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existing codes. In parallel scripting, users apply parallel 
composition constructs to existing sequential or parallel 
programs. With such methods, programmers can quickly 
specify highly parallel applications that may, depending 
on problem scale, require for their execution a 16-core 
workstation, a 16,000-core cluster, or a 160,000-core peta-
scale system. 

Understanding how to scale scripting to 21st-century 
computers should thus be a priority for researchers of 
next-generation parallel programming models. In address-
ing this priority, we have focused on parallel scripting 
for systems such as the IBM Blue Gene/P (BG/P) and Sun 
Constellation.

MOTIVATION FOR PARAllel scRIPTINg 
Most research and development on programming 

models for exascale machines is concerned with tightly 
coupled single-program, multiple-data (SPMD) applica-
tions—for example, computational fluid dynamic codes 
applied to weather modeling and structural mechanics 
codes applied to automobile design. Such applications cer-
tainly require large amounts of computing power and a 
high-performance messaging infrastructure.

J
ohn Ousterhout aptly characterized scripting as 
“higher-level programming for the 21st century.”1 
Scripting has revolutionized application develop-
ment on the desktop and server, accelerating and 
simplifying programming by allowing program-

mers to focus on the composition of programs to form 
more powerful applications. 

Might scripting provide the same benefits for parallel 
computers—including extreme-scale computers—as it 
does for workstations and servers? We believe that the 
answer is yes. Scripting languages let users assemble 
sophisticated application logic quickly by composing 

Scripting accelerates and simplifies the 
composition of existing codes to form more 
powerful applications. Parallel scripting ex-
tends this technique to allow for the rapid 
development of highly parallel applications 
that can run efficiently on platforms rang-  
ing from multicore workstations to peta-
scale supercomputers. 
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images to highlight unusual conditions. Indeed, paral-
lel scripts can become quite complex. Whether simple or 
complex, they have in common that they express large 
amounts of parallelism concisely, via the composition of 
existing programs that read and write files.

Advantages
As this example shows, parallel scripting is ideal for 

parameter sweeps and ensemble studies, methods that 
are increasingly used to explore sensitivity to parametric, 
structural, and initial condition uncertainty. 

Another important problem class for parallel scripting 
is data analysis. A parallel script can be a natural tool for 
both specifying and accelerating the analysis of a large 
collection of discrete files or database records, particularly 
in the case of application programs designed to analyze 
a single file or database record. Biomedical researchers 
apply this form of parallel scripting, for example, to pro-
cess images for training computer-aided medical diagnosis 
algorithms and for research in surgical planning. Starting 
with programs designed for analyzing single images, they 
use parallel constructs to create concise scripts capable of 
rapidly analyzing thousands of such images. 

The compelling conclusion from such experiences is 
that parallel scripting enables developers to build on the 
codes of today to create the applications of tomorrow on 
the full spectrum of available parallel systems.

sWIFT: A lANguAge FOR  
PARAllel scRIPTINg

The framework within which we investigate paral-
lel scripting is the Swift language and system2 (www.
ci.uchicago.edu/swift). Linguistically, Swift blends a C-like 
syntax with functional programming characteristics. The 
language is designed to expose opportunities for parallel 
execution, avoid the unnecessary introduction of nonde-
terminism, simplify the development of programs that 
operate on file systems, and permit efficient implementa-
tion on distributed-memory parallel computers. 

Swift integrates external persistent data—typically 
contained in files and directories—into the language 
model, improving the development process for programs 
that read and/or write large datasets. This integration 
is achieved via a mapping system that allows files and 

However, it would be shortsighted to assume that such 
exascale applications are the only ones that require high-end 
supercomputers. Our experience suggests a substantial and 
unmet need to run existing programs at large scale, via the 
simple expedient of running many copies of programs at 
once. Each such application may itself be a parallel message-
passing, multithreaded, or serial code. Developers of such 
applications, like developers of SPMD applications, require 
methods and tools to reduce complexity, enhance reuse, 
and optimize performance on different platforms. Parallel 
scripting can provide a basis for such methods and tools.

example
A simple example illustrates parallel scripting in 

practice. 
It is increasingly common for a weather modeler to run 

many instances of a model, each with different initial con-
ditions, to quantify forecast uncertainty. In pseudocode, 
the modeler wants to do something like the following:

initial_conditions[ ] = initialize( )

forecast[ ] = null

foreach condition, index in initial_conditions:

   forecast[index] = weather_model(condition)

uncertainty = analyze(forecast)

This program first creates an array of files, each com-
prising a different set of initial conditions for the weather 
model. Then, it invokes the multiple instances of the 
weather model proper, using an operator (foreach) that 
performs parallel execution based on available resources. 
(The weather model runs on many processors; thus, on a 
small parallel computer, the multiple model invocations 
may be run one after the other. However, on a large parallel 
computer, many or all can be run in parallel.) The output 
from these multiple invocations is stored in a second array 
of files. The final step analyzes the computed forecasts.

A researcher may wish to explore the sensitivity of the 
same model to an input parameter, again for a range of 
initial conditions. This new strategy can be defined via a 
script that calls the same program in a different manner, 
this time sweeping over a range of parameters:

parameters[ ] = getParameterSets( )

initial_conditions[ ] = initialize()

foreach condition, cindex in initial_conditions:

   foreach parameterSet, pindex in parameters:

      forecast[cindex, pindex] = weather_model 

         (parameterSet, condition)

Other variants of these simple scripts could select just 
those runs that generate excessive rainfall, pass their 
output to a flood model, and/or generate specialized 

Parallel scripting enables developers 
to build on the codes of today to 
create the applications of tomorrow 
on the full spectrum of available 
parallel systems. 
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PSim that computes a single model structure, we want 
to specify the higher-level structure of the ItFix applica-
tion. A traditional implementation might involve multiple 
Bash or Perl scripts to allocate resources, structure on-
disk data, and manage the thousands of concurrent 
tasks. In contrast, the following simplified Swift example 
of a single ItFix round emphasizes how concise a paral-
lel script can be when using appropriate concepts and 
constructs:

app (ProtGeo pg) predict (Protein pseq) 

{ 

     PSim @pseq.fasta @pg; 

} 

 

(ProtGeo pg[]) doRound (Protein p, int n) { 

    foreach sim in [0:n-1] { 

       pg[sim] = predict(p); 

    } 

} 

 

Protein p <ext; exec="Pmap", id="1af7">; 

ProtGeo structure[]; 

int nsim = 10000; 

structure = doRound(p, nsim);

The app declaration defines an interface to the PSim 
(Open Protein Simulator) executable. This interface speci-
fies how to map from the typed Swift variables pg (protein 
geometry file) and pseq (protein sequence structure) in 
the header of procedure predict() to the command-
line program syntax expected by PSim. The expressions 
@pseq.fasta and @pg insert the filenames mapped to those 
arguments into the command line. The predict procedure 
expects a protein structure containing a FASTA-format file 
as its argument and returns a structure prediction in the 
form of a PDB (Protein Data Bank) file that describes the 
geometric locations of the protein’s atoms in its predicted 
3D structure. The doRound() procedure performs one 
“round” of parallel simulations by invoking the predict() 
procedure n times in parallel, with each PSim invocation 
executed by predict() performing a Monte-Carlo-based 
structure prediction and returning an array of predictions. 
The last four statements invoke doRound for one protein 
sequence, running the PSim application program 10,000 
times in parallel.

Swift’s dataflow model enables the multiple invocations 
of predict() to run concurrently, as none depend on data 
produced by another. Swift’s runtime system handles the 
dispatch of each predict() call to an available node and 
the movement of the associated data to and from that node. 

Having thus defined the form of a single round, we can 
then specify the iterative fixing algorithm proper. We do 
this as follows, with declarations and parameter lists elided:

directories to be represented within programs as typed 
language variables. Thus, a nested directory structure 
may be represented in Swift as a nested data structure, 
permitting a program that operates over all files in those 
directories to be written as a nested set of foreach state-
ments. Similar constructs allow for the definition of typed 
interfaces to external executables.

Swift reveals opportunities for parallel execution via 
a combination of explicitly parallel constructs (such as 
foreach) and a dataflow programming model. This model 
is based on single-assignment variables, a construct that 
also avoids unnecessary nondeterminism: If one pro-
gram produces a file that a second program consumes, 
then Swift ensures that the shared variable representing 

that file is not assigned a value until the first program 
has completed execution. As a result of that assignment, 
the second program then becomes executable. Studies 
indicate that the amount of code needed to express ap-
plications in this form is substantially lower than by ad 
hoc scripting in shell scripts or less expressive notations 
such as directed acyclic graphs.3 The Swift runtime system 
handles the dispatch of executable tasks to computers and 
the movement of the data that these programs consume 
and produce. 

PARAllel scRIPTINg cAse sTudy
University of Chicago researchers have developed the 

Open Protein Simulator,4 an application that predicts 
tertiary (3D) protein structure, an important computational 
problem in biochemistry due to the difficulty of experi-
mental structure determination. Their approach to this 
problem involves running many instances of a structure 
prediction simulation, each with different random ini-
tial conditions. The simulation uses an “iterative fixing” 
algorithm5 (ItFix) that performs multiple “rounds,” each 
involving many parallel Monte Carlo simulated annealing 
models of molecular moves with energy minimization. 
After each round, ItFix analyzes the results and picks the 
best (usually lowest-energy) candidate structure as the 
basis for the next round, continuing until a convergence 
criterion is satisfied or a maximum number of rounds have 
been completed.

This application is a natural candidate for paral-
lel scripting with Swift. Given an external executable  

Swift integrates external persistent 
data—typically contained in files and 
directories—into the language model, 
improving the development process for 
programs that read and/or write large 
datasets.
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with a Swift script on 8,000 CPUs. The images show the 
predicted structure of three proteins from the run; the 
table shows their lowest root mean square deviation 
from the experimentally known structure, and their im-
provement over older runs done on clusters with ad hoc 
scripts (“DeBartolo”). The scatter plot indicates the cor-
relation between statistical energy potential and protein 
structure accuracy for 985 simulations of protein 1af7. A 
parallel Swift script performs the predictions and then 
generates the plots, images, and a statistics summary 
table, which are made available to researchers via a Web 
interface.4

In the first two weeks of April 2009, shortly after 
development of the ItFix Swift script, the system saw im-
pressive use: 67,178 structure predictions, totaling 208,763 
CPU-hours, on Intrepid; and 17,488 jobs, totaling 1,425 
CPU-hours, on Ranger, the TeraGrid Constellation at the 
University of Texas at Austin. The same scripts were used 
in that period to perform 22,495 predictions totaling 2,397 
CPU-hours on other TeraGrid sites with between 4,000 
and 9,000 cores each. The Intrepid runs alone produced 
more than 100 gigabytes of compressed protein structure 
trajectory data.

ItFix( Protein p, int nsim, int maxr, 

        float temp, float dt) 

{ 

    ProtSim prediction[][]; 

    boolean converged[]; 

    PSimCf config; 

    ... 

    iterate r { 

       prediction[r] = 

          doRoundCf(p, nsim, config); 

       converged[r] = 

          analyze(prediction[r], r, maxr); 

    } until ( converged[r] ); 

}

This code fragment uses the Swift iterate 
statement to perform prediction rounds until a 
convergence criterion has been satisfied or a max-
imum number of rounds have been performed.  
The procedure doRoundCf() enables science con-
figuration parameters to be passed to the PSim 
application.

Given these Swift procedures, researchers 
can then use flexible scripts to leverage many 
processors with relative ease, as in the following 
parameter sweep script:

int nSim = 1000; 

int maxRounds = 3; 

Protein pSet[] <ext; exec="Protein.map">; 

float startTemp[]=[100.0, 200.0]; 

float delT[]=[1.0, 1.5, 2.0, 5.0, 8.0]; 

foreach p, pn in pSet { 

    foreach t in startTemp { 

       foreach d in delT { 

          ItFix(p, nSim, maxRounds, t, d); 

       } 

    } 

}

Given 10 protein sequences from the external mapper 
script "Protein.map", nsim = 1,000, two starting temper-
atures, and five temperature increments (to control the 
simulated annealing algorithm), this script would execute 
10 × 1,000 × 2 × 5 = 100,000 simulations in each of up 
to three prediction rounds. On highly parallel systems 
such as the Argonne BG/P Intrepid, this script can use a 
substantial portion of the machine’s 160,000 processor 
cores. (ItFix has run on up to 64,000 cores on Intrepid.) 
Similar code with a generalized parameterization of ItFix 
can sweep across any combination of settable parameters 
that govern the structure prediction algorithm.

Figure 1 shows results of running ItFix with Swift for 
eight protein structure predictions that were executed 

 

   
1af7 1b72 1r69

Protein Length ST TUI Lowest RMSD (Å, BG/P) Lowest RMSD (Å, DeBartalo)

T1af7 69 25 100 2.07 2.5

T1b72 50 25 100 1.41 1.6

T1r69 61 25 100 2.11 2.4

0 2 4 6 8 10 12 14

–700

–750

–800

–850

–900

–950

–1,000

–1,050

–1,100

RMSD

En
er

gy

T1af7-50-500

Figure 1. Results of script for predicting eight protein structures on 
8,192 CPUs of the Intrepid BG/P, with details for three proteins and 
the Monte Carlo results for 1af7.
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manager); and operating system support for basic script 
execution and access to high-performance communica-
tions networks (for example, the ZeptoOS Linux-based 
compute-node kernel). We have used these components to 
run parallel scripts on up to (so far) 160,000 cores.

data management for petascale scripting
In a straightforward implementation of parallel script-

ing, large numbers of programs operate concurrently and 
independently on a shared parallel file system such as 
IBM’s General Parallel File System (GPFS) on the BG/P. Such 
I/O patterns place a high burden on a persistent storage 
infrastructure and tend to be inefficient due to the con-
sistency mechanisms enforced by traditional file system 
semantics. Our solution to this problem, which we refer to 
as collective data management (CDM),6 is loosely inspired 
by collective parallel programming operations such as 
broadcast, gather, and two-phase I/O.

CDM, as currently conceived, comprises a set of com-
munication strategies that leverage fast local file systems 
as a high-speed local file cache, use broadcast operations 
to handle distribution of common input data, employ ef-
ficient scatter/gather and caching techniques for input and 
output, and aggregate compute node storage into larger file 
systems that leverage a high-performance interconnect 
to deliver data to applications. In this way, CDM enables 
efficient and easy distribution of data files to and from 
computing nodes and can greatly reduce load on the un-
derlying persistent storage system.

Our work to date with CDM has been performed largely 
on the BG/P, and leverages features such as the BG/P inter-
connect architecture with its separate collective network, 
ZeptoOS compute-node kernels with I/O forwarding, and 
GPFS with full multiprocessor data consistency guaran-
tees. Most of these considerations apply to other deployed 
petascale systems, all of which run some form of parallel 
file system, such as GPFS, Lustre, or the Parallel Virtual File 
System (PVFS). Moreover, all have some form of high-per-
formance, often hierarchical or heterogeneous, network 
interconnects—for example, a mix of torus, tree, or Clos 
networks. 

We are currently experimenting with CDM concepts 
through the explicit insertion of CDM primitives and heu-
ristics into applications. Our goal is that CDM operations 
will ultimately be invoked automatically and transparently 
by the Swift implementation, making them fully transpar-
ent to the programming model and user.

Falkon 
To maximize the range of parallel scripts that we can 

run efficiently, we require rapid task dispatch and exe-
cution. For example, keeping 160,000 cores efficiently 
utilized running 60-second single-thread tasks requires 
that tasks be dispatched at more than 160,000/60 = 2,700 

AN ARcHITecTuRe FOR PeTAscAle 
PARAllel scRIPTINg

Petascale computing raises challenging problems 
for implementers of parallel scripting systems. Even a 
simple parallel script can define large numbers of con-
current tasks that may operate on even larger numbers 
of files. Task dispatch, data management and movement, 
mixed-mode parallelism, resource management, failure 
detection and recovery—these and other programming 
model functions can lead to difficulties when millions of 
tasks must execute efficiently and reliably on hundreds 
of thousands of cores.

Figure 2 shows the four-layer software architecture that 
we have developed in our investigations of parallel script-
ing systems. The four layers address, from the top down, 
the parallel scripting language and its engine and runtime 
system (Swift); a layer to support the data management de-
mands that parallel scripting—and many-task computing 
in general—places on cluster file systems; runtime system 
support for high-performance resource provisioning and 
task dispatch (for example, the Falkon multilevel resource 

Small, fast, local
memory-based �le systems

Falkon client
(load balancing)

Shared
global

�le system

Swift script Falkon services on
BG/P I/O processors BG/P processor sets

Figure 3. Swift scripts execute using the Falkon distributed 
resource manager on the BG/P architecture.

Swift:           
scripting language, task coordination,
throttling, data management, restart

Falkon:
ultrafast task dispatch and load
balancing over processor sets
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full Linux with fork/exec, dynamic linking
and torus/collective net access

Swift
scripts
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scatter and gather of small �les

Datasets

Figure 2. Architecture for petascale scripting. 
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system services such as the fork() and exec() used to 
launch a new application program and the I/O functions 
used to gain high-performance access to specialized 
communication networks. On the BG/P, we provide 
these features through the ZeptoOS Linux compute 
node kernel,6 which implements Posix-compliant 
system services, full dynamic loading of executables, 
access to the BG/P collective (“tree”) network through 
higher-level broadcast operations, IP connectivity over 
the torus network, and facilities to stripe the RAM-disk 
file systems of compute nodes and mount them as 
high-performance intermediate file systems. On other 
computers, such as the Constellation, we currently use 
the native compute node OS that provides a complete 
Posix interface, but we envision a role for ZeptoOS as a 
vehicle for kernel experimentation even on the Constel-
lation and Cray XT5.

PARAllel scRIPTINg APPlIcATIONs
We have applied large-scale parallel scripting to nu-

merous applications.3-5,7-9 Each scripted application can 
consume a large fraction, or even all, of a petascale com-
puter. All involve executing many tasks at once, often with 
substantial amounts of communication both within each 
task and among tasks. Table 1 lists some representative 
examples.

tasks per second. Given that the batch schedulers typi-
cally run on parallel computers can take 60 seconds to 
dispatch a single task, there is a clear need for alternative 
technologies.

In our work to date we have used the Falkon distributed 
resource manager7 to address this need, as shown in Figure 
3. Falkon uses a combination of multilevel scheduling and a 
hierarchical task dispatch architecture to enable rapid task 
dispatch. Its multilevel scheduling architecture—similar 
to that used in systems such as Condor and MyCluster—
separates two activities that are normally combined on a 
supercomputer, namely allocating a node to a user and 
dispatching tasks to that node. In the first provisioning 
phase, Falkon requests nodes in large quantities, using a 
system’s native batch scheduler, and starts a persistent task 
execution agent on each core capable of rapidly executing 
arbitrary and independent Posix processes. Once nodes 
are thus allocated, Falkon uses a hierarchical network of 
dispatchers to pass tasks to nodes that are, or soon will 
be, ready to execute them. These methods have allowed 
Falkon to dispatch more than 3,000 tasks per second on 
the BG/P and to run on up to 160,000 cores.7

ZeptoOs
The lowest layer in our parallel scripting architecture 

is a Posix-compliant operating system that provides 

table 1. example parallel scripting applications.

Field description characteristics status

Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex 
dependencies

Experimental

Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry* Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using 
custom serial codes

In development

Biochemistry* Protein structure prediction using iterative fixing 
algorithm; exploring other biomolecular 
interactions

Hundreds to thousands of 1- to 1,000-core simulations 
and data analysis

Operational

Biochemistry* Identification of drug targets via computational 
docking/screening

Up to 1 million 1-core docking operations Operational

Bioinformatics* Metagenome modeling Thousands of 1-core integer programming problems In development

Business 
economics

Mining of large text corpora to study media bias Analysis and comparison of over 70 million text files of 
news articles

In development

Climate science Ensemble climate model runs and analysis of 
output data

Tens to hundreds of 100- to 1,000-core simulations Experimental

Economics* Generation of response surfaces for various eco-
nomic models

1,000 to 1 million 1-core runs (10,000 typical), then 
data analysis

Operational

Neuroscience* Analysis of functional MRI datasets Comparison of images; connectivity analysis with 
structural equation modeling, 100,000+ tasks

Operational

Radiology Training of computer-aided diagnosis algorithms Comparison of images; many tasks, much 
communication

In development

Radiology Image processing and brain mapping for neuro-
surgical planning research

Execution of MPI application in parallel In development

  Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid) and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).
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use the parallel scripting paradigm to refine several models 
for exploring uncertainty through large-scale parallelism. 

Figure 4 shows the results of a parallel script exploring 
the implications of uncertainty—in this case, paramet-
ric uncertainty in substitution elasticities. Researchers 
analyzed 5,000 samples from a perturbed input dataset in 
parallel on Ranger and other parallel systems of 5,000+ 
cores each. The model evaluates relative sensitivity to 
uncertainty (percent from the mean) for consumer and 
industrial demand for electricity in eight geographical re-
gions. The dark-blue and light-blue envelopes are one and 
two standard deviations from the mean.

structural equation modeling
The University of Chicago’s Human Neuroscience Lab-

oratory has developed a computational framework for a 
data-driven approach to structural equation modeling8 

(SEM) and has implemented several parallel scripts for 
modeling functional MRI data within this framework. The 
Computational Neuroscience Applications Research Infra-
structure8 (CNARI, www.cnari.org) uses Swift to execute 
hundreds of thousands of simultaneous processes running 
the R data analysis language, consisting of self-contained 
structural equation models, on Ranger. These self-contained 

Molecular docking
The DOCK molecular dynamics application is run regu-

larly on Intrepid to simulate the docking of small ligand 
molecules to large macromolecules (receptors). A com-
pound that interacts strongly with a receptor associated 
with a disease may inhibit its function and thus prove 
useful in a beneficial drug. 

This application is challenging because it involves 
many tasks, each with a wide range of execution 
times, and each computation involves significant I/O. 
Protein description files for docking range from tens 
to hundreds of megabytes and must be read for each 
computation. 

Argonne biochemists use Falkon for molecular docking 
and surface screening, running at scales of up to 64,000 
cores in a single scripted workload.

uncertainty in economic models
The University of Chicago-Argonne CIM-EARTH project 

for integrated social, economic, and environmental model-
ing (www.cim-earth.org) uses Swift on petascale systems 
to execute parameter sweeps of economic models that 
forecast energy use and other commodity demands to ex-
amine the effects of uncertainty. CIM-EARTH researchers 

Figure 4. CIM-EARTH energy-economics parameter sweeps of 5,000 models exploring uncertainty in consumer (top) and 
industrial (bottom) electricity usage projections by region for the next five decades.
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R processing jobs are data objects generated by OpenMx 
(http://openmx.psyc.virginia.edu), a structural equation 
modeling package for R that can generate a single model 
object containing the matrices and algebraic information 
necessary to estimate the model’s parameters. With the 
CNARI framework, neuroscientists run OpenMx from Swift 
scripts to conduct exhaustive searches of the model space.

Posttranslational protein modification
The University of Chicago’s Ben May Department for 

Cancer Research is applying petascale parallel scripting 
to the analysis of posttranslational protein modifications 
(PTMs), complex changes to proteins that play essential 
roles in protein function and cellular physiology. The 
PTMap application takes in raw data files from mass-
spectrometry analysis of biological samples, along with 
the entire set of sequences of the organism’s proteome, 
and searches them for statistically significant evidence of 
unidentified PTMs. The tool reads in a mass-spectrometry 
file—typically 200 megabytes of data in mzXML format—
and protein sequences in FASTA format. 

The analysis of a mass-spectrometry run for a single 
proteome has abundant opportunities for parallelization 
at the extreme scale. Researchers want to apply the latest 
version of PTMap to identify unknown PTMs across a wide 
range of organisms including E. coli, yeast, cows, mice, 
and humans.

PARAllel scRIPTINg MOdel PeRFORMANce
Performance measurements indicate that on Intrepid, 

Falkon can execute more than 3,000 tasks per second, and 
launch, execute, and terminate 160,000 tasks on 160,000 
cores in under one minute.7

Running DOCK under Falkon with a workload of 
934,803 molecules (performing a DOCK execution for each 
one) on 116,000 CPU cores of the Intrepid BG/P took two 
hours,7 as shown in Figure 5a, delivering 21.4 CPU-years. 
Per-task execution time varied considerably, from a mini-
mum of 1 second to a maximum of 5,030 seconds, and a 
mean of 713±560 seconds. The two-hour run achieved 
a sustained utilization of 99.6 percent for the first 5,700 
seconds and an overall utilization of 78 percent due to 
the workload tapering off at the end of the run. Despite 
the loosely coupled nature of this application, our results 
show that DOCK performs and scales well on a significant 
fraction of Intrepid, with 99.7 percent efficiency when 
compared to the same workload at 64,000 CPUs.

Figure 5b shows the progress and active processes of an 
SEM workflow with over 418,000 jobs, executing as a single 
Swift script invocation on Ranger to model neural pathway 
connectivity from experimental fMRI data.8 

We performed preliminary measurements of the new 
PTMap application at modest scales, running the stage 1 
processing of the E. coli K12 genome (4,127 sequences) on 
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Figure 5. Performance of three parallel application scripts: 
(a) DOCK on BG/P—Falkon, 934,803 tasks, 2 hours; (b) SEM  
on Constellation—Swift, 418,000 tasks, 41 hours; (c) PTMap 
on BG/P—Swift, 4,127 tasks, 3 minutes.
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compute node task that can be re-executed and thus need 
not cause an entire application to fail. We view Swift and 
MPI as complementary in that Swift can be used to coor-
dinate the execution of MPI applications.

Numerous dynamic load balancing libraries have been 
implemented over the years, varying in details but not 
general approach. Condor’s manager-worker library is one 
example. Another, implemented within the MPI paradigm, 
is the Asynchronous Dynamic Load Balancing library.14 
ADLB moves MPI programming closer to the loosely 
coupled Swift model, in that tasks are freed from the re-
strictions of two-sided communication and execute in a 
manner similar to the traditional master-worker model. It 
is still, however, a model for executing in-memory tasks, 
unlike the Swift model of executing independent programs 
linked by file exchange.

The design of Falkon was inspired by the Condor Glide-
in facility,15 which established the utility of multilevel 
scheduling. Falkon is based on similar principles but imple-
ments a simpler facility that contains only the essential 
semantics needed for first-in, first-out task scheduling and 
thereby delivers orders of magnitude better scalability and 
throughput on petascale systems.7

 High-performance languages for tightly coupled pro-
gramming, such as Chapel,16 also offer features similar 
to those found in Swift. Swift and Chapel share the same 
goal of programming productivity. However, Chapel is 
oriented toward in-memory computing, while Swift 
focuses on loosely coupled application program coordi-
nation. Like Chapel, Swift is a “global view” rather than 
a “fragmented model” programming language, in which 
the compiler and runtime system determine a program’s 
mapping to the available runtime parallel resources. 
Like Chapel’s forall statement, Swift’s foreach deter-
mines a parallel execution strategy for the programmer, 
without the explicit task assignment of MPI-style frag-
mented models. Swift is also strongly typed like Chapel, 
but offers the programmer fewer ways to circumvent 
the typing model and lacks Chapel’s semantics for type 
inference.

o
usterhout’s observation concerning the power 
of scripting reflects a profound truth about 
programming. As in other fields of human 
endeavor, complex artifacts are often cre-
ated by coupling existing components. Thus, 

tools that make it easy to couple existing programs and 
apply programs to different data—in other words, script-
ing tools—align well with how people approach problem 
solving. 

Historically, people used scripting to prototype 
programs on workstations, but for more serious pro-
gramming tasks, such as for parallel computers, they 

2,048 Intrepid cores. Figure 5c summarizes this run. Over-
all, the average per-task execution time was 64 seconds, 
with a standard deviation of 14 seconds. These 4,127 tasks 
consumed a total of 73 CPU-hours, in a span of 161 seconds 
on 2,048 processor cores, achieving 80 percent utilization 
from a high-level Swift script.

We view these measurements—all on challenging 
short-task-length applications—as a promising milestone 
in meeting and in some cases exceeding the performance 
needed for petascale scripting and beyond.

RelATed WORk
MapReduce,10 Sphere,11 and Dryad12 implement 

library-based approaches to parallel processing of large 
datasets. For example, in the MapReduce paradigm, data 
is distributed over many nodes. SPMD applications can 
then call both local functions that execute on local data 
and reduction operations to combine distributed data. 
This model can require both substantial rewriting of 
programs and reorganization of data. In contrast, Swift 
programs require no modifications to application pro-
grams. Instead, Swift allows the programmer to focus on 
composing those programs into larger applications. We 
view the ability to leverage the vast value embedded in 
modern sequential and parallel application codes as an 
important property of parallel scripting. Swift’s foreach 
construct performs a simple map operation, and the act 
of passing a multimember dataset to a procedure pro-
vides a simple and natural way to implement reduction 
operations.

The Nimrod system13 is an example of a more spe-
cialized form of parallel programming system. Nimrod 
supports parallel computations involving many invoca-
tions of an external executable, driven by a high-level 
specification of a parameter study or, in more recent ver-
sions, a numerical optimization strategy.

SPMD message-passing systems such as MPI can be 
used to express some task-parallel computations. However, 
MPI is less well suited for the dynamic environments and 
applications at which Swift excels. In addition, any SPMD 
programming model, including MPI, faces issues of reli-
ability when scaling to millions of processors and beyond, 
because of shorter mean time to failure as machines grow 
in size. The parallel scripting model is more flexible in this 
regard because failures are typically localized within a 

Tools that make it easy to couple 
existing programs and apply programs 
to different data—in other words, 
scripting tools—align well with how 
people approach problem solving.
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used different methods and tools. It is time to reconsider 
that position on parallel computers, just as people are 
doing in other environments. Not only can a scripting 
approach facilitate the rapid construction of large com-
putations via the composition of existing components, 
but a scripting language’s composition operators often 
reveal opportunities for parallel execution. Swift shows 
how a language that supports simple dataflow concepts 
and file system mapping constructs can allow for the 
concise specification of highly parallel computations 
within a scripting framework.

There might be some skepticism about whether script-
ing methods can be implemented efficiently on large-scale 
parallel computers, given the need to schedule, dispatch, 
and manage many tasks on many processors, all the while 
supporting large numbers of fine-grained I/O operations 
within both shared and local file system namespaces. Yet 
our experience shows that these issues need not stand 
in the way of performance. Data dependency and task 
management activities can be scaled relatively easily with 
the use of hierarchical scheduling methods. File system 
operations can also be scaled, within the constraints 
that single-assignment semantics place on how parallel 
scripts access the file system: A file may have many read-
ers, but only one writer. The resulting computations may 
sometimes stress a parallel computer’s communication 
network, but they usually perform sufficiently well to ac-
complish a vast array of important scientific tasks with 
unprecedented speed.

We continue to explore new applications that benefit 
from parallel scripting and to extend the power and per-
formance of the Swift scripting system. Based on what 
we have learned to date, we believe that parallel scripting 
has proven its value on petascale systems and will play 
an indispensable role in the exascale programming tool 
chest. 
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