Data Intensive Scalable Computing on TeraGrid: A Comparison of MapReduce and Swift

Quan T. Pham\(^1\), Atilla S. Balkir\(^1\), Jing Tie\(^1\), Ian Foster\(^{1,2}\), Michael J. Wilde\(^{1,2}\), Ioan Raicu\(^1\)

quanpt@cs.uchicago.edu, soner@cs.uchicago.edu, jtie@cs.uchicago.edu, foster@mcs.anl.gov, wilde@mcs.anl.gov, iraicu@cs.uchicago.edu

\(^1\)Computer Science Department, The University of Chicago
\(^2\)Math and Compute Science Division, Argonne National Laboratory

Abstract

Many programming models and frameworks have been introduced to abstract away the management details of running applications in distributed environments.

MapReduce is regarded as a power-leveler that solves computation problems using brutal-force resources. It provides a simple programming model and powerful runtime system for processing large datasets. The model is based on two key functions: “map” and “reduce”, and the runtime system automatically partitions input data and schedules the execution of programs in a large cluster of commodity machines. MapReduce has been applied to document processing problems, such as distributed indexing, sorting, and clustering.

Swift is a parallel programming tool for rapid and reliable specification, execution, and management of large-scale science and engineering workflows. Swift consists of a concise scripting language called SwiftScript for specifications of complex parallel computations based on dataset typing and iterations, and dynamic dataset mappings. The runtime system relies on CoG Karajan workflow engine for scheduling and load balancing, and integrates the Falkon light-weight task execution service for optimized task throughput, resource provisioning, and to leverage data-locality found in application access patterns.

Applications that can be implemented in MapReduce are a subset of those that can be implemented in Swift due to the more generic programming model found in Swift. Contrasting Swift and Hadoop are interesting as it could potentially attract new users and applications to systems which traditionally were not considered.

Methods

We compared two benchmarks, Sort and WordCount, and tested them at different scales and with different datasets. The testbed consisted of a 270 processor cluster (TeraPort at UChicago). Hadoop (the MapReduce implementation from Yahoo!) was configured to use Hadoop Distributed File System (HDFS), while Swift used Global Parallel File System (GPFS).

<table>
<thead>
<tr>
<th>Input data size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordCount</td>
</tr>
<tr>
<td>large number of 10kB text files of total 70MB, 700MB</td>
</tr>
<tr>
<td>Sort</td>
</tr>
<tr>
<td>one file of size 10M, 100M, 1GB</td>
</tr>
</tbody>
</table>

Results

We found Swift offered comparable performance with Hadoop, a surprising finding due to the choice of benchmarks which favored the MapReduce model. In Sorting over a range of small to large files, Swift execution times were on average 38% higher when compared to Hadoop (http://people.cs.uchicago.edu/~quanpt/reports/poster_sort.jpg). However, for WordCount, Swift execution times were on average 75% lower (http://people.cs.uchicago.edu/~quanpt/reports/poster_wc.jpg). Our experience with Swift and Hadoop indicate that the file systems (GPFS and Hadoop) are the main bottlenecks as applications scale; HDFS is more scalable than GPFS, but it still has problems with small files, and it requires applications be modified. There are current efforts in Falkon to enable Swift to operate over local disks rather than shared file systems and to cache data across jobs, which would in turn offers comparable scalability and performance to HDFS without the added requirements of modifying applications. We plan to do additional experiments on the TeraGrid, with larger testbeds and data sets, as well as additional benchmarks.
Performance

Figure 1: Hadoop better than Swift+Falkon

Figure 2: Swift+Falkon better than Hadoop

Figure 3: Why is Swift+Falkon faster?
Complexity

```swift
type inputfile {}

type sortedfile {}

type textfile {}

(sortedfile t) sort (string f, textfile fileList) {
    app {
        sort "-n" f stdout=@filename(t);
    }
}

(sortedfile sfiles[]) qsortAll(textfile fileList, string ifiles[]) {
    foreach f,i in ifiles {
        sfiles[i] = sort(f, fileList);
    }
}

(sortedfile sf) merge2(sortedfile f1, sortedfile f2) {
    app {
        merge2 @filename(f1) @filename(f2) stdout=@filename(sf);
    }
}

(sortedfile mfiles[]) mergeHalf(sortedfile sfiles[]) {
    foreach f,i in sfiles {
        if (i % 2 == 1) {
            mfiles[i%2]=merge2(sfiles[i-1], sfiles[i]);
        }
    }
}

(sortedfile mfiles[]) mergeHalfRec(sortedfile sfiles[], int k) {
    if (k > 1) {
        sortedfile tmpfiles[];
        tmpfiles = mergeHalf(sfiles);
        mfiles = mergeHalfRec(tmpfiles, k-1);
    } else {
        mfiles = mergeHalf(sfiles);
    }
}

main (textfile fileList, string strFiles[]) {
    sortedfile s1files[] <simple_mapper;location=./data, prefix="s", suffix=".sorted.5">;
    sortedfile s6files[] <simple_mapper;location=./data, prefix="final", suffix=".data">;
    s1files = qsortAll(fileList, strFiles);
    s6files=mergeHalfRec(s1files, 5);
}

(textfile post_condition) prepareData(string localpath) {
    app {
        split "data.txt" 32 localpath stdout=@post_condition;
    }
}

string localpath = "/home/quanpt/swift/sort/data";
string strFiles[] = readdata("data/datalist.txt");
textfile fileList;
fileList = prepareData(localpath);
main(fileList, strFiles);
```

Figure 4: Sort in Swift (50 lines of code)
Figure 5: Sort in Hadoop (96 lines of code)

Conclusion

We conclude with three questions. 1) Can MapReduce applications run on workflow systems? We believe yes, and with even better performance in some cases. 2) Is the MapReduce model an option for scientific applications? 3) What parallel programming model will be best suited for scientific applications in the coming decade? We hope future work will help answer question (2) and (3).
References

