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Abstract This paper deals with one of the fundamental properties of grid computing –
transferring code between grid nodes and executing it remotely on heteroge-
neous hosts. Contemporary middleware relies for this purpose on Web Services,
which makes application programs complicated and low-level and requires much
additional expertise from programmers. We compare two mechanisms for grid
application programming with regard to their handling of code transfer – the
de-facto standard WS-GRAM in Globus and the higher-level approach based on
HOCs (Higher-Order Components). We study the advantages and problems of
each approach using a real-world application case study – the sequent alignment
problem from bioinformatics. Our experiments show the trade-off between re-
duced development costs and software complexity when HOCs are used and the
higher performance of the applications on the grid when using WS-GRAM.
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1. Introduction
Grids aim to provide a transparent access to large-scale computing, network-

ing, and storage resources. A fundamental property of grid applications is the
transfer of not only data but also executable code between the nodes of the grid.
Contemporary middleware, for example the Globus Toolkit, relies on Web Ser-
vices for this purpose, such that a typical grid application usually consists of
two parts: a) an operational part that handles computations in a parallel and
distributed manner, and b) a declarative part which includes resource specifi-
cations, interface definitions, deployment descriptors etc., in an XML-based
format; it describes, e. g. , how to encode a program for transmission and how
to invoke code on a remote host. Therefore, grid application programming
remains a quite low-level, complicated task that requires from the programmer
much additional expertise beyond his particular application area.

In this paper, we study and compare two approaches to grid application
programming with regard to how they manage the aspect of code transfer:

The first approach is the Globus Resource Allocation Manager (WS-
GRAM [2]) which is currently the most often used solution. In WS-
GRAM, code is packaged as a job which is a Web service parameter
of a special type. Each job carries an executable program, packaged
together with a description of the parameters this program expects and the
program’s requirements concerning the processors and libraries available
on the execution platform. WS-GRAM extends the Web service standards
(WSDL and SOAP [15]) by a descriptive XML-based language RSL [2]
for job definitions, since usually the types used for the parameters of Web
services are plain data types rather than executable programs. Contrary
to the static interface of a Web service, users upload RSL definitions to
the service at runtime.
The second approach seeks to raise the level of programming abstrac-
tion by relying on Higher-Order Components (HOCs [6]). HOCs are
application-level components: they provide implementations of typical,
recurrently used coordination patterns in parallel applications. HOC
users implement only application-specific operations and pass them to
the HOCs as code parameters. The Service Architecture for HOCs
(HOC-SA [3]) is currently a Globus incubator project [4]. Using HOCs,
the work of application programmers and the amount of code transferred
in the grid is fairly reduced, because much work is done by HOC-SA.

In the remainder of the paper, we compare the process of grid application
programming using these two approaches: WS-GRAM and HOC-SA. After
describing the general properties of the both approaches in Section 2, we con-
sider in Section 3 a particular application example - detection of similarities
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in genome sequences - and present how this application is implemented using
each of the two approaches. In Section 4, we describe the results of extensive
experiments with the genome sequence application which demonstrate the per-
formance and the development costs of the application when using WS-GRAM
and HOC-SA. We discuss related work and conclude in Section 5.

2. Grid Programming with WS-GRAM and the HOC-SA
From the user’s viewpoint, a possibility to request the processing of appli-

cation tasks over the Internet instead of only downloading application data is
probably the feature which makes the grid most distinct from the Web.

2.1 Code transfer and Web services
The technology enabling the remote processing of application tasks is cur-

rently Web services in most grid middleware systems. Web services were
created with the aim of increasing the interoperability among heterogeneous
platforms by handling the exchange of data over the network using portable
formats. The parameters accepted by a Web service must be encoded in an
XML document. For any Web service this document must adhere to an XML
Schema which the service developer writes into the WSDL description of the
service interface [15]. However, Web services were not designed to exchange
executable code. There is no representation for executable code in the XML
Schema format. Therefore, Web service developers must declare code as plain
data skipping the context information about the code, i. e. , the information
about how to invoke the code from within another program is potentially not
available to the execution host, as explained in the following.

Generally, there are two different types of code a client can upload to a
server in a distributed system: a self-contained program or a part of a program.
Both types must be invoked in a different manner. In the case that clients
upload a self-contained program, the context information required to invoke
this program consists of the data format and sequence of the program input.
Moreover the libraries, command line arguments, environment variables and
also parameters like, e. g. , the number of MPI processes used in the program
must be communicated to the executing server. A Java class containing its own
main method also falls under the category of self-contained programs: it is a
portable binary that requires the same context information for remote execution
as a native binary program.

In the second case, if the code uploaded by a client is only a part of a
program, it must be a well-defined entity in the full program, e. g. , a class or
block which contains one or multiple procedure definitions. To insert this entity
remotely into the proper context, the executing server requires information
about the code format (source or binary) and programming language, which
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is not necessarily the case for self-contained programs, as these are either in a
binary format or scripts that can be interpreted by the remote shell. To execute
non-self-contained code remotely, the interface for accessing this code within
the server-side context, i. e. , the signatures of the procedures inside, must be
declared in a file available to the execution host which must assign proper
variable types to input and output. Both, command line options and interfaces
have no standard representation in XML Schema making it difficult to define
Web service interfaces for transferring any code, full or partial programs.

Thus, the code transfer problem that we address in this paper originates
from the fact that the context information of a local code, i. e. , the required
information on how to execute it, is potentially lost when the code is transferred
as a Web service parameter from one context (e. g. , a client program) to another.

2.2 Web-enabled Code Transfer with WS-GRAM
Fig. 1 shows how the WS-GRAM service of Globus avoids the potential

loss of information discussed above, when full programs are transferred: The
client code (left in the figure) contains a call to WS-GRAM where application
code is submitted as a job to the execution hosts. The shaded hexagons in the
WS-GRAM job represent processes connected by arrows representing message
exchange.
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Figure 1. Code Transfer via Job submission in WS-GRAM

Besides the application code, the client sends one RSL declaration per job.
The programmer must write these declarations to provide the information about
how to invoke the transferred code to the execution hosts. RSL files are uploaded
by WS-GRAM users at runtime together with the code described therein. RSL
belongs to the declarative part of a WS-GRAM application and extends the
static configuration which any Web service-based software requires (WSDD &
WSDL [15]). While the introduction of RSL to the Web service configuration
enables the use of different kinds of executable code as Web service parameters,
WS-GRAM requires users to be familiar both with the service configuration and
with RSL. In Fig. 1, there is one RSL declaration document per application unit
(transferred in a single submission, typically a class).
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2.3 Web-enabled Code Transfer with HOC-SA
Higher-Order Components (HOCs) handle the platform-specific work au-

tomatically (data format conversions etc.) and require only the application-
specific pieces of code being sent to them. This principle is depicted in Fig. 2:
The client runs an application that uses a HOC which executes on the remote
High-Performance Computers (HPC) with code parameters provided by the
client. The HOC - Service Architecture (HOC-SA) provides a solution for
code transfer in which only a part of a program is sent over the network. While
the generic components (HOCs) are pre-installed, the application-specific code
parameters are transferred on demand (i. e. , at runtime as explained in the fol-
lowing). HOC-SA adds to WS-GRAM two elements, the Code Service and the
Remote Code Loader. However, HOC-SA makes the situation simpler for the
user as compared to WS-GRAM, since the upload of code (step � in Fig. 2) is
decoupled from using the code (step �), as explained in the next paragraph.
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Figure 2. Code Transfer to a component (HOC) via the HOC-SA

In the upload step �, the application code is intermediately stored in the
Code Service, a Web service connected to a database (via OGSA-DAI [11]).
Identifiers specified by the user ( A and B in the figure) are linked to the
uploaded code, making it a code parameter. Users can pass a code parameter to
a HOC by referring to its identifier. Both HOCs and their code parameters can
be reused in many different applications. The code parameter transfer (lower
part of the client-side code) is not necessarily contained in the client application,
but becomes rather an administrative action: HOC-SA includes a Web-based
portal allowing programmers to browse the Code Service and check if a code
parameter with the required functionality is available: if not, then a new code
parameter can be stored using our portal (or hand-written code). Thus, in the
HOC-SA, code transfer is separated from the application code, such that both
Code Service and Remote Code Loader are not visible to the programmer.

In the HOC(A,B)-call in step �, no code is transferred. It is an ordi-
nary Web service request that is served by a HOC. HOCs execute recurring
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communication patterns (the pattern in Fig. 2 is called wavefront [3]; see Sec-
tion 3 for an example). For transparently inserting code parameters into appro-
priate positions in the pattern implementation, the HOC-SA performs two steps
invisible to the application programmer: in the download step �, the code that
the identifiers refer to is transferred to the HPC hardware (which is more than
one host, in case of a distributed HOC implementation). The conversion step �
is performed by the Remote Code Loader which is locally placed on the execu-
tion host(s) and makes the downloaded code parameters executable there. This
conversion is done by cast operations which assign the code parameters their
proper types. The type of HOC being used also determines the type of the code
parameters (e. g. a certain class definition), such that RSL for describing HOC
code parameters is unnecessary. In Fig. 2, the application code is much smaller
than in Fig. 1 since it represents only a piece of a program (HOC parameters)

3. Application case study for the HOC-SA and
WS-GRAM

Both WS-GRAM and HOC-SA delegate the handling of grid-specific re-
quirements like file transfer and (to a certain extend) fault-tolerance and secu-
rity to the Globus middleware [5]. However, WS-GRAM and HOC-SA provide
different means for code transfer on top of Globus, which have advantages in
different scenarios. In the following case study, we demonstrate best practices
for code transfer, using HOCs for simplifying the use of the middleware and
using WS-GRAM for giving programmer more control over the middleware
and potentially better performance.

As a case study, we present an application that detects similarities in genome
sequences. Although there are already many implementations for genome se-
quence alignment, our component-based solution features exchangeable pro-
cessing modes, such that the same distributed procedure is employed to detect
different kinds of similarities. The implementation is based on the Alignment
HOC (a GRAM-based variant without code parameters is shown in Section 4).
It fills a scoring matrix that rates differences between character sequence pairs:
each matrix element holds the result of a user-defined scoring function applied
to the two input subsequences, delimited by the element’s indices. Besides
the scoring function, the Alignment HOC has two more code parameters: the
alignment function and the traceback function. The alignment function is used
to iterate over the sequences and compute the scores, i. e. , the users are in con-
trol over the computation order allowing them, e. g. , to run a parallel schema.
Eventually, the traceback operation is applied to the scoring matrix to produce
the result (e. g. , this is often a path through the matrix). While the code pa-
rameters allow users to run any kind of sequence rating with the Alignment
HOC, a standard Smith & Waterman alignment [13] can be computed without
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writing any code parameter, since the Alignment HOC provides a default scor-
ing, alignment and traceback function for this purpose.
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Figure 3. Computation Schema of the Alignment HOC for DNA Similarity Detection

As shown in Fig. 3, the Alignment HOC is a distributed component which
uses RMI for dispatching parts of its input to multiple RMI servers (they are to
be launched by the user in advance). For our example application, we specified
a scoring and a traceback function that search for circular permutations [14].
While the default alignment function of the Alignment HOC allows for any
kind of data dependences (even among non-neighboring input elements) and
works sequentially, we implemented an alignment function that executes the
parallel processing schema known as the wavefront pattern [3]. It partitions the
matrix into submatrices which are positioned along the matrix antidiagonals
and form a wavefront. The submatrices are processed by the servers which
need no synchronization, since the wavefront pattern guarantees that there are
data dependences only inside the submatrices but not amongst them. While the
computations proceed through the matrix, there is a varying number of parallel
processes active, as shown in the processing schema in Fig. 2. The alignment
function is an example for code reuse (and, thus, reduced code transfer costs) in
the HOC-SA: it can be used as a code parameter in different applications (with
potentially different HOCs), even in applications of the wavefront pattern that
neither process genome data nor use RMI servers.

For implementing the sequential processing inside the code parameters, we
used the JAligner library [10]. As shown in Section 2.3, the HOC-SA provides
to each HOC a specific library code in a server-sided repository. The Alignment
HOC, e. g. , has access to JAligner, allowing us to use it without transferring it
to the servers ourselves.

The decision to choose one particular code transfer technology depends on
the relation between application-independent parts that can be handled by a
HOC and the size of the code parameters. An advantage of using HOC-SA,
is that it has a relatively small footprint, i. e. , can outsource tasks to remote
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machines which do not run Globus containers of their own. If the target en-
vironment has the Globus container installed on every node per default, it is
always worth to consider using both WS-GRAM and HOC-SA. In the next
section, we compare the two technologies regarding their performance.

4. Performance Comparison: HOC-SA vs. WS-GRAM
In this section, we compare the performance of the HOC-SA implementation

as a Globus Incubator project [4] with WS-GRAM [2] from the Globus Toolkit.
We use two implementations of the genome similarity detection application

described in Sec. 3: one on top of HOC-SA and one on top of WS-GRAM. The
amount of operational code including the Alignment HOC is approximately
18K lines of code for both versions. The application-specific code, i. e. , the
part the user writes in the HOC-SA version is only 400 lines of code long. Since
the Alignment HOC is an application-independent component, it is typically
pre-installed in a server-side repository in the HOC-SA. Therefore, HOC-SA
reduces the network traffic at startup of our application by factor 45.

All our tests were generated and submitted by means of the DiPerF tool in
ServMark [1], a specialized tool for grid performance evaluation. HOC-SA
was installed on grid nodes at the University of Chicago, with the following
characteristics: Dual-Intel Xeon(TM) 3.0 GHz with Hyper-threading, 2.0 Gb
of Memory and 100Mb/s network connectivity. Clients were deployed on the
PlanetLab nodes [12], which are Linux PCs connected to the PlanetLab overlay
network with worldwide distribution. Most nodes are connected via 100 Mb/s
network links (some still have 10Mb/s links) over a wide-area network (WAN),
have processor speeds exceeding 1.0 GHz IA32 Pentium III processors, and at
least 512 MB RAM.

Our metrics used for quantifying the performance of the two implementations
are as follows: (1) execution time (response) is the average time elapsed from
job submission to finish; (2) throughput quantifies the number of computations
that terminated and returned a result (i. e. , completed requests) of the service
per second, and (3) load represents the number of clients that use the service
concurrently at a certain moment in time.

Figure 4 captures the performance WS-GRAM and HOC-SA in terms of
response time. In some of experiments, the performance of WS-GRAM was
up to two times higher than the performance of HOC-SA. We explain this
by the highly optimized processing of repeated requests in WS-GRAM (e. g. ,
via caching). On average, WS-GRAM showed lower variations for response
time; the spikes can be explained by the temporal incapacity of the service to
serve all requests, caused by the communication with the OGSA-DAI and the
RMI servers. The performance of HOC-SA improves when the Code service
and the RMI servers are placed in the same LAN and depends on the LAN
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Figure 4. GRAM and HOC-SA response time in seconds on the dual Xenon processor with
40 (left) and 20 (right) clients running in PlanetLab for 1800 (left) or 3600 seconds (right)

capabilities [8]. Thus, the use of the HOC-SA Code service and Remote Code
Loader for code transfer comes at a certain cost when the resources are widely
dispersed.

However, we also measured that WS-GRAM, while delivering better re-
sponse times, caused a processor load that was on average 20% higher than in
the HOC-SA scenario. Thus, HOC-SA can provide a higher availability (in
terms of responsiveness), when the number of concurrent clients rises.
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Figure 5. GRAM and HOC-SA throughput on the dual Xenon processor with at most 40 (left)
and 20 (right) clients running on PlanetLab. Tunable parameters: starts a new client every 30
(left) and 180 (right) seconds, each client runs for 1800 (left) and 3600 (right) seconds

Figure 5 shows that the performance of WS-GRAM in terms of throughput is
up to three times higher as in HOC-SA. This is explained by the use of gridFTP
instead of SOAP for transferring the sequence files in the WS-GRAM version.
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5. Conclusions and Related Work
This paper has compared two approaches to grid application programming

– WS-GRAM and HOC-SA – with regard to how they handle code transfer
over the network and its execution on the grid nodes. For our experiments we
used a real-world application, which is successfully used in bioinformatics: this
program recently scanned the genome database ProDom [14] and found pattern
matches that were not known previously [8].

An important advantage of HOC-SA is that it frees the user from writing any
declarative code. The traditional declaration of communicated data and code
in grid applications becomes unnecessary due to pre-built components and a
special portal. HOC-SA also allows users to perform code transfer by accessing
the Code Service directly from within the application code. Other grid portal
projects, e. g. , Ganga [7] and gridPort [9], also support the transfer of code. But
these projects cannot be used for building new applications: their purpose is the
placement of existing applications onto grid nodes. Ganga and gridPort also do
not allow to submit to the grid application code that has data dependencies.

In our experiments, HOC-SA demonstrated an advantage of simplified ap-
plication programming and reduced network traffic. If an application performs
computations that are so time-consuming that they justify the costs for handling
every part of them with hand-tuned code, then WS-GRAM is probably the best
choice for implementing it. Since the time costs of most grid applications de-
pend on the amounts of data being processed, a HOC that provides a distributed
processing schema can help speeding up these applications by increasing the
number of execution nodes. Thus, HOC-SA proves to be a viable extension to
WS-GRAM in today’s grids. Grid applications can also benefit from both tech-
nologies, HOC-SA and WS-GRAM, simultaneously: WS-GRAM can transfer
a HOC together with its code parameters or any other self-contained part of a
HOC-SA application.
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