload had an 

average of 0.449 seconds with a standard deviation of 0.003 seconds. The efficiency of 
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the 2048 processor run in comparison to the 4 processor run was 97.3% with a speedup of 

1993 (compared to the ideal speedup of 2048).  

 
Figure 99: MARS application (summary view) on the BG/P; 7M micro-tasks (49K 

tasks) using 2048 processor cores 
The results presented in these figures are from a static workload processed directly 

with Falkon. Swift on the other hand can be used to make the workload more dynamic, 

reliable, and provide a natural flow from the results of this application to the input of the 

following stage in a more complex workflow. Swift incurs its own overheads in addition 

to what Falkon experiences when running the MARS application. These overheads 

include 1) managing the data (staging data in and out, copying data from its original 

location to a workflow-specific location, and back from the workflow directory to the 

result archival location) , 2) creating per-task working directories (via mkdir on the 

shared file system), and 3) creation and tracking of status logs files for each task.  
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Figure 100: MARS application (per processor view) on the BG/P; 7M micro-tasks 

(49K tasks) using 2048 processor cores 
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As a larger and more complex test, we performed a 2D parameter sweep to explore 

the sensitivity of the investment required to maintain production capacity over a 4-decade 

span on variations in the diesel production yields from low sulfur light crude and medium 

sulfur heavy crude oils. This mimics one possible segment of the many complex 

multivariate parameter studies that become possible with ample computing power. A 

single MARS model execution involves an application binary of 0.5MB, static input data 

of 15KB, 2 floating point input variables and a single floating point output variable. The 

average micro-task execution time is 0.454 seconds. To scale this efficiently, we 

performed task-batching of 600 model runs into a single task, yielding a workload with 

4KB of input and 4KB of output data, and an average execution time of 271 seconds.  

We executed a workload with 600 million model runs (1M tasks) on 128K 

processors on the Blue Gene/P (see Figure 101). The experiment consumed 9.3 CPU 

years and took 2483 seconds to complete. Even at this large scale, the per task execution 

times were quite deterministic with an average of 280±10 seconds; this means that most 

processors would start and stop executing tasks at about the same time, which produces 

the peaks in task completion rates (blue line) that are as high as 4000 tasks/sec. As a 

comparison, a 1 processor experiment using a small part of the same workload had an 

average of 271±0.3 seconds; this yielded an efficiency of 97% with a speedup of 126,892 

(ideal speedup being 130,816).  

Figure 102 is a visualization of the scientific results from Figure 99.  The scientists 

are particularly interested in the peaks and boroughs presented in the graph, as those 

denote potentially interesting areas to explore further. 
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7.7 Large-scale Astronomy Application Performance Evaluation 

Section 6.4 and Section 6.5 covered micro-benchmarks and synthetic workloads to 

show how well data diffusion works, and how it compares to parallel file systems such as 

GPFS and active storage. This section takes a specific example of a data intensive 

application, from the astronomy domain, and shows the benefits of data diffusion in both 

performance and scalability of the application.  

The creation of large digital sky surveys presents the astronomy community with 

tremendous scientific opportunities. However, these astronomy datasets are generally 

terabytes in size and contain hundreds of millions of objects separated into millions of 

files—factors that make many analyses impractical to perform on small computers. To 

address this problem, we have developed a Web Services-based system, AstroPortal, that 

uses grid computing to federate large computing and storage resources for dynamic 

analysis of large datasets. Building on the Falkon framework, we have built an 

AstroPortal prototype and implemented the “stacking” analysis that sums multiple 

regions of the sky, a function that can help both identify variable sources and detect faint 

objects. We have deployed AstroPortal on the TeraGrid distributed infrastructure and 

applied the stacking function to the Sloan Digital Sky Survey (SDSS), DR4, which 

comprises about 300 million objects dispersed over 1.3 million files, a total of 3 terabytes 

of compressed data, with promising results. AstroPortal gives the astronomy community 

a new tool to advance their research and to open new doors to opportunities never before 

possible on such a large scale. 



233 

The astronomy community is acquiring an abundance of digital imaging data, via sky 

surveys such as SDSS [40], GSC-II [147], 2MASS [148], and POSS-II [149]. However, 

these datasets are generally large (multiple terabytes) and contain many objects (100 

million +) separated into many files (1 million +). Thus, while it is by now common for 

astronomers to use Web Services interfaces to retrieve individual objects, analyses that 

require access to significant fractions of a sky survey have proved difficult to implement 

efficiently. There are five reasons why such analyses are challenging: (1) large dataset 

size; (2) large number of users (1000s); (3) large number of resources needed for 

adequate performance (potentially 1000s of processors and 100s of TB of disk); (4) 

dispersed geographic distribution of the users and resources; and (5) resource 

heterogeneity. 

7.7.1 Definition of “Stacking” 

The first analysis that we have implemented in our AstroPortal prototype is 

“stacking,” image cutouts from different parts of the sky. This function can help to 

statistically detect objects too faint otherwise. Astronomical image collections usually 

cover an area of sky several times (in different wavebands, different times, etc). On the 

other hand, there are large differences in the sensitivities of different observations: 

objects detected in one band are often too faint to be seen in another survey. In such cases 

we still would like to see whether these objects can be detected, even in a statistical 

fashion. There has been a growing interest to re-project each image to a common set of 

pixel planes, then stacking images. The stacking improves the signal to noise, and after 

coadding a large number of images, there will be a detectable signal to measure the 
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average brightness/shape etc of these objects. While this has been done for years 

manually for a small number of pointing fields, performing this task on wide areas of sky 

in a systematic way has not yet been done. It is also expected that the detection of much 

fainter sources (e.g., unusual objects such as transients) can be obtained from stacked 

images than can be detected in any individual image. AstroPortal gives the astronomy 

community a new tool to advance their research and opens doors to new opportunities.  

7.7.2 AstroPortal  

AstroPortal provides both a Web Services and a Web portal interface. Figure 103 is a 

screenshot of the AstroPortal Web Portal, which allows a user to request a “stacking” 

operation on an arbitrary set of objects from the SDSS DR4 dataset.  The AstroPortal 

Web Portal is implemented using Java Servlets and Java Server Pages technologies; we 

used Tomcat 4.1.31 as the container for our web portal.  

User input comprises user ID and password, a stacking description, and the 

AstroPortal Service location. The user ID and password are currently created out-of-

band; in the future, we will investigate alternatives to making this a relatively automated 

process [150]. The stacking description is a list of objects identified by the tuple {ra dec 

band}. The AstroPortal Web Service location is currently statically defined in the web 

portal interface, but in the future we envision a more dynamic discovery mechanism. 

Following submission (see Figure 103, left), the user gets a status screen showing the 

progress of the stacking, including percentage completed and an estimated completion 

time. Once the stacking is complete, the results are returned along with additional 

information about performance and any errors encountered. Figure 103 (right) shows an 
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example result from the stacking of 20 objects. The results include summary, results, and 

statistics and errors. The results displays a JPEG equivalent of the result for quick 

interpretation, along with the size of the result (in KB), the physical dimensions of the 

result (in pixels x pixels), and a link to the result in FIT format [151].  

The final section specifies the completion time, number of computers used, number 

of objects found, the number (and address) of star objects not found in the SDSS dataset, 

and the number (and address) of data objects not found in the data cache. Some star 

objects might not be found in SDSS since the SDSS dataset does not cover the entire sky; 

other objects might not be found in the data cache due to inconsistencies (e.g., read 

permission denied, corrupt data, data cache inaccessible) between the original data 

archive and the live data cache actually used in the stacking. 

  
Figure 103: Left: AstroPortal Web Portal Stacking Service; Right: Stacking Service 

Result 
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7.7.3 Workload Characterization 

Astronomical surveys produce terabytes of data, and contain millions of objects. For 

example, the SDSS DR5 dataset (which we base our experiments on) has 320M objects 

in 9TB of images [40]. To construct realistic workloads, we identified the interesting 

objects (for a quasar search) from SDSS DR5; we used the CAS SkyServer [152] to issue 

the SQL command from Figure 104. This query retrieved 168,529 objects, which after 

removal of duplicates left 154,345 objects per band (there are 5 bands, u, g, r, I, and z) 

stored in 111,700 files per band.  

 
Figure 104: SQL command to identify interesting objects for a quasar search from 

the SDSS DR5 dataset 
The entire working set consisted of 771,725 objects in 558,500 files, where each file 

was either 2MB compressed or 6MB uncompressed, resulting in a total of 1.1TB 

compressed and 3.35TB uncompressed. From this working set, various workloads were 

defined (see Table 11).  

Table 11: Workload characteristics 

 

Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790

select SpecRa, SpecDec 
from QsoConcordanceAll  
where bestMode=1  
  and SpecSciencePrimary=1 
  and SpecRa<>0 
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These workloads had certain data locality characteristics, varying from the lowest 

locality of 1 (i.e., 1-1 mapping between objects and files) to the highest locality of 30 

(i.e., each file contained 30 objects on average of). 

7.7.4 Stacking Code Profiling 

We first profile the stacking code to see where time is spent. We partition time into 

four categories, as follows. 

open: open Fits file for reading 

radec2xy: convert coordinates from RA DEC to X Y  

readHDU: reads header and image data  

getTile: perform extraction of ROI from memory 

curl: convert the 1-D pixel data (as read from the image file) into a 2-dimensional 

pixel array  

convertArray: convert the ROI from having SHORT value to having DOUBLE 

values  

calibration: apply calibration on ROI using the SKY and CAL variables 

interpolation: do the appropriate pixel shifting to ensure the center of the object is a 

whole pixel 

doStacking: perform the stacking of ROI that are stored in memory  

writeStacking: write the stacked image to a file 

To simplify experiments, we perform tests with a simple standalone program on 

1000 objects of 100x100 pixels, and repeat each measurement 10 times, each time on 
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different objects residing in different files. In Figure 105, the Y-axis is time per task per 

code block measured in milliseconds (ms).  

 
Figure 105: Stacking code performance profiling for 1 CPU 

Having the image data in compressed format affects the time to stack an image 

significantly, increasing the time needed by a factor of two. Similarly, accessing the 

image data from local disk instead of the shared file system speeds up processing 1.5 

times. In all cases, the dominant operations are file metadata and I/O operations. For 

example, calibration, interpolation, and doStacking take less than 1 ms in all cases. 

Radec2xy consumes another 10~20% of total time, but the rest is spent opening the file 

and reading the image data to memory. In compressed format (GZ), there is only 2MB of 

data to read, while in uncompressed format (FIT) there are 6MB to read. However, 

uncompressing images is CPU intensive, and in the case of a single CPU, it is slower than 
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if the image was uncompressed. In the case of many CPUs, the compressed format is 

faster mostly due to limitations imposed by the shared file system. Overall, Figure 105 

shows the stacking analysis to be I/O bound and data intensive.  

7.7.5 Performance Evaluation 

All tests performed in this section were done using the testbed described in Table 8, 

using from 1 to 64 nodes, and the workloads (described in Table 8) that had locality 

ranging from 1 to 30. The experiments investigate the performance and scalability of the 

stacking code in four configurations: 1) Data Diffusion (GZ), 2) Data Diffusion (FIT), 3) 

GPFS (GZ), and 4) GPFS (FIT). At the start of each experiment, all data is present only 

on the persistent storage system (GPFS). In the data diffusion experiments, we use the 

MCU policy and cache data on local nodes. For the GPFS experiments we use the FA 

policy and perform no caching. GZ indicates that the image data is in compressed format 

while FIT indicates that the image data is uncompressed.  

Figure 106 shows the performance difference between data diffusion and GPFS 

when data locality is small (1.38). We normalize the results here by showing the time per 

stacking operation per processor used; with perfect scalability, the time per stack should 

remain constant as we increase the number of processors. We see that data diffusion and 

GPFS perform quite similarly when locality is low, with data diffusion slightly faster; 

data diffusion has a growing advantage as the number of processors increases. This 

similarity in performance is not surprising because most of the data must still be read 

from GPFS to populate the local disk caches. Note that in with small number of 

processors, it is more efficient to access uncompressed data; however, as the number of 
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processors increases, compressed data becomes preferable. A close inspection of the I/O 

throughput achieved reveals that GPFS becomes saturated at around 16 CPUs with 

3.4Gb/s read rates. In the compressed format (which reduces the amount of data that 

needs to be transferred from GPFS by a factor of three), GPFS only becomes saturated at 

128 CPUs. We also find that when working in the compressed format, it is faster (as 

much 32% less per stack time) to first cache the compressed files, uncompress the files, 

and work on the files in uncompressed format, as opposed to working directly on the 

uncompressed files from GPFS. 

While the previous results from Figure 106 shows an almost worst case scenario 

where the data locality is small (1.38), the next set of results (Figure 107) shows a best 

case scenario in which the locality is high (30). Here we see an almost ideal speedup (i.e., 

a flat line) with data diffusion in both compressed and uncompressed formats, while the 

GPFS results remain similar to those presented in Figure 106. 

Data diffusion can make its largest impact on larger scale deployments, and hence 

we ran a series of experiments to capture the performance at a larger scale (128 

processors) as we vary the data locality. We investigated the data-aware scheduler’s 

ability to exploit the data locality found in the various workloads and its ability to direct 

tasks to computers on which needed data was cached. We found that the data-aware 

scheduler can get within 90% of the ideal cache hit ratios in all cases (see Figure 108). 

The ideal cache hit ratio is computed by 1 – 1/locality; for example, with locality 3 

(meaning that each file is access 3 times, one cache miss, and 2 cache hits), the ideal 

cache hit ratio is 1 – 1/3 = 2/3.  
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Figure 106: Performance of the stacking application for a workload data locality of 

1.38 using data diffusion and GPFS while varying the CPUs from 2 to 128 

 
Figure 107: Performance of the stacking application for a workload data locality of 

30 using data diffusion and GPFS while varying the CPUs from 2 to 128 
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The following experiment (Figure 109) offers a detailed view of the performance 

(time per stack per processor) of the stacking application as we vary the locality. The last 

data point in each case represents ideal performance when running on a single node. Note 

that although the GPFS results show improvements as locality increases, the results are 

far from ideal. However, we see data diffusion gets close to the ideal as locality increases 

beyond 10. 

 
Figure 108: Cache hit performance of the data-aware scheduler for the stacking 

application using 128 CPUs for workloads ranging from 1 to 30 data locality using 
data diffusion 

Figure 110 shows aggregate I/O throughput and data movement for the experiments 

of Figure 109. The two dotted lines show I/O throughput when performing stacking 

directly against GPFS: we achieve 4Gb/s with a data locality of 30. The data diffusion 

I/O throughput is separated into three distinct parts: 1) local, 2) cache-to-cache, and 3) 
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GPFS, as a stacking may read directly from local disk if data is cached on the executor 

node, from a remote cache if data is on other nodes, and from GPFS as some data may 

not have been cached at all. 

 
Figure 109: Performance of the stacking application using 128 CPUs for workloads 

with data locality ranging from 1 to 30, using data diffusion and GPFS 
GPFS throughput is highest with low locality and lowest with high locality; the 

intuition is that with low locality, the majority of the data must be read from GPFS, but 

with high locality, the data can be mostly read locally. Note that cache-to-cache 

throughput increases with locality, but never grows significantly; we attribute this result 

to the good performance of the data-aware scheduler, always gets within 90% of the ideal 

cache hit ratio (for the workloads presented in this sub-section). Using data diffusion, we 

achieve an aggregated I/O throughput of 39Gb/s with high data locality, a significantly 
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higher rate than with GPFS, which tops out at 4Gb/s. Finally, Figure 111 investigates the 

amount of data movement that occurs per stacking as we vary data locality. 

 
Figure 110: I/O throughput of image stacking using 128 CPUs, for workloads with 

data locality ranging from 1 to 30, and using both data diffusion and GPFS 
In summary, data diffusion (using compressed data) transfers a total of 8MB (2MB 

from GPFS and 6MB from local disk) for a data locality of 1; if data diffusion is not 

used, we need 2MB if in compressed format, or 6MB in uncompressed format, but this 

data must come from GPFS. As data locality increases, data movement from GPFS does 

not change (given a large number of processors and the small probability of data being 

re-used without data-aware scheduling). However, with data diffusion, the amount of data 

movement decreases substantially from GPFS (from 2MB with a locality of 1 to 

0.066MB with a locality of 30), while cache-to-cache increases from 0 to 0.421MB per 
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stacking respectively. These results show the decreased load on shared infrastructure (i.e., 

GPFS), which ultimately allows data diffusion to scale better. 

 
Figure 111: Data movement for the stacking application using 128 CPUs, for 

workloads with data locality ranging from 1 to 30, using data diffusion and GPFS 

7.7.6 Abstract Model Validation  

We perform a preliminary validation of our abstract model (presented in Section 

6.3.1) with results from a real large-scale astronomy application [12]. We compared the 

model expected time TN(D) to complete workload D (with varying data locality and 

access patterns) on the measured completion time for N equal from 2 to 128 processors 

incrementing in powers of 2. For 92 experiments [1], we found an average (and median) 

model error 5%, with a standard deviation of 5% and 29% worst case.  
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service and had a working set of 558,500 files (1.1TB compressed and 3.35TB 

uncompressed). From this working set, various workloads were defined that had certain 

data locality characteristics, varying from the lowest locality of 1 (i.e., 1-1 mapping 

between objects and files) to the highest locality of 30 (i.e., each file contained 30 

objects). Experiments marked with FIT represents ones performed on uncompressed 

image data, GZ represents experiments on compressed image data, GPFS represents 

experiments ran accessing data directly on the parallel file system, and data diffusion are 

experiments using the data-aware scheduler. Figure 112 shows the model error for 

experiments that varied the number of CPUs from 2 to 128 with locality of 1, 1.38, and 

30. Note that each model error point represents a workload that spanned 111K, 154K, and 

23K tasks for data locality 1, 1.38, and 30 respectively.  

 
Figure 112: Model error for varying number of processors 

Figure 113 shows the model error with a fixed the number of processors (128), and 

varied the data locality from 1 to 30. The results show a larger model error with an 

average of 8% and a standard deviation of 5%. We attribute the model errors to 

contention in the parallel file system and network resources that are only captured 

simplistically in the current model, and due to not having dedicated access to the 316-

CPU cluster.     
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Figure 113: Model error for varying data-locality 

Overall, the model seems to be a good fit for this particular astronomy application at 

modest scales of up to 128 processors. We did not investigate the model’s accuracy under 

varying arrival rates, nor did we investigate the model under other applications. We plan 

to further the model analysis in future work, by implementing the model in a simple 

simulator to allow more dynamic scenarios, such as the ones found in Section 6.5.1 and 

Section 6.5.2.      
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approaches needed to go over PBS to request for computation nodes, we used 16 nodes 

for Falkon and MPI, and also configured the clustering for GRAM to be around 16 

groups. 

The workflow had twelve stages, and we only show the parallel stages and the total 

execution time in the figure (the serial stages ran on a single node, and the difference of 

running them across the three approaches was small, so we only included them in the 

total time for comparison purposes). The workflow produced a 3x3 square degree mosaic 

around galaxy M16, where there were about 440 input images (2MB each), and 2,200 

overlappings between them. There were two mAdd stages because we divided the region 

into subsets, co-added images in each subset, and then co-added the subsets together into 

a final mosaic. We can observe that the Falkon execution service performed close to the 

MPI execution, which indicated that jobs were dispatched efficiently to the 16 workers. 

The GRAM execution with clustering enabled still did not perform as well as the other 

two, mainly due to PBS queuing overhead. It is worth noting that the last stage mAdd was 

parallelized in the MPI version, but not for the version for GRAM or Falkon, and hence 

the big difference in execution time between Falkon and MPI, and the source of the major 

difference in the entire run between MPI and Falkon. 

Katz et al. [153] have also created a task-graph implementation of the Montage code, 

using Pegasus. They did not implement quite the same application as us: for example, 

they ran mOverlap and mImgtbl on the portal rather than on compute nodes, and they 

omitted the final mAdd phase. Thus direct comparison with Swift over Falkon is difficult. 

However, if we omit the final mAdd phase from the comparison, Swift over Falkon is 
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then about 5% faster than MPI, and thus also faster than the Pegasus approach, as they 

claimed that MPI execution time was the lower bound for them. The reasons that Swift 

over Falkon performs better are that MPI incurs initialization and aggregation processes, 

which involve multi-processor communications, for each of the parallel stages, where 

Falkon acquires resource at one time and then the communications in dispatching tasks 

from the Falkon service to workers have been kept minimum (only 2 message exchanges 

for each job dispatch). The Pegasus approach used Condor’s glide-in mechanism, where 

Condor is still a heavy-weight scheduler compared with Falkon. 

 
Figure 114: Execution Time for the Montage Workflow 
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7.9 Data Analytics: Sort and WordCount  

Many programming models and frameworks have been introduced to abstract away 

the management details of running applications in distributed environments. 

MapReduce is regarded as a power-leveler that solves computation problems using 

brutal-force resources. It provides a simple programming model and powerful runtime 

system for processing large datasets. The model is based on two key functions: “map” 

and “reduce”, and the runtime system automatically partitions input data and schedules 

the execution of programs in a large cluster of commodity machines. MapReduce has 

been applied to document processing problems, such as distributed indexing, sorting, and 

clustering. 

Swift is a parallel programming tool for rapid and reliable specification, execution, 

and management of large-scale science and engineering workflows. Swift consists of a 

concise scripting language called SwiftScript for specifications of complex parallel 

computations based on dataset typing and iterations, and dynamic dataset mappings. The 

runtime system relies on CoG Karajan workflow engine for scheduling and load 

balancing, and integrates the Falkon light-weight task execution service for optimized 

task throughput, resource provisioning, and to leverage data-locality found in application 

access patterns. 

Applications that can be implemented in MapReduce are a subset of those that can 

be implemented in Swift due to the more generic programming model found in Swift. 

Contrasting Swift and Hadoop are interesting as it could potentially attract new users and 

applications to systems which traditionally were not considered.  
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We compared two benchmarks, Sort and WordCount, and tested them at different 

scales and with different datasets. The testbed consisted of a 270 processor cluster 

(TeraPort at UChicago). Hadoop (the MapReduce implementation from Yahoo!) was 

configured to use Hadoop Distributed File System (HDFS), while Swift used Global 

Parallel File System (GPFS). We found Swift offered comparable performance with 

Hadoop, a surprising finding due to the choice of benchmarks which favored the 

MapReduce model. In Sorting over a range of small to large files, Swift execution times 

were on average 38% higher when compared to Hadoop (see Figure 115). However, for 

WordCount, Swift execution times were on average 75% lower (see Figure 116).  

 
Figure 115: Swift vs. Hadoop, sort 

Our experience with Swift and Hadoop indicate that the file systems (GPFS and 

Hadoop) are the main bottlenecks as applications scale; HDFS is more scalable than 
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GPFS, but it still has problems with small files, and it requires applications be modified. 

There are current efforts in Falkon to enable Swift to operate over local disks rather than 

shared file systems and to cache data across jobs, which would in turn offers comparable 

scalability and performance to HDFS without the added requirements of modifying 

applications. We plan to do additional experiments on the TeraGrid, with larger testbeds 

and data sets, as well as additional benchmarks. 

 
Figure 116: Swift vs. Hadoop, word count 

We conclude with three questions. 1) Can MapReduce applications run on workflow 

systems? We believe yes, and with even better performance in some cases.  2) Is the 

MapReduce model an option for scientific applications? 3) What parallel programming 

model will be best suited for scientific applications in the coming decade? We hope 

future work will help answer question (2) and (3).  
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8 Contributions, Conclusions, and Future Research Directions 

My dissertation work has focused on resource management in distributed systems. 

My work has enabled a new paradigm called Many-Task Computing (MTC) to operate at 

previously believed impossible scales with high efficiency. My interdisciplinary research 

has showcased how novel resource management techniques allow specific scientific 

applications to be solved at a larger scale, faster, and more efficient. This chapter re-

iterates this dissertation’s contributions, covers conclusions we have drawn, and discuss 

future research directions. 

8.1 Dissertation Contributions 

This dissertation is a fusion of many publications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. 
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We have defined a new paradigm – MTC – which aims to bridge the gap between 

two computing paradigms, HTC and HPC. MTC applications are typically loosely 

coupled that are communication-intensive but not naturally expressed using standard 

message passing interface commonly found in high performance computing, drawing 

attention to the many computations that are heterogeneous but not “happily” parallel. We 

believe that today’s existing HPC systems are a viable platform to host MTC 

applications. We also believe MTC is a broader definition than HTC, allowing for finer 

grained tasks, independent tasks as well as ones with dependencies, and allowing tightly 

coupled applications and loosely coupled applications to co-exist on the same system.  

Furthermore, having native support for data intensive applications is central to MTC, 

as there is a growing gap between storage performance of parallel file systems and the 

amount of processing power. As the size of scientific data sets and the resources required 

for analysis increase, data locality becomes crucial to the efficient use of large scale 

distributed systems for scientific and data-intensive applications [19]. We believe it is 

feasible to allocate large-scale computational resources and caching storage resources 

that are relatively remote from the original data location, co-scheduled together to 

optimize the performance of entire data analysis workloads which are composed of many 

loosely coupled tasks.  

We identified challenges in running these novel workloads on large-scale systems, 

which can hamper both efficiency and utilization. These challenges include local resource 

manager scalability and granularity, efficient utilization of the raw hardware, shared file 

system contention and scalability, reliability at scale, application scalability, and 
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understanding the limitations of HPC systems in order to identify promising and 

scientifically valuable MTC applications. 

We have investigated many aspects of MTC, by exploring the upper limits on the 

number of tasks, number of processors, and the I/O per processor particular systems 

could maintain. In exploring these limits, I investigated three techniques: (1) multi-level 

scheduling to enable dynamic resource provisioning [4, 6]; (2) streamlined task 

dispatching [2, 4]; and (3) data diffusion [1, 3, 14, 21].  

The “data diffusion” approach acquires compute and storage resources dynamically, 

replicates data in response to demand, and schedules computations close to data. As 

demand increases, more resources are acquired, thus allowing faster response to 

subsequent requests that refer to the same data; when demand drops, resources are 

released. This approach can provide the benefits of dedicated hardware without the 

associated high costs, depending on workload and resource characteristics. To explore the 

feasibility of data diffusion, we have completed both a theoretical and empirical analysis. 

We defined an abstract model for data diffusion and provided a preliminary validation 

using a real-world large-scale astronomy application. We defined scheduling policies 

with heuristics to optimize real world performance, and developed a competitive online 

caching eviction policy. We also offered many empirical experiments to explore the 

benefits of dynamically expanding and contracting resources based on load, to improve 

system responsiveness while keeping wasted resources small.  

The concepts of dynamic resource provisioning, data diffusion, and streamlined 

dispatching have been realized in Falkon, a Fast and Light-weight tasK executiON 
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framework. Falkon has shown orders of magnitude improvements in performance and 

scalability across many diverse workloads (heterogeneous tasks from 100ms to hours 

long, compute intensive, data intensive, varying arrival rates) and applications (e.g. 

astronomy, medicine, chemistry, molecular dynamics, economic modeling, and data 

analytics) at scales of up to billions of tasks on up to hundreds of thousands of processors 

across clusters, Grids (e.g. TeraGrid), and supercomputers (e.g. IBM Blue Gene/P). 

Micro-benchmarks have shown Falkon to achieve over 15K+ tasks/sec throughputs, scale 

to millions of queued tasks, and to execute billions of tasks per day.  Data diffusion has 

also shown to improve applications scalability and performance, with its ability to 

achieve hundreds of Gb/s I/O rates on modest sized clusters, with Tb/s I/O rates on the 

horizon. Falkon is an open source Globus Incubator Project [154], and can be freely 

downloaded from online [155]. 

To extend the discussion with the broader community on many-task computing, Ian 

Foster, Yong Zhao, and I held a workshop at IEEE/ACM Supercomputing 2008 titled 

“IEEE Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS08)” 

[24]. Another related event was a bird-of-feather (BOF) session titled “Megajobs08: How 

to Run a Million Jobs” [25], co-organized with Marlon Pierce, Ruth Pordes, John McGee, 

and Dick Repasky. The half-day workshop was a success; it attracted over 100 

participants who attended the presentations of the six accepted papers [17, 156, 157, 158, 

159, 160] and a keynote talk by the renowned Dr. Alan Gara (IBM Blue Gene Chief 

Architect).  The BOF was also a success, having seven short presentations and attracting 
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over 60 participants. We plan to have follow-up workshops and special issue publications 

on many-task computing in the near future. 

8.2 Conclusions 

We believe that there is more to HPC than tightly coupled MPI, and more to HTC 

than embarrassingly parallel long running jobs. Like HPC applications, and science itself, 

applications are becoming increasingly complex opening new doors for many 

opportunities to apply HPC in new ways if we broaden our perspective. We hope this 

dissertation leaves the broader community with a stronger appreciation of the fact that 

applications that are not tightly coupled MPI are not necessarily embarrassingly parallel. 

Some have just so many simple tasks that managing them is hard. Applications that 

operate on or produce large amounts of data need sophisticated data management in order 

to scale. There exist applications that involve many tasks, each composed of tightly 

coupled MPI tasks. Loosely coupled applications often have dependencies among tasks, 

and typically use files for inter-process communication.  Efficient support for these sorts 

of applications on existing large scale systems, including future ones (e.g. Blue Gene/Q 

and Blue Water supercomputers) involves substantial technical challenges and will have 

big impact on science. 

Furthermore, the rate of increase in the number of processors per system is 

outgrowing the rate of performance increase of parallel file systems, which requires 

rethinking existing data management techniques. For example, there is a 65X reduction in 

per core bandwidth between a system from 2002 and one from 2008. Unfortunately, this 
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trend is not bound to stop, as advances multi-core and many-core processors will increase 

the number of processor cores one to two orders of magnitude over the next decade.  

We argue that data locality is critical to the successful and efficient use of large 

distributed systems for data-intensive applications, where the threshold of what 

constitutes a data-intensive application is lowered every year as the performance gap 

between processing power and storage performance widens. Large scale data 

management is the next major road block that must be addressed in a general way, to 

ensure data movement is minimized by intelligent data-aware scheduling both among 

distributed computing sites, and among compute nodes. Storage systems design should 

shift from being decoupled from the computing resources, as is commonly found in 

today’s large-scale systems. Storage systems must be co-located among the compute 

resources, and make full use of all resources at their disposal, from memory, solid state 

storage, spinning disk, and network interconnects, giving them unprecedented high 

aggregate bandwidth to supply to an ever growing demand for data-intensive applications 

at the largest scales. 

8.3 Future Research Directions 

My future work centers on resource management in large scale distributed systems, 

covering: 1) Many-Task Computing, 2) Data Intensive Computing, 3) Cloud Computing 

& Grid Computing, and 4) Many-Core Computing.  

I have defined a new paradigm Many-Tasks Computing (MTC) [20] which aims to 

bridge the gap between high throughput computing (HTC) and high performance 

computing (HPC). MTC is reminiscent to HTC, but it differs in the emphasis of using 
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many computing resources over short periods of time to accomplish many computational 

tasks (i.e. including both dependent and independent tasks), where the primary metrics 

are measured in seconds, as opposed to operations per month. MTC denotes high-

performance computations comprising multiple distinct activities, coupled via file system 

operations or message passing. There are many challenges to enable support for MTC 

across clusters, Grids, and supercomputers, including scalable resource management and 

storage solutions, as well as having well defined standards on how applications are to 

interact with the new or improved middleware. I have already started a dialogue between 

Alan Gara (IBM Blue Gene chief architect), Ian Foster (father of the Grid), and Pete 

Beckman (director of ANL ALCF BG/P) about how our current research work on MTC 

can be applied to the next generation BG/Q in the 2010-2012 time frame. 

The support for Data Intensive Computing is critical to advancing modern science as 

storage systems have experienced an increasing gap between its capacity and its 

bandwidth by more than 10-fold over the last decade. There is an emerging need for 

advanced techniques to manipulate, visualize and interpret large datasets. Many domains 

share these data management challenges, strengthening the potential road impact from a 

generic solution. My work in identifying the importance of data locality and results 

obtained in data management, collective I/O primitives, and data-aware scheduling are 

fundamental to future storage systems and tomorrow’s exascale systems. I plan to pursue 

improvements to parallel file systems (e.g. GPFS, Lustre, PVFS) to support future data 

intensive applications by exposing data locality information and allowing schedulers to 

capitalize on it with data-aware scheduling. 
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The Cloud Computing concept surfaced in 2007, although it is not a completely new 

concept; it has intricate connection to the thirteen-year established Grid Computing 

paradigm, and other relevant technologies such as utility computing, cluster computing, 

and distributed systems in general. In building the future Cloud Computing infrastructure, 

I believe it needs to support on-demand provisioning of “virtual systems” providing the 

precise capabilities needed by an end-user. There is a growing demand to define 

protocols that allow users and service providers to discover and hand off demands to 

other providers, to monitor and manage their reservations, and arrange payment. Tools 

need to be defined and implemented for managing both the underlying resources and the 

resulting distributed computations. I plan to pursue these ideas within both Clouds and 

Grids.  

With the advent of Many-Core Computing, some are predicting that desktop 

machines will reach 1000s of cores within a decade. This increase in parallelism will 

bring many challenges to end-users, with new programming models and new thinking 

methods that until recently were reserved for the select few that were involved in large 

scale science on distributed systems. Having new tools (e.g. parallel programming 

languages) to harness these massively parallel machines by non-experts will be critical to 

allow maximal impact of the many-core computing era.  

My research philosophy pivots on the importance of computational science to the 

many branches of science, and how interdisciplinary research can bridge the gap among 

them. Computational science has already begun to change how science is done, enabling 

scientific breakthroughs through new kinds of experiments that would have been 
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impossible only a decade ago. Today’s science is generating datasets that are increasing 

exponentially in both complexity and volume, making their analysis, archival, and 

sharing one of the grand challenges of the 21st century.  

I believe that the intersection of computer science and the sciences has the potential 

to have a profound impact on science, how it is practiced, and the rate at which major 

advancements are achieved. Computational science represents the foundation of a new 

revolution in science that is just beginning, and will re-energize virtually all disciplines 

over the next decades. Through the spread of computational science, it will enable new 

kinds of science and a new era of science-based innovation that could dwarf the last 

decades of technology-based innovation.  
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